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1 SUMMARY 

A substantial part of the nocturnal bird migration in Europe passes through the North and the Baltic 

Sea. These migrating birds are increasingly confronted with development of offshore wind farms, 

which pose a risk of collision with these anthropogenic structures. It is commonly assumed that the 

number of collisions increases with the number of birds flying at rotor height. This assumption 

would mean that collision fatalities peak during periods of peak migration traffic rates (MTR). How-

ever, due to lack of suitable methods at sea, empirical data are lacking.  

The main aim of the present study was to quantify the collision risk of migrating birds and to test 

the hypothesis of a strong positive relationship between collision rate and MTR. Alternatively, a 

bird’s collision risk may depend on other factors, foremost weather conditions. For example, ad-

verse weather may reduce the ability of a bird to perceive the rotor in time to avoid it.  

With a combination of innovative and established methods, we recorded the MTR of birds at a 

coastal onshore wind farm using a specialised bird radar system (BirdScan MR1 by Swiss Birdradar 

Solution AG) and recorded the number of rotor transits, defined as birds crossing the rotor plane, 

using AI-supported camera systems (AVES Offshore HPC by ProTecBird GmbH) during more than 

three complete migration periods. This enabled us to analyse the relationship between the number 

of collisions and MTR. Using these data, we determined the avoidance rates of nocturnal and diur-

nal migrants - a parameter of paramount importance in collision risk models (CRM) that captures 

the proportion of birds avoiding the rotors when approaching the wind farm. Applying stochastic 

Band CRMs, along the exact MTR at rotor height and empirically estimated avoidance rates, we 

then calculated the expected number of collisions for the whole study period (including both day 

and night activity). 

Finally, to validate the theoretically calculated number of collision fatalities, we employed an inde-

pendent and well-established empirical method. Using thorough Post Construction Fatality Moni-

toring (PCFM), we searched for bird carcasses at the turbines at a 5-day interval and estimated the 

total number of fatalities while correcting for search area, searcher efficiency and carcass persis-

tence. 

In general, the number of rotor transits was very low when the turbines were operational. During 

night, on average one transit was recorded every 132 hours when the rotation speed was ≥2 rounds 

per minute. However, there was a remarkable difference in rotor transit rates depending on the 

operational status of the rotors. When turbines were inactive, transit rates were about 20 times 

higher than when rotors were operating, suggesting a reduced avoidance response at idle turbines. 

Furthermore, our results did not show a strong positive relationship between rotor transit rates 

and MTR. In other words, even during nights of high migration intensities, the probability of colli-

sions to occur did not increase. However, contrary to our expectation, weather parameters also 

explained only a small part of the probability of rotor transits and therefore collision risk. These 

results indicate that collision risk may depend mostly on other factors, which remain to be investi-

gated. 

Avoidance rates, calculated by comparing the number of observed rotor transits with the expected 

number based on MTR at rotor height, were found to be high: 0.9987 during the night and 0.9986 

during the day when the turbines were operating. This means, an estimated 99.87 and 99.86 
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percent of birds, approaching the wind farm at rotor height while turbines were operating, avoided 

the rotor plane during night and day, respectively. Also, the overall estimated collision risk for birds 

flying through the wind farm area at 25–1025 m altitude was very low: for nocturnal migrants only 

0.0016 percent of flights were expected to result in a collision, for daytime movements the risk was 

similarly low at 0.0020 percent. 

Comparison of the theoretically calculated number of collisions with the empirically determined 

fatalities using PCFM, showed a high overall agreement for the period of this study (Band CRM: 76.6 

fatalities [95%CI: 57.3-97.6] and PCFM: 99.7 [95%CI: 55.0-168.0]). In addition, collision victims 

found during the main bird migration seasons did not contain species known to constitute the bulk 

of nocturnal migration at the study site. This i) confirms the overall low collision risk for migrating 

birds, ii) validates estimated rotor transits and avoidance rates and iii) highlights the usefulness of 

applying CRMs to estimate collision risk when fed with realistic avoidance rates and appropriate 

site-specific turbine and bird flux rate data.  

These results have important implications for potential measures to mitigate the risk of collision for 

migrating birds, such as turbine curtailment during periods of high migration intensity. Such curtail-

ment measures imply a strong positive relationship between the probability of bird collisions and 

migration intensity, which could not be confirmed by our findings. Therefore, turbine curtailment 

during periods of high migration intensity is likely to be ineffective. 
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2 INTRODUCTION 

Billions of birds migrate long distances each year between breeding and wintering grounds (NEWTON 

2023). In Europe, a substantial proportion of these migratory birds pass through regions with an 

increasing expansion of renewable energy—particularly offshore wind power. A major part of the 

European offshore wind farm (OWF) developments is located in the North Sea1. While each spring 

and autumn, an estimated 1.0 – 1.3 million seabirds migrate through the Southern North Sea (DE 

LUCAS ET AL. 2007; BRABANT ET AL. 2015), non-seabird migration is substantially larger, with seasonal 

estimates ranging from 85 million to several hundred million individuals (BOURNE 1980; ALERSTAM 

1990; HÜPPOP ET AL. 2006; KRIJGSVELD ET AL. 2011; BSH 2025). 

While the development of offshore wind energy plays a key role in reducing greenhouse gas emis-

sions, it may also pose risks to migratory bird species. One of the central areas of conflict is the risk 

of collision with the rotor blades of offshore wind turbines (OWT). The majority of migratory birds, 

particularly passerines, migrate at night (HÜPPOP ET AL. 2009; NEWTON 2023) and nocturnally migrat-

ing birds are often considered particularly vulnerable to collision with wind turbines. However, 

knowledge on the collision risk of birds at night and the question whether and how collision risks 

differ between daytime and nocturnal migration is still scarce (KRIJGSVELD ET AL. 2009; WELCKER ET AL. 

2017; WELCKER & VILELA 2019, 2020).  

The collision risk of migratory birds is also regarded in the area development planning in the Ger-

man Exclusive Economic Zone (EEZ) and current approval procedures for offshore wind farms2,3. 

One proposed mitigation measure is the temporary shutdown of OWTs during periods of intense 

bird migration. This discussion is characterised by the uncertainty regarding the number of birds 

colliding with OWT and their avoidance behaviour (AVITEC RESEARCH GBR 2014; WELCKER & VILELA 

2019; CROLL ET AL. 2022). Onshore, well-established methods exist for empirically quantifying colli-

sion rates, such as systematic searches around the infrastructures, for example post-construction 

fatality monitoring (PCFM). At offshore wind farms, PCFM is impossible, as carcasses are lost from 

the collision area due to sinking, scavenging and dispersal by wind or waves. Moreover, access lim-

itations and safety risks impede the inspection of foundation structure platforms, which could po-

tentially retain a portion of bird carcasses. On the other hand, it remains unclear whether available 

information on collisions at other offshore infrastructures such as platforms is representative for 

OWT (AUMÜLLER ET AL. 2011; SCHULZ ET AL. 2013; HÜPPOP ET AL. 2016). Hence, empirical data on the 

actual risk of birds colliding with OWT remains limited (but for seabirds see for example SKOV et al. 

2018).  

With the idea to minimise collision risk, the Federal Agency for Nature Conservation (BfN) has called 

for temporary nighttime shutdowns of OWT if nocturnal bird migration intensity in the 0–200 m 

 

1https://map.4coffshore.com/offshorewind, last accessed 26.05.2025 

2https://www.bmwsb.bund.de/SharedDocs/gesetzgebungsverfah-
ren/Webs/BMWSB/DE/Downloads/stellungnahmen/verordnung-raumordnung-deutsche-wirtschaftszone-in-nordsee-
und-ostsee/bundesamt-fur-naturschutz.pdf?__blob=publicationFile&v=2, last accessed 26.05.2025 

3https://www.bsh.de/DE/THEMEN/Offshore/Flaechenvoruntersuchung/_Anlagen/Downloads/AJ2021_Entwurf_Eignun
gsfeststellung_Ergaenzung.pdf?__blob=publicationFile&v=2#:~:text=Die%20Vorgabe%20dient%20der%20Vermei-
dung%20der%20Realisierung%20des,verboten%2C%20europäische%20Vogelarten%20zu%20tö-
ten%20oder%20zu%20verletzen, last accessed 26.05.2025  

https://map.4coffshore.com/offshorewind
https://www.bmwsb.bund.de/SharedDocs/gesetzgebungsverfahren/Webs/BMWSB/DE/Downloads/stellungnahmen/verordnung-raumordnung-deutsche-wirtschaftszone-in-nordsee-und-ostsee/bundesamt-fur-naturschutz.pdf?__blob=publicationFile&v=2
https://www.bmwsb.bund.de/SharedDocs/gesetzgebungsverfahren/Webs/BMWSB/DE/Downloads/stellungnahmen/verordnung-raumordnung-deutsche-wirtschaftszone-in-nordsee-und-ostsee/bundesamt-fur-naturschutz.pdf?__blob=publicationFile&v=2
https://www.bmwsb.bund.de/SharedDocs/gesetzgebungsverfahren/Webs/BMWSB/DE/Downloads/stellungnahmen/verordnung-raumordnung-deutsche-wirtschaftszone-in-nordsee-und-ostsee/bundesamt-fur-naturschutz.pdf?__blob=publicationFile&v=2
https://www.bsh.de/DE/THEMEN/Offshore/Flaechenvoruntersuchung/_Anlagen/Downloads/AJ2021_Entwurf_Eignungsfeststellung_Ergaenzung.pdf?__blob=publicationFile&v=2#:~:text=Die%20Vorgabe%20dient%20der%20Vermeidung%20der%20Realisierung%20des,verboten%2C%20europäische%20Vogelarten%20zu%20töten%20oder%20zu%20verletzen
https://www.bsh.de/DE/THEMEN/Offshore/Flaechenvoruntersuchung/_Anlagen/Downloads/AJ2021_Entwurf_Eignungsfeststellung_Ergaenzung.pdf?__blob=publicationFile&v=2#:~:text=Die%20Vorgabe%20dient%20der%20Vermeidung%20der%20Realisierung%20des,verboten%2C%20europäische%20Vogelarten%20zu%20töten%20oder%20zu%20verletzen
https://www.bsh.de/DE/THEMEN/Offshore/Flaechenvoruntersuchung/_Anlagen/Downloads/AJ2021_Entwurf_Eignungsfeststellung_Ergaenzung.pdf?__blob=publicationFile&v=2#:~:text=Die%20Vorgabe%20dient%20der%20Vermeidung%20der%20Realisierung%20des,verboten%2C%20europäische%20Vogelarten%20zu%20töten%20oder%20zu%20verletzen
https://www.bsh.de/DE/THEMEN/Offshore/Flaechenvoruntersuchung/_Anlagen/Downloads/AJ2021_Entwurf_Eignungsfeststellung_Ergaenzung.pdf?__blob=publicationFile&v=2#:~:text=Die%20Vorgabe%20dient%20der%20Vermeidung%20der%20Realisierung%20des,verboten%2C%20europäische%20Vogelarten%20zu%20töten%20oder%20zu%20verletzen
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altitude range exceeds a threshold of 250 MTR (migration traffic rate, i.e. birds per hour crossing a 

virtual 1 km line; (SCHMALJOHANN ET AL. 2008))4. Furthermore, a similar mitigation measure has al-

ready been implemented in the Dutch North Sea. There, the mitigation process begins with the 

prediction of nocturnal bird migration intensity at rotor height 48 hours in advance, using a fore-

casting model developed specifically for this purpose. If the forecast in unison with an expert team 

indicates that a predefined MTR threshold (500 MTR) will be exceeded, various stakeholders are 

automatically notified with the aim of implementing turbine curtailment if it can be accomplished 

without compromising grid stability. Currently, this mitigation measure is not tied to any additional 

factors, such as weather conditions.  

The BfN recommendation and Dutch mitigation measure imply that the collision risk for nocturnally 

migrating birds at sea depends primarily on their migration intensity at rotor height. However, a 

simple direct proportional relationship, for example that doubling the number of nocturnally mi-

grating birds would result in twice as many collisions, is questionable for several reasons. For ex-

ample, several studies in coastal onshore areas found that nocturnally migrating birds were de-

tected only in very low numbers during carcass searches, despite high migration intensities being 

recorded within the relevant altitude range (KRIJGSVELD ET AL. 2009; GRÜNKORN ET AL. 2016; WELCKER 

ET AL. 2017). Strong bird migration predominantly occurs under favourable weather conditions (VAN 

BELLE ET AL. 2007; VAN DOREN & HORTON 2018; NILSSON ET AL. 2019; WELCKER & VILELA 2019; ROY ET AL. 

2025), and it seems plausible that favourable weather conditions (e.g. good visibility, supporting 

wind conditions, no precipitation) do not impair the capability of nocturnally migrating birds to 

perceive and avoid OWT in the dark.  

However, substantial bird migration, particularly in offshore areas, occasionally occurs even under 

unfavourable weather conditions (AUMÜLLER ET AL. 2011; WELCKER & VILELA 2019). Under such condi-

tions, the birds’ reaction thresholds may be reduced—poor visibility may result in a closer approach 

to structures before avoidance responses are triggered (AVITEC RESEARCH GBR 2014). At night, this 

risk may be further amplified by the potential attraction of nocturnally migrating birds to artificial 

light sources, especially during fog, rain, or dense cloud cover (AVITEC RESEARCH GBR 2014). This light 

effect has long been documented and can lead to significant accumulations of birds, particularly 

passerines, near illuminated structures (e.g. see summary in AVITEC RESEARCH GBR 2014). Such situ-

ations — high migration intensities occurring under unfavourable weather conditions — may result 

in increased collision events. (e.g. AUMÜLLER ET AL. 2011). Offshore wind energy installations 

equipped with safety lighting, are also considered potential attractants or light traps (DREWITT & 

LANGSTON 2008) under these conditions.  

Due to the lack of direct data on bird collisions at offshore wind farms, estimates of fatalities have 

so far been derived based on collision risk models (CRM), predominantly by application of the so-

called Band model (BAND 2012). In addition to the fact that for obvious reasons these models cannot 

be validated in the offshore environment, several caveats impair the reliability of model outcomes 

(CHAMBERLAIN ET AL. 2006; MASDEN 2015; MASDEN & COOK 2016; WELCKER & VILELA 2019). Most im-

portantly, the number of estimated collisions depends tremendously on the assumed avoidance 

rate of the birds. Already small changes in the avoidance response incorporated in the model, and 

consequently the estimated number of birds passing through the rotor plane (rotor transits), results 

 

4 Same as note 2 
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in large differences in model outcome. For instance, assuming an avoidance rate of 98 % instead of 

99 % will double the number of predicted collision fatalities. As up to now very little information is 

available with respect to the avoidance response of nocturnally migrating birds (KRIJGSVELD ET AL. 

2011; SCHULZ ET AL. 2014), the validity of modelled collision risk at OWT is unknown.  

In the absence of robust empirical collision data at OWT, the magnitude of the collision risk as well 

as the nature of the relationship between migration intensity and the number of collision fatalities 

remains uncertain. Information on the timing of collisions, the conditions under which collisions 

occur, and their absolute number in relation to the total number of birds migrating through offshore 

wind farms is urgently needed. Such data are essential for implementing targeted mitigation 

measures or for re-evaluating the necessity of such measures altogether. 

The main aim of this study was to collect data on the collision risk of migrating birds, particularly 

nocturnal bird migration, at near-shore wind turbines to contribute to closing existing knowledge 

gaps. We tested whether the probability of birds flying through the rotor plane and thus the number 

of collisions is proportionally related to the intensity of bird migration or influenced by weather 

conditions. Moreover, we empirically determined avoidance rates and performed intensive fatality 

searches to validate collision models. This will support improved estimations of bird collision risk in 

offshore areas and help evaluating current approaches to mitigation measures. 

We applied a combination of well-established and innovative methods to reach that aim. Using a 

specialized bird radar, we collected data on overall MTRs at rotor height and altitudes up to 1000 m 

at the study site. Complementing these measures, we installed a bird call recorder, to derive infor-

mation on the main species involved in nocturnal bird migration. Novel AI-driven stereo-vision cam-

era systems were applied to record the number of bird rotor transits during both day and night, 

allowing for precise estimation of avoidance rates in relation to MTR. Finally, we conducted inten-

sive carcass searches to derive an independent measure of collision risk.  

2.1 Goals 

The overall goal of this study was to specify the collision risk of migratory species, with a focus on 

nocturnal migrants and to investigate whether this risk depends on environmental conditions. More 

specifically, with the data collected we aimed to answer the following questions about the interplay 

of migration intensity, collision risk and number of actual fatalities: 

• Is there an association between migration intensity at rotor height and the number of 

rotor transits?  

• Does the relationship between migration intensity at rotor height and the number of 

rotor transits differ between daytime and nighttime migration? 

• To what extent are both parameters (MTR at rotor height and number of rotor transits) 

influenced by weather conditions?  

• Does the number of rotor transits vary depending on wind turbine operational status 

(i.e.: below or above 2 rpm)?  
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• What is the relationship between the number of birds passing through the wind farm 

(25 -1025 m) and the estimated number of collisions?  

• How many actual collision victims can be found at the wind farm based on systematic 

carcass search protocols?  

Furthermore, the routinely used ‘Band model’ (SCOTTISH NATURAL HERITAGE 2000; BAND 2012) to esti-

mate collision risk was validated for nocturnally migrating birds, based on data collected on migra-

tion intensity, observed flight behaviour within the rotor area (rotor transits), and estimated colli-

sion fatalities. This involved the following: 

• Determination of avoidance rates of nocturnal migrants based on radar and camera 

data. The avoidance rate is a key parameter of the Band model. 

• Comparison of collision risk between daytime and nighttime migration. 

• Validation of the model by comparing its results derived by empirically determined 

avoidance rates with the estimated number of collisions determined through carcass 

searches. 
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3 METHODS 

3.1 Overview 

The study was conducted at the coastal wind farm ‘Windtestfeld Nord’ between 23 February 2023 

and 30 November 2024, covering four migration seasons: two springs and two autumns. Camera 

data was recorded during more than three migration seasons, from 15 May 2023 to 30 November 

2024. The ‘Windtestfeld Nord’ is a test site for wind turbines and hosted five different prototype 

turbines, spaced 600 to 1350 m apart (see chapter 3.2 for details and Table 3-1 for turbine specifi-

cations). 

A detailed description of all employed methods is provided in the respective chapters below. Ow-

ing to varying logistical requirements, the methods were initiated at different times, allowing each 

to be implemented under optimal conditions.  

Camera systems (see chapter 3.4 and Table 3-1) were installed on two of these turbines. The sys-

tems recorded all bird (and bat) passages through the rotor plane, both during the day and at 

night. Nocturnal activity was captured using infrared cameras in combination with infrared emit-

ters. We applied AVES Offshore HPC systems from ProTecBird GmbH that were specifically devel-

oped for this purpose. 

To assess general migration intensity in the area, we used a specialized bird radar, the BirdScan 

MR1 system from Swiss-Birdradar Solution AG (see also chapter 3.3) and an acoustic bird call re-

corder, both positioned close the wind farm (see chapter 3.5). 

In addition, at all five turbines we conducted so-called post construction fatality monitoring 

(PCFM) at a five-day interval throughout the study period to detect potential collision victims (see 

chapter 3.6).  

Data on weather conditions were obtained from various data sources. Wind speed, wind direction, 

and temperature were measured directly at the turbines at rotor height. For other parameters—

such as precipitation, barometric pressure, and visibility—we used data from a local weather sta-

tion and mean values derived from publicly available data provided by the German Meteorological 

Service (Deutscher Wetterdienst, DWD) from multiple locations surrounding the wind farm. Corre-

lation matrices indicated a strong agreement between these mean values and the corresponding 

parameters recorded within the wind farm itself (see chapter 3.7.1 for details). 

3.2 Study site `Windtestfeld Nord´ 

The fieldwork was conducted at `Windtestfeld Nord´5 near Husum, Germany (54.449°N, 9.035°E, 

Figure 3-1). The site is located close (~2.3 km) to the coast of the Schleswig-Holstein Wadden Sea 

 

5 https://www.windtestfeld-nord.de/de, last accessed 27.06.2025 

https://www.windtestfeld-nord.de/de,%20zuletzt%20aufgerufen%20am%2027.06.2025
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National Park and the North Sea, and encompasses a variety of habitats, most notably agricultural 

fields, channels, ditches, small roads, trees and shrubs.  

The wind farm area spans approximately 150 ha and the maximum width of the site perpendicular 

to the main migration direction is about 1.2 km (East-Southeast to West-Northwest). Common bird 

species in this area include geese, ducks, gulls, waders and songbirds. Within this area, five operat-

ing wind turbines of varying types and sizes (see Table 3-1) were used for this study. These turbines 

are still operating. 

 

Figure 3-1 Map providing an overview of the `Windtestfield Nord’ at Südermarsch, near Husum, including 
details of the five prototype turbines and their IDs, corresponding to those listed in Table 2-1 
(e.g. 2 = A2, and so on). Please note, that A1 was decommissioned shortly before the start of 
this study.  Source: https://www.windtestfeld-nord.de/de/testanlagen.php. 

Table 3-1 Technical specifications of the five prototype turbines at `Windtestfeld Nord’, and AVES camera 
system installation status (yes/no). 

Producer Turbine 
ID 

Model 
type 

MW Rotor ra-
dius [m] 

Hub 
height 

[m] 

Total 
turbine 
height 

[m] 

Lower 
rotor tip 
height 

[m] 

Camera 
system  

Senvion 
GmbH 

A2 EBC 3.6 70 110 180 40 yes 

Siemens 
Wind 

Power 

A3 SWT-3.6-
130 

3.6 65 85 150 20 no 

Nordex 
(GP 

Joule) 

A4 N 131 
3600 

3.6 65.5 98 164.8 32.5 yes 

GE Rene-
wable 
Energy 

A5 GE 3.2 3.2 65 85 150 20 no 

Enercon A6 E 126 EP 4 4.2 63 100 163.5 37 no 

https://www.windtestfeld-nord.de/de/testanlagen.php
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3.3 Radar 

A BirdScan MR1 ornithological radar, developed by Swiss Birdradar Solution, was operated contin-

uously throughout the entire study period (23/02/2023 – 01/12/2024), with minimal downtime due 

to maintenance or local power outages. The MR1 is a vertical-looking radar system designed for 

real-time monitoring of bird movements6. It is a 25 kW pulsed X-band radar (9.4 GHz) with a maxi-

mum range for large birds of approx. 2000 m and 1000 m for smaller birds, like passerines. The 

vertical cone-shaped detection range of the radar is illustrated in Figure 3-2. 

 

Figure 3-2 Left: Illustration of the monitored radar volume of the horn antenna of the MR1 radar after 
reduction of noise and sidelobes. Right: Horn antenna of the MR1. 

Using echo signature characteristics, the MR1 is unique in classifying detected tracks as bird or non-

bird (e.g. bats, and insects). It further distinguishes birds into groups based on wing-beat patterns, 

such as waders, passerines, swifts and large birds. This distinction enables the use of species-spe-

cific MTRs and flight height distributions (FHDs). Small birds, such as passerines, can be reliably 

detected up to a height of 1025 m. It has been shown that the BirdScan MR1 radar can robustly 

monitor both absolute and relative bird migration intensity (NILSSON ET AL. 2018). 

The radar was installed about 650 m from the nearest wind turbines of the study site (Figure 3-3 

and Figure 3-4, turbine A2 and A4, both of which were equipped with a camera system, see chapter 

3.4). The radar data on MTRs and FHDs can therefore be regarded as representative of the wind 

farm area.  

 

6 https://swiss-birdradar.com/systems/radar-birdscan-mr1/#:~:text=Bird-
Scan%20MR1%20is%20a%20compact%20radar%20system%20for,a%20rich%20set%20of%20information%20for%20ea
ch%20target%3A, last accessed 27.06.2025 
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Figure 3-3 The MR1 radar installation site close to the wind farm ‘Windtestfeld Nord’ (in the background). 

 

Figure 3-4 Study site with location of radar (yellow), wind turbines equipped with AVES camera systems, 
and additional turbine locations used for fatality monitoring. 

3.4 Camera system 

To systematically collect data on rotor transits of birds (defined sensu BAND (2012) further details 

below), we employed innovative camera systems at two turbine locations (see Figure 3-4). We used 
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the AVES Offshore HPC system, developed by ProTecBird GmbH7 specifically for the purpose of de-

tecting birds as small as a passerine within the rotor plane and the area immediately leeward of the 

rotors, both during the day and night (Figure 3-6 and Figure 3-9).  

The camera system consists of several high-resolution stereo-vision camera pairs (Figure 3-5), 

which allow for distance estimation of detected objects and thus for determining whether birds 

flew within or outside the length of the rotor. The number of cameras, along with the resolution 

(4k: 3840x2160 pixel) and sensitivity of the sensors and the opening angle of the lenses (45°), was 

devised to ensure detection of even the smallest nocturnal migrants across the full length of the 

rotor blades (70 m, see Table 3-1). This was confirmed by a series of tests in which carcasses of 

small birds were attached to a drone to determine the range of the cameras during both day and 

night. 

For this study, each camera system comprised four camera pairs (Figure 3-5). To facilitate object 

detection at night, the systems included four active infrared emitters (100 W) designed to suffi-

ciently illuminate the entire field of view within the rotor area (see also Figure 3-6). 

 

Figure 3-5 The AVES Offshore HPC system, consisting of four stereo-vision camera pairs and infrared light 
sources to facilitate bird detection at night. 

 

7 https://protecbird.com/aves-wind-high-precision-counter/, last accessed 18.07.2025 

https://protecbird.com/aves-wind-high-precision-counter/


The collision risk of migrating birds at wind turbines 
 

 

 12  

 

 

Figure 3-6 Illustration of the field of view of the AVES camera systems. 

The camera systems were installed on the nacelles of the turbines (Figure 3-6). Compared to instal-

lations at the base of turbines towers, this positioning offers several important advantages: 

• the cameras remain perfectly aligned with the rotor plane regardless of wind direction 

and rotor orientation 

• the required detection distance is minimised to the length of the rotor blade, rather 

than the full rotor diameter 

• each camera system can cover one complete half of the rotor plane (180°), capturing 

areas both above and below the nacelle to the same extent (Figure 3-6); and 

• adverse weather conditions such as fog and precipitation have less effect on the cam-

era detection performance due to the reduced observation distance and favourable 

camera orientation. 
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Figure 3-7 Installation of an AVES Offshore HPC system at the study site. 

Even though collisions can be detected with these camera systems (we recorded two nocturnal bird 

collisions and one bat collision during the study period), due to the positioning of the cameras and 

opening angle of the lenses only parts of the rotor blades were within their field of view. Therefore, 

camera data were not used for direct collision monitoring but rather to precisely record bird move-

ments through the rotor plane as an indirect way of determining collision risk (see also chapter 

3.7.10). 

For the purpose of this study, and following BAND (2012), rotor transits were defined as events 

where birds cross the rotor plane of a wind turbine (Figure 3-8). Manual review of the video data 

from the cameras (see below) was used to determine rotor transits. As the cameras’ field of view 

did not cover the entire rotor blade, rotor transits were partially deducted from the flight paths of 

the birds (Figure 3-8). For example, this applies to flight path scenario 4, whereas flight path sce-

nario 1 represents a fully recorded rotor transit within the cameras’ field of view. Scenario 2 and 3, 

on the other hand, describe cases where no rotor transit would be recorded. In scenario 2, a micro 

avoidance is observed with no rotor plane crossing, while in scenario 3, the micro avoidance and 

no rotor plane crossing remain undetected.   
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Figure 3-8 Illustration of rotor transits: four possible flight path scenarios of birds in relation to the cam-
eras’ field of view. Scenario 1 and 4 would be scored as rotor transits, whereas scenario 2 would 
be scored as no rotor transit. Scenario 3 could not be detected by the cameras and would not 
qualify as a rotor transit. 

Bespoke AI-models for detecting birds (and bats) were developed and applied. Different AI-models 

were required for daytime (RGB videos) and nighttime (greyscale footage), as well as for two dif-

ferent background categories: sky and landscape/vegetation. Pre-existing models were fine-tuned 

and validated during the initial months of the study and subsequently implemented at different 

points in time until mid-November 2023. 

During the early stages of camera data collection, continuous (24/7) video footage was recorded 

and stored. This data was later analysed offline using the finalised AI-models. From mid-November 

2023 onwards, the AI-models for bird detection were deployed online in real time, and only video 

sequences with positive detections were stored for later reference. 

The performance of the AI-models was validated manually by experienced reviewers using test da-

tasets that were not part of the AI training material. The confidence level of the final AI-models for 

detections was set to ensure 100 % recall of all manually identified birds. This approach was 

deemed necessary because rotor transits can be regarded as relatively rare events, and underesti-

mating transit rates could potentially have a large impact on the results. 

As a consequence, this approach resulted in a high number of false positive detections (instances 

where the AI incorrectly identified non-bird objects as birds), which were manually reviewed and 

filtered. Due to this manual review effort, combined with the fact that AI detection could not be 

implemented at the start of the data collection period, resulting in high computational demands 
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and extended processing times for stored video footage analysed offline, not all available video 

data was analysed.  

In general, video data analysis was restricted to the main bird migration periods (01 March until 31 

May and 15 July until 30 November) as defined by StUK4 (BSH 2013), which are applied to all off-

shore bird migration surveys in German waters within the context of offshore wind developments. 

These periods encompassed a total of 387 days. As cameras were installed on two wind turbines 

this resulted in 774 turbine-days, where one turbine-day refers to one turbine being monitored for 

a single day (24 h including the night).  

Data were successfully recorded on 722 of these turbine-days. The remaining 52 turbine-days 

lacked data due to turbine maintenance activities, power outages, or other reasons that caused 

long-term camera system downtime. From the 722 turbine-days (and nights), we selected 547 

nights (76 %) and 305 days (42 %) for data analysis. A monthly overview of the selected days and 

nights is provided in Table A-5. 

Days and nights were selected based on MTR values derived from bird radar data and information 

on weather conditions (specifically visibility), with the aim of choosing days/nights that represented 

similar proportions of low, medium and high migration intensities. At the same time, care was taken 

to ensure that time periods with reduced visibility were also included. The aim was to ensure a 

balanced dataset for analysing the relationship between rotor transits with migration intensities, 

as well as the effects of unfavourable weather conditions. 

Overall, the operational availability of the camera systems during the analysed time periods (i.e., 

547 night- and 305 day-periods) was 89 %. The main causes of camera downtime were short-term 

power outages, as well as server maintenance and failures. Periods of camera downtime were ac-

counted for in subsequent data analyses.  
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Figure 3-9 Screenshots of birds detected by the AVES camera system during the day (above) and the night 
(below). 
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3.5  Bird call recordings 

To record bird calls we used an acoustic recorder called `Song Meter’ (SM4, Wildlife Acoustics8). 

The Song Meter was placed next the study area in close vicinity to the radar (see Figure 3-4). It was 

powered with a solar panel. The Song Meter was programmed to record continuously from 12 May 

2023 until 30 November 2024, with a sampling rate of 24000 kHz, gain of 16.0 dB, preamp of 26 dB, 

and a resolution of 16 bits per sample. The detection range of the `Song Meter’ varies depending 

on the call amplitude (species-specific differences) and environmental conditions such as wind and 

precipitation. Under optimal conditions, loud calls can be detected at distances of several hundred 

metres, whereas under unfavourable conditions (e.g. strong wind), the effective range may be lim-

ited to a few metres for faint calls. 

To ensure sufficient available data storage, SD cards were replaced regularly every three to four 

weeks. Unfortunately, on three occasions (between 26/10/2023 – 17/11/2023; 12/12/2023 – 

01/02/2024, and 08/06/2024 – 15/07/2024) data recording was interrupted due to technical failure 

of data storage; water damage and a daredevil sheep. Audio files were stored as uncompressed 

wav-files and manually inspected to verify that the recorded signals met the requirements and were 

then analysed for bird species using the algorithms of the software ‘Sound ID’9.  

3.6 Post Construction Fatality Monitoring (PCFM) 

The aim of the PCFM was to estimate the number of collision fatalities at the five turbines of the 

wind farm during the study period from 15 May 2023 to 30 November 2024. Throughout this pe-

riod, designated plots around each turbine were regularly searched for collision victims, depending 

on visibility conditions (see below). Two of the five turbines monitored during PCFM were non-

operational for extended time periods during the study period. 

The search area at each turbine was defined as a radius of 120 m around the base of the tower. The 

area was divided in different plots depending on accessibility and type of vegetation. Plots with 

permanently high vegetation, shrubs or trees were excluded. Also, to keep search effort within fea-

sible limits, for some uniform plots (e.g. farmland) the search area was restricted to an 80 m radius 

in which most carcasses were predicted to fall. Visibility conditions for each subarea were recorded 

on every survey day and categorised as `very good’, `good’, `sufficient’ or `not sufficient’ (in which 

case the area was not searched) depending on the height of the vegetation or other limitations (e.g. 

farming activities or flooding after periods with high precipitation; see Table 3-2). As the primary 

focus of the study was on passerine birds, a narrow transect width of 7 m was implemented within 

search plots. Thus, observers were required to search for carcasses within 3.5 m to either side of 

each transect line. Transect layouts were optimised for each subarea, and observers navigated the 

transects using tablets equipped with GPS (Figure 3-10).  

 

8 https://www.wildlifeacoustics.com/products/song-meter-sm4, last accessed 30.06.2025 

9 https://merlin.allaboutbirds.org, last accessed 01.07.2025 

https://www.wildlifeacoustics.com/products/song-meter-sm4
https://birdnet-team.github.io/BirdNET-Analyzer/models.html
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Table 3-2 Visibility conditions of plots for carcass searches. 

Visibility Category Description 

1 = Very Good Freshly ploughed and harrowed field without vegetation (i.e., fine soil) 

Tracks and crane standing areas 

Germinated rapeseed/maize up to 5 cm 

Emerging winter cereals up to 2 cm 

2 = Good Mowed grassland 

Germinated rapeseed up to 10 cm 

Emerging winter cereals up to 10 cm 

Stubble fields without undergrowth 

3 = Sufficient Rapeseed/maize/winter cereals up to 20 cm 

Stubble fields with undergrowth 

Ploughed field 

4 = Not sufficient Not searched due to very poor visibility 

 

 

Figure 3-10 Overview of test area with all five turbines indicated with orange dots. Red lines show transect 
design for carcass searches. Inner blue circle indicates 80 m and outer circle indicated 120 m 
radius around the turbine. 

Carcass searches were carried out every five days throughout the study period to minimise the risk 

of potential carcass removal between visits. However, intervals between surveys in any given sub-

area could be extended depending on visibility conditions. The location of carcasses found during 

the searches were recorded using GPS, and carcasses were identified at species level either in the 
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field or subsequently in the laboratory by an ornithologist specialised in feather identification. A 

total of 114 search days were conducted of which the first day (15/05/2023) was the initial search, 

with the aim of removing all carcasses of collision fatalities that happened before the start of the 

study period. 

In accordance with the PCFM handbook (INTERNATIONAL FINANCE CORPORATION 2023) remains of dead 

birds were defined as a collision fatality if at least two contiguous primary feathers or at least ten 

loose smaller feathers were found within a radius of approximately 2.5 m.  

Additionally, field trials were conducted to estimate carcass persistence and observer efficiency, 

enabling appropriate corrections in the final estimates of total collision victims based on carcass 

records. 

3.6.1 Carcass persistence and search efficiency 

Carcass persistence 

Carcasses can be removed by scavengers or degrade and decompose over time, making them un-

detectable during subsequent surveys. Carcass persistence trials take account of this limitation by 

providing empirical data to model a persistence function using survival analysis approaches and 

thereby improving the accuracy of fatality estimates. 

For this study, 80 carcasses from three different body size categories (small: n = 37; medium: n = 30; 

large: n = 13) were used in four carcass persistence trials. Thus, differences in persistence time with 

carcass size could be taken into account in subsequent data analyses. These four trials were con-

ducted across different seasons to account for potential seasonal variation in scavenger activity. 

Only carcasses of species that naturally occur in the study area were used. The condition of each 

carcass (i.e. `very good’, `good’, ‘sufficient’ and ‘insufficient’.) was recorded until it was no longer 

detectable or until the end of the trial period (21 days), whichever occurred first. The start day of 

the four trials were: 28/02/2024 (19 carcasses), 28/05/2024 (20 carcasses), 05/09/2024 (23 car-

casses), and 04/11/2024 (18 carcasses).  

Search efficiency 

Searcher efficiency trials were used to estimate the probability of detecting a carcass that was pre-

sent in the field at the time of search. Bird carcasses were placed in the field at various dates and 

in various visibility conditions during the study without informing observers. We combined persis-

tence and search efficiency trials by using the carcasses of the persistence trials also for the search 

efficiency. To increase sample size, we placed additional 17 carcasses for the search efficiency anal-

ysis. Observers could identify carcasses from search efficiency trials by the small brown string tied 

to the carcasses’ legs. Number of carcasses were carefully balanced such that the three carcass size 

categories were equally present in the three visibility classes (see Table 3-3). The detection by field 

observers on their first subsequent search was recorded. Given the success rate of detecting car-

casses under different visibility conditions, size and visibility specific efficiency estimates were cal-

culated (see chapter 3.7.9). 
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Table 3-3 Number of carcasses used in searcher efficiency trial across size categories and visibility levels. 

Carcass size 
Visibility level 

Very good good sufficient 

small 15 17 7 

medium 12 11 12 

large 8 6 9 

3.7 Data Analyses 

When scrutinising data, there are often multiple approaches by which the same dataset can be 

analysed. Given the wide range of modern analytical techniques, it becomes apparent that there is 

no single best solution, and different technically sound methods can yield varying estimates (GOULD 

ET AL. 2025). One way to address the challenge of selecting an appropriate statistical technique for 

a given task is to apply multiple methods of data analysis and assess the extent to which their esti-

mates differ. This approach may offer, on the one hand, the assurance that the results are robust; 

or, on the other hand, when results are contradictory, it indicates that further investigation is re-

quired. In the present study we adopted this strategy by employing different statistical methods to 

evaluate the most critical hypothesis: that the rotor transit rate is linearly associated with migration 

intensity at rotor height.  

Since the number of rotor transits followed a Poisson rather than a normal distribution, simple 

linear models were not appropriate. Therefore, we first conducted nonparametric analyses using 

Kendall’s rank correlation, followed by generalized linear models (GLMs) and generalized linear 

mixed models (GLMMs). Further details are provided in the following chapters. 

Next, as we expect that both the overall MTR and its potential association with rotor transits de-

pend on weather conditions, we applied modern Bayesian models incorporating weather parame-

ters as explanatory variables. Since MTRs are also strongly influenced by temporal patterns such as 

season and time of the day, we included these variables in the models to distinguish the effects of 

weather conditions from those of temporal variation.  

We also used Bayesian statistics, as it enables rigorous error propagation, resulting in precise esti-

mates of effect sizes and associated uncertainty. Moreover, Bayesian statistical modelling allows 

for control over model assumptions, the underlying data distribution, and the interplay between 

variables (MCELREATH 2019).  

To incorporate weather variables, we obtained the relevant data from appropriate sources and 

carried out pre-processing. Details are provided in the following chapter 3.7.1. 

All statistical analyses were conducted using the R software environment (R version 4.4.1 (2024-06-

14 ucrt) R Core Team, 2024). 
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3.7.1 Pre-processing of weather data  

Part of the meteorological data was collected on-site at `Windtestfeld Nord’, either by the wind 

turbines themselves or by a weather station operated by Pavana GmbH (Husum, Germany), which 

kindly provided the data. However, these measurements were discontinued in August 2024 and are 

therefore incomplete for the full study period. To ensure consistent meteorological data across all 

four migration periods analysed, publicly available hourly weather data from the DWD were used10. 

Based on previous studies on nocturnal bird migration, eight weather parameters were selected for 

analyses (see Table 3-4; for more details see also appendix A.4). 

Table 3-4 Meteorological parameters used for the regression analyses and their DWD sources. ‘Relative 
humidity’ (in grey) was excluded from further analysis due to its strong correlation with visibility 
(r ≥ 0.7). 

Parameters Unit Meteorological stations used 

Precipitation mm Mean of Hattstedt, Erfde, Leck, Schleswig, SPO 

Temperature °C Mean of Hattstedt, Erfde, Leck, Schleswig, SPO 

Wind speed m/s Mean of Leck, Schleswig, SPO 

Wind direction ° Mean of Leck, Schleswig, SPO 

Barometric pressure hPa Mean of Leck, Schleswig, SPO 

Cloudiness eights Mean of Leck, Schleswig, SPO 

Visibility m Mean of Leck, Schleswig, SPO 

Relative humidity % Mean of Hattstedt, Erfde, Leck, Schleswig, SPO 

The nearest DWD station is in Hattstedt (54.527°N, 9.043°E), approximately 9 km from the study 

area. However, not all required weather parameters were recorded at this site. Therefore, data 

from five nearby DWD stations were combined. Details are provided in Table 3-5.  

Table 3-5 Overview of the five DWD weather stations used in the study. Including station ID, altitude 
above sea level (a.s.l), geographic coordinates and distance to wind farm in km. 

 

10 https://opendata.dwd.de, last accessed for data download 07.01.2025 

Town DWD Station ID Altitude a.s.l. (m) Coordinates (°N, °E) Distance 
[km] 

Hattstedt 7298 4  54.527, 9.043 8.84 

Erfde 1266 18 54.299, 9.316 24.67 

Leck 2907 7 54.7903, 8.9514 38.46 

Sankt Peter-Ording (SPO) 4393 5 54.3279, 8.6031 30.88 

Schleswig 4466 47 54.528, 9.549 34.48 

https://opendata.dwd.de/
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Figure 3-11 Overview of the five DWD weather stations used in the study indicated by blue ‘cloud’ marker. 
Location of test wind farm is indicated by red ‘star’ marker. 

To assess the suitability of the DWD data as a substitute for local measurements, Pearson correla-

tions were calculated using the R package ̀ correlation’ (v. 0.8.5; MAKOWSKI ET AL. 2022). The aim was 

to identify the best-matching DWD source for each parameter recorded by the Pavana weather 

station. For parameters not measured by the Pavana station (relative humidity, cloud cover, visibil-

ity), mean values across DWD stations were used (Table 3-5). 

To prevent multicollinearity and ensure model stability in subsequent regression analyses, correla-

tions among weather variables were examined. Variables with a correlation coefficient of r ≥ 0.7 

were considered highly correlated, and in such cases, one variable was excluded. Relative humidity 

and visibility exhibited a strong correlation (r > 0.7); since visibility was of particular interest regard-

ing the migratory behaviour of passerines, relative humidity was excluded (see Figure 3-12). 
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Figure 3-12 Correlation matrix of weather parameters selected for regression models. Variables with a cor-
relation coefficient of r ≥ 0.7 were considered highly correlated. Variables represent mean of 
DWD station values; wind variables correspond to the mean of the five turbines in the wind 
farm. 

Tail- and Crosswinds 

One of the most important environmental predictors of migratory behaviour is wind conditions 

(ERNI ET AL. 2002; WELCKER & VILELA 2019; NUSSBAUMER ET AL. 2022; SCHEKLER ET AL. 2024). For example, 

Welcker and Vilela (2019) found that migration intensity increases with tailwinds. Tailwinds are 

defined as winds blowing in the direction of migration and thus supporting the birds’ movement, 

whereas headwinds increase the energetic costs of flight and typically reduce the likelihood of mi-

gration. In addition to wind direction, wind speed determines the extent to which wind exerts a 

supportive or adverse effect on the birds’ movement. Therefore, the tailwind component is typically 

calculated as a function of wind direction and wind speed (e.g.: ZEHNDER ET AL. 2001; HÜPPOP & 

HILGERLOH 2012). In line with these approaches, we estimated the tailwind component (TWC) as: 

𝑇𝑊𝐶 = cos(𝑂𝑊𝐷 − 𝑇𝑊𝐷) ∙ 𝑊𝑆 where OWD is the `observed wind direction’, TWD is the `tail-

wind direction’ and WS is the `wind speed’. 

TWD was calculated from the radar data as the average flight direction per season. In spring, the 

main flight direction was 25° and in autumn 205°. These directions are more north-south oriented 

than those reported in other studies (e.g. BRADARIĆ ET AL. 2024b), which typically find a stronger 

southwest-northeast direction in spring and northeast-southwest direction in autumn. We 
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attributed the predominantly north-southernly flight directions at our study site to the local geo-

graphical conditions. 

In addition to tailwinds, also crosswinds are expected to influence migration. Crosswinds are de-

fined as winds blowing perpendicular to the main migration direction, and the `crosswind compo-

nent’ (CWC) is estimated similarly to the TWC: 

𝐶𝑊𝐶 = sin(𝑂𝑊𝐷 − 𝑇𝑊𝐷) ∙ 𝑊𝑆  

Where, as above, OWD is the `observed wind direction’, TWD is the `tailwind direction’ and WS is 

the `wind speed’. 

Positive CWC values indicate winds blowing from the bird’s left side relative to its flight direction, 

while negative values indicate winds from the right. Considering the assumed migration direction, 

positive CWC values correspond to winds coming from the sea in spring and from the coast in au-

tumn. To facilitate readability, we defined CWCs blowing towards the shore—relative to the sea-

son’s specific main migration direction—as `shorewinds´, and those blowing towards the sea as 

`seawinds’. 

It has been shown that a change of weather conditions from one day to the next influences the 

migration behaviour of birds (e.g. NILSSON ET AL. 2019; NEWTON 2023). To capture this in statistical 

analyses, Δ-values of weather parameters are applied (e.g. BRADARIĆ ET AL. 2024a). Typically, Δ-val-

ues represent the difference of the parameter value from the previous day or night to current day 

or night. In our study, we calculated the difference (i.e. the Δ-values) as the difference of the current 

hour = 𝑑𝑎𝑡𝑒𝑖ℎ𝑜𝑢𝑟𝑗 with the average value of the previous night: 

  
1

𝑛
 ∑ 𝑑𝑎𝑡𝑒𝑖−1

𝑛
𝑗=1 ℎ𝑜𝑢𝑟𝑗    

3.7.2 Modelling the relationship between migration intensity and weather conditions 

To gain insight into the general pattern of nocturnal migration and its dependency on weather con-

ditions we used generalised additive models (GAMs) in a Bayesian model framework. Specifically, 

we tested the impact of weather conditions on i) MTR of passerines at flight altitude between 25 

and 1025 m and ii) the proportion of these birds flying at rotor height, and iii) MTRs at rotor height 

(25-180 m). 

The preprocessing of weather data and the model on ‘the proportion of birds flying at rotor height’ 

as the response variable, were performed as a part of a Master thesis. A detailed method descrip-

tion can be found in the thesis attached the appendix A.4. In deviation to our study, the approach 

adopted in the Master thesis involved CWC calculation as absolute values not distinguishing from 

which side the cross wind occurred, and Δ-values were calculated on an hourly base i.e. the weather 

of 𝑑𝑎𝑡𝑒𝑖  ℎ𝑜𝑢𝑟𝑗 was compared to the 𝑑𝑎𝑡𝑒𝑖−1 ℎ𝑜𝑢𝑟𝑗 instead of the comparison to the average values 

of the previous night (see chapter 3.7.1). 

Bayesian models were fitted using the ‘brms’ package (v. 2.22.0; BÜRKNER 2017). The GAMs were 

separately constructed for three response variables, to determine the effects of temporal, pheno-

logical and meteorological explanatory parameter on:  
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• the nocturnal MTR of passerines throughout the migratory seasons up to 1025 m (ab-

solute migration traffic rate across the full vertical range) 

• the nocturnal MTR of passerines throughout the migratory seasons at rotor height 

(25 – 180 m, absolute migration traffic rate at rotor height)  

• the proportion of nocturnal MTR of passerines occurring at rotor height (25 – 180 m, 

relative migration traffic rate at rotor height).  

All GAMs were fitted separately for the two migratory seasons. 

For models on MTR up to 1025 m and at rotor height, a negative binomial distribution with a log-

link was used to handle over-dispersed count data, providing more flexibility than a Poisson model 

(LINDÉN & MAENTYNIEMI 2011). For the negative binomial model, a smoothed effect of ydate (k = 30, 

both seasons) and of ProportionOfNight (k = 5, spring; k = 7, autumn) were applied to the mean μ 

of the negative binomial response (with a log link). A smoothed effect of ydate (k = 10) was applied 

to the precision parameter φ of the negative binomial response (with a log link). 

Models predicting the proportion of birds flying at rotor height used a beta-binomial distribution 

with a logit-link, suitable for over-dispersed proportion data with an upper limit. For this beta-bi-

nomial models, a smoothed effect of ydate (k = 10, both seasons) and of ProportionOfNight (k = 5, 

spring; k = 7, autumn) were applied to the mean μ of the beta-binomial response (with a logit link). 

A smoothed effect of ydate (k = 10, spring; k = 5, autumn) was applied to the precision parameter 

φ of the beta-binomial response (with a log link). 

Both model types incorporated splines for time-related effects, such as Julian date and proportion 

of night. Final models were fitted using four MCMC chains (Markov Chain Monte Carlo, i.e. an ex-

plicit method for sampling from probability distributions) with 5000 iterations each. To improve 

convergence and avoid divergences, adapt_delta was set to 0.95 and max_treedepth to 15. 

Model performance was assessed using leave-one-out cross-validation (LOO) via the ‘loo’ R package 

(VEHTARI ET AL. 2024). Compared models differed only in the k-values (degrees of smoothness) for 

"ydate" and "ProportionOfNight", while other terms remained fixed. Models with significantly bet-

ter ELPD scores (difference > 4 × standard error) were preferred (SIVULA ET AL., 2025).  

Six models were selected (one per season for the different response variables). To avoid overfitting, 

the lowest k-values were chosen that did not lead to significant performance loss. 

The following smoothing settings were used: 

• Negative binomial model (MTR 25-1025 m): 

o ‘ydate’: k = 30 (both seasons) 

o ‘ProportionOfNight’: k = 5 (spring), k = 7 (autumn) 

o ‘shape’: k = 10 

• Negative binomial model (MTR 25-180 m): 
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o ‘ydate’: k = 15 (both seasons) 

o ‘ProportionOfNight’: k = 5 (both seasons) 

o ‘shape’: k = 5 

• Beta-binomial models (proportion at rotor height): 

o ‘ydate’: k = 10 

o ‘ProportionOfNight’: k = 5 (spring), k = 7 (autumn) 

o ‘phi’: k = 10 (spring), k = 5 (autumn) 

MCMC sampling for our models was performed with Stan. We relied on Stan’s comprehensive range 

of built-in diagnostics to check for sampling problems. Stan automatically checks, among other 

things, for R-hat values, bulk- and tail-ESS, and divergent transitions (https://mc-stan.org/learn-

stan/diagnostics-warnings.html). If an MCMC run passed Stan’s automatic checks, we then pro-

ceeded to check the model fit using posterior predictive checks (PPC).” 

Results are presented in ‘MCMC interval plots’ (see e.g. Figure 4-13) which show the posterior un-

certainty intervals (i.e. the Credibility Interval (CI), or, more precisely, a Central tendency Interval) 

of the explanatory variables. The closed symbols depict posterior medians, bold segments show the 

50 % credible intervals, while the thin outer lines indicate the 90 % credible intervals. The x-axis is 

read as the effect size of variables, with negative values indicating negative association between 

the respective variable and MTR and vice versa. The y-axis lists the explanatory variables. Variables, 

where the CI values cross the x-intercept, can be regarded as having no significant effect on the 

response variable according to the model. 

3.7.3 Number of rotor transits and its relation to wind turbine operational status 

The number of birds flying through the rotor plane (‘rotor transits’, see chapter 3.4) was determined 

by manual inspection of the AI-detections from the camera systems. Birds that were detected by 

the cameras but did not cross the rotor plane were excluded from the analysis. 

The number of rotor transits was determined for day and night separately. Day and night were 

defined based on civil twilight at the study site. Furthermore, we compared rotor transits during 

time periods where rotation speed of rotor blades was ≥2 rpm vs. rotation speed <2 rpm. It is com-

monly assumed that collision risk is substantially reduced when rotor speed is below 2 rpm, i.e. 

when turbines are idling or stationary. This threshold is also applied in onshore shutdown on de-

mand procedures as well as in the Dutch start-stop procedure to mitigate collisions of nocturnally 

migrating birds at offshore wind farms11. Following this assumption, we counted rotor transits for 

collision risk assessment only when the rotor speed was 2 rpm or more.  

 

11 https://www.noordzeeloket.nl/en/functions-use/offshore-wind-energy/start-stop, last accessed 23.04.2025 

https://www.noordzeeloket.nl/en/functions-use/offshore-wind-energy/start-stop
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To determine whether the number of rotor transits varied depending on wind turbine operational 

status, we adopted two approaches. 

At first, we used descriptive statistics, presenting rotor transit rates by operational status. Transit 

rates were calculated by dividing the number of transits for each turbine operational status by the 

corresponding observation time. Although rotor speed data were available in 10-minute intervals, 

we used video footage to determine the operational status of the rotor at the time of each transit. 

This provided greater accuracy, as in some cases the average rotation speed for a 10-minute interval 

exceeded 2 rpm, even though the rotor was clearly stationary during a specific transit event — and 

vice versa.  

In a second step, we included `rotation speed’ as an additional continuous explanatory variable in 

the Bayesian model on the relationship between rotor transits and weather conditions, which is 

described in a following chapter (chapter 3.7.5). 

As turbine A2 was non-operational due to maintenance work for an extended time period in au-

tumn 2024 (25 days and 57 nights of analysed data), sample size for these analyses were high (see 

chapter 4.2.1). 

3.7.4 Modelling the relationship between rotor transits and migration intensity at rotor 
height 

To test the hypothesis that collision risk shows a proportional association with migration intensity 

at rotor height, we conducted two different analyses:  

• Kendall’s rank correlation test 

• Generalised linear models (GLM) with a binomial distribution  

We restricted these analyses to rotor transits during time periods where turbines were active (ro-

tation speed ≥ 2rpm). 

The number of rotor transits followed a Poisson distribution. As a first approach, we therefore per-

formed simple non-parametric Kendall’s rank correlation tests. We did this analysis separately for 

day and night hours. Day and night were defined based on civil twilight at the study site. 

Furthermore, we implemented regression analyses in which we could include an offset for obser-

vation effort and include turbine ID next to MTR at rotor height (i.e. 25 – 180 m) measured by the 

bird radar as explanatory variables. Although the AVES system generally operated with high relia-

bility, on some occasions one or more of the eight cameras per system failed to function (see chap-

ter 3.4). To account for this variation in sampling effort, we estimated the monitoring effort per 

date and per camera system and included this effort as an offset term in the regression analyses. 

Turbine ID was used as an additional factor because the two turbines differed in their height and 

rotor diameter among others (see Table 3-1), which might influence the number of rotor transits.  

However, given the rare event of transits when turbines were active the models ran separately for 

day and night did not perform well according to standard model diagnostic plots and tests for over-

dispersion. Model performance was evaluated using diagnostic plots with the R package DHARMa 
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(HARTIG 2024). We therefore combined the dataset of day and night to increase sample size and 

included the factorial variable ‘DayOrNight’ as an explanatory variable and the interaction term 

between ‘DayOrNight’ and MTR which allowed us to differentiate any effects of MTR on number of 

transits between day and night. Since models using Poisson distribution still did not perform well 

(not shown) and as only in four hours more than one transit occurred, we transformed the number 

of transits per hour into a binary response variable indicating whether a transit occurred or not 

within that hour. Accordingly, we used a binomial distribution in the generalized linear model with 

‘logit’ link function (e.g. ZUUR ET AL. 2009). Diagnostic model plots showed that the model fitted well 

(see Figure A-2). 

3.7.5 Weather dependency of rotor transits 

For investigating the association between the number of rotor transits and weather conditions we 

used a generalized additive model (GAM), as we expected non-linear relationships of variables as 

often observed in biological systems (WOOD 2017). According to Wood (2017), GAMs are particu-

larly well-suited to biological and ecological data, where relationships between variables are often 

complex and non-linear, and where flexible modelling approaches are needed to avoid overly re-

strictive assumptions. 

Furthermore, we used a Bayesian approach for analysing the association of transits with a multitude 

of explanatory variables. In addition to producing better error estimates, a strong benefit of Bayes-

ian analysis is that one does not need to account for multiple testing of various explanatory varia-

bles or of their interactions. Whilst in NHST, i.e. the standard frequentist approach, the likelihood 

of getting significant results (e.g. a p-value < 0.05) increases with the number of tests done, this is 

not the case in Bayesian statistic (KRUSCHKE 2015a). 

As above (chapter 3.7.4), the original response (number of observed transits) was converted to a 

binary response variable (transit occurrence, yes/no). That binary response variable was modelled 

using a GAM (generalized additive model) with a binomial response and a cloglog (complementary 

to log-log) link function. We chose to use a cloglog link function because transit events had a very 

low probability in our datasets. 

Explanatory variables included in the model were the day of year, season (spring/autumn), rotor 

rotation speed, MTR at rotor height and various weather parameters (precipitation, atmospheric 

pressure, temperature, visibility, cloudiness, TWC, absolute value of CWC). The effect of day of year 

was modelled as a smooth function, using a cubic B-spline basis of dimension k = 6. Atmospheric 

pressure and temperature were centred to a mean of 0 and scaled to a standard deviation of 1. 

MTR, precipitation, visibility, cloudiness, TWC, and CWC were scaled to a standard deviation of 1. 

Mean sampling effort was taken into account in the model by introducing an offset (log(mean ef-

fort)). 

The Bayesian model was fitted using the function `stan_gamm4()` of the rstanarm package 

(CRAINICEANU ET AL. 2005) and its default priors. MCMC sampling of the parameter posteriors was 

performed using four chains and 4000 iterations per chain, of which the first half was discarded. 

The expected predictive accuracy of the full model was compared with that of a base model which 

contained only an intercept and the mean effort offset, based on ELPD (expected log pointwise 

predictive density) using the `loo` package. The ELPD difference between the full and the base 
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model was small (compared to its estimated standard error) and thus did not reveal any substantial 

difference between the expected predictive accuracy of the full model and of the base model. This 

indicated that adding the explanatory variables contained in the full model did not improve the 

model performance substantially when predicting transit occurrence probability. Nonetheless, 

since we were interested in the potential effects of the explanatory variables on transit probability 

we examined their estimated effects in the full model, but those should be considered as purely 

indicative of possible associations between the explanatory variables and the transit probability, 

which could be supported or disproved using larger datasets with more transit events in the future. 

Relative effect sizes of the explanatory variables were visualized using credible intervals of the pos-

teriors of the raw coefficients for the centred/scaled variables. However, since the model used a 

binomial response with a cloglog link function, it might be more informative to examine posterior 

conditional predictions of the effect of each explanatory variable on its original scale on the transit 

probability. We calculated those conditional predictions using day of year = 100, season = spring, 

and the mean values of the other explanatory variables on their original scale. 

3.7.6 Estimating the expected number of birds passing through the rotor plane 

To estimate the expected number of birds passing through the rotor area assuming no avoidance 

response, we used the MTR data as the primary input. Expected bird transits form the basis for 

subsequent empirical estimation of avoidance rates. The estimation process involved the following 

main steps, which are further explained below: 

• calculating MTR at rotor height on a monthly basis per turbine 

• estimating theoretical transits through the rotor area using the proportion of the rotor 

area in relation to the area the MTR was calculated for 

For each turbine, the exact MTR was calculated per hour and per metre height band within the 

rotor area. These values were then averaged for the turbine-specific altitude range and per date, 

separately for day and night. For two turbines (A3 and A5, Table 3-1) the lower rotor tip extended 

below the radar’s lower detection range (25 m). In these cases, the mean MTR was calculated as-

suming that MTR at the lower ~5 m of the rotor area was similar to the overall mean of the rotor 

area. As the lower 5 m of the rotor area represent only a very small proportion of the total rotor 

area this uncertainty was considered negligible. In summary, two MTR values were derived per tur-

bine and per date: one for daytime and one for nighttime.  

Using the calculated MTR values, we estimated the number of expected bird transits per turbine 

and per date, separately for day and night. Since the MTR is defined as the number of birds per 

hour per kilometre for a given altitude range, we first calculated the fraction of one kilometre rep-

resented by each turbine’s rotor diameter (i.e. diameter in metres divided by 1000). Secondly, as 

the MTR reflects birds crossing an imaginary vertical plane forming a rectangular shape, we applied 

a correction to account for the circular shape of the actual rotor area. Specifically, we multiplied 

the number of expected bird transits by the ratio of a circle’s area to that of the enclosing rectangle 

(i.e. the fraction of area the rotor circle occupies within the equivalent square). 
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Finally, we multiplied the mean MTR per day and night by the number of hours of daylight or dark-

ness per date. 

The final equation for daytime or nighttime expected transits estimation is given below: 

𝑛_transits_expected

=  ∑ ∑ 𝑀𝑇𝑅𝑡,𝑑   ∗  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑟𝑒𝑡  ∗  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 ∗  𝑛ℎ𝑜𝑢𝑟𝑠𝑑
 

5

𝑡=1𝑑

∗ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑡 

Where: 

• 𝑡 = turbine ID (1 to 5) 

• 𝑑 = date 

• MTR t,d = MTR (birds/hour/km) for turbine t on date d, either for daytime or nighttime  

• FractionKilometret = turbine t rotor diameter (m)/1000 

• fractionRectangle = area of rotor circle/area of enclosing square 

• n_hoursd= number of daytime/nighttime hours per specific date 

• diametert = rotor diameter of turbine t, in meters 

The expected numbers of transits were then summed across all five turbines per month to derive 

total monthly transit rates, which served as input for the estimation of avoidance rates and subse-

quent collision risk models (CRMs, see chapter 4.3.2). 

3.7.7 Estimation of avoidance rates from expected versus actual rotor transits 

To estimate the actual avoidance rates of birds at the study site during daytime and at night, we 

first calculated the expected number of rotor transits for the two turbines at which AVES systems 

were installed (A2 and A4) as described in chapter 3.7.6 above. 

We then compared these estimates with the actual number of rotor transits recorded by the cam-

eras. As stated above, we included only transits that occurred while the rotor was operating at a 

rotation speed of ≥ 2 rpm. 

Furthermore, we corrected the number of actual transits to account for 

• Downtime of cameras: we calculated a correction factor based on the availability of the 

cameras  

• Missed rotor transits due to collisions: we accounted for the fact that the camera sys-

tems could not systematically record collisions which would lead to an underestimation 

of actual rotor transits and consequently to an overestimation of calculated avoidance 
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rates. To do this, we calculated the number of missed collisions based on actual rotor 

transits and the ‘single transit risk’ for nocturnal species (using Redwings (Turdus ilia-

cus) as substitute) and diurnal species (Wood pigeon (Columba palumbus)) for each of 

the two turbines equipped with camera systems. For this calculation, we used the ‘sin-

gle_transit_risk’ function of the Band CRM, provided in the R package stochLab (CANECO 

ET AL. 2022). These collision estimates (see Table A-1) were subsequently used to adjust 

the number of rotor transits recorded by the AVES system. 

Since only a subset of days from the AVES data was analysed, we selected the corresponding subset 

of the MTR data. Additionally, we multiplied the number of transits by two, as each camera system 

monitored only one (vertical) half (180°) of the rotor area.  

The final equation for estimating the expected number of transits was as follows: 

𝑛_transit_expected 

=  ∑ ∑ 𝑀𝑇𝑅𝑡,ℎ   ∗  
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑟𝑒𝑡

2
 ∗  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 

2

𝑡=1ℎ

∗ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑑𝑎𝑟𝑏𝑖𝑛25180
  

Where subscript 𝑡 denotes the turbine ID and ℎ the hour. 

The expected number of transits was then compared with the actual number of transits recorded 

by the AVES offshore monitoring systems. This analysis was conducted separately for daytime and 

nighttime periods. To calculate the avoidance rates, we used the following equation: 

𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =  1 − 
𝑎𝑐𝑡𝑢𝑎𝑙

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
   

Please note, that the avoidance rate calculated here represents the parameter by which the num-

ber of rotor transits is estimated based on a given mean MTR at rotor height. It does not neces-

sarily imply that all birds that do not pass through the rotor plane exhibited an active avoidance 

response (see also ‘oblique approach’ BAND 2012). 

3.7.8 Estimation of avoidance rates based on fatality searches and MTR 

In addition to calculating avoidance rates based on detected rotor transits, we used a second 

method using estimated fatality numbers (by PCFM) and data on MTR as originally suggested by 

BAND (2012). This method is independent of the calculated number of rotor transits and can 

therefore also be used to evaluate the plausibility of the camera data. We applied the simple 

equation as given in BAND (2012 p 26, § 79): 

𝐴overall = 1 −  
actual collision rate

predicted collision rate if preconstruction levels of flight activity were maintained
  

Where ‘actual collision rate’ is the estimated number of collision victims found during PCFM. ‘Pre-

dicted collision rate if pre-construction levels of flight activity were maintained’ is equal to results 

of the CRM when avoidance rate is set to zero.  
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As we cannot determine the exact time collisions took place, with this method we cannot distin-

guish between day and night with regard to the avoidance rate, and we therefor calculated avoid-

ance rate combined for day and night. 

3.7.9 Number of collision victims identified through carcass searches 

Field data processing before modelling 

The field data used in this analysis comprised: 

• the locations of the turbines, as well as the location and shape of the searched subareas 

around each turbine 

• a visibility dataset recording the visibility level for each subarea on each field search 

date; and  

• a carcass dataset containing the date, location, species and size class of each carcass 

found in the field. 

In addition to these core design and carcass data, datasets from (i) carcass persistence trials and (ii) 

searcher efficiency trials were also used. Hourly rotor speed measurements were provided for each 

turbine. 

Carcass data 

The carcass dataset was processed as follows to ensure the highest possible reliability of the data 

used in the fatality model. First, carcasses identified as body parts from the same individual were 

merged into a single record. The assigned location for each merged carcass was calculated as the 

average of the recorded locations of the body parts. Second, minor location adjustments were 

made for a few carcasses that had been recorded very close to the searched subareas. These ad-

justments placed the carcasses within the nearest subarea, under the assumption that the discrep-

ancy was due to GPS inaccuracy (typically ± 5 m). Carcasses found more than 10 m outside a 

searched subarea were considered off-plot finds and, following the recommendations of the Inter-

national Finance Corporation good practice handbook and decision support tool (INTERNATIONAL 

FINANCE CORPORATION 2023), were excluded from fatality estimation. Third, another three carcasses 

were excluded as they were considered unlikely to be true collision victims. They were found during 

a period in which the nearest turbine had been inactive for at least more than three weeks, based 

on rotor speed data. 

Rotor rotation speed data 

Rotor rotation speed was used to determine whether a given turbine was operating or non-oper-

ating during each hour, using a threshold of 2 rpm. In rare events (1.2 %), for some turbines, hourly 

rotor speed measurements were missing. The missing values were replaced by the proportion of 

available records indicating the turbine was active. 
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Fatality model 

Overview 

The fatality model estimated the total number of collision victims over the study period, accounting 

for the imperfect detection of carcasses found in the field. The mathematical framework used in 

this analysis is based on the work of Dalthorp, HUSO AND DAIL (2017), DALTHORP ET AL. (2018), and 

DALTHORP ET AL. (2023a), and on the documentation from the corresponding R packages (DALTHORP 

ET AL. 2017, 2023b; DALTHORP & HUSO 2023). 

In essence, the model estimates the true number of collision victims from the carcasses found in 

the field by accounting for: 

• the size, shape, and location of each searched subarea in relation to its associated tur-

bine mast 

• the expected carcass dispersion as a function of distance from turbine masts 

• the visibility conditions of each subarea at the time of search, along with searcher effi-

ciency under these conditions 

• the persistence time of carcasses in the field before disappearance (e.g., due to scav-

enging or decomposition) 

• the operational schedule of each turbine, based on measured rotor rotation speed 

Bird size is accounted for by conducting the fatality analysis separately for small, medium-sized, and 

large birds. To achieve this, the carcass dataset was divided into these three size categories, which 

were also applied consistently in the carcass persistence trials and searcher efficiency trials. 

Due to the limited number of carcasses found, a single dispersion analysis was performed using all 

carcasses pooled across size categories. The resulting dispersion pattern was then applied uniformly 

across all size classes. 

The mathematical formulation of the fatality model is provided below. The model was implemented 

in R using Stan, which applies a Hamiltonian Monte Carlo algorithm to sample from the Bayesian 

posterior distribution via MCMC. 

Core model 

The core model defines a base fatality rate 𝜆0 (also referred to as the base carcass arrival rate), for 

the wind farm over the study period. This rate represents the average number of birds killed per 

turbine per day (unit: birds/turbine/day) for an operating turbine and is estimated by the model. It 

is assumed to be constant over the study period and identical across all turbines at the site.  

For each turbine 𝑈𝑖, an effective fatality rate 𝜆𝑖(𝑡) is defined by multiplying 𝜆0 by 1 or by 0, depend-

ing on whether the turbine is operating at time 𝑡, as determined by its rotor rotation speed. 
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Then, for a given subarea 𝐸𝑖𝑗 located near turbine 𝑈𝑖, the fundamental relationship between 𝜆𝑖(𝑡) 

and the number of observed carcasses 𝑌𝑖𝑗  in that subarea is given by: 

𝜆𝑖𝑗 = 𝑑𝑤𝑝𝑖𝑗 × ∫ 𝜆𝑖(𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 

𝑀𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗) 

𝑌𝑖𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀𝑖𝑗, 𝑔𝑖𝑗) 

where: 

• 𝜆𝑖𝑗 is the expected number of carcasses in subarea 𝐸𝑖𝑗  during the study period 

• 𝑑𝑤𝑝𝑖𝑗  is the proportion of birds killed by turbine 𝑈𝑖  that are expected to fall within 

subarea 𝐸𝑖𝑗  associated with that turbine. This corresponds to the density-weighted pro-

portion value as described by DALTHORP AND HUSO (2023). Its value depends on the ge-

ometry of the subarea relative to the location of the turbine mast on the dispersion 

function used to model carcass fall distances. The dispersion function is estimated from 

the observed distances between turbine masts and detected carcasses, using the dwp 

R package (DALTHORP & HUSO 2023) 

• 𝜆𝑖(𝑡) is the effective fatality rate for turbine 𝑈𝑖, as defined previously, accounting for 

variation in turbine operation over time 

• 𝑀𝑖𝑗 is the true (but unobserved) number of bird fatalities that fell into subarea 𝐸𝑖𝑗  dur-

ing the study period 

•  𝑔𝑖𝑗  is the probability of detecting a carcass that fell into subarea 𝐸𝑖𝑗  during the study 

period. In other words, given that a carcass fell into the subarea, 𝑔𝑖𝑗  is the probability 

that it was detected at some point during the study. The value of 𝑔𝑖𝑗 depends on the 

timing of fatality events, carcass persistence, the search schedule, visibility conditions 

during searches, and searcher efficiency. 

A crucial part of the model is the estimation of 𝑑𝑤𝑝𝑖𝑗  and 𝑔𝑖𝑗. 

Estimating carcass dispersion 

The value of 𝑑𝑤𝑝𝑖𝑗  depends on the shape and location of the subarea 𝐸𝑖𝑗  and on the distribution 

of carcass distances from the turbine masts. This distribution is estimated outside of the Stan 

model, using the dwp package. The dwp package takes the turbines and subareas shapefiles, the 

location of all the carcasses found, as well as the search schedule and visibility information, and fits 

several candidate distributions to the data. Since we were unable to directly incorporate temporal 

variation in subarea visibility into the model, we accounted for changes in search status by dupli-

cating each subarea geometry, once for each search date. Each duplicated subarea instance was 

assigned the visibility conditions present on its corresponding search date. Detected carcasses were 

then associated with the appropriate subarea instance based on their observation date. 
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Distribution models fitted with dwp on the carcass, and subarea data were scored using the 

dwp::modelFilter() function. The models were selected based on whether they fulfilled at least four 

out of five model selection criteria: (i) extensibility (predicted number of carcasses outside of 

searched subareas must be finite), (ii) left and (iii) right tail plausibility (thresholds applied on the 

predicted proportions of carcasses falling too close or too far from the turbine), (iv) absence of high 

influence points and (v) ΔAICc value <10 compared to the model with the lowest AICc value 

(DALTHORP & HUSO 2023) Among those selected candidates, the best model was chosen based on 

visual inspection of the candidate pdfs and consideration of which criteria were fulfilled/missed by 

each model. 

In this project, we selected a Maxwell-Boltzmann (MB) distribution as it provided the most satisfac-

tory fit to the observed carcass distances. Using the dwp::ddSim() function, we generated a large 

number of plausible values for its characteristic parameter based on the fit obtained with the dwp 

package. These values were then used to define a reference prior distribution for the carcass dis-

persion function, which was incorporated into the Bayesian fatality estimation model. 

We further imposed an upper limit on the radius within which 95 % of the carcasses were expected 

to fall, based on the turbine heights in this study and on dispersion patterns estimated in a compa-

rable study conducted by BioConsult SH. For the present analysis, we used a threshold of 156.7 m, 

assuming that 95 % of carcasses must fall within this radius. This assumption is consistent with the 

mean turbine height of 161.7 m for the five turbines at the wind farm. 

Estimating probability of carcass detection 

The calculation of 𝑔𝑖𝑗 , the probability of detecting a carcass that fell into subarea 𝐸𝑖𝑗  during the 

study period, involves decomposing this probability by integrating over all possible carcass arrival 

times within the study period and all potential detection times during the scheduled field searches. 

For all possible pairs of arrival times and detection times, the resulting probability of detection is 

calculated based on (i) the probability that the carcass could persist until detection time (based on 

the carcass persistence trials) and (ii) the probability that the carcass was detected by field search-

ers in the current visibility conditions (and undetected at previous searches, if any) based on the 

searcher efficiency trials. Once those probabilities are calculated, they are weighted by the relative 

arrival rate of carcasses for that particular turbine, depending on the considered arrival times and 

on the turbine activity schedule (based on measured rotor speed). 

Carcass persistence 

We used a survival analysis approach as given in the GenEst R package (DALTHORP ET AL. 2023b) to 

estimate carcass persistence. The candidate persistence functions included the exponential, 

Weibull, log-normal and log-logistic distributions. Size class was incorporated as a covariate for both 

the location and scale parameters of these distributions (except the exponential distribution, which 

only includes a location parameter). 

The model selected for downstream analyses was chosen from among those retaining an effect of 

the size class covariate on either the location or scale parameter, based on differences in AICc and 

the relative simplicity of the distribution. The exponential distribution, being the simplest of the 

four distributions, as it only includes a location parameter. 
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Once the final model was selected, we used the GenEst::rcp() function to generate a range of plau-

sible values for its parameter(s). These were then used to define a reference prior distribution for 

the carcass persistence function, which was subsequently incorporated into the Bayesian model for 

fatality estimation. 

Estimating searcher efficiency  

Based on the carcass persistence trials, we used the GenEst package to estimate searcher efficiency 

as the probability 𝑝𝑠𝑖𝑧𝑒,𝑣𝑖𝑠, representing the likelihood that a carcass of a given size class would be 

detected during the first search following its fall, under specified visibility conditions. We estimated 

𝑝𝑠𝑖𝑧𝑒,𝑣𝑖𝑠 separately for each carcass size category and for each visibility level and used the distribu-

tions of parameter estimates provided by GenEst as priors to the Stan model. 

The fatality model also defines a 𝑘 parameter (0 ≤ 𝑘 ≤1), which is applied as a multiplicative factor 

to correct 𝑝𝑠𝑖𝑧𝑒,𝑣𝑖𝑠 for each subsequent search as long as a carcass remains undetected. Since we 

could not estimate 𝑘 from field trials (because undetected trial carcasses were not left for subse-

quent searches), we used a beta prior with mean of 0.5 and standard deviation (SD) 0.1. 

Estimating total numbers of fatalities 

Once the model produced a posterior for the 𝜆0 parameter, we generated the predicted number 

of fatalities occurring over the study period by sampling the number of missed (i.e. undetected) 

carcasses for each turbine and adding it to the number of actual observations. 

We ran the model and obtained estimated fatalities for each size class. We then summed up the 

predicted fatalities for the three size classes to obtain an overall number of bird fatalities predicted 

over the study period. 

Validating the model 

Validation of the Stan model was performed by simulating data: many datasets were generated by 

drawing parameter values from the model priors, and the Stan model was run on those simulated 

datasets. The true values for 𝜆0 and for the fatality numbers in those datasets were then compared 

to the model posteriors. This allowed us to assess the absence of bias in the point estimates and to 

evaluate the calibration of the credible intervals derived from the posterior distributions, based on 

the frequency with which they contained the true parameter values. 

3.7.10 Validation of the Band Collision risk models  

We validated the outcome of the Band model by comparing the model results with the determined 

number of collisions based on the collision victim searches. We implemented the stochastic Band 

model using the R package `stochLab’ (CANECO ET AL. 2022) to estimate the expected number of 

collisions for the entire wind farm. 

Since the model produces monthly fatality estimates, we ran it using the monthly averages of MTR. 

The MTR values were calculated from radar data collected between 15 May 2023 and 30 November 

2024, covering the same period as the collision victim searches. 



The collision risk of migrating birds at wind turbines 
 

 

 37  
 

As the study site held five different turbines, each with unique attributes such as size and rotor 

speed (Table 3-1), we run CRMs separately for each turbine and combined the estimates to obtain 

the overall collision estimate for the entire windfarm. 

For each turbine, we calculated the monthly non-operating time, defined as periods when rotor 

speed was below 2 rpm, separately for day and night. We also computed the mean and standard 

deviation of rotor speed during operation, as well as the mean and standard deviation of pitch 

angle. Since pitch data for one turbine was missing, we used the average pitch values from the other 

four turbines as substitute data. Together with the exact rotor size, hub height, and lower rotor tip 

height of each turbine, this information was used to inform CRMs. Because blade profiles for the 

turbines were unavailable, we used the default profile for a 5 MW offshore turbine built into the 

stochLAB package (CANECO ET AL. 2022). 

Using the actual MTR for each month, and FHD values separately for day and night (see below for 

details), we ran one daytime and one nighttime CRM for each turbine covering the entire study 

period. For each scenario, we performed 10.000 iterations to obtain a precise estimate of the vari-

ance. 

To validate the Band model, we estimated the total number of collisions summed across all five 

turbines and compared these results with the PCFM estimates. We ran the CRMs using three dif-

ferent avoidance rates: i) a ‘standard’ avoidance rate for nocturnal migration, set at 0.98, which 

also aligns with the higher rate reported by SCHULZ ET AL. (2014), ii) a rate of 0.9662 representing the 

lower value reported for nocturnal migration by Schulz et al. (2014), and the avoidance rates esti-

mated in the present study: 0.9987 during nighttime and 0.9986 during daytime (see chapter 4.3). 

FHD for day and night was calculated from radar data provided in 1 m altitude bins. To smooth out 

minor inaccuracies in the original data, we summed the MTR values from 1 m bins into 3 m bins. 

This resulted in MTR values per 3 m bins spanning from 25 m to 1025 m in altitude (with the final 

bin consisting of only one 1 m bin). Since two turbines had a lower rotor tip height (LRTH) of 20 m, 

we lacked MTR data for the lowest 5 m. We substituted this missing data by using the values for 

the lowest 3 m bin (25-27 m). 

We further smoothed the FHD data by fitting local polynomial regressions using the `loess’ function 

from the `stats’ package (R CORE TEAM 2022). The resulting FHD values were then normalized to sum 

to 1, as required by the `stoch_crm’ function in the `stochLab package’ (CANECO ET AL. 2022). Please 

note that during the smoothing process, the values of the lowest two bins (19 m to 21 m and 22 m 

to 24 m) were also smoothed based on the polynomial regression, resulting in values slightly differ-

ent from the 25 m to 27 m bin values originally used as substitute data. 

We compared the FHD across seasons and years, as well as for day and night, to identify any notable 

differences in the distribution shape. Visual inspection revealed considerable differences between 

day and night (see Figure 3-13), while seasonal and yearly differences were less pronounced. There-

fore, we used two separate FHDs in the CRMs: one for day and one for night. Consequently, the 

CRMs for the five turbines were run twice each to obtain separate estimates for daytime and 

nighttime. These estimates were then summed to produce the overall collision estimate for the 

wind farm. 
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Figure 3-13 Flight height distribution for day (red line) and nighttime (blue line) based on MTR measured by 
bird radar. Values were normalized so that the sum of day and nighttime is 1 each. Horizontal 
black lines indicate the lower and upper limit of the rotor zone at the wind farm (20-180 m). 

In the CRM, we used body size and flight speed data from two different bird species as proxies for 

daytime and nighttime species. For daytime, we selected the Wood pigeon (Columba palumbus), 

as, on average, larger birds were flying during the day (mtr.large_bird = 11.95 during day versus 

5.23 at night; see Figure 4-5 and Figure 4-6) in that area, for nighttime, we used the body size and 

flight speed data from Redwings (Turdus iliacus) which is a typical passerine nocturnal migrant. 

3.7.11 Bird calls  

Due to the high sensitivity of the acoustic recorder, a vast number of sounds were recorded, result-

ing in a dataset comprising multiple million recordings. To manage this big dataset, we utilised the 

openly available AI tool Merlin from the Cornell Lab of Ornithology, USA12. The algorithm analyses 

recorded sounds and assigns a bird species label along with information on confidence level ranging 

from 0 to 1 for each detected sound. Most sounds received very low confidence scores, often indi-

cating background noise. Therefore, the first step in our data processing was to filter out all sounds 

with confidence levels below 0.15. Even after this filtering, the dataset still contained mainly 

 

12 https://merlin.allaboutbirds.org/ last accessed 18.07.2025 

https://merlin.allaboutbirds.org/


The collision risk of migrating birds at wind turbines 
 

 

 39  
 

background noise. To improve the reliability of the dataset, we subsequently assessed the accuracy 

of the AI’s species-level identification performance as described below. 

To verify the accuracy of the AI identification, we randomly selected a subset of the nighttime data 

for analysis by human bird call experts. A total of 29 nights were reviewed by the experts without 

any prior knowledge of the AI bird identification. 

By comparing the expert’s results with the AI labels, we classified each sound into one of three 

categories: 

• True Positive (TP): e.g., a Redwing call correctly identified by the AI as a Redwing 

• False Positive (FP): e.g., a sound incorrectly identified by the AI as a Redwing call, but 

actually belonging to another species or background noise 

• False Negative (FN): e.g., a Redwing call present in the recording that the AI failed to 

detect or misclassified as another species. 

Given these results, we determined, for each species, the minimum confidence level at which the 

AI model achieved a specified accuracy threshold. Accuracy was calculated as follows: 

𝐴 =  𝑇𝑃𝑐  / (𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑙𝑙𝑠 +  𝐹𝑃𝑐)  

Where 𝑇𝑃𝑐  and 𝐹𝑃𝑐 are the numbers of true positives and false negatives at a given confidence level 

𝑐; TotalCalls is the sum of all 𝑇𝑃 + 𝐹𝑁. TotalCalls was summed for all calls regardless of the confi-

dence level. As the confidence level increases, both 𝐹𝑁 and 𝑇𝑃 were progressively filtered while 

𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑙𝑙 remained constant. When 𝑇𝑃 were filtered out by a given confidence level, they were 

counted as 𝐹𝑁. 

The AI performance varied markedly between species (see chapter 4.6). To reliably estimate accu-

racy, a minimum number of calls per species is required. We therefore selected a subset of species 

for which the experts identified at least 10 positive calls (see Table A-8). We then visually inspected 

diagnostic plots showing accuracy by confidence level for each species and chose a species-specific 

confidence threshold that balanced accuracy and loss of true positives. Since not all species reached 

a sufficiently high accuracy level, only a subset of species was included in further analyses (see Table 

A-8). 



The collision risk of migrating birds at wind turbines 
 

 

 40  

 

4 RESULTS 

4.1 Radar data 

4.1.1 Migration intensity at the study site 

Migration intensity followed the expected seasonal pattern for this location (Figure 4-1). Peak MTR 

values during autumn migration were substantially higher than those observed in spring, especially 

at night. The duration of migration also appeared to be longer in autumn compared to spring. Table 

4-1 gives the mean MTR values for day and night separately (25 – 1025 m altitude), over the whole 

study period and as expected, shows higher mean MTRs during the nighttime than during the day-

time (day = 208.1, night = 322.7). 

In contrast, mean MTRs at rotor height (25 - 180 m) were higher during the day than during the 

night (Figure 4-2). This pattern is likely caused by local breeding and primarily resting birds which 

are common at the study site and tend to fly lower than migrating birds. 

 

Figure 4-1 Mean migration traffic rate (MTR), i.e. mean number of birds per hour crossing a virtual 1 km 
line, for the altitude range 25-1025 m per date across the study period, covering four migration 
seasons. `Red’ indicates mean daytime MTR and `blue’ mean nighttime MTR. 
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Figure 4-2 Mean migration traffic rate (MTR) at rotor height only: 25 – 180 m, for details see caption of 
Figure 4-1. 

Nocturnal mean MTR at rotor height is shown separately in Figure 4-3. Flux rates above 250 MTR 

occurred regularly during all migration seasons but nights with very high migration intensities above 

500 MTR were recorded only five times and almost exclusively during autumn migration (Figure 

4-3).  
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Figure 4-3 Mean migration traffic rate (MTR) at rotor height during night only: 25 – 180 m, for details see 
caption of Figure 4-1. 



The collision risk of migrating birds at wind turbines 
 

 

 43  
 

 

Figure 4-4 Mean migration traffic rate (MTR) at rotor height during day only: 25 – 180 m, for details see 
caption of Figure 4-1. 

Summing up all MTR values, it is estimated that more than 3.5 million birds passed over a theoret-

ical 1 km line during the main study period (15 May 2023 to 30 November 2024) at the altitude 

range up to 1025 m (Table 4-1). About 53 % of these birds were recorded during the night. Extrap-

olated to the total width of the wind farm, a total of 4.2 million birds passed through and over the 

wind farm during the study period. 

Table 4-1 MTR of all bird species summed across the entire height distribution covered by the radar 
(25 - 1025 m). The study period (15 May 2023 to 30 November 2024) corresponded to the period 
when carcass searches were conducted. The width of the windfarm (WF) perpendicular to the 
migration direction was 1.2 km. 

Day or Night MTR sum MTR mean MTR sum x WF width 
(1.2 km) 

MTR mean x WF width 
(1.2 km) 

day 1673772 208.1 2008526 249.7 

night 1856930 322.7 2228316 387.2 

Total 3530701 265.4 4236841 318.5 

The percentage composition of bird groups identified by the radar (i.e.: ‘large bird’, ‘bird flock’, 

‘swift type’, ‘passerine type’, ‘wader type’, and ‘unidentified bird’) varied between diurnal and noc-

turnal migration (Figure 4-5 and Figure 4-6). Both during day and night, the by far most frequently 

detected bird group was the ‘passerine type’ followed by ‘swift type’. However, as expected, the 
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proportion of `passerine type’ birds were substantially higher at night than during day (72 % versus 

41 %). At the same time, ‘swift type’ and ‘large birds’ constituted considerably higher proportions 

during daytime. 

 

Figure 4-5 Percentages of `bird type’ groups identified by the radar during the daytime across the entire 
study period. The pie chart displays the relative composition of six bird group categories based 
on radar detections during the day. 

 

Figure 4-6 Percentages of `bird type’ groups identified by the radar during the nighttime across the entire 
study period. The pie chart displays the relative composition of six bird group categories based 
on radar detections during the night. 
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4.1.2 Flight height distribution (FHD)  

The flight height distribution, combined across all bird groups identified by the radar did not show 

notable differences between the years (Figure 4-7), but clear differences were observed between 

day and night (Figure 4-8), and to some degree between seasons (Figure 4-11 and Figure 4-12) and 

bird classes identified by the radar (Table 4-2). 

In general, similar patterns are apparent and have been repeatedly shown at offshore sites in Ger-

man waters of the EEZ. Diurnal migration concentrated to a higher degree within the lowest 200 m 

compared to nocturnal migration. Similarly, the proportion of birds flying low was reduced during 

spring compared to autumn, particularly during the night. 

Table 4-2 Percent flying at rotor height (25-180 m). N = 4036477. Please note that in ‘All bird classes’ the 
radar signal category of ‘unidentified bird’ is included. 

Period All bird classes Passerine Non-Passerine 

Total 45.3 43.9 71.1 

Total day 70.3 70.0 84.4 

Total night 30.9 34.9 45.3 

Spring 37.2 39.2 55.3 

Autumn 47.0 44.2 76.0 

Spring day 60.5 61.5 72.5 

Spring night 28.4 33.0 35.5 

Autumn day 72.8 71.8 87.6 

Autumn night 30.6 34.1 47.9 

Year 2023 44.6 42.7 71.3 

Year 2024 46.0 45.1 71.0 
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Figure 4-7 Flight height distribution combined for all bird species in percent for the years 2023 (left) and 
2024 (right), including both daytime and nighttime data. 
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Figure 4-8 Flight height distribution combined for all bird species in percent and separated by day (left) 
and night (right) across the entire study period. The horizontal black line indicates the upper 
rotor height (180°m) within the wind farm. 
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Figure 4-9 Flight height distribution for ‘passerine type’ in percent and separated by day (left) and night 
(right) across the entire study period. The horizontal black line indicates the upper rotor height 
(180°m) within the wind farm. 
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Figure 4-10 Flight height distribution combined for all ‘non-passerine type’ bird species in percent and sep-
arated by day (left) and night (right) across the entire study period. The horizontal black line 
indicates the upper rotor height (180°m) within the wind farm. 
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Figure 4-11 Flight height distribution combined for all bird species in percent and separated by spring (left) 
and autumn (right) across the entire study period. The horizontal black line indicates the upper 
rotor height (180°m) within the wind farm. 
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Figure 4-12 Flight height distribution combined for all bird species in percent. Flight height distribution is 
separated by spring (upper and bottom left) and autumn (upper and bottom right) and day (top 
left and top right) and night (bottom left and bottom right) across the entire study period. The 
horizontal black line indicates the upper rotor height (180°m) within the wind farm. 

4.1.3 Weather dependency of nocturnal migration intensities of passerines only 

MTR whole altitude range (25 - 1025 m) 

The results of the models examining the effect of weather on migration intensities of passerines at 

the altitude range 25 - 1025 m are summarized in Figure 4-13 and Figure 4-14. The overall variance 

explained by the model was about 69.0 % for spring and 66.2 % in autumn according to the Bayesian 

R2-values. To estimate the R2-value for these Bayesian models, we followed the approach intro-

duced by Gelman and colleagues (GELMAN ET AL. 2019), which can be interpreted similarly to the R2 

in frequentists approaches, that is, as the proportion of variance in the response variable that is 

explained by the predictors (marginal R2) or predictors and random effects (conditional R2). As 

found in other studies (e.g. BRUDERER & LIECHTI 1998; VAN DOREN & HORTON 2018; WELCKER & VILELA 

2019; BRADARIĆ ET AL. 2020, 2024a; NUSSBAUMER ET AL. 2021; BRADARIĆ 2022), diverse weather varia-

bles affected the mean MTR.  

In spring, variables with positive association with passerine MTR (listed from most influential to 

least, i.e. from right to left) were delta temperature, temperature, and delta TWC (Figure 4-13). 

Increases in both temperature and tailwind components compared to the previous night (delta val-

ues) were estimated to result in rising migration traffic rates. Furthermore, the analysis showed 
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that the only variable negatively affecting passerine MTR in spring was CWC, so when CWC in-

creased the passerine MTR decreased and vice versa.  

 

Figure 4-13 Bayesian MCMC posterior model estimates for spring with MTR from passerines only (n/km/h) 
(for altitude range 25 - 1025 m) as the response variable. Posterior medians are depicted as 
open symbols. Thin segments indicate 90 % CI. Positive values on the x-axis correspond to posi-
tive associations with the MTR and vice versa. Variables, where CI values cross the x-intercept 
have no significant effect on the response variable according to the model output. 

In autumn variables positively associated with passerine MTR were (from right to left) TWC, delta 

pressure, temperature, visibility, delta CWC and delta TWC (Figure 4-14). Variables negatively im-

pacting MTR in autumn were (from left to right) delta temperature, CWC and year 2024.  

Overall, both precipitation and cloudiness did not seem to significantly impact passerine migration 

during both migratory seasons. 
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Figure 4-14 Bayesian MCMC posterior model estimates for autumn with MTR from passerines only (n/km/h) 
(for altitude range 25-1025 m) as the response variable. For details please see Figure 4-13. 

MTR at rotor height (25 – 180 m) 

Similar to the MTR over the whole altitude range, the MTR of passerines at rotor height was influ-

enced by weather conditions (Bayesian R2-values: 0.624 for spring and 0.631 for autumn) with sup-

portive tail wind conditions increasing the MTR (Figure 4-15 and Figure 4-16), although the effect 

size tended to be smaller. Next to wind, temperature seemed to be the strongest positive predictor 

variable in both spring and autumn models. 
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Figure 4-15 Bayesian MCMC posterior model estimates for spring with MTR from passerines only (n/km/h) 
(for altitude range 25 - 180 m) as the response variable. For details please see Figure 4-13. 
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Figure 4-16 Bayesian MCMC posterior model estimates for autumn with MTR from passerines only (n/km/h) 
(for altitude range 25 - 180 m) as the response variable. For details please see Figure 4-13. 

Proportion flying at rotor height (25 – 180 m) 

This model, fitted within the Master thesis by Mehnert (see appendix A.4), investigated the effect 

of weather conditions on the proportion of passerines flying at rotor height. Like in the models for 

migration intensity (MRT at rotor height and MTR over the whole altitude range), weather condi-

tions had a significant influence (Figure 4-17) and overall weather variables seems to explain more 

variation in autumn compared to spring. Interestingly, in spring an increase in precipitation, TWC, 

and CWC increased the likelihood of flying at rotor height, whereas in autumn increased precipita-

tion and TWC led to a reduced likelihood of flying at rotor height while CWC increased this likeli-

hood.  
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Figure 4-17 MCMC intervals for (a) spring and (b) autumn models with the probability of passerines flying 
in the risk zone as the response variable. Posterior medians are depicted as open symbols. Bold 
segments indicate 50 % CIs, thin segments indicate 90 % CIs. Positive values on the x-axis corre-
spond to positive associations with the probability of flying at rotor height and vice versa. Figure 
taken from the Master thesis by F. Mehnert, caption adapted; see appendix A.4. 

4.2 Number of rotor transits 

In total, 1026 transits through the monitored rotor area (50 % of the rotor plane from turbines A2 

and A4) were recorded by the camera systems during the analysed dates (Table A-5). Of these, 399 

transits occurred within two hours on the morning of 17 September 2023, when several barn swal-

lows (Hirundo rustica) were repeatedly flying through the rotor area while the rotor was stationary. 

For a while, some swallows were even observed resting on the blades. This event was clearly ex-

ceptional and constitutes a significant outlier in the data. Therefore, we report two daytime results: 

one including the `barn swallow event’ and one excluding it.  



The collision risk of migrating birds at wind turbines 
 

 

 57  
 

Furthermore, since the number of analysed hours differed between day and night (4279 and 5379) 

respectively, see Table 4-3), a simple comparison of absolute transit counts is not appropriate. In-

stead, we calculated the mean number of rotor transits per hour and the corresponding day-to-

night ratios. For reference, a table with the absolute number of rotor transits per turbine and op-

erational status for both day and night is included in the appendix (Table A-2). 

Without the ̀ barn swallow event’ we found 193 transits during day and 434 during night, in relation 

to observation effort (i.e. hour) the mean transits rate per hour was approximately twice as high 

during night than during day (see Table 4-3). 

Table 4-3 Overview of the number of rotor transits (total and mean number per hour for day and night), 
number of observation hours for both turbines when operating and non-operating. The 
‘Day/Night transit Ratio shows the mean number of rotor transits per hour during daytime rel-
ative to nighttime. A ratio below 1 indicates that transit rates are lower during the day com-
pared to the night. *These numbers include the barn swallow event. 

Day or Night N hour  N transits  Mean rotor 
transits/hour 

Day/Night rotor 
transit ratio 

day 4279 193 / (592)* 0.0451 / 
(0.1383)* 0.5589 

/ (1.7138)* 
night 5379 434 0.0807 

4.2.1 Relationship between number of rotor transits and turbine operational status 

To compare the number of transits in relation to the operational status of the turbine we classified 

rotor speeds equal to or exceeding 2 rpm as operational, whereas speeds below 2 rpm are consid-

ered non-operational. Out of the total of 627 transits (excluding the barn swallow event), only 45 

occurred while the rotor was operational and 582 while it was non-operational. However, these 

numbers must be interpreted in the context of the corresponding duration of rotor operation and 

non-operation. The mean number of transits per hour and operational status are provided in Table 

4-4. 

When turbines were not operating, the transit rate was 0.1552 per hour: about 20 times higher 

than when the rotor was in motion (and 34 times higher when including the barn swallow event). 

When turbines were operating the transit rates per hour dropped to 0.0076. In other words, we 

would expect a rotor transit about every 132 hours (or every 5 and a half days) when rotors are 

active, whereas at non-active turbines, we would expect a transit every 6 hours, highlighting the 

effect of operational status. This effect of operational status was about twice as high during the 

night than during day (see Table 4-6). 

A comparison of transit rates between day and night shows that during non-operational time peri-

ods more transits occurred during the night, while during turbine operational times more transits 

were recorded during the day (see Table 4-6). 
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Table 4-4 Overview of the rotor transit rates (transits per hour) in relation to the turbine operating status 
(i.e. y = ≥ 2 rpm, n = < 2 rpm). In addition, the total number of observation hours, rotor transits, 
mean MTR during observation hours and the ratio of the transit rate during non-operation rel-
ative to operation are given. A ratio greater than 1 indicates that transits are more frequent 
when the rotor is not operating. *These numbers include the barn swallow event. 

Operating N hour N transits Mean MTR Mean rotor 
trans-

its/hour 

Non-operat-
ing/operating 

rotor transit ra-
tio 

n 3753 582 / (981)* 173.7 / 
(173.8)* 

0.1552 / 
(0.2614)* 20.37 / (34.31)* 

y 5907 45 159.6 0.0076 

 

Table 4-5 Overview of the rotor transit rates (transits per hour) in relation to the turbines operating status 
(i.e. y = ≥ 2 rpm, n = < 2 rpm), separately for day and night. For details see caption of Table 4-4. 
*These numbers include the barn swallow event. 

4.2.2 Relationship between rotor transits and migration intensity at rotor height 

Given the rarity of transits, the number of transits per hour was zero in most cases when the turbine 

was operational and exceeded one in only four instances. An initial visual inspection of the data 

showed that during those four hours where more than one transit occurred, MTR values were ra-

ther low (see Figure 4-18). Also, when looking at the distribution of transits per date over the period 

of the study, no clear relationship with MTR per date was apparent (Figure 4-19, see also Figure A-

1). Statistical analyses showed similar results. 

Day or 
Night 

Opera-
ting 

N hour N tran-
sits 

Mean MTR Mean rotor 
transits/hour 

Non-operating/Oper-
ating rotor transit ra-

tio 

day n 1437 168 / 
(567)* 

222.6 / (222.8)* 0.1167 / 
(0.3940)* 13.27 / (44.79)* 

day y 2842 25 175.4 0.0088 

night n 2314 414 143.0 0.1789 
27.42 

night y 3065 20 144.8 0.0065 
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Figure 4-18 Number of transits versus MTR at rotor height (25 – 180 m) for day and night combined. Note 
that when no transit occurred within an hour, we applied some jitter to the y-axis and reduced 
point opacity to enhance visual clarity. Consequently, points representing zero transits appear 
scattered around the zero line. 
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Figure 4-19 MTR at rotor height for day and night combined with superimposed transits counts. (Transits 
counts were multiplied by 100 to make them visual i.e. at y=100 red dots indicate 1 transit and 
at y=200 red dots indicate 2 transits etc.) Note, red dots on y =0 indicates measurements with 
zero transits. 

To test the hypothesis that rotor transits correlate linearly with the number of birds flying at rotor 

height, we first used simple non-parametric Kendall’s rank correlation tests. 

Table 4-6 Kendall's rank correlation test for testing the rank correlation between transits and MTR at rotor 
height for day and night separately. Only transits which occurred when turbines were active 
(rpm ≥ 2) were used for this analysis. Kendall's ‘tau’ indicates the strength of the correlation 
from 0 to 1 with small number indicating low correlation. 

Day or night z-value p-value tau 

day 1.82 0.069 0.029 

night 1.70 0.089 0.026 

Although both for day and night the p-values where low (yet statistically non-significant), the tau 

values clearly showed that the strength of the correlation was close to zero. In other words, accord-

ing to the rank correlation test, the effect of MTR on the number of rotor transits was negligible 

(Table 4-6).  

The binomial GLM showed similar results (see Table 4-7). The model output indicated no difference 

in transit rate between the two turbines and a non-significant trend of a lower probability of transits 
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during the day compared to the night. Transits during the day were independent of MTR at rotor 

height. A marginal significant interaction term of MTR and ‘DayOrNight’ indicated a slight positive 

effect of MTR on the likelihood of transits during the night (p-value = 0.056). However, the 'McFad-

den' (pseudo-) R2-value of only 0.016 indicates that similar to the Kendall’s rank correlation test, 

only a very small part of the variance is explained by the model. Thus, while there might be a mar-

ginal significant correlation between transits and MTR at rotor height during the night, this corre-

lation is very weak and MTR at rotor height is therefore not a suitable predictor of rotor transits 

and consequently of collision risk. 

Table 4-7 Model output for generalized linear model with binomial family and ‘logit’ link function. De-
pending variable was transits (yes/no) within one hour. Explanatory variables are indicated in 
column ‘fixed effects’, the reference level of factorial variables is indicated. Camera effort was 
used as an offset in the model. 

Fixed effects Estmate (SE) z value p-value 

Intercept -5.858 (0.313) -18.724  

MTR <0.001 (<0.001) 0.889 0.374 

Turbine ID [Iterra] -0.112 (0.331) -0.338 0.736 

Day or Night [night] -0.501 (0.412) -1.216 0.224 

MTR all classes × Day 
or Night [night] 

0.002 (<0.001) 1.908 0.056 

4.2.3 Weather dependency of rotor transits 

The Bayesian GAM examining the effect of weather and other additional explanatory variables on 

rotor transits showed mixed results. As indicated by the MCMC interval plots (Figure 4-20), the 

following variables affected the occurrence of transits as the 90 % CI of the posteriors did not over-

lap with zero: 

• temperature (day, higher temperature less transits) 

• precipitation (day, more precipitation less transits) 

• CWC (day, more wind less transits) 

• visibility (night, higher visibility more transits)  

• MTR at rotor height (night, higher MTR more transits) 

• rotor rotation speed (day and night, faster rotor rotation less transits, potentially larger 

effect at night), please note that in this dataset only observations are included when 

the rotor was active. Thus, the influence of rotor speed here is explained by the range 

of rpm ≥ 2 to max. rotation speed.  
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Figure 4-20 MCMC-interval plot of both day and night models for influences of weather variables, rotor 
speed and MTR at rotor height on the likelihood of transits. Note that day and night models 
were separately run, however, variables are ordered so that they are shown in day/night pairs 
for easier comparison. Note also that, since scaling was applied within each day/night subset, 
a direct comparison of the relative effect size of those variables on this plot is possible. 

For seeing the effect size on the original scale of the data please see figures in the appendix (Figure 

A-3 to Figure A-11). 

However, both the LOO (Leave-one-out) approach and the Bayesian R2 values indicated that the 

model explained only a minor proportion of the variance in the rotor transit data. LOO shows the 

improvement of an extended model in comparison to the base model. The large SEs of the model 

differences found in these comparisons (Table 4-8 and Table 4-9) indicated that all explanatory var-

iables included in the extended model versions did not contribute much to explain the variance in 

the data. This is confirmed by the Bayesian R2-values which were 0.019 for model on day data and 

0.041 for the night ones (see the appendix A). 
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Table 4-8 LOO comparison of Bayesian models for daytime transits when rpm ≥ 2 and its influence by 
weather parameter, rotor speed and MTR at rotor height. Elpd_diff = Expected Log Predictive 
Density Difference. SE_diff = Standard Error of the difference.  

Model elpd_diff se_diff 

mb_wind_TW_CW_abs 0.0 0.0 

mb_wind_TW_shore_sea -0.9 0.3 

mb_base -2.6 2.9 

mb_date -3.4 2.8 

mb_wind_all -3.5 3.1 

mb_large -3.8 3.0 

mb_date_circadian -4.2 2.9 

mb_large_shore_sea -4.5 2.9 

mb_wind_TW_CW -5.2 3.1 

mb_wind_TW_CW_season -6.6 3.1 

 

Table 4-9 LOO comparison of Bayesian models for nighttime transits when rpm ≥ 2 and its influence by 
weather parameter, rotor speed and MTR at rotor height. 

Model elpd_diff se_diff 

mb_large 0.0 0.0 

mb_large_shore_sea -0.4 1.1 

mb_date -2.4 5.9 

mb_date_circadian -2.7 5.9 

mb_wind_all -3.0 5.1 

mb_base -3.5 6.5 

mb_wind_TW_CW_abs -3.6 5.4 

mb_wind_TW_CW -3.8 6.0 

mb_wind_TW_shore_sea -4.4 5.9 

mb_wind_TW_CW_season -5.0 6.4 

4.3 Avoidance rate  

4.3.1 Calculation based on number of rotor transits 

Overall, the average avoidance rates, as calculated based on rotor transits, and the MTR at rotor 

height, across all bird species groups (see chapter 3.7.7) were very high with some variation be-

tween day and night, and, particularly between periods when turbines were active versus inactive. 

Differences between the two turbines for which rotor transits were recorded by camera systems, 

however, were low, indicating that the concrete location of the turbines was not important (Table 

4-10). 

When turbines were active, the avoidance rate during the night (0.9987) was slightly higher than 

during the day (0.9986) and considerably higher than estimated earlier (see chapter 5). With 
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respect to the proportion of birds not avoiding the rotor plane (1-avoidance rate), the ratio between 

night and day was 0.9412 indicating a slightly (about 6 %) increased probability of rotor transits 

during the day for a given number of birds aloft. 

Table 4-10 Avoidance rate while rotors were active (i.e. rpm ≥ 2). The table shows the estimated avoidance 
rate based on the number of ‘expected transits’ and ‘actual transits’. ‘Expected’ transits were 
calculated from number of radar signals at rotor height corrected for the rotor area assuming 
no avoidance. ‘Actual transits’ are transits observed with AVES-Camera in the rotor area. ‘Trans-
its corrected’ is number of actual transits corrected for camera downtime and expected number 
of transits missed due to birds colliding with the rotor and hence could not cross it. Avoidance 
rates are calculated form the ratio of ‘expected’ and ‘actual’ transits or ‘transits corrected’ ac-
cordingly. 

Turbine ID Day or night Transits 
expected 

Transits 
actual 

Transits 
corrected 

Avoidance rate 

A2 night 8255.8 11 12.73 0.9985 

A2 day 10816.4 11 13.15 0.9988 

A4 night 11063.3 9 11.30 0.9990 

A4 day 11238.8 14 16.95 0.9985 

Turbines combined night 19319.2 20 24.03 0.9987 

Turbines combined day 22055.2 25 30.10 0.9986 

The average avoidance rates for times when the turbines were inactive (rpm < 2) were markedly 

lower compared to active turbines but still high (day: 0.9847, night: 0.9660; see Table 4-11). Inter-

estingly, the avoidance rate during the night was considerably lower than during the day in this 

case. This was also indicted when considering the ratio of non-avoidance between night and day: 

the probability of birds flying without avoidance response through the rotor during the night was 

more than twice as high as during the day when rotors were idle (ratio 2.22).   

Table 4-11 Avoidance rate while rotors were inactive (i.e. rpm < 2). The table shows the estimated avoid-
ance rate based on the number of ‘expected transits’ and ‘actual transits’. For details please see 
Table 4-10. 

Turbine ID Day or Night Transits 
expected 

Transits 
actual 

Transits 
corrected 

Avoidance rate 

A2 night 10478.3 271 313.77 0.9701 

A2 day 9052.4 78 93.26 0.9897 

A4 night 4645.5 141 176.97 0.9619 

A4 day 5652.8 95 114.99 0.9797 

Turbines combined night 15123.8 412 490.74 0.9660 

Turbines combined day 14705.2 173 208.25 0.9847 

4.3.2 Calculation based on number of fatalities 

The predicted collision rate based on MTR data at rotor height and with avoidance rate set to 0 was 

57889.2 [CI 43289.1 - 73762.7]. The estimated number of collision victims found during ‘Post Con-

struction Fatality Monitoring’ was 99.7. [CI:55 -168] (see chapter 4.5).  
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Using mean results of PCFM (=99.7) and the mean CRM collision estimate (=57889.2 fatalities), re-

sulted in a calculated avoidance rate of = 0.9983. The estimate ranged from 0.9961 when applying 

the lower CI of CRMs and the upper CI of fatalities to 0.9993 when using the upper CI of CRMs and 

the lower CI of fatalities. 

4.4 Band collision risk models 

With the help of stochastic CRMs and applying the avoidance rates determined in this study (ap-

prox. 0.998, see chapter 4.3), we estimated a mean of 76.6 (95 %-CI: 57.3 - 97.6; Table 4-12) colli-

sion victims for the study period for all five wind turbines combined. During daytime the sum was 

40.59 and during night 36.01 collisions. The estimates per turbine were similar but for one turbine 

per year which showed considerably lower numbers (see Figure 4-21; ‘A6’ in 2023 and ‘iTerra’ in 

2024), which was caused by the long periods these were non-operative due to maintenance. 

In comparison, when applying an avoidance rate of 0.98 (e.g. SCHULZ ET AL. 2014; POTIEK ET AL. 2021), 

the total number of collision victims was estimated at 1157.6, with an avoidance rate of 0.9562, the 

conservative rate reported by Schulz et al 2014, the estimate increased to 2535.2 collision fatalities 

(Table 4-12). This corresponds to a 15-fold and 33-fold increase compared to the number of collision 

victims estimated with the avoidance rate determined in this study, respectively. 

 

Figure 4-21 The figure shows the calculated collisions per year and season. The collision numbers are plotted 
on the x-axis, the mean values are indicated by the small lines on the x-axis (‘ticks’) in the colour 
of the corresponding scenarios. The y-axis shows the probability density and thus indicates the 
probability of a given mean number of collisions. The width of the bell curve indicates the vari-
ance. Turbines with AVES cameras installed are spelled out (i.e.: ‘GP’ and ‘iTerra’). Please note 
that ‘A6’ and ‘iTerra’ were not operating for extended periods, which resulted in narrow density 
curves close to zero. 
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Table 4-12 Summary table of estimated collisions over the period of study duration based on stochastic 
CRMs for three different scenarios. The three scenarios differ in the assumed avoidance rate 
where the first row shows results for the rates as found in the present study (day=0.9986; 
night=0.9987), the second row for the ‘standard’ rate of 0.98 and the last row for the lower 
rate as found in Schulz et al 2014 (= 0.9562). 

Avoidance rate Mean 
collisions 

SD Median Lower CI Upper CI 

0.9987  
(empirical avoidance rate, this study) 

76.6 10.5 76.6 57.3 97.6 

0.980  
(SCHULZ ET AL. 2014; POTIEK ET AL. 2021) 

1157.8 158.6 1157.6 865.8 1475.3 

0.9562  
(SCHULZ ET AL. 2014) 

2535.5 347.3 2535.2 1896.1 3230.8 

4.5 Post Construction Fatality Monitoring (PCFM) 

4.5.1 Estimating carcass dispersion (dwp) 

An overview of the number of carcasses found (total 16 carcasses), date, respective turbine and 

species level, where possible, is provided in Table 4-13. 

Table 4-13 Information on carcasses found during PCFM during the whole study period. Each row resem-
bles one collision victim. In total 16 carcasses were found. Rows with light blue background 
indicate collision victims found within the main bird migration periods. Bold fonts indicate mi-
grating passerines that at least partially migrate during the night. 

Species Date Turbine /search area 

Duck unidentified 03/06/2023 A05-03 

Oystercatcher 08/06/2023 A03-03 

Common Buzzard 13/06/2023 A02-11 

Carrion Crow 18/06/2023 A05-02 

Black-headed Gull 03/07/2023 A03-03 

Black-headed Gull 12/08/2023 A03-01 

Black-headed Gull 27/08/2023 A05-01 

Great Tit 26/09/2023 A03-01 

House Sparrow 21/10/2023 A02-05 

Song Thrush 14/01/2024 A04-04 

Starling 04/03/2024 A05-01 

Starling 19/03/2024 A03-01 

Wood Pigeon 28/05/2024 A04-01 

Wood Pigeon 27/07/2024 A03-01 

Common Buzzard 05/10/2024 A03-03 

Kestrel 25/10/2024 A04-04 

For the estimation of the density weighted proportion (dwp) of carcass distribution around the tur-

bine we chose to use the Maxwell-Boltzmann distribution, although it scored higher ΔAICc value 

compared to other candidate distributions (Table 4-14). This was done because it provided higher, 
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more realistic predicted proportions of carcasses falling within a 150 m radius of turbine masts, 

while the other candidate distributions predicted substantially lower proportions (see Figure 4-22). 

 

Figure 4-22 Fitted distributions of carcass distances from turbine masts using the dwp package. ‘xep1’, 
‘xep2’, ‘lognormal’ and ‘MaxwellBoltzmann’ were the best candidate models for the distribution 
function. Top row, probability density functions for the distribution of carcass distances; bottom 
row, cumulative probability density functions. The black lines are the mean predictions, while 
the light and dark grey envelopes represent the 95 % and 80 % confidence intervals, respec-
tively. Red ticks represent the observed distances for the 20 carcasses kept in the dataset for fit 
with dwp. 

However, since the Maxwell-Boltzmann distribution parameters a simulated by dwp nonetheless 

contained some high values resulting in a large proportion of birds predicted to fall far from the 

masts, we decided to apply a conservative threshold for the allowed proportion of carcasses falling 

far away: we chose an initial truncation threshold for the Maxwell-Boltzmann distribution parame-

ter a so that no more than 50 % of birds could fall beyond 150 m radius (Figure 4-23). This means 

that we truncated the distribution of a values provided by dwp at 97.52, the value corresponding 

to 50 % of birds falling beyond 150 m from the masts. We used a mixture of Gaussians to approxi-

mate this truncated distribution of a (using the mclust package) to be able to use it as a prior for 

the Stan model. 

Since that prior was still very permissive in terms of proportion of carcasses allowed to fall far from 

the masts, we used carcass dispersion results estimated in a comparable study conducted by Bio-

Consult SH in which modelling carcass dispersion was easier due to more homogenous search areas 

and applied a correction factor to account for differences in turbine height. Thus, we determined 

the threshold radius below which we expected 95 % of carcasses to fall at 156.7 m.  
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Figure 4-23 Priors for Maxwell-Boltzmann distributions representing carcass dispersion distances used in 
the fatality model, using the a parameter distributions based on the dwp fit in the previous 
figure above. Initial truncation, using a prior distribution for a obtained from a mixture of Gauss-
ians fitted on the dwp output after applying a threshold on a so that at least 50 % of carcasses 
would be expected to fall within 150 m; Best guess, using a prior distribution for a after applying 
to the initial truncation distribution a threshold on a so that at least 95 % of carcasses would be 
expected to fall within 156.7 m; Conservative guess, using a prior distribution for a after apply-
ing to the initial truncation distribution a threshold on a so that at least 95 % of carcasses would 
be expected to fall within 215.14 m. Legend for black lines, grey envelopes, and red ticks is as 
for the figure above. Final MCMC runs for the fatality model were performed using the best 
guess prior or the Conservative guess prior. 

Table 4-14 Scores of distribution models fitted with dwp. See the dwp documentation (Table 6 in Dalthorp 
et al. (2022)) for the precise description of each model based on their name (left column). Se-
lection criteria are (0/1 indicate failure/success for a given model): ‘extensible’, the distribu-
tion function predicts a finite number of carcasses outside the searched areas; ‘rtail’ and ‘ltail’, 
the distribution function does not predict too many carcasses too far from or too close to the 
turbine mast (threshold-based); ‘aicc’, the ΔAICc value relative to the model with lowest AICc 
is < 10; ‘hin’, the model is not affected by any highly influential point. The last column indi-
cates the ΔAICc value relative to the model with lowest AICc. 

Candidate Extensible rtail ltail aicc hin deltaAICc 

xep1 1 0 1 1 1 0.605 

xep2 1 0 1 1 1 1.510 

lognormal 1 0 1 1 1 1.890 

MaxwellBoltzmann 1 0 1 1 1 7.570 
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4.5.2 Estimating carcass persistence 

Carcass persistence trials allowed to determine how long carcasses stay in the field before they are 

not detectable anymore. We used the GenEst package to estimate the persistence. Multiple models 

using different distributions families were compared (Table 4-15) and the model with the best fit 

was used as prior knowledge in the final fatality estimates (see Methods). Depending on the carcass 

size the persistence differed (see Figure 4-24). 

Table 4-15 Summary of model fits for carcass persistence. The location and scale formula columns indicate 
whether the model included an effect of size class (~ size category) or not (~ 1) for that param-
eter. Note that the exponential model does not have a scale parameter. 

Distribution Location  
formula 

Scale formula AICc ΔAICc 

weibull l ~ 1 s ~ 1 270.16 0.00 

loglogistic l ~ 1 s ~ 1 270.37 0.21 

lognormal l ~ 1 s ~ 1 270.93 0.77 

weibull l ~ size_category s ~ 1 271.49 1.33 

loglogistic l ~ size_category s ~ 1 271.79 1.63 

exponential l ~ 1 NULL 272.02 1.86 

lognormal l ~ size_category s ~ 1 272.30 2.14 

exponential l ~ size_category NULL 272.81 2.65 

weibull l ~ 1 s ~ size_category 273.03 2.87 

loglogistic l ~ 1 s ~ size_category 274.20 4.04 

lognormal l ~ 1 s ~ size_category 274.60 4.44 

weibull l ~ size_category s ~ size_category 275.78 5.62 

loglogistic l ~ size_category s ~ size_category 276.11 5.95 

lognormal l ~ size_category s ~ size_category 276.54 6.38 

Based on the model comparison table above (Table 4-15), we chose to use a model with an expo-

nential distribution and with an effect of size class on the location parameter because (i) among the 

models which retained an effect of the size class covariate, that model had one of the smallest 

ΔAICc values compared to the model with the lowest AICc (ΔAICc=2.65) and (ii) the other models 

using distributions with both a location and a scale parameter had only a slightly lower AICc value 

than the exponential model (e.g. ΔAICc=1.33 for the model using a Weibull distribution with an 

effect of the size category covariate) indicating no significant increase in its explanatory power. 

We then used the GenEst::rcp() function to generate plausible values from that chosen model for 

the location parameter of the exponential persistence function, for each size class. Finally, we ap-

proximated the distribution of those plausible values provided by GenEst by using log-normal dis-

tributions (one per size class), that were then used as priors in the fatality model. 

Generally, estimated persistence was high. After five days (i.e. the standard interval of collision 

fatality searches in this study), about 80 %, 85 % and 90 % of small, medium-sized and large birds 

were still present, respectively. After 20 days, presence varied between approx. 40 % - 65 % for the 

different size classes (see Figure 4-24). 
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Figure 4-24 Carcass persistence predicted from the selected model (exponential distribution with effect of 
size class). The black lines are the mean predictions, while the light and dark grey envelopes 
represent the 95 % and 80 % confidence intervals, respectively. 

4.5.3 Estimating search efficiency (GenEst) 

The estimated mean search efficiency per carcass size category and visibility condition ranged from 

0.31 (small carcass size and sufficient visibility) to 0.91 (large carcass size and very good visibility. 

For the whole range of efficiency values used in the final fatality estimate model see Figure 4-25. 
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Figure 4-25 Priors used in the fatality model for parameters affecting searcher efficiency 𝑝𝑒𝑓𝑓,𝑣𝑖𝑠  and 𝑘𝑒𝑓𝑓 . 

(a) Priors on 𝑝𝑒𝑓𝑓,𝑣𝑖𝑠, one prior per size class and per visibility level. Those priors are obtained by 

fitting a detection model on the field trial data with GenEst. (b) Prior on 𝑘𝑒𝑓𝑓 , based on literature 

including tutorials and simulated datasets. The red vertical lines show the mean values for each 
prior distribution. 
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4.5.4 Fatality model 

The mean estimation of base fatality rate lambda_0 for times when rotor speed was > 2 rpm ranged 

from 0.0178 for small birds to 0.0245 for large birds. Notably, for medium-sized birds the estimate 

was lowest with 0.0101 (see Table 4-16 for full range of CIs). 

Table 4-16 Lambda_0, the base fatality rate in birds/turbine/day, when rotor speed > 2 rpm. 

Bird size 
class 

2.5 % 10 % Median Mean 90 % 97.5 % 

small 0.0034 0.0059 0.0150 0.0178 0.0326 0.0500 

medium 0.0027 0.0043 0.0090 0.0101 0.0172 0.0236 

large 0.0113 0.0144 0.0231 0.0245 0.0364 0.0450 

The overall probability of detecting a collision victim at the wind farm over the study period per size 

class of the bird was estimated by the parameter ‘P_Detect’. These values integrate among others 

the search efficiency per visibility condition, carcass persistence, and the probability of the carcass 

falling within the searched area. Mean values for P_Detect ranged from 0.094 for small birds to 

0.260 to large birds (see Table 4-17 for the whole range of CIs). 

Table 4-17 P_Detect, overall probability of detection of a collision victim killed at the wind farm over the 
study period. 

Bird size 
class 

2.5 % 10 % Median Mean 90 % 97.5 % 

small 0.0499 0.0621 0.090 0.0935 0.128 0.154 

medium 0.1440 0.1630 0.206 0.2070 0.254 0.283 

large 0.1700 0.1980 0.258 0.2600 0.326 0.363 

Finally, the number of estimated fatalities per size class over the period of the study ranged from 

18.9 for medium-sized birds to 47.0 for large birds (Table 4-18). Noticeably, passerine birds fall into 

the size class of small and medium-sized birds and constitute a large part of the total population 

flying in and through the wind farm (see chapter 4.1.1), however, the combined mean estimate of 

these two classes is 52.8 and thus not much higher than the estimate for large birds (47.0). 

The mean estimate for the total number of fatalities for all size classes together over the whole 

period of the study at all five turbines was 99.7, 95 % CI ranged from 55 to 168 (see Table 4-18). 

Table 4-18 Number of fatalities per size class over the study period. 

Bird size 
class 

2.5% 10% median mean 90% 97.5% 

small 7 11 28 33.9 62 93 

medium 6 8 17 18.9 31 43 

large 24 29 44 47.0 69 85 

total 55 66 96 99.7 137 168 
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4.5.5 Fatality estimates in relation to total population 

Based on the MTR data for the altitude range from 25 - 1025 m, we estimated that a total number 

of 4236841 birds flew through and over the wind farm (assuming a width of the windfarm of 1.2km 

perpendicular to the main migration direction). In this calculation, one radar signal is counted as 

one bird regardless of whether it relates to separate individuals or multiple passages of same birds.  

With the equation: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑛_𝑐𝑎𝑟𝑐𝑎𝑠𝑠 / 𝑠𝑢𝑚_𝑓𝑙𝑖𝑔ℎ𝑡𝑠 ∗  100 

we estimate that 0.0018 % of all bird passages through the area of wind warm resulted in a collision 

with one of the turbines. Separate calculations for day and nighttime resulted in 0.0020 % and 

0.0016 % of the population, for day and night, respectively. When repeating the same calculation 

with the upper 95 %-CI of the PCFM fatality estimate (168 collision victims, Table 4-18), the per-

centage of collisions increases to 0.004 %. Please note that in the latter case we cannot distinguish 

between day- and nighttime collision victims.  

4.6 Bird calls 

The accuracy of the AI was considered good enough for further analysis for a total of 23 species 

(Table A-9, n calls = 112359). Of these 23 species six belong to the order Passeriformes (i.e. passer-

ines; n calls = 4882). 

The species composition of nocturnal calls in spring was dominated by Blackbirds (44 %). Other 

commonly recorded species were Northern Lapwings, Mallards and different species of geese but 

also the Song Thrush was recorded frequently (Figure 4-26). During autumn the most dominant 

species was the Barnacle Goose with 24 % followed by four passerine species: Redwing, Robin 

Blackbird and Song thrush (12 %, 11 %, 7 %, 5 % respectively) (Figure 4-27). Together these four 

passerines accounted for about one-third of the total number of nocturnal calls in autumn. 
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Figure 4-26 Calls spring. Pie chart of percentages of nocturnal calls for most dominant species during the 
night. Subset of species is based on AI species identification for which the AI’s accuracy was 
deemed to be high enough. Species which made less than 3 % of total calls were lumped to-
gether under the index ‘rest’. 
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Figure 4-27 Calls autumn. Pie chart of percentages of nocturnal calls for most dominant species during the 
night. Subset of species is based on AI species identification for which the AI’s accuracy was 
deemed to be high enough. Species which made less than 4 % of total calls were lumped to-
gether under the index ‘rest’. 

Calls per species were also plotted against Julian day to illustrate the annual temporal pattern. As 

expected, in the beginning of the year and during summertime less calls were recorded in compar-

ison to the migration seasons reflecting the higher number of birds in the area during that time. 

Noticeable are the high number of Blackbird calls during the end of spring migration, which most 

likely are related to local breeding birds rather than Blackbird migration activity which typically oc-

curs earlier in spring. During the autumn season high numbers of geese calls dominated the spec-

trum which are also likely to stem to a considerable part from locally resting and wintering birds 

(Figure 4-28 and Figure 4-29). 
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Figure 4-28 Number of calls per species over the course of seasons during nighttime. Here all 23 species with 
high enough accuracy as given by the AI are plotted. 

 

 

Figure 4-29 Number of calls of passerine species over the course of seasons during nighttime. All six species 
of passerine with high enough accuracy as given by the AI are plotted. 
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5 DISCUSSION 

In this study we applied both innovative and established methods to evaluate the collision risk par-

ticularly of nocturnal bird migration at a coastal wind farm with the aim to allow conclusions about 

the collision risk of these birds at offshore wind turbines. 

A specialised bird radar recorded data on MTR and FHD for four migration periods at the study site 

and contributed data to empirically determine avoidance rates and the magnitude of fatalities. The 

BirdScan MR1 radar we deployed can be regarded as a state-of-the-art ornithological radar which 

has been validated by the scientific community (LIECHTI ET AL. 2018; NILSSON ET AL. 2018; SCHMID ET AL. 

2019), has widely been used in quantitative studies and has even been utilized for validating 

weather radar measurements (JIMENEZ ET AL. 2024). 

The novel AI-driven camera systems we deployed were specifically developed to detect rotor trans-

its of birds and bats during both day and night. The design of the system allowed us to collect rep-

resentative data on rotor transits as they monitored i) a substantial proportion of the rotor plane 

and the area leeward of the rotor (50 %) at all times, independently of wind direction and associ-

ated turbine orientation, ii) equally covered areas above and below the nacelle, and iii) recorded 

rotor transits up to the whole length of the rotors. Although AI development was not finalised be-

fore the start of the data collection period and post-analyses of stored video sequences required 

large computational capacities and, hence, delayed analysis of video data, the total number of days 

(305) and nights (547) analysed for rotor transits resulted in a comprehensive and robust data set. 

In addition, the technical availability of the cameras was very high reducing data gaps and necessary 

correction of data to a minimum. 

Nonetheless, rotor transits of birds can be regarded as rare events with the total number recorded 

in this study amounting to only 45 (when turbines were operational). This emphasises the need for 

a high data acquisition effort to collect a sufficiently large data set on transits for statistically robust 

conclusions. 

Finally, we conducted intensive collision fatality searches to independently estimate the actual 

number of collision victims and facilitate a comparison with and validation of the Band collision risk 

model. We implemented a high frequency of searches, and a narrow transect design to maximise 

the probability of finding also small-sized collision victims such as passerine birds and thus minimise 

uncertainty due to large correction factors. In addition, we performed comprehensive search effi-

ciency as well as carcass persistence trials to ensure robust estimation of these important parame-

ters. Moreover, we applied most recent Bayesian developments of modelling collision fatalities in-

tegrating data on size-dependent and visibility-dependent efficiency and persistence together with 

the probability of carcasses falling within the search areas. We expanded the existing approach by 

allowing the models to account for temporal variation in visibility conditions of search plots which 

can potentially have large effects on model outcomes. Overall, this approach resulted in reliable 

estimation of collision fatalities at the study site with relatively low confidence intervals. 

Migration intensity and flight height distribution 

Radar data on MTR and FHD revealed patterns that can be regarded as typical for bird migration in 

the geographical region of the study site. Both the temporal pattern of increased but intermittent 
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bird migration during spring (with peaks in March/April) and autumn (maxima in September/Octo-

ber) and the absolute values of MTR fell within the range reported in previous studies in coastal 

and offshore areas in northern Germany and adjacent areas (KRIJGSVELD ET AL. 2009; FEBI 2013; 

WELCKER ET AL. 2017; WELCKER 2019; BSH 2025). Maximum MTR values tended to be comparatively 

high which could be related to differences in radar technology applied in different studies (LIECHTI 

ET AL. 2018; WELCKER 2021) but may also indicate that high-intensity bird migration occurs at the 

study site. 

Similarly, FHDs recorded during all four migration periods corresponded well with earlier studies in 

coastal and offshore areas (KEMP ET AL. 2013; WELCKER ET AL. 2017; BRUDERER ET AL. 2018; WELCKER & 

VILELA 2020; BRADARIĆ ET AL. 2024a). Although FHDs varied to a varying degree between spring and 

autumn as well as between day and night, in all circumstances the highest proportion of birds flew 

within the lowest altitude bands comprising the rotor area of the wind turbines. This implies that 

the collision risk of migrating birds was not principally reduced due to a preference of flight altitudes 

above the rotor height. This applies particularly to nocturnal migration as movements of local birds 

that often fly at lower altitudes primarily occur during the day. 

In line with previous studies, bird call data comprised high proportions of species known to consti-

tute a substantial part of nocturnal bird migration in the region such as the Robin and different 

species of thrushes. Also, the radar data suggested that a considerable proportion of nocturnal bird 

movements were related to passerines and other small birds. If these species would incur a partic-

ularly high collision risk, we would expect collision fatalities to be dominated by these species. How-

ever, this was not the case. Of the 16 detected collision victims, only starlings are considered as 

partly nocturnally migrating while a song thrush which is considered a typical nocturnal migrant 

was found during winter (see Table 4-13 for a list of all collision victims found).  

Transit rates and migration traffic rates 

The low absolute numbers of rotor transits recorded at the two turbines equipped with camera 

systems (988 and 45 with inactive and active rotors, respectively) generally translated into low 

transit rates per hour. As indicated by these absolute numbers, there was a remarkable difference 

in transit rates depending on the operational status of the rotors. When turbines were active, about 

20 times lower transit rates were recorded suggesting that birds perceive the rotating blades and 

avoid them to a larger extend than when they are idle. Consequently, data on rotor transits at in-

active turbines cannot be used as an indicator of collision risk, and, hence, are also not suitable for 

estimating the efficiency of turbine curtailment as a collision mitigation measure. 

We observed nearly twice as many transits per time unit at night compared to daytime. This oc-

curred even though the average MTR at night was not higher than during the day on the dates we 

analysed. Instead, the increased transit rate at night was primarily driven by a reduced avoidance 

rate during nighttime when the turbines were not operating (i.e., rotor speed < 2 rpm). When the 

turbines were active, the difference in transit rates between day and night was reversed. However, 

the absolute number of transits with active rotors was very low in both cases—25 during the day 

and 20 at night. Given these small numbers, a change of just one or two transits more at night, and 

one or two transits less per day would be sufficient to eliminate the observed pattern, suggesting 

that this effect may be subject to stochastic variation. In contrast, when turbines were not 



The collision risk of migrating birds at wind turbines 
 

 

 79  
 

operating a much higher number of transits occurred, and the observed pattern of increased transit 

rates at night —approximately 1.5 times higher than during the day—appeared to be more robust. 

One of the most striking findings of the present study was that the number of transits depended 

only weakly—if at all—on the MTR at rotor height. As no transits can occur without traffic, a basic 

low correlation is naturally expected. Nonetheless, our study clearly shows that MTR may not be a 

good predictor of rotor transits. Thus, an increase in MTR does not necessarily result in a propor-

tional increase in the number of transits and, thus, collision rate. Apparently, other factors may be 

more important in determining transit rates. Most notably and as described above, there is a strong 

correlation between transit rates and the operational status or rotation speed of the turbine. The 

data clearly showed that transit rates were significantly higher when the rotor was stationary or 

rotating slowly (less than 2 rpm). Even when the turbine was operational—defined here as having 

a rotor speed of 2 rpm or higher—a negative relationship was observed: the likelihood of rotor 

transits decreased as rotor speed increased. This negative association was evident during both day 

and night, but the effect was considerably more pronounced during nighttime hours. 

This result implies that during periods of high flux rates of birds the rate of rotor transits, and, con-

sequently, the rate of collisions is not necessarily increased. As has been shown in chapter 4.1.3 

and as demonstrated by a suit of previous studies, the magnitude of nocturnal bird migration heav-

ily depends on prevailing weather with high migration intensities predominantly occurring during 

periods of favourable conditions. This includes e.g. supportive wind conditions, good visibility and 

no precipitation. Although the proportion of birds flying at low altitudes increases with adverse 

weather (chapter 4.1.3), in situations with favourable weather and high migration activity, on aver-

age still the largest proportion of bird movements occur in the altitude range of the rotors. How-

ever, birds seem to perceive the turbines and rotating blades sufficiently well to avoid them keeping 

collision risk also at high migration intensities low. 

These conclusions have important repercussions for mitigation measures implementing turbine 

curtailment during time periods of high migration intensities at rotor height. These measures imply 

a positive relationship between the probability of bird collisions and flux rates. However, as the 

likelihood of birds passing through the rotor seems independent of concomitant migration inten-

sity, as suggested by our results, these measures are likely to be ineffective. 

It needs to be noted though, that contrasting evidence exists from a coastal wind farm in The Neth-

erlands (Eemshaven). In a trial implementing turbine curtailment at a subset of turbines during 10 

nights with expected high nocturnal migration intensities, collision victims of nocturnally migrating 

birds were only found at turbines that remained operational (KLOP & BRENNINKMEIJER 2020, see also 

KLEYHEEG-HARTMAN et al. 2025). Although this does not necessarily indicate a positive relationship 

between MTR and the number of collisions, it suggests potential effectiveness of curtailment. 

Clearly, more research is needed to determine how local differences may affect the collision risk of 

nocturnal bird migration. 

Transit rates and weather 

In addition to the minor relationship with MTR, the occurrence of rotor transits was only weakly 

predicted by weather conditions. Still worthwhile to mention and contrary to our initial hypothesis, 

transits were more likely to occur under favourable weather conditions — specifically when 
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visibility was high and both precipitation and crosswind levels were low. However, these findings 

should be interpreted with caution, as the models capturing these effects explained only a small 

proportion of the variance in the data (R2-value of 0.019 for the model on day data and 0.041 for 

the night (see appendix). 

Given the rarity and potentially high randomness of transit events, a substantially larger sample size 

would be required to improve the statistical power of the models and to more reliably identify 

which environmental factors may contribute to systematic patterns. It also seems possible that the 

probability of rotor transits depends on factors or interactions of factors not considered in this 

study. Further research is needed to determine under which conditions or circumstances birds ne-

glect to show an avoidance response and thus incur a higher risk of collision. 

Avoidance rate 

We applied two methods to calculate the avoidance rate. The first method was based on the actual 

number of collisions fatalities found during the PCFM, compared to the expected number of colli-

sions predicted by the CRMs under the assumption of zero avoidance. This method was suggested 

by BAND (2012) as the preferred way to derive avoidance rates to be used in the Band CRM and is 

independent of the rotor transits recorded by the camera systems. Because carcasses found in the 

field could not be linked to either daytime or nighttime collisions, we could only derive an overall 

avoidance rate. This overall rate was 0.9983, ranging from 0.9961 (based on the lower CI of the 

CRMs) to 0.9993 (based on the upper CI of fatalities from the PCFM). 

With the second method, we were able to calculate avoidance rates by directly recording transit 

rates through the rotor plane using camera systems and quantifying the MTR at rotor height using 

a specialised bird radar. The avoidance rate calculated by this method represents the factor by 

which the expected number of rotor transits obtained by radar MTR data and assuming no avoid-

ance response, has to be corrected to derive the actual number of rotor transits as recorded by the 

cameras. With 0.9987 for night and 0.9986 for daytime, respectively, these avoidance rate esti-

mates fell well within the range of the results of the first method.  

The good correspondence between the avoidance rates obtained with and without usage of the 

camera data lends further credibility to the performance of the camera systems and suggests that 

only few rotor transits might have been missed. 

Furthermore, both methods used in this study resulted in avoidance rates substantially higher than 

previously assumed. In comparison, an avoidance rate of 0.980, including passerines, is recom-

mended by some authors as a precautionary approach in cases where no site-specific data are avail-

able (MACLEAN ET AL. 2009; POTIEK ET AL. 2021). This rate is frequently used as a default in Band CRMs, 

with the understanding that it is likely conservative and tends to overestimate collision rates. 

Avoidance rates are often regarded at three spatial scales: macro-avoidance (avoidance of the 

whole wind farm area), meso-avoidance (avoidance of turbine rows/turbines within wind farms) 

and micro-avoidance (last second avoidance of the rotor-swept area or single rotor blades). Overall 

avoidance rates usually integrate the response of the birds at all spatial scales. 



The collision risk of migrating birds at wind turbines 
 

 

 81  
 

Particularly for nocturnal passerine migration it is unknown at which distance to turbines birds may 

start to alter their flight behaviour. Our radar was placed about 650 m outside the wind farm. Even 

though we regard it as unlikely that a relevant proportion of nocturnally migrating songbirds re-

sponded at larger distances, our estimates of avoidance rates may not fully integrate macro-avoid-

ance and therefore represent a conservative estimate. Likewise, at the micro scale birds may ac-

tively avoid single rotor blades while still passing through the rotor plane. Such behaviour was 

recorded in some instances also on the video footage in our study. However, as this behaviour could 

not be quantified (only parts of the rotor blades were within the field of view of the cameras), it is 

also not incorporated in the estimates of avoidance rates resulting in further potential underesti-

mation. 

Particularly for nocturnal migration information on avoidance rates is scarce. A study employing a 

similar approach but using different camera and radar technologies estimated avoidance rates at 

an offshore site (SCHULZ ET AL. 2014). Their estimates ranged between 0.9562 and 0.9803 and thus 

were substantially lower than our estimate at 0.9987. This discrepancy may be due to differences 

in the technical setup, especially the less advanced technology available at that time. Notably, the 

deployed cameras had a substantially narrower field of view and presumably lower detection rates 

due to inferior sensors and a lack of AI detection. Furthermore, one camera without distance esti-

mation capabilities was mounted on the nacelle facing upwards only. An additional camera at the 

turbine base monitored areas outside the immediate rotor-swept area. Given that flight intensity 

is not evenly distributed across the vertical span of the rotor—as shown in FHD data—this setup is 

likely to introduce systematic bias.  

Avoidance rate and turbine operational status 

Although overall avoidance rates differ significantly between Schulz et al. (2014) and those found 

in the present study, they are comparatively similar during periods when the turbines are active. A 

much greater difference emerged under conditions when the rotor was idling or stationary. In both 

studies, the number of transits increased considerably when the turbines were inactive. 

As reported in chapter 4.2, the nighttime avoidance rate at our study site dropped from 0.9987 to 

0.9660, making transits over 26 times more likely under inactive rotor conditions, yet still quite rare. 

In contrast, Schulz et al. (2014) reported an avoidance rate of 0.407 when rotors were inactive, 

resulting in a much greater increase in transit rates. The relative increase in transit probabilities (1- 

avoidance rate) in the study by Schulz et al. (2014) was 13.5 times higher compared to our results. 

The reason for this considerable discrepancy remains speculative. 

In our study, the difference in avoidance rates between active and inactive rotors was more pro-

nounced during the night indicating that rotor status had a greater effect on the avoidance re-

sponse of birds during the night. While the high avoidance rates at active turbines suggest that birds 

are able to recognise the turbines in time to respond appropriately, perception of inactive turbines 

at night might be more restricted. As it seems likely that the sounds produced by the rotating blades 

contributes significantly to the perception of the turbines by the birds, the lack of this clue at inac-

tive rotors may at least partly explain reduced avoidance at night. This notion is also supported by 

the fact that rotor transits decreased and avoidance increased with increasing rotor speed and, 

thus, presumably increased noise levels. 
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In addition to acoustic cues, the stronger air turbulence associated with increasing rotor speed may 

also play a role. Since these turbulences primarily occur in the wake behind the rotor blades, it 

remains uncertain to what extent they are perceptible to birds. It might be that birds approaching 

the rotor from behind can use this as an additional cue.  

The smaller drop of avoidance rates between active and inactive turbines during daytime remains 

more speculative. As visual clues may play a more prominent role during daytime, diurnally active 

birds may be able to recognise idling or stationary rotor blades and the corresponding reduced need 

to respond by avoidance. This could for instance been observed during the documented ‘barn swal-

low event’ when several swallows were actively foraging in the immediate rotor area and resting 

on the stationary rotor blade but avoided the area at once the rotors started to rotate again. Thus, 

increased avoidance during active rotors may be caused by risk averse behaviour of the birds, as 

birds judge transits between faster moving blades as too risky. Alternatively, an increased rotation 

speed might lead to motion smear (see e.g. MAY ET AL. 2020) making it difficult for birds to assess 

the threat. In contrast to the general view that motion smear may lead to a lower probability of an 

avoidance response and thus to a higher collision risk, it may also lead birds to avoiding the rotor 

plane as they cannot fully perceive all details of the situation. 

Collision fatalities 

The results of the fatality surveys indicated a relatively low number of collision victims. An esti-

mated total of 99.7 fatalities of all bird species (95 % CI: 55–168) were estimated across the study 

period at the five monitored wind turbines. This corresponds to a mean of 12.9 collision fatalities 

per year and turbine. 

Based on the species composition of carcasses found in the field, the risk for nocturnally migrating 

passerine birds appeared to be very low. Only two Starlings found during the fatality searches can 

be regarded as at least a partially nocturnally migrating passerine. Even after accounting for lower 

detection probabilities—due to reduced search efficiency and shorter carcass persistence for small 

birds—the absolute risk remained lower than for larger birds (33.9 versus 47.0 carcasses). The esti-

mated total number of carcasses for small and medium-sized birds, to which passerines are counted 

based on their size, was 33.9 (small birds) and 18.9 (medium-sized birds), respectively. The sum of 

those numbers (52.8) was still not considerably larger than that for large birds. Also, baseline mor-

tality rates (λ) were similar across size classes (small birds: λ = 0.018; medium-sized birds λ = 0.010, 

large birds: λ = 0.025) with confidence intervals for all three size classes overlapping substantially. 

Nonetheless, small birds occurred in much higher absolute numbers than large birds, making their 

relative fatality numbers small in proportion. According to bird radar data, small bird species—such 

as passerines and swift-type migrants—accounted for up to 85 % of radar signals at night. Similarly, 

the nocturnal bird call data showed that passerines made up a large proportion of all recorded calls. 

These results confirm earlier findings suggesting that nocturnally migrating birds do not incur a high 

collision risk at wind farms but, in comparison to diurnally active bird species, may rather be able 

to avoid collisions more effectively (KRIJGSVELD et al. 2009, GRÜNKORN et al. 2016, WELCKER et al. 2017; 

but see also KLEYHEEG-HARTMAN et al. 2025). With the currently available data, the reasons for this 

discrepancy remain uncertain. A possible explanation may be related to behavioural differences 

between nocturnally migrating and diurnally active birds. While during migration, birds need to 

concentrate on navigation including the avoidance of obstacles when flying at low altitudes, 
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diurnally active birds are engaged in a variety of activities that may at least partly divert their at-

tention and impair their capabilities to perceive fast moving objects. On the other hand, several 

diurnally active species found during the collision fatality searches in our study can to some degree 

also be active at night. Although the cameras were not designed to systematically detect collisions 

directly, one of two nocturnal collisions recorded involved an individual identified as possibly a 

small gull. This may suggest that although nocturnally migrating birds seem not to incur a high col-

lision risk, collisions of predominantly day-active species may still occur at night.  

Comparison of results of Band Collision risk models and fatality searches 

To estimate collision fatalities independently of PCFM, we ran stochastic SOSS Band models, giving 

us the opportunity to compare and validate estimates derived by these methods. We were able to 

implement Band models eliminating the most prominent sources of uncertainty associated with 

Band CRMs (CHAMBERLAIN ET AL. 2006; MASDEN 2015; MASDEN & COOK 2016; WELCKER & VILELA 2019). 

Most importantly, we applied avoidance rates empirically determined by radar and camera data in 

our study and confirmed by a separate calculation based on PCFM independently of camera data. 

As this parameter has a paramount impact on model outcome (see also chapter 4.3.2), a precise 

estimate of the avoidance rate is crucial in obtaining realistic fatality estimates. Furthermore, we 

quantified MTR and FHD during day and nighttime directly at the study site minimising uncertainty 

of estimating expected rotor transits. 

The Band model calculates monthly collision rates taking into account rotor downtime (e.g. due to 

low wind or maintenance) as well as mean rotor rotation speeds and pitch angles. As these data 

were kindly provided by turbine operators, we could integrate turbine-specific information on all 

these parameters further decreasing uncertainty in modelled outcome. As these parameters to-

gether with turbine dimensions (e.g. rotor diameter and hub-height) differ between the five tur-

bines included in our study, we ran CRM for each of the turbines separately and finally summed up 

estimated collision to get the estimate for the whole wind farm for the duration of the study. 

All together this large and exhaustive data collection allowed an adequate estimation of expected 

collisions. Indeed, the results based on CRMs applying avoidance rates determined in this study 

match to a very high degree with estimates derived by the post construction fatality monitoring 

(76.59 [95 %-CI:  57.3 - 97.6] versus 99.7 [95 %-CI: 55 - 168]). This strong overlap in the estimates of 

two independent methods is reassuring and their consistency supports each other’s reliability. 

However, this logic could follow a circular argument if both methods shared a common, biased data 

source. This was not the case as the only common source of information was the turbine opera-

tional data, i.e. the rotor speed and corresponding turbine downtime. 

While a change in turbine downtime would lead to systematic changes in the estimation of the 

expected collisions in the CRM, in PCFM this effect is buffered since the same downtime data is 

used both to estimate the fatality rate lambda_0 and to predict the number of fatalities. Thus, the 

estimated fatality rate lambda_0 would increase while the predicted number of fatalities, which 

depends on the product between the estimated fatality rate and the provided turbine uptime, 

would be expected to change little overall. Irrespective, we see no reason to distrust the turbine 

data, which are simple metrics that do not require complex data processing other than calculating 

the monthly percentage of rotor speed above 2 rpm. 
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Uncertainty of estimates 

For a thorough comparison we need to consider the CIs of the different methods. While the mean 

estimates closely match and the 95 %-CIs overlap completely, the upper CI of the PCFM estimate 

(168) and the lower CI of the CRM estimate (57.3) still vary considerably leaving room for substantial 

variation between methods. ‘CIs’ are derived by different mathematical approaches in both meth-

ods. In case of the CRMs, ‘confidence intervals’ are calculated which are more precisely ‘percentile 

intervals’ capturing the central 95 % of the distribution based on resampling procedures. The ‘CI’ of 

the Bayesian MCMC intervals of PCFM represent more precisely ‘central intervals’ where the upper 

and lower tails of posterior distributions are cut off to get the remaining e.g. 95 %. Common for 

both methods is that these CIs are based on true distributions, unlike in frequentist statistics. This 

means that, in cases such as ours in which the distributions roughly follow a normal distribution, 

the closer values within the CI are to the mean estimate, the higher their credibility (compare 

KRUSCHKE 2015b). Thus, even with larger datasets resulting in reduced CIs it seems unlikely that 

significant differences in the estimation of fatalities between the methods would occur. 

In general, the PFCM method showed larger uncertainty in the estimate (credible intervals were 

larger). This uncertainty is caused by the rigorous error propagation of the Bayesian approach used 

to analyse the PCFM data. Here, several different sources of uncertainty are possible and included 

in this estimate leading to potentially large CI for this method: (i) uncertainty in searcher efficiency 

and its dependence on bird size and visibility conditions, (ii) uncertainty of persistence time of car-

casses, and (iii) uncertainty due to a fraction of carcasses falling outside the search areas. Due to 

rigorous error propagation, the results of the PCFM are expected to be very robust, making them 

suitable as a way of ‘ground truthing’. On the other hand, underlying calculations of CRMs are likely 

to underestimate the uncertainty of model outcomes as uncertainty associated with input param-

eters are not comprehensively captured and integrated into its final estimate (such as daily changes 

in FHD, MTR within month, or differences of species). Thus, it is not surprising that the 95 %-CI 

range of the CRMs (57.3 - 97.6) exceeded the 95-CI of the PCFM (55 - 168). 

Nonetheless, the estimated mean of collisions by CRM (76.6) was about 25 % lower than that by 

PCFM (99.7). This difference in estimated collision victims might be explained by multiple factors: 

• Missed rotor transits by the camera systems: Missed transits would lead to a decrease 

in the estimated avoidance rate and hence to an increased estimation of collision vic-

tims by the CRM. However, the AI models of the AVES system were applied with confi-

dence levels that resulted in no false negatives in comparison to manual review by ex-

perts at the cost of a high false positive rate. While it is unrealistic that detection by AI 

models was perfect and we assume that only few false negatives occurred, the lower 

estimate by CRM may at least partly be related to rotor transits missed by the camera 

systems.  

• Not all carcasses found in the field may have been caused by collision with rotor blades: 

While we followed the suggestions of the PFCM Handbook (INTERNATIONAL FINANCE 

CORPORATION 2023) in assigning carcasses and feathers found in the field as to being a 

collision victim or not, causes of death could not be determined in the vast majority of 

cases. Thus, some of the carcasses found might not have been killed by the turbines 

but may have been related to natural or other non-wind-farm related causes. Thus, 
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slight overestimation of collision fatalities by PCFM through misassignment of carcasses 

as collision victims cannot be dismissed. To avoid this potential source of error, the 

‘baseline’ mortality would have to be determined in the field adding substantially to 

the already high effort of fatality searches. 

• Potential collision of birds with non-operational turbines: The Band model assumes no 

collision risk during periods in which the turbines are not active. Band himself pointed 

out that this is a simplification and that in nature birds may collide with non-moving 

anthropogenic structures (BAND 2012). However, he regarded this risk to be minor and 

for simplicity it was not incorporated in the CRM. Consequently, if some carcasses 

found during the fatality searches were birds colliding with inactive turbines this would 

lead to a higher collision estimate in PCFM but not in CRM.  

Thus, there are some plausible reasons why on the one hand CRM may have underestimated the 

actual number of collision and on the other hand reasons why the PCFM methods may have over-

estimated the actual number of collisions. However, it seems likely that eliminating these potential 

sources of error would lead to further improved correspondence of estimates rather than greater 

divergence and, thus, the good accordance between the estimates of the two independent meth-

ods seems to be robust.  

Validation of Band Collision risk models 

Given the similarity in estimates of the BAND model, using the avoidance rates found in this study, 

and the PCFM method, this seems to validate the ‘inner’ part of the BAND model concerning the 

purely mathematical calculation of the ‘single transit risk’. In the BAND model the number of trans-

its is calculated from the MTR at rotor height and the FHD, and the avoidance rates. These param-

eters have been determined directly in our study by state-of-the-art technology. The single transit 

risk then depends on the birds’ size and flight speed and on turbine parameters such as rotation 

speed, blade pitch and profile, and rotor diameter. For all turbine parameters we had either accu-

rate measurements or good estimates. Bird data was taken from literature of average bird species 

during night and day separately based on the species composition found in our study. We assumed 

that variation in e.g. bird parameters would cancel out due to the large sample size involved. 

Consequently, we are confident that valid data and good approximations have been used in the 

models. Thus, any strong deviance of the estimates by the BAND model from the PCFM estimates 

would most likely have been caused by a miscalculation of the single transit risk of the BAND model 

itself. Since the correspondence between the estimates was very high, we conclude the mathemat-

ical derivation of the single transits risk seems to be realistic – at least on average.  

Furthermore, comparison of CRM outputs using different avoidance rates, e.g. earlier estimates for 

nocturnal bird migration (Schulz et al. 2014) emphasises the fact that inaccurate assumptions about 

avoidance behaviour may lead to vast overestimation of the actual collision risk. Although assuming 

an avoidance rate of 0.9802 or 0.9987 may at first sight seem negligible, it yet led to a difference of 

more than one order of magnitude in collision estimates. As mentioned above, the high consistency 

between collision estimates derived by PCFM and CRMs suggests that high avoidance rates deter-

mined in our study, particularly for nocturnal migration, are realistic and corroborates previous 

studies suggesting a relatively low collision risk of nocturnally migrating birds at wind farms. 
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Transferring our results to an offshore environment  

Generally, we found good agreement of bird migration characteristics, especially related to noctur-

nal bird movements, between our coastal study site and data available for offshore locations in the 

German EEZ and adjacent areas (KRIJGSVELD ET AL. 2009; FEBI 2013; WELCKER ET AL. 2017; BRUDERER ET 

AL. 2018; WELCKER 2019; BRADARIĆ ET AL. 2020, 2024a; BSH 2025). This included temporal patterns, 

mean MTR values and flight height distributions indicating a preference for flight movements at 

low altitude. Additionally, in line with information from offshore studies, nocturnal bird migration 

at our study site was dominated by passerines and comprised similar species as indicated by radar 

and bird call data, respectively (SCHULZ ET AL. 2013, 2014; WELCKER & VILELA 2018; BSH 2025). As ex-

pected, weather dependency of bird migration at the study site was also similar to patterns re-

ported for offshore areas (WELCKER & VILELA 2019; BRADARIĆ ET AL. 2024b). As it also seems reasonable 

to assume that nocturnal migrants respond similarly to wind turbines both on- and offshore, we 

regard results of this study relating to nocturnal bird migration to be generally transferable to off-

shore locations. Transferability may be reduced for diurnal bird movements primarily due to the 

fact that considerable differences in species composition can be expected between our coastal 

study site and offshore locations. 

Furthermore, turbine size may affect the transferability of results. Given that larger turbines en-

compass a greater risk zone and have larger blades, it may reduce the bird’s ability to avoid them. 

On the other hand, larger blades might increase the turbines visibility, counter-acting the potential 

negative effect of a greater risk zone. Also, light conditions, both background lighting and illumina-

tion of turbines, particularly at the base of the tower of offshore wind turbines, may differ between 

onshore and offshore potentially contributing to differences in bird behaviour. 

For nocturnal bird migration, one crucial difference between on- and offshore areas may reduce 

transferability of results during specific situations. While at onshore locations passerine species and 

other landbirds may interrupt migration activity and alight at any time, this is not possible offshore. 

This may particularly be important when birds face deteriorating weather conditions e.g. when ap-

proaching a bad weather front. Onshore, they may simply land, seek shelter and wait for better 

conditions. Offshore, they do not have this possibility and are forced to continue their flight. As 

shown in our study and supported by others (KEMP ET AL. 2013; BRADARIĆ ET AL. 2024a) a first response 

of most birds when facing adverse weather conditions is to decrease their flight height. Conse-

quently, during these specific circumstances when nocturnally migrating birds are forced to con-

tinue their flight activity, they may incur an increased collision risk. Although evidence for offshore 

wind farms is still lacking, increased collision risk has been reported for other offshore anthropo-

genic infrastructures (RUSSELL 2005; AUMÜLLER ET AL. 2011). Situations in which bird migration trig-

gered by favourable weather conditions early at night faces adverse weather while at sea can be 

regarded as rather rare events (LENSINK ET AL. 1999; WELCKER & VILELA 2019). Yet, when collision risk 

proves to be increased implementing mitigation measures in these circumstances may be highly 

effective. 

We recommend conducting similar studies as presented here at offshore wind farms to confirm or 

refute the transferability of the results of our study to the offshore environment. 
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Conclusions 

Applying novel AI-based camera technology, we found that rotor transits are infrequent events also 

during nights with high migration intensities. As rotor transits and, thus, the potential number of 

collisions was found to be only weakly correlated with MTR, mitigation measures such as turbine 

curtailment during time periods of increased flux rates are likely to be ineffective. 

Empirically determined avoidance rates, particularly during the night, were substantially higher 

than previously estimated. Applying these avoidance rates in stochastic Band models resulted in an 

estimated number of collision victims congruent to fatality numbers independently estimated by 

PCFM. This lends credibility to the avoidance rates determined by state-of-the-art radar and camera 

technology and suggests that Band CRMs fed with realistic avoidance rates and appropriate site-

specific turbine and bird data result in realistic collision fatality estimates. 

In agreement with earlier studies, our results support the notion that in the vast majority of situa-

tions nocturnally migrating birds effectively avoid collisions and the overall collision risk in relation 

to the total amount of birds passing a wind farm at night is very low. 

Although predicting collision risk based solely on MTR and FHD seems not possible and correspond-

ing mitigation measures are likely to prove ineffectual, additional data from offshore locations are 

needed to rule out the possibility of an increased collision risk in situations when bird migration 

meets adverse weather conditions at sea. 
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A APPENDIX 

A.1 Cameras 

Table A-1 Overview of the number of days and nights camera data was analysed for rotor transits per 
month. 

Month 
 

Day Night 

Turbine GPJoule  Turbine IterraWind  Turbine GPJoule 
 

Turbine IterraWind  

May-23 3 3 3 3 

Jul-23 3 3 3 3 

Aug-23 9 9 9 9 

Sep-23 12 12 12 12 

Oct-23 12 12 12 12 

Nov-23 12 12 23 23 

Mar-24 9 31 30 31 

Apr-24 9 27 28 28 

May-24 9 14 31 24 

Jul-24 17 3 17 17 

Aug-24 9 9 30 31 

Sep-24 9 9 24 24 

Oct-24 12 12 30 30 

Nov-24 12 12 25 23 

total 137 168 277 270 
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A.2 Transits 

 

Figure A-1 Temporal relationships among three datasets: the MTR at rotor height aggregated over 5-day 
intervals corresponding to the carcass search periods (solid blue bars); carcasses detected dur-
ing the searches (solid black vertical lines) and rotor transits recorded during turbine operation 
(rpm ≥ 2 dotted red vertical lines). 

Table A-2 Single rotor transits risk as calculated in SOSS Band model for the given two turbines and for 
day and night species represented by dove and redwing accordingly. 

Turb_Id Day Or night Single transit risk 

iTerra night 0.06117728 

iTerra day 0.07149246 

GP_Joule night 0.07728854 

GP_Joule day 0.08905901 
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Table A-3 R2 values for Bayesian models on rotor transits in relation to weather parameters. 

Model 
Bayesian R2 

Median CI 2.5 % CI 97.5 % 

night 0.041 0.012 0.114 

day 0.019 0.007 0.056 

 

Table A-4  Table gives absolute numbers of transits through the rotor for given turbine, day or night and 
operating status (i.e. y = ≥ 2 rpm, n = < 2 rpm). Last column gives the mean per hour (i.e. number 
of transits / observation effort). Results are given excluding the ’barn swallow event’ (see main 
text for more details). 

Turbine ID Day or night Operating Sum transits Mean no. transits / hour 

A2 day n 79 0.0943 

A2 day y 11 0.0072 

A2 night n 271 0.1918 

A2 night y 11 0.0086 

A4 day n 89 0.1486 

A4 day y 14 0.0106 

A4 night n 143 0.1587 

A4 night y 9 0.0050 

 

Table A-5 Overview of the total number of observation hours per turbine ID the number of transits (total 
and mean per hour), for dates on which transits were analysed. The table also includes the tur-
bines operating status (i.e. y = ≥ 2 rpm, n = < 2 rpm) and the mean MTR, all during daytime and 
nighttime. *These numbers include a single outlier event with 399 rotor transits caused by barn 
swallows on 17 September 2023. 

Turbine 
ID 

Operating N hour N rotor transits Mean N rotor transits/hour Mean MTR  

A2 n 2251 350 0.1555 179.4 

A2 y 2801 22 0.0079 143.8 

A4 n 1502 232 / (631)* 0.1547 / (0.4201)* 165.2 

A4 y 3106 23 0.0074 173.9 
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Table A-6 Overview of the total number of observation hours for each turbine separately in relation to the 
turbines operating status (i.e. y = ≥ 2 rpm, n = < 2 rpm). The non-operating/operating rotor 
transits shows the mean number of transits per hour during non-operation, relative to opera-
tional periods. A value greater than 1 indicates that transits are substantially more frequent 
when the rotor is not operating. *These numbers include the `barn swallow event’. For details 
see text in 4.1. 

Turbine ID  Operating  N 
hour 

N tran-
sits 

Mean 
MTR 
(day 
and 

night) 

Mean rotor transits/hour Non-operating/Op-
erating rotor transit 

ratio 

A4 n 1502 232 / 
(631)* 

165.5 0.1545 / (0.4201)* 20.859 / (56.733) * 

A4 y 3106 23 173.9 0.0074 

A2 n 2251 350 179.4 0.1555 19.796 

A2 y 2801 22 143.7 0.0079 

 

Table A-7 Overview of the total number of observation hours for each turbine and day and night sepa-
rately in relation to the turbines operating status (i.e. y = ≥ 2 rpm, n = < 2 rpm). The non-oper-
ating/operating rotor transits shows the mean number of transits per hour during non-opera-
tion, relative to operational periods. A value greater than 1 indicates that transits are 
substantially more frequent when the rotor is not operating. *These numbers include the `barn 
swallow event’. For details see text in 4.1. 

 

Day or 
night 

Ope-
rating 

N hour N transits Mean 
MTR (day or 

night) 

Mean rotor trans-
its/hour 

Non-operating / 
Operating rotor 

transit ratio 

A4 A2 A4 A2 A4 A2 A4 A2 A4 A2 

day n 599/ 
(601)* 

838 89 / 
(488)* 

79 224.8 221.3 0.1486 / 
(0.8120)* 

0.0953 13.977 / 
(76.384)* 

13.070 

day y 1.317 1.525 14 11 206.1 148.7 0.0106 0.0084 

night n 901 1.413 143 271 125.3 154.1 0.1587 0.2170 31.549 22.248 

night y 1.789 1.276 9 11 149.8 137.7 0.0050 0.0096 
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Figure A-2 Diagnostic plots for binomial GLM of transits ~ MTR at rotor height. Non-significant results high-
lights in the left column show that there is not deviation from expected distribution (Kolmogo-
rov-Smirnov test), no overdispersion, and no outlier present. On the right-hand side, the hori-
zontal red line indicates that there is no systematic deviation of the residuals. 

 

 

Figure A-3 Estimated effect of cloudiness on transit probability. On the y-axis is the conditional probability 
of having at least one transit within one hour. Note that in the plots below the y-scale is the 
same, so that they are more easily comparable. 
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Figure A-4 Estimated effect of crosswind on transit probability. On the y-axis is the conditional probability 
of having at least one transit within one hour. Note that in the plots below the y scale is the 
same, so that they are more easily comparable. 

 

 

Figure A-5 Estimated effect of MTR (at rotor height) on transit probability. On the y-axis is the conditional 
probability of having at least one transit within one hour. Note that in the plots below the y 
scale is the same, so that they are more easily comparable. 
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Figure A-6 Estimated effect of Precipitation on transit probability. On the y-axis is the conditional proba-
bility of having at least one transit within one hour. Note that in the plots below the y scale is 
the same, so that they are more easily comparable. 

 

 

Figure A-7 Estimated effect of atmospheric pressure on transit probability. On the y-axis is the conditional 
probability of having at least one transit within one hour. Note that in the plots below the y-
scale is the same, so that they are more easily comparable. 
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Figure A-8 Estimated effect of rotor speed (rpm) on transit probability. On the y-axis is the conditional 
probability of having at least one transit within one hour. Note that in the plots below the y-
scale is the same, so that they are more easily comparable. 

 

 

Figure A-9 Estimated effect of temperature (in C°) on transit probability. On the y axis is the conditional 
probability of having at least one transit within one hour. Note that in the plots below the y- 
scale is the same, so that they are more easily comparable. 
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Figure A-10 Estimated effect of tailwind on transit probability. On the y-axis is the conditional probability of 
having at least one transit within one hour. Note that in the plots below the y scale is the same, 
so that they are more easily comparable. 

 

 

Figure A-11 Estimated effect of visibility (m) on transit probability. On the y axis is the conditional probability 
of having at least one transit within one hour. Note that in the plots below the y-scale is the 
same, so that they are more easily comparable. 
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A.3 Calls 

Table A-8 List of species with at least 10 calls as identified by human expert. 

Species Total number of calls 

Barnacle Goose 3586 

Brant 173 

Canada Goose 11 

Common Ringed Plover 10 

Common Sandpiper 29 

Common Scoter 17 

Common Shelduck 56 

Common Snipe 486 

Dunlin 48 

Dunnock 52 

Eurasian Blackbird 66 

Eurasian Coot 13 

Eurasian Curlew 117 

Eurasian Moorhen 16 

Eurasian Oystercatcher 66 

Eurasian Skylark 36 

Eurasian Wigeon 45 

Eurasian Wren 235 

European Golden-Plover 418 

European Robin 807 

Gadwall 1926 

Gray Heron 252 

Graylag Goose 345 

Greater White-fronted Goose 2313 

Green Sandpiper 316 

Little Ringed Plover 472 

Mallard 170 

Northern Lapwing 661 

Redwing 1564 

Sedge Warbler 20 

Song Thrush 1004 

bird sp. 113 

duck sp. 112 

goose sp. 76 

shorebird sp. 22 
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Table A-9 Table of species subset used in call analyses. Names are given in common names and confidence 
level shows which minimum confidence level of the AI tools was use for filtering the data for 
that species. This list is a subset of the list in Table A-8 as not for all species a sufficient accuracy 
of the AI was reached. 

Species Confidence Level  
Barnacle Goose 0.65 

Brant 0.70 

Common Sandpiper 0.75 

Common Scoter 0.75 

Common Snipe 0.70 

Dunlin 0.65 

Dunnock 0.60 

Eurasian Blackbird 0.90 

Eurasian Curlew 0.85 

Eurasian Skylark 0.70 

Eurasian Wigeon 0.75 

European Golden-Plover 0.65 

European Robin 0.55 

Gadwall 0.45 

Gray Heron 0.65 

Graylag Goose 0.75 

Greater White-fronted Goose 0.65 

Green Sandpiper 0.75 

Little Ringed Plover 0.60 

Mallard 0.90 

Northern Lapwing 0.35 

Redwing 0.55 

Song Thrush 0.70 
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Abstract 

Twice a year, billions of passerines embark on great journeys between breeding and wintering 

grounds. Their migratory behaviour is strongly shaped by the atmospheric conditions 

encountered on route. In recent years the lower atmosphere (i.e. troposphere) - a critical habitat 

for migratory birds – has been increasingly designated as space for wind energy development, 

and as a result aerial wildlife flying in lower altitudes face the risk of fatally colliding with wind 

turbines. Understanding the atmospheric conditions under which migratory birds intensively 

use this airspace is crucial in effectively reducing human-wildlife conflicts.  

In order to evaluate the effects of weather parameters on migration traffic rates (MTR) and 

flight altitude distributions of nocturnally migrating passerines, we analysed two years of 

vertical-looking radar (BirdScan MR1) data from the German North Sea coast. Particular focus 

was given to factors influencing low-altitude flights (25–180 m), in correspondence to local 

wind turbine heights. As anticipated, our findings revealed that among meteorological variables 

wind was a key driver of passerine migration intensity, although with different seasonal 

repercussions: crosswind significantly reduced MTR during spring, while tailwind drastically 

increased MTR in autumn. Additionally, we found that warmer temperatures favoured 

migration intensity during both seasons. Regarding the mean flight height and the proportion 

of migrants within the “risk altitude” we observed no relevant differences between spring 

(304.64 m; 33.21 %) and autumn (300.72 m; 32.65 %) seasons. While we observed an overall 

preference for low-altitude flight in both seasons, spring and autumn migrants, respectively, 

were affected differently by atmospheric conditions. For the first time in this region, our 

research revealed that Δ barometric pressure, i.e. the change compared to the previous night, 

was the main predictor for the likelihood of low-altitude flight in both seasons: elevated 

pressure increased the probability of rotor-height flight in spring, whereas the opposite trend 

emerged in autumn. During spring, migrants lowered their flight altitudes under strong 

crosswinds. Contrastingly, during autumn particularly tailwinds influenced the flight height 

choice and increased wind assistance led to elevated flight heights. Overall, the migration 

intensity and flight altitudes of nocturnally migrating passerines in response to environmental 

conditions seem to reflect a compromise between multiple season-specific adaptive pressures. 

Our findings enable a more detailed understanding of passerine migration at the German North 

Sea coast and help to better assess the factors influencing low-altitude flight, providing valuable 

insight for future conservation efforts regarding wind turbine curtailment strategies aiming to 

reduce the collision risk of birds.  
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Zusammenfassung 

Jedes Jahr unternehmen Millionen von Singvögeln (Passeriformes) weite Wanderungen 

zwischen ihren Brut- und Überwinterungsgebieten, wobei ihr Zugverhalten maßgeblich von 

atmosphärischen Bedingungen beeinflusst wird. Der bodennahe Teil der Troposphäre, der ein 

wichtiges Habitat für Zugvögel darstellt, wird im Zuge der Energiewende zunehmend für die 

Windenergienutzung erschlossen, wobei Windenergieanlagen ein Kollisionsrisiko für Zugvögel 

darstellen. Um Mensch-Wildtier-Konflikte zu minimieren, ist ein umfassendes Verständnis der 

lokalen atmosphärischen Bedingungen, unter welchen Zugvögel diesen Luftraum vermehrt 

nutzen von zentraler Bedeutung. Zur Untersuchung der Einflüsse meteorologischer Parameter 

auf das nächtliche Zugaufkommen (Migration Traffic Rate, MTR) sowie auf die Verteilung der 

Flughöhen nächtlich ziehender Singvögel wurden zwei Jahre vertikaler Radarmessungen 

(BirdScan MR1) an der deutschen Nordseeküste analysiert. Dabei lag ein besonderer Fokus auf 

den Wetterparametern, die Flüge in „Risikohöhe“ (25–180 m) beeinflussten. Unter den 

meteorologischen Variablen erwies sich der Wind wie erwartet als ein zentraler Treiber der 

Zugintensität, wobei sich saisonal unterschiedliche Effekte zeigten: im Frühjahr wurde das 

Zugaufkommen signifikant von Seitenwind reduziert, wohingegen Rückenwind im Herbst zu 

einem deutlichen Anstieg der MTR führte. Zudem begünstigten höhere Temperaturen die 

Zugintensität in beiden Jahreszeiten.  

Bezüglich der mittleren Flughöhe sowie des Anteils ziehender Vögel innerhalb der 

„Risikohöhe“ zeigten sich keine signifikanten Unterschiede zwischen Frühjahr (304,64 m; 

33,21 %) und Herbst (300,72 m; 32,65 %). In beiden Zugperioden wurde eine allgemeine 

Präferenz für Flüge in niedrigeren Höhen festgestellt, der Einfluss atmosphärischer 

Bedingungen auf die Flughöhenwahl variierte jedoch zwischen dem Frühjahrs- und Herbstzug. 

Erstmals konnte für diese Region gezeigt werden, dass die Veränderung des Luftdrucks im 

Vergleich zur vorherigen Nacht (Δ Luftdruck) einen maßgeblichen Einfluss auf die Flughöhe 

der Zugvögel hatte: Im Frühjahr erhöhte ein ansteigender Luftdruck die Wahrscheinlichkeit für 

Flüge in kritischer Höhe, während im Herbst ein gegenteiliger Zusammenhang bestand. 

Während im Frühling die Singvögel ihre Flughöhe zusätzlich unter starkem Seitenwind 

reduzierten, beeinflusste im Herbst insbesondere Rückenwind die Flughöhenwahl: Eine 

stärkere Windunterstützung ging hier mit höheren Fluglagen einher. Unsere Ergebnisse liefern 

wertvolle Hinweise auf saisonal unterschiedliche Verhaltensanpassungen nächtlich ziehender 

Singvögel an die vorherrschenden Wetterbedingungen. Zudem tragen die Ergebnisse zu einem 

vertieften Verständnis der Zugstrategien von Singvögeln an der deutschen Nordseeküste bei 
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und unterstreichen die Notwendigkeit, saisonale Unterschiede bei der Umsetzung von 

Umweltschutzstrategien in Bezug auf Windkraftanlagen zu berücksichtigen. 
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Introduction 

Twice a year, billions of birds (e.g. Hahn et al. 2009, Van Doren & Horton 2018, Nussbaumer 

et al. 2021) migrate vast distances between breeding and wintering sites, passing through 

landscapes and airspaces increasingly transformed by human activities. These biannual 

journeys typically follow a north-south axis, with most migratory birds spending the non-

breeding period in lower latitudes compared to their breeding season (Newton 2023, p. 2). This 

large-scale seasonal movement allows birds to exploit geographically distinct regions that offer 

optimal ecological conditions - such as abundant food resources, favourable climate and 

reduced predation pressure - at different times of the year, thereby maximising both survival 

and reproductive success (Newton 2008). Governed by atmospheric conditions, particularly 

wind (e.g. Shamoun-Baranes et al. 2017, Manola et al. 2020), through natural selection over 

generations of migratory birds optimal migratory routes have evolved (Kranstauber et al. 2015). 

These well-established pathways used by migratory avian species throughout their annual cycle 

are termed “flyways” (Kirby et al. 2008, Hahn et al. 2009, BirdLife International 2010, last 

viewed 25.05.2025). One of the most prominent flyways, the East Atlantic Flyway (BirdLife 

International 2010, last viewed 25.05.2025), extends from Canada and central Siberia to 

wintering grounds in Western Europe and West Africa. The German North Sea basin and its 

coast lie within the East Atlantic Flyway and serve as key migratory corridors for many avian 

species (e.g. Hahn et al. 2009, Hüppop et al. 2016). Of the nocturnally migrating birds, 

passerines (Order: Passeriformes, Linnaeus 1758), in particular thrushes (Turdus spp., see 

Hüppop et al. 2016), account for up to 95% of the nocturnally migrating birds in Northern 

Germany (Hahn et al. 2009). As large bodies of water constitute a geographical barrier 

particularly for long-distance migrants (Åkesson & Sandberg 1999), near-shore habitats serve 

as important stopover sites to rest and refuel, before or after crossing barriers (Newton 2008) 

such as the North Sea basin. Due to the rapid expansion of wind energy infrastructure both on- 

and offshore (Global Offshore Renewables Map, last viewed 13.03.25), this barrier effect has 

become more severe in recent years. While wind farms are widely regarded as one of the most 

promising strategies to meet Europe’s decarbonisation targets (European Commission 2020), 

they also pose significant threats to aerial wildlife through collision risk, habitat alteration and 

displacement effects (e.g. Drewit 2006, Hüppop et al. 2006, Drewitt & Langston 2008, Perold 

et al. 2020, Lloyd et al. 2023). Although estimates of fatal avian collisions with wind turbines 

vary greatly (e.g. Drewitt 2006, Erickson et al. 2014, Thaxter et al. 2017, Allison et al. 2019, 

Welcker & Vilela 2019), volant animals such as bats and birds are at risk (e.g. Schuster et al. 

https://datazone.birdlife.org/articles/the-flyways-concept-can-help-coordinate-global-efforts-to-conserve-migratory-birds
https://datazone.birdlife.org/articles/the-flyways-concept-can-help-coordinate-global-efforts-to-conserve-migratory-birds
https://datazone.birdlife.org/articles/the-flyways-concept-can-help-coordinate-global-efforts-to-conserve-migratory-birds
https://map.4coffshore.com/offshorewind/?_gl=1*l46qsd*_up*MQ..*_ga*MTk4MjUxNzMyOS4xNzQxODc0NzQx*_ga_9K4V7NGMFS*MTc0MTg3NDc0MS4xLjAuMTc0MTg3NDc0MS4wLjAuMTM0NzE3MDE1NA..
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2015, Lloyd et al. 2023) and these effects are expected to become even more pronounced in the 

future with continued wind farm development. 

Bird migration is a highly dynamic phenomenon, with nightly and seasonal variations in 

migration intensity and flight altitude, which are strongly influenced by atmospheric conditions 

(Lack 1960, Able 1970, Richardson 1990, Alerstam 2011, Bruderer et al. 2018, Newton 2023). 

Variations in weather conditions can significantly affect the energetic cost of flight and, 

consequently, migratory success (Newton 2008). Wind has been consistently identified as the 

dominant factor shaping nocturnal migratory behaviour, with supportive tailwinds facilitating 

long-distance flights and adverse headwinds often leading to delayed departures or overall 

reduced migratory activity (e.g. Richardson 1990, Liechti 2006, Alerstam 2011, Horton et al. 

2016a). Furthermore, migratory birds have been observed to actively select altitudes that 

minimize energetic costs and maximize directional efficiency (Horton et al. 2016a, Newton 

2023). Within the stratified layers of the troposphere, altitude choice is guided by varying 

atmospheric conditions, including wind regimes, temperature gradients, and oxygen availability 

(Bruderer et al. 2018, Rohli et al. 2024). Thus, birds must navigate a series of trade-offs, as 

elevating the flight height is associated with greater energetic costs (Newton 2023) yet may 

facilitate more efficient overall migration if atmospheric conditions further up offer stronger 

support. In mid-latitudes such as Northern Europe, prevailing westerly winds (i.e. winds coming 

from the west, Rohli et al. 2024) - which typically strengthen with altitude (Pennycuick 2008) 

- can hinder southwest-oriented autumn migration. Consequently, nocturnal avian migration 

has been observed to occur at lower altitudes in autumn than in spring to avoid energetically 

expensive westerly winds in higher altitudes (North Sea: Welcker & Vilela 2019, Bradarić et al. 

2024, Netherlands: Kemp et al. 2013, Review: Bruderer et al. 2018). Radar studies in the 

Netherlands (Dokter et al. 2013, Kemp et al. 2013) and over the North Sea (Bradarić et al. 2024) 

demonstrated that birds chose altitudes with increased tailwind support in both migration 

seasons but only elevated to altitudes where they first encounter supportive winds (Kemp et al. 

2013). Furthermore, temperature plays an important role, with birds showing a preference for 

elevated heights under increased temperature when migrating over land (e.g. Kemp et al. 2013) 

and generally decreasing flight altitude under lower air temperature (Shamoun-Baranes et al. 

2006, Galtbalt et al. 2021). Additionally, migrants tend to fly lower under overcast and rainy 

conditions (e.g. Bruderer et al. 2018, Newton 2023) but have also been observed to elevate their 

flight height, cruising above cloud layers (Eastwood 1967, Newton 2023).  

While inclining barometric pressure - usually associated with moderate winds, clear skies and 

no precipitation - has been shown to increase migration intensities (Richardson 1990, Welcker 
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& Vilela 2019), not a lot is known regarding its impact on the flight height choice of birds. In 

general, the relationship between nocturnal migratory behaviour and weather conditions, at 

times with focus on collision risk with wind turbines (e.g. Bradarić et al. 2024), is well studied 

over the North Sea using weather or marine radars (e.g. Eastwood 1967, Lack 1960, Hüppop et 

al. 2006, Fijn et al. 2015, Welcker & Vilela 2019). However, due to the technical limitations of 

conventional radar systems, there remains a knowledge gap concerning the specific 

(meteorological) factors that influence the flight behaviour of passerines within rotor-swept 

altitudes - an airspace particularly relevant for assessing collision risk with wind turbines. As 

weather conditions in coastal landscapes are shaped by complex interactions between land and 

sea masses, birds are faced with different migratory decisions over inland, coastal or offshore 

regions (Åkesson 1993, Bruderer & Liechti 1998). Thus, it remains unclear to what extent 

offshore findings apply to nearshore and coastal regions. Therefore, in order to effectively 

implement locally adapted conservation strategies - such as curtailment of turbine operations 

during high-risk periods - it is pivotal to understand local patterns of bird’s migration and the 

environmental factors influencing those patterns. Crucially, seeing as the atmosphere is a 

vertically stratified system the meteorological conditions driving overall migration intensity 

may differ from those affecting flight altitude selection (Newton 2008). Consequently, 

migration intensity and the vertical distribution of migrants must be treated as distinct, albeit 

interrelated, responses to weather conditions. Disentangling these patterns is essential to 

determine under which conditions the risk of turbine collision is highest for passerines in coastal 

Northern Germany.  

To address this knowledge gap, our approach distinguishes between two key components of 

migration dynamics: (a) the overall intensity of migration, measured as migration traffic rates 

(MTR), and (b) the vertical distribution of migrants, with a particular focus on low-altitude 

flights (≤ 180 m), corresponding to the rotor heights of local wind turbines. We hypothesize 

that low-altitude flight increases under unfavourable weather conditions - such as crosswinds, 

cloud cover, and low temperatures - potentially reflecting a strategy to remain prepared for 

landing if conditions deteriorate or to avoid even worse conditions at greater heights (Newton 

2008). Furthermore, we anticipate that seasonal differences in selective pressures will modulate 

the effects of weather on flight behaviour. Specifically, we expect that the pressure for early 

arrival and territory establishment in spring (Kokko et al. 1999) may promote riskier flights 

under less favourable conditions. Whereas in autumn, at least two aspects may lead to a different 

pattern: i) the presence of inexperienced juvenile migrants may lead to more conservative flight 

strategies, favouring lower altitudes when conditions are suboptimal and ii) early arrival in 
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wintering grounds is probably less important as there is less competition for the best nesting 

site and consequently the birds can afford to wait for more favourable weather conditions en 

route. Our study specifically aims to answer the following research questions: i) Which 

meteorological variables primarily influence nocturnal migration traffic rates? ii) How do these 

variables influence the fraction of low-altitude migration across four migratory seasons? To 

address these questions, we analysed two years of vertical-looking radar data collected in the 

coastal town Husum, northern Germany, using a BirdScan MR1 system (manufacturer: Swiss 

Birdradar Solution AG, Winterthur, Switzerland) capable of quantifying nocturnal flight 

activity and altitude distributions. Its valuable ability to distinguish between broader avian 

groups based on wingbeat signatures allows us to specifically investigate passerines - the 

dominant group of nocturnal migrants over northern Germany - and to draw ecologically 

meaningful conclusions regarding their flight behaviour and collision risk in response to 

weather conditions. 

Materials and methods 

This study evaluates the influence of weather variables, time of year and proportion of night on 

the nocturnal passerine migration density with particular focus on the vertical profile of bird 

densities. The overarching goal is twofold: a) describe the nocturnal migration pattern and its 

weather dependency at a near shore location in north Germany and b) to investigate the 

conditions influencing the likelihood of nocturnally migrating passerines flying at risk hight, 

i.e. at rotor hight of wind turbines. This study constitutes a part of the “VolZug” project studied 

by BioConsult SH GmbH & Co. KG (Husum, Germany), commissioned by the “Bundverband 

Windenergie Offshore e.V.” (BWO).  

Radar data 

Radar data were collected using a frequency modulated continuous-wave radar (FMCW) 

(BirdScan MR1, manufacturer: Swiss Birdradar Solution AG, Winterthur, Switzerland) which 

was positioned on the Windtestfeld-Nord GmbH (last visited 21.03.2025) in the Südermarsch 

in close vicinity to Husum, Germany (54.4572°, 9.0408°). The operating period of the radar 

spans over two entire years (4 migration periods), from the 23.02.2023 to 03.12.2024. The 

BirdScan radar is able to automatically discern between basic classification groups of aerial 

fauna such as birds, bats and insects as well as non-biological objects (e.g. drones) (BirdScan 

MR1, last viewed 21.01.2025). Bird echoes are further subdivided into passerine, wader and 

swift types and large birds by the characteristics of their wing-flapping pattern. This study only 

https://www.windtestfeld-nord.de/de/
https://swiss-birdradar.com/systems/radar-birdscan-mr1/
https://swiss-birdradar.com/systems/radar-birdscan-mr1/
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focusses on passerine migration; other types of aerial fauna were therefore omitted from further 

analyses. A passerine-type bird is detected by the radar due to the flap-bounding type of flight 

(Fig. 1), consisting of short bursts of wing beating and short pauses in between where the wings 

are pulled towards the body (e.g. Brown 1963). When working with radar data, a long-standing 

challenge for ornithologists has been identifying and removing contamination of radar data by 

e.g. precipitation and anomalous propagation (e.g. Dokter et al. 2011, Van Doren & Horton 

2018, Nussbaumer et al. 2021). Fortunately, for this study elimination of contaminated radar 

data had been done beforehand by the manufacturer, Swiss Birdradar Solution AG.  

The number of birds aloft is commonly quantified using the migration traffic rate (MTR). MTR 

is defined as the number of birds that cross a theoretical 1 km transect perpendicular to the 

direction of movement during one hour (Swiss-Birdradar, last visited 29.01.2025). Radar data 

obtained by the BirdScan and used for this study includes hourly MTR (birds km−1 h−1) as well 

as the vertical profile of bird density. Due to technical implications, the radar is unable to 

accurately detect echoes within the first 25 m a.g.l. Migration intensity was measured within 

altitude intervals (“bins”) of 50 m (i.e. 25 - 75 m, 75 – 125 m etc.), ranging from 25 m a.g.l. to 

1025 m a.g.l. For the analysis of the proportion of MTR at risk height, we used radar data 

between 25 - 180 m a.g.l. (altitude bin size of 155 m, average altitude per chunk 102.5 m). The 

upper altitude limit was set at 180 m, corresponding to the height of the upper rotor tip of 

turbines at a wind farm near the radar location. MTR signals between 25 and 180 meters were 

therefore considered to be within the 'at-risk' flight height range. As we only used nightly radar 

data for our analysis, the day/night classification was adopted from the SwissRadar dataset, 

where the “civil twilight” (i.e. when the sun is 6 ° below the horizon) was used as the border 

between day and night. 

Descriptive analyses of MTR and FHD 

All data analyses were conducted using R version 4.4.2 (R Core Team, 2024). To investigate 

temporal patterns in the migratory behaviour of passerines passing through Husum, differences 

in migration traffic rate (MTR) and flight height distribution (FHD) between spring and autumn 

were analysed and visualised using the “ggplot2” package (v. 3.5.1; Wickham, 2016). 

Figure 1: Micro-doppler signature 

of a passerine-type bird, as 

detected by the BirdScan radar 

(With thanks to FaunaScan MR2 

for permission to use this image, 

last visited 21.01.2025) 

https://swiss-birdradar.com/measuring-bird-migration/
https://swiss-birdradar.com/faunascan-mr2/
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Nocturnal variation in migration intensity was explored using violin plots (Fig. 3), while 

heatmaps (Fig. 5) were generated to illustrate that nocturnal migration intensity varies 

simultaneously with time of night and flight altitude. 

Meteorological data 

For “windrose” plots of combined directional and wind speed data, the package “clifro” (v. 

3.2.5; Seers & Shears 2015) was used (Appendix, Fig S1 – S3). To combine multiple plots in 

one figure, package “patchwork” (v. 1.3.0; Pedersen 2024) was applied. 

Meteorological parameters were measured on the Windtestfeld-Nord GmbH (Husum, 

Germany) by a weather station run by Pavana GmbH (Husum, Germany). Unfortunately, 

meteorological measurements were discontinued from August 2024 onwards and are therefore 

not available for the entirety of the studied period. To have comparable weather measurements 

for the regression analyses of all four migratory seasons studied, publicly available local hourly 

meteorological data of the German Meteorological Service (Deutscher Wetterdienst, DWD) 

were used (downloaded from opendata.dwd.de, last visited on 07.01.2025). Based on literature 

review of previous nocturnal (passerine) migration studies, eight weather parameters were 

downloaded and used for the analyses (listed in Table 2). Weather data was initially loaded into 

R Studio, faulty data was removed, and the time format was adjusted to YMD-HMS to facilitate 

merging of radar and weather data at a later stage.  

The DWD station geographically closest to the study area is located in Hattstedt (54.527°, 

9.043°; 9 km distance to study area), however not all relevant parameters are recorded at that 

station. Consequently, the data of a total of five meteorological stations nearest to the study area 

were used as described below. Details regarding the different meteorological stations used are 

summarised in Table 1. Cloud coverage was recorded in oktas, ranging from 0 (completely clear 

sky) to 8 (full overcast). 

Pearson correlations 

Using the R package „correlation“ (v. 0.8.5; Makowski et al. 2022), Pearson correlations 

between Pavana GmbH weather data and data from the local DWD stations were performed. 

The goal was to individually assess the best substitute for local weather parameters which were 

not measured at the turbines themselves. Additionally, the average between different DWD 

stations for each parameter was used for the correlation analysis. However, some for this study 

relevant parameters were not measured by Pavana GmbH (relative humidity, cloudiness, 

visibility) and thus no Pearson correlation could be performed to find the best single substitute 

DWD station. Consequently, we decided on using the respective DWD mean for relative 

humidity, cloudiness and visibility (Tab. 2).  

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
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To avoid multicollinearity and ensure stable regression estimates in the subsequent analyses, 

the correlation between explanatory variables was examined. Variables with a correlation 

coefficient r ≥ 0.7 were considered highly correlated. In such cases, one of the correlated 

variables was excluded from further analysis to prevent potential issues with model instability 

(O’Brien 2007). Relative humidity and visibility were the only parameters correlating with a r 

> 0.7. As we were interested in a possible association between visibility and migratory 

behaviour of passerines, relative humidity was henceforth omitted from further analysis (Tab. 

2). 

 

Table 1: Summary of DWD stations used for collection of meteorological data.  

Name of town DWD Station ID Altitude a.s.l. (m) Coordinates 

Hattstedt 7298 4  54.527, 9.043 

Erfde 1266 18 54.299, 9.316 

Leck 2907 7 54.7903, 8.9514 

Sankt Peter-Ording (SPO) 4393 5 54.3279, 8.6031 

Schleswig 4466 47 54.528, 9.549 

 

 

Table 2: Meteorological parameters used for the regression analyses and their DWD sources. Where available, R2 

coefficients of Pearson correlations with local turbine weather data are depicted as well.  

 

Wind data analysis 

Wind is among the main environmental factors governing migration intensity and flight height 

distribution of passerines, where supporting tailwind increases and strong cross- or sidewinds 

hinder migration. Calculating the flow-assistance a bird encounters during migration, offers a 

commonly applied method (e.g. Kemp et al. 2012, Nilsson et al. 2019, Schekler et al. 2024) to 

simplify the complex effects of the two flow components (i.e. its speed and direction) into a 

Parameters Unit Meteorological stations used R2 

Precipitation mm Mean of Hattstedt, Erfde, Leck, Schleswig, SPO 0.71 

Temperature °C Mean of Hattstedt, Erfde, Leck, Schleswig, SPO 0.99 

Wind speed m/s Mean of Leck, Schleswig, SPO 0.95 

Wind direction ° Mean of Leck, Schleswig, SPO 0.90 

Barometric pressure hPa Mean of Leck, Schleswig, SPO 0.99 

Cloudiness oktas Mean of Leck, Schleswig, SPO NA 

Visibility m Mean of Leck, Schleswig, SPO NA 
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single variable (Kemp et al. 2012). This allows quantitative comparisons between flow-

conditions. When assessing the potential influence of wind-assistance on migratory birds, two 

repeatedly discussed flow components are the tailwinds (TWC (m/s)) along a preferred 

migration direction and the crosswinds (CWC (m/s)) perpendicular to the preferred migration 

direction. Here the TWC and CWC were calculated following Kemp et al. (2012), Nilsson et 

al. (2019) and Schekler et al. (2024): 

TWC = s * cos(αwind – αmigration) 

CWC = s * sin(αwind – αmigration)  

Where s = wind speed (m/s), αwind = wind direction (rad) and αmigration = flight direction (rad). 

This equation implicitly assumes that wind blowing in the direction of the mean track direction 

is beneficial (Liechti 2006, Chapman et al. 2011, 2016, Kemp et al. 2012). Positive TWC values 

correspond to supportive winds (tailwind), negative TWC values correspond to headwinds. For 

this study only absolute CWC values were used, disregarding the direction of which the side 

wind blew from. Hence, high CWC values correspond to increased side wind (from either left 

or right in relation to flight direction) compared to low CWC values. Wind direction was 

provided in degrees (°) and was defined as the direction the wind is blowing from. The birds 

flight direction (i.e. direction migrants are flying from) was derived from the radar echoes for 

the spring and autumn migration periods respectively, and was defined as: 

Spring:  αmigration = 220° = 3.840 rad 

Autumn:  αmigration = 30°   = 0.524 rad 

All directional wind data was converted from degrees to radians (multiplied by π/180), for 

further trigonometric calculations.  

Preprocessing of explanatory variables 

Scaling and centering 

Prior to modelling, weather variables were scaled and centered. To allow for simplified 

interpretation and comparison of the estimated coefficients in terms of effect size on the 

response variable, all variables were scaled by dividing the given original variable by its 

standard deviation. This results in variables with a standard deviation of one. An exception was 

made for atmospheric pressure, which was additionally centered prior to scaling by subtracting 

the mean value from each observation. As a result, the zero value of the centered variable 

corresponds to the mean of the original variable. Since pressure is the only variable where the 

value 0 (hPa) is not biologically meaningful, centering the variable allows for a clear 
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interpretation of the models’ intercept. This approach allows for a direct comparison of the 

estimated effect sizes of explanatory variables, enabling us to determine which variables affect 

the response variable the strongest. 

Delta (Δ) variables  

Changes in weather conditions compared to the previous day have been shown to impact MTR 

(Newton 2008, Nilsson et al. 2019, Benjumea et al. 2024, but see Schekler et al. 2024). Thus, 

the relative change to the proceeding night was calculated for precipitation, pressure, 

temperature and both the tailwind and crosswind component (TWC, CWC). To allow for 

meaningful Δ variables and to ensure that the changes in weather conditions were represented 

consistently across all variables, the Δ variables were calculated after scaling and centering. 

Seasonal data 

In line with the methodology employed in several other studies and considering the unique 

characteristics of the two migration seasons - such as bird composition, timing, migration 

routes, and meteorological conditions - we performed separate analyses for the spring and 

autumn datasets. To directly compare the effect sizes of explanatory variables between seasons, 

the dataset was split into migratory seasons post-scaling and -centering. Date and length of 

seasons was defined according to the initial radar (MTR) data structure and beginning and end 

of migratory seasons were matched to the respective local initiation of migration by the 

passerines. Spring for both study years was defined as a time frame from 10th of March to 31st 

of May. For autumn the time frame was set from 15th July to 30th November.  

Final explanatory variables 

The meteorological parameters chosen as explanatory variables for the regression analyses were 

precipitation, Δ precipitation, pressure, Δ pressure, air temperature, Δ air temperature, 

cloudiness, visibility, TWC, Δ TWC, CWC and Δ CWC. In addition to the atmospheric 

parameters, three variables accounting for temporal patterns in migration intensity were 

included in the analyses. To capture phenological patterns within the four migration periods 

studied, the “lubridate” package (v. 1.9.3; Grolemund & Wickham 2011) was used to calculate 

fractionised Julian date (“ydate”). The study year (“year”) was used as an additional temporal 

variable to account for interannual variations. Migration intensities are known to systematically 

vary throughout the course of the night (e.g. Newton 2008). To account for circadian MTR 

patterns, a “proportion of the night” variable was calculated for each hourly observation. 

Eventually, the radar data and pre-processed meteorological data were combined. The final 
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dataset used for regression analyses only included nightly data, predefined by Swiss Birdradar 

Solution AG as the time between sunset and sunrise (UTC +1, summer: UTC + 2).  

Regression analyses 

As the relationship between the predictors and the response variables was assumed to be non-

linear, generalised additive models (GAMs) were chosen to estimate the impact of weather 

variables on the MTR and the fraction of passerines flying at risk height. GAMs offer a high 

degree of flexibility in modelling such non-linear relationships, while also providing a 

straightforward and interpretable representation of the effects of individual variables (Wood 

2017). Compared to traditional linear models, GAMs are better suited to capture and visualize 

complex non-linear patterns within the data.  

Model fitting  

Bayesian models were fitted using the “brms” package (v. 2.22.0; Bürkner 2017). The GAMs 

were separately constructed for two response variables, to determine the effects of temporal, 

phenological and meteorological explanatory parameter on: 

(i) the nocturnal MTR throughout the migratory seasons up to 1025 m 

(ii) MTR at risk zone: the proportion of MTR occurring within the height of the 

wind turbines, i.e. the “risk zone” (defined here as 25 – 180 m a.g.l). 

Both GAMs were fitted for the two migratory seasons, separately. Thus, a total of four GAMs 

were constructed, each with a total of 15 parameters chosen as explanatory variables. For 

models with total MTR as response variable, a negative binomial distribution family with a log 

link function was employed to account for heterogenous and over-dispersed count data (as an 

alternative to a Poisson distribution). The negative binomial distribution was chosen due to its 

flexibility in modelling count data with no upper bound and with greater variance than mean, 

which is a common characteristic of ecological data (Lindén & Mäntyniemi 2011). To allow for 

the overdispersion parameter of the negative binomial distribution to vary with date, a “shape” 

function for the smoothed effect of “ydate” was added to the model. 

Models with the proportion of MTR at risk height as response variable were treated as a beta 

binomial distribution family with a logit link function. Beta-binomial distributions are typically 

used to model over-dispersed count data with an upper bound, where the variance exceeds the 

mean, making them ideal for situations with variability in proportions as are measured in this 

study. As was done with the negative binomial model, a “phi” parameter for the effect of “ydate” 

was added to the beta-binomial models, to allow for the overdispersion parameter to vary with 

date, resulting in more accurate predictive abilities. Both types of models were also fit with 

smoothing splines for the temporal effects such as Julian date and proportion of night. 
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Smoothing splines are often used in regression analyses to capture non-linear trends and 

patterns in time-series data without overfitting the models to the data. With the large amount of 

data used in this study, priors have a neglectable influence on the posterior distribution of the 

model output. Thus, the default priors of the “brms” package were used instead of individually 

defining priors for each explanatory variable. For the final run of models, a total of 4 chains 

with 5000 iterations (including 2500 warm-up iterations) was specified. The models fitted for 

this study, use a stochastic sampling process known as Markov-Chain-Monte-Carlo (MCMC) 

for the estimation of posterior probability distributions. To facilitate convergence of chains and 

reduce faulty so-called divergent transitions, for all four GAMs values “adapt_delta” and 

“max_treedepth” were increased to 0.95 and 15, respectively.   

Model validation 

To assess the quality of alternative models and to compare predictive abilities of different 

models for the same seasons the so-called “leave-one-out” (LOO) cross-validation approach 

was employed using the package “loo” (v. 2.8.0; Vehtari 2024). Compared models only differed 

in k-values used for the smoothing splines of “ydate” and “ProportionOfNight”. The set of 

explanatory variables were the same for all alternative models. The model with the best 

predictive abilities for the respective data base, was chosen based on the differences in expected 

log predictive density (ELPD) and the corresponding standard error. According to the authors 

of the package, if the difference in ELPD values exceeds four-times (or larger) the size of its 

estimated standard error, that implies a relevant difference in predictive abilities between tested 

models (Sivula et al. 2020). Based on the LOO evaluation, a total of four models were picked. 

One model per migratory season for the general relationship between weather parameters and 

migration intensity (MTR), and one model per migratory season for the weather-dependency of 

birds flying at low altitudes, i.e. in the risk height. To prevent overfitting the models to the data 

and putting a disproportionate amount of weight on date as an explanatory variable, the lowest 

k-values for the smoothing parameters of date were chosen, which did not result in significantly 

worse predictive abilities of the models according to LOO. For models with total MTR as 

response variable, for the smoothed effect of date k = 30 was used for both seasons. K-values 

for proportion of night differed among seasons, for spring k = 5 and for autumn k = 7 was used. 

K = 10 resulted in the best fit for the “shape” function of the negative binomial models for both 

seasons. For the risk zone models, i.e. beta binomial models, k = 10 was used for the smoothed 

effect of date for both seasons. Again, k-values for proportion of night differed among seasons, 

for spring k = 5 and for autumn k = 7 was used. K-values for the “phi” function also varied 

between seasons: k = 10 (spring) and k = 5 (autumn).  
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Additionally, posterior predictive checks (PPCs) were conducted to compare model fits. PPCs 

are a commonly applied method to evaluate the model's predictive accuracy and identify 

potential misspecifications, by comparing simulated (bird count) data from the posterior 

predictive distribution to the observed data. PPCs for all four models are attached in the 

appendix (Fig. S5 & S6). 

Model output interpretation 

Model outputs were visualised using the “bayesplot” package (v. 1.11.1; Gabry 2024) and 

“posterior” package (v. 1.6.0; Bürkner et al. 2024). The function “mcmc_intervals” was 

exploited to plot central posterior uncertainty interval (i.e. credible intervals, CI) estimates from 

MCMC draws. These MCMC intervals (Fig. 6 & 10) were computed to summarize the sizes 

and directions of the effects of the explanatory variables on the respective response variable. 

For the "year" categorical variable, year 2023 was used as the intercept in the models and thus 

the MCMC analyses estimated the effect of year 2024 relative to year 2023 (Fig. 6 & 10). To 

quantify the (conditional) effect of different explanatory variables on the focal response 

variable, the amplitude of fold-change on the expected passerine count was calculated for each 

model output, using the function “posterior_epred” (Fig. 8 & 9). The “expected” bird count 

refers to the expected value of the posterior predictive distributions when drawing samples from 

the predicted negative binomial responses. These predictions of expected bird counts are based 

on the respective explanatory variable of interest and are conditional on the mean values for the 

other explanatory variables. To avoid outlier influence, extreme values were removed by only 

keeping the central 95 % interval. The fold-changes are then calculated as the ratio between the 

maximum and minimum mean value of the predicted response. Fold-changes thus indicate the 

maximum effect size a focal variable, or the combination of several variables, exerts on the 

response variable on an average day (i.e. middle of the season, middle of the night, mean 

weather values). Consequently, the fold-changes allow to make quantitative statements such as 

“tailwind can lead up to a 7-fold increase in MTR on an average day in autumn”.  

Fold-changes were also calculated for the risk zone models but seeing as the probability of a 

bird flying in the risk zone rather than count data was modelled as the response variable, fold-

changes were calculated for change of the odd-ratios of the probability of flying low. (If the 

probability of being in the risk zone is p, then the odd-ratios are calculated by p/1 – p.). Thus, 

fold-changes for the risk zone models imply magnitude of fold-changes of the odds-ratios of 

flying in the risk zone on an average day (Fig. 12 & 13). The corresponding effect on p will 

depend on the values of all the other explanatory variables. Fold-change calculations were 
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performed for each MCMC iteration, resulting in a full posterior distribution of the magnitude 

of fold-change for each explanatory variable. 

The function “conditional_effects” was used to display the conditional effects of relevant 

predictors on the response variables, as well as for the smoothed effects of “ydate” and 

“proportion of night”. The conditional effect plots will draw the predicted response when the 

focal variable varies, while keeping the other variables fixed at their mean values. Thus, they 

allow to visualize the shape of the effect of a focal variable. By default, the mean was used for 

the continuous weather variables, and the reference category was used for factor variables such 

as “year”. Again, the year 2023 was used as the reference for conditional effects. Conditional 

plots were created for the smoothed effects of date and proportion of night variables (Fig. 7 & 

11), as well as the top three most influential explanatory variables per model which are attached 

in the appendix (Fig. S7 & S8). The magnitude of fold-change gives similar information, but 

only considering the “expected” response and after having removed extreme outliers (here 

"expected" is used in the statistical meaning of "average").  

Results 

Meteorological data 

According to the Köppen-Geiger climate classification system, the study area in Husum, 

Northern Germany, has a Cfb climate type (Köppen & Geiger 1968/Beck et al. 2023). This 

temperate (maritime) climate is characterised by mild winters and cool summers. 

Table 3 summarizes the mean and standard deviation values for all meteorological explanatory 

variables used autumn and spring data for the two studied years are combined respectively. 

Hourly mean precipitation was 0.11 ± 0.35 mm in spring and 0.16 ± 0.51 mm in autumn (Tab. 

3). Air temperature was slightly lower during spring (7.48 ± 3.85 °C) than autumn (10.92 ± 5.05 

°C). Similarly, cloud coverage was slightly lower in spring (5.97 ± 2.78 oktas) compared to 

autumn (6.08 ± 2.54 oktas). Barometric pressure only displayed minor differences across 

seasons: 1010.01 ± 10.42 hPa (spring) and 1009.56 ± 11.48 hPa (autumn). Average hourly 

visibility was 29171.23 ± 16737.76 m (spring) and 28048.42 ± 15321.17 m (autumn) (Tab. 3). 

Windrose-figures S1 – S3 (appendix) provide an overview of the atmospheric wind conditions 

in spring and autumn, respectively. These figures depict both wind speed and direction. In both 

season, winds blew predominantly from the south and south-south-west respectively (spring: 

179.27 ± 87.77 °, autumn: 192.92 ± 75.28, Tab. 3). Average wind speed was 4.18 ± 1.93 m/s 

(spring) and 3.88 ± 2.04 m/s (autumn) (Tab. 3). In summary, wind conditions were generally 

more supportive of the north-easterly movement of spring migration than the south-westerly 
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movement of autumn migration. Contrastingly, tail- and crosswind conditions (i.e. combination 

of directional wind and wind speed) were slightly more favourable for autumn migrants (Tab. 

3). During spring, mean hourly TWC was -0.14 ± 3.41 m/s, mean CWC was 2.55 ± 1.77 m/s. 

In autumn, mean TWC was 0.03 ± 3.06 m/s, mean CWC was 2.50 ± 1.91 m/s. For additional 

information regarding the underlying meteorological data used for this study, tables S1 – S3 

(appendix) depict mean, median, minimum and maximum values of all the weather parameters, 

independently for each of the four seasons studied.  

 

 

Overview of passerine migration in Husum 2023 - 2024 

For this analysis, a total of 82 nights during the spring seasons and a total of 138 nights during 

the autumn seasons were used (Tab. 4). Initially, results regarding the migration traffic intensity 

are listed, followed by description of the flight height distribution of migrating passerines. 

MTR – migration traffic rate 

To visually compare diurnal and nocturnal migration traffic rates of passerines, figure 2 depicts 

the summed MTR per night and day across the four studied seasons. As anticipated, the mean 

Table 3: Mean and standard deviations (sd) of explanatory meteorological variables used for the regression 

analyses. Both studied spring (green) and autumn (grey) seasons are summarised for this table. 

 
  Spring Autumn 

Variable Unit Hourly Mean sd Hourly Mean sd 

Precipitation mm 0.11 0.35 0.16 0.51 

Delta precipitation mm 0.003 0.51 0.00 0.72 

Cloudiness Out of 8 5.97 2.78 6.08 2.54 

Temperature °C 7.48 3.85 10.92 5.05 

Delta temperature °C 0.15 2.77 -0.18 2.84 

Barometric pressure hPa 1010.01 10.42 1009.56 11.48 

Delta pressure hPa 0.19 7.31 0.07 7.44 

Visibility m 29171.23 16737.76 28048.42 15321.17 

Wind speed m/s 4.18 1.93 3.88 2.04 

Wind direction ° 179.27 87.77 192.92 75.28 

TWC m/s -0.14 3.41 0.03 3.06 

Delta TWC m/s 0.06 3.42 -0.02 3.20 

CWC m/s 2.55 1.77 2.50 1.91 

Delta CWC m/s -0.01 2.21 -0.01 2.48 
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MTR of nocturnally migrating passerines showed quantitative differences for spring and 

autumn seasons respectively (Tab. 4, Fig. 2). Both intra- and interseasonally, considerable 

temporal variations in migration intensity were observed (Fig. 2 depicts stacked bar of day/night 

comparison of passerine MTR). The seasonal sum of migrants reached more than double the 

amount in autumn compared to spring. Between-year differences of summed MTR were 

neglectable for autumn seasons, while spring of 2024 showed a reduction of ~22.000 migrants 

compared to the previous year (Tab. 4). During the spring seasons there are two peaks in the 

migration intensities around mid-March and mid-April, these peaks being more pronounced 

during spring of 2024 (Fig. 2a). In the fall seasons, migration peaked during October (Fig. 2b) 

with particularly one night standing out as the night with overall highest MTR within the first 

half of October, during both years respectively. In 2023, the nights with the highest MTR were 

the 21st of March (18171.35 n/km/h) in spring and the 7th of October (54346.55 n/km/h) in 

autumn (Tab. S4). Similar patterns but with an overall decrease in MTR was observed for 2024: 

highest nocturnal MTR was observed on 14th of March (15307.11 n/km/h) in spring and on the 

2nd of October (45681.76 n/km/h) in autumn (Tab. S4). Overall, higher migration rates were 

observed during both autumn seasons compared to the spring seasons, with slightly higher 

migration rates for spring seasons in 2023 and autumn seasons in 2024.  

Figure 3 shows violin plots illustrating the MTR of passerines during the course of the night 

given as proportions of the night (from zero to one). A comparison between seasons reveals that 

migration activity peaked earlier in the night during autumn than in spring. In autumn (Fig. 3b), 

the highest median MTR occurred during the first quarter of the night (20 – 30 %), followed by 

a steady decline as the night progressed. In contrast, spring migration (Fig. 3a) showed a gradual 

increase in activity toward the middle of the night, with a slight decrease thereafter. Notably, 

more birds migrated in the hours immediately before sunrise than in the hours following the 

sunset in spring, with the highest median MTR observed between 60% and 70% of the night. 

 

 

  

Table 4: Summary of migration traffic rates MTR (n/km/h) over the study period. All values except for the seasonal 

sum refer to the hourly MTR values. 

Year Seasons N (Nights) Seasonal sum Mean Q1 Median Q3 

2023 
Spring 82 232445.924 363.197 60.60 153.040 439.76 

Autumn 138 499886.908 361.713 65.52 159.685 356.67 

2024 
Spring 82 210068.962 317.805 80.45 193.819 431.71 

Autumn 138 499964.957 357.373 59.12 155.239 381.17 
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(a) 

(b)  

Figure 2: Stacked bar showing summed MTR (n/km/h) of migrating passerines for (a) spring and (b) autumn seasons of 2023 (left side) and 2024 

(right side). Bars depict summed MTR of single nights (dark blue) and days (orange). 
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FHD – flight height distribution (25 – 1025 m) 

Henceforth, any data regarding altitude and height will be understood as height above ground 

level (a.g.l.), unless stated otherwise. 

Figure 4 shows the vertical distribution of studied passerines for all four migratory seasons. 

During both the spring and autumn seasons of 2023 and 2024, the flight height distribution of 

nocturnally migrating birds as well as the mean flight height exhibited similar patterns. Across 

all seasons the altitude distribution follows the typical positively skewed pattern observed in 

passerine FHD, where the frequency of observations decreases with increasing altitude, peaking 

at intermediate heights in the lowest third of the altitude range (Fig. 4). This suggests that 

passerines tend to favour a lower altitude for their nocturnal flight, avoiding both extreme low 

and high altitudes.  

During spring of 2023 and during both fall seasons, highest migration rates occurred within the 

second lowest altitude bin (75 – 125 m, Fig. 4a & b). In spring of 2024 the height-range where 

most passerines passed through was slightly elevated, between 125 – 175 m (Fig. 4a). Both 

migratory seasons expressed slight interannual variations regarding mean flight height. For the 

spring seasons, the mean flight height slightly decreased from study year 2023 (314.00 m) to 

2024 (295.78 m). Contrastingly, for the autumn seasons, the mean flight height slightly 

increased from 2023 (295.28 m) to 2024 (305.65 m). However, mean flight height always 

ranged above maximum local wind turbine height (i.e. 180 m). Within the studied altitude range 

(a) 

(b) 

Figure 3: Violin plots depicting the 

distribution of the central 90 % of passerine 

MTR in relation to the proportion of night 

for (a) spring and (b) autumn seasons. The 

width of each violin represents the density 

of observations within each night group. 

Black dots indicate the median MTR per 

group. The red line represents a smoothed 

LOESS trend illustrating overall changes in 

MTR across the night. 
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of 25 – 1025 m, throughout both spring seasons 90 % of nocturnal migrants flew below ~ 580 

m (Fig. 4a, grey intercept). During the autumn seasons 90 % of migrants flew below 525 m 

(2023) and 560 m (2024) respectively (Fig 4b, grey intercept). Comparing the quantity of 

migrants flying within the “risk zone height” (altitude between 25 – 180 m) showed no obvious 

seasonal differences. Throughout all four seasons, about a third of nocturnal migrants travelled 

through the risk zone (2023: spring = 32.12 %, autumn = 32.29 %; 2024: spring = 34.30 %, 

autumn = 33.01 %) (Fig. 4, red borders).  

(b) 

(a) 

mean = 

295.28 m 

mean = 

314.00 m 

mean = 

295.78 m 

mean = 

305.65 m 
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Figure 4: Flight height distribution of passerines for (a) spring and (b) autumn migratory seasons of 2023 (left: 

light green, light purple) and 2024 (right: dark green, dark purple). The grey y-intercepts indicate the threshold-

height under which 90% of passerines were passing through the radar. The “risk zone”, i.e. 25 – 180 m, is 

bordered by red lines and red values indicate percentage of migrants within the risk zone. 

 



RESULTS 

19 

Fig. 5 represents heatmaps further elucidating the relationship between flight altitude and MTR 

of passerines migrating through Northern Germany across different portions of the night. The 

x-axis represents the proportion of the night (from sunset to sunrise), divided into time bins, 

while the y-axis shows average flight altitude (in meters). Passerine flight height distribution 

(FHD) exhibited clear nocturnal variation, with distinct seasonal patterns.  

In both spring and autumn, the majority of the migratory activity occurred within the lower half 

of the studied altitude range. During spring, peak migration intensity at altitudes considered 

within the risk zone was observed around the middle of the night (50%, Fig. 5a). In contrast, 

autumn migration was characterised by elevated activity at risk altitudes both shortly after 

sunset (10%) and near the end of the night (100%). Towards the end of the night during fall, 

migration activity showed a very strong (yellow) peak in the second altitude bin (average height 

100 m, Fig. 5b). 

(a) 

(b) 

Figure 5: Heatmaps showing the relationship between flight altitude and MTR of passerines across different 

portions of the night for (a) spring and (b) autumn season respectively. Colour intensity reflects MTR values 

(n/km/h), with darker (blue) shades indicating higher migration activity. The y-axis illustrates the average altitude for 

each 50 m bin (i.e. 25 – 75 m = 50 m). 



RESULTS 

20 

Statistical analyses 

In the following section, results for both response variables i) MTR over the entire altitude 

range and ii) proportion of MTR in the risk zone, will be listed separately, starting with i). 

Spring and autumn models will be collectively considered for both model types. 

Effects of explanatory variables on MTR (25 – 1025 m) 

MCMC intervals 

In a Bayesian framework, MCMC intervals are a standard tool for indicating the effect size of 

explanatory variables. Posterior uncertainty intervals of the explanatory variables used are 

portrayed in Figure 6. The points depict posterior medians, the thick segments show the 50% 

credible intervals, the thinner outer lines indicate the 90% credible intervals. The x-axis is read 

as the effect size of variables, with negative values indicating negative association between 

respective variable and passerine MTR. The y-axis lists the explanatory variables. Variables, 

where the median or CI values cross the grey x-intercept, appear to have no significant effect 

on the response variable according to the model output. Comparing the MCMC intervals for 

spring and autumn (Fig. 6a and b), at first glance the credible intervals for autumn seem a lot 

narrower. As the values were scaled (and centered) before splitting the data into spring and 

autumn seasons (see material and methods section), this allows for a direct comparison between 

the seasonal data. Thus, looking at the x-axis scale explains this apparent difference between 

the credible intervals. For spring the x-axis runs from approximately -0.5 to 0.5, for autumn 

some variables have overall greater impact on MTR and the x-axis runs from -0.7 to 0.8. In 

spring, variables with positive association with passerine MTR (listed from most influential to 

least, i.e. from right to left) are temperature, Δ temperature, TWC, Δ TWC and Δ CWC (Fig. 

6a). Increase in both temperature and tailwind as well as increase in both components compared 

to the previous night (delta values) results in rising migration traffic rates. Additionally, Δ CWC 

positively correlates with MTR during spring. Variables negatively impacting MTR in spring 

are CWC, year 2024, pressure, visibility, precipitation and Δ pressure. No significant influence 

on MTR is exerted by Δ precipitation and cloudiness. During autumn, variables exerting 

positive influence on passerine MTR are (from right to left) TWC, Δ pressure, temperature, 

visibility, Δ CWC and pressure (Fig. 6b). Variables negatively impacting MTR in autumn are Δ 

temperature, CWC, year 2024, precipitation. No significant change in MTR during autumn has 

been observed for Δ precipitation, cloudiness and Δ TWC. Overall, both Δ precipitation and 

cloudiness did not seem to significantly impact passerine migration during both migratory 

seasons (Fig. 6). 
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Conditional effects 

Figure 7 illustrates the conditional effects (for an explanation see material and methods section) 

of time of night (“ProportionOfNight”) and Julian day (“ydate”) on the migration traffic rate of 

passerines across both migration periods. In spring, the influence of time of night gradually 

increased after sunset and reached a distinct peak around the middle of the night (Fig. 7a). After 

the peak, the effect slightly declined, though it remained stronger just before sunrise than it was 

shortly after sunset. During autumn, the peak occurred earlier, within the first quarter of the 

night (Fig. 7b). The effect then gradually decreases with a slight uptick again right before 

sunrise. Similar to the spring season, the influence of nighttime during autumn was also 

somewhat stronger toward sunrise than immediately after sunset.  

The influence of date as an explanatory variable for the MTR also showed distinct patterns in 

spring (Fig. 7c) and autumn (Fig. 7d). In spring, the effect was strongest at the very beginning 

of the migratory period, around day 76 (March 17th), between approximately day 102 and 105 

(a) 

(b) 
Figure 6: MCMC intervals for (a) 

spring and (b) autumn models 

with MTR (n/km/h) as response 

variable. Posterior medians are 

depicted as light blue points. 

Thick dark blue segments 

indicate 50% CIs, thin 

segments indicate 90% CIs. 

Positive values on the x-axis 

correspond to positive 

associations with the MTR and 

vice versa.  
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(April 12th to 15th), and again around day 128 (May 8th). After May 8th, the influence of date 

declined rapidly (Fig. 7c). In contrast, during autumn, the effect of date was more concentrated 

within a few weeks, although again scales of the x-axis differ between seasons corresponding 

to the respective lengths (see Tab. 4). It gradually increased and peaked in the second half of 

the migratory season, around day 288 (October 15th). Overall, the strongest influence of date 

on MTR in autumn was observed between day 275 and 320 (October 2nd to November 16th) 

(Fig. 7d). 

 

 

Magnitude fold change in expected bird counts 

Additionally, figures 8 and 9 show the magnitude of fold change in expected passerine counts 

per (set of) explanatory weather variable, i.e. the means of the negative binomial distributions. 

The same figures including temporal variables are attached in the appendix (Fig. S7). Again, 

credible intervals are depicted as thick (50%) and thinner (90%) outer lines. The dashed grey 

x-intercept at 1 depicts no fold change in bird numbers aloft. Seeing as the MCMC-intervals 

Spring 

(d) (c) 

(b) (a) Autumn 

Figure 7: Conditional effect plots for the explanatory variables time of night (a, b) and Julian day (c, d) on the MTR as 

the response variable. Left plots illustrate the spring seasons, the right plots depict autumn season. The y-axis illustrates 

the migration traffic rate (MTR, n/km/h) of passerines. The blue line represents the median of the predicted response; 

the grey ribbon illustrates the 95% prediction interval. 
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provide information on the effect direction and relative effect size, they do not allow for a 

straightforward quantification of the effect of an explanatory variable on the response variable. 

Fold change is a commonly used effect size to quantify the relative change in one variable in 

response to a change in another. In the following paragraph, resulting median fold change in 

bird counts, i.e. effect size of individual explanatory variables, will be referred to in numerical 

values without units (see table 5 & 6). Corresponding means and 95% CIs referenced in below 

are summarised in table 5 & 6. Seeing as a fold change of 1 means no change in expected bird 

counts, for the 2.5% CIs a minimum of 1.01 was chosen as the threshold for exerting an effect 

on bird counts. All variables below the threshold (i.e 2.5% confidence interval includes 1.00) 

result in a neglectable change of MTR and thus are interpreted as non-relevant for further 

discussion. 

Combined, all explanatory variables tested with the models (“all_vars”) had an overall greater 

impact on the fold change in bird counts during autumn (56.55) than during spring (35.84, Fig. 

8 & 9, Tab. 5 & 6). For both migratory seasons, day of year is the temporal variable which 

explained the biggest differences in MTR throughout the seasons (spring: 12.28, autumn: 

20.14). Proportion of night had an increased impact on bird counts in spring (2.77, Tab. 5) than 

in autumn (1.54, table 6). 

Combined weather variables 

Combination of all the weather variables had the overall second highest effect on the expected 

bird count in both seasons, with a fold change of 7.71 (spring) and 18.93 (autumn). According 

to the generalised additive models, combined wind variables (i.e. cross- (CWC, Δ CWC) and 

tailwind components (TWC, Δ TWC)) explained most of the differences in observed bird counts 

among all weather parameters, for both seasons respectively (Fig. 8 & 9). However, the fold 

change in expected bird counts during autumn (7.50) was more than double the magnitude of 

fold change during spring (3.50). In spring, overall air temperature (Δ temperature and 

temperature) resulted in the second highest magnitude of fold change in expected bird counts 

(3.13, Fig. 8). Combined pressure variables resulted in a 1.65-fold change of expected bird 

counts, followed by combined precipitation variables (1.24).  

For autumn migration, combined barometric pressure led to a maximum of a 3.89-fold change 

in expected bird counts, followed by overall temperature with a 2.82-fold change of passerine 

counts (Tab. 6). Again, combined precipitation had the weakest effect for combined variables 

during autumn (1.16, Fig. 9). 
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Single weather variables 

Starting off with spring, CWC was the explanatory variable with the biggest (negative) impact 

on MTR (2.93), according to the magnitude of fold change in the expected passerine counts 

(Fig. 8, Tab. 5). Second most important explanatory variable for spring migration was air 

temperature, with a maximum fold change of 2.34. Similarly, maximum Δ temperature led to a 

fold change of 1.73. Both, barometric pressure and visibility negatively correlated with 

estimated bird count with a magnitude of 1.56-fold and 1.46-fold change of expected bird 

counts, respectively. Further, Δ pressure (1.13) and precipitation (1.22) show a negative effect 

on the MTR, however it should be mentioned that for both variables the CI 2.5% is barely above 

1.00 (see table X) and thus the effects must be interpreted with caution. The same applies for 

the following wind variables exerting a slight positive influence on spring MTR: TWC (1.47), 

Δ TWC (1.36) and Δ CWC (1.23).  

During autumn, TWC (7.12) had the largest (positive) impact on expected passerine counts 

among single explanatory variables, followed by Δ barometric pressure (3.64) and temperature 

(2.76) (Fig. 9, Tab. 6). Contrastingly, an increase in air temperature compared to the previous 

night (Δ temperature), led to a 2.29-fold decrease in MTR. While maximum present-night CWC 

led to a decreasing number of migrating birds by a 2.51-fold change, contrastingly Δ CWC 

minimally increased bird count by 1.31. Further, visibility positively correlated with estimated 

bird counts, max visibility resulting in a 1.99-fold change. Both pressure (1.19) and 

precipitation (1.15) only had a minimal impact on the autumn MTR, positively and negatively, 

respectively. 

Overall, both Δ precipitation and cloudiness had a negligible association with expected bird 

counts during both migratory seasons (Fig. 8 & 9, Tab. 5 & 6). Moreover, Δ TWC showed 

negligible influence on passerine MTR during autumn. Altogether, both, increased side wind 

component (CWC) and precipitation, reduce number of migratory birds aloft in both seasons. 

Air temperature, increased tail wind (TWC) and change in CWC compared to previous night 

seemed to increase MTR in both seasons. 
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Table 5: Median and corresponding CI 2.5% and 97.5% values for the magnitude of fold change in expected bird 

counts during spring. Light orange background indicated negative association with passerine MTR and refers to 

the MCMC interval results. Bold variables depict the three most influential (single) explanatory variables. 

MTR - Spring 

Variable Median CI 2.5% CI 97.5% 
Year 1.16 1.03 1.31 

year_date 12.28 7.86 20.22 

Night 2.77 2.34 3.31 

Precipitation 1.22 1.02 1.49 

Δ Precipitation 1.10 1.00 1.38 

Pressure 1.56 1.10 2.23 

Δ Pressure 1.13 1.01 1.47 

Visibility 1.46 1.15 1.84 

Cloudiness 1.07 1.00 1.25 

Temperature 2.34 1.54 3.53 

Δ Temperature 1.73 1.24 2.41 

TWC 1.47 1.05 2.11 

Δ TWC 1.36 1.04 1.84 

CWC 2.93 2.12 4.07 

Δ CWC 1.23 1.01 1.68 

All precipitation 1.24 1.06 1.48 

All pressure 1.65 1.21 2.29 

All temperature 3.13 2.29 4.27 

All wind 3.50 2.74 4.49 

All weather 7.71 6.01 9.85 

All variables 35.84 24.69 51.71 

Figure 8: Magnitude of fold-change in expected bird counts, per (set of) explanatory variable for spring. Dashed 

x-intercept at 1 depicts no fold-change. Thick dark glue segments represent  the 50% CIs, thin segments represent 

the 90% CI. 
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Table 6: Median and corresponding CI 2.5% and 97.5% values for the magnitude of fold change in expected bird 

counts during autumn. Light orange background indicated negative association with passerine MTR and refers to 

the MCMC interval results. Bold variables depict the three most influential (single) explanatory variables. 

MTR - Autumn 

Variable Median CI 2.5% CI 97.5% 
Year 1.19 1.10 1.27 

year_date 20.14 15.01 26.95 

Night 1.54 1.37 1.74 

Precipitation 1.15 1.02 1.30 

Δ Precipitation 1.07 1.00 1.24 

Pressure 1.19 1.02 1.44 

Δ Pressure 3.64 2.97 4.44 

Visibility 1.99 1.69 2.33 

Cloudiness 1.04 1.00 1.14 

Temperature 2.76 1.94 3.90 

Δ Temperature 2.29 1.88 2.80 

TWC 7.12 5.59 9.01 

Δ TWC 1.10 1.00 1.35 

CWC 2.51 2.02 3.09 

Δ CWC 1.31 1.05 1.64 

All precipitation 1.16 1.04 1.30 

All pressure 3.89 3.22 4.70 

All temperature 2.82 2.11 3.81 

All wind 7.50 6.17 9.14 

All weather 18.93 15.70 22.91 

All variables 56.55 45.78 69.92 

Figure 9: Magnitude of fold-change in expected bird counts, per (set of) explanatory variable for autumn. Dashed x-

intercept at 1 depicts no fold-change. Thick dark glue segments represent the 50% CIs, thin segments represent the 

90% CI. 
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Effects of explanatory variables on proportion of birds in risk height 

MCMC intervals 

Posterior uncertainty intervals of the explanatory variables used are portrayed in Figure 10a & 

b. Description of the figures can be found in the previous explanation of MCMC intervals for 

passerine migration intensity (p. 21). 

During spring, variables exerting a positive influence on the probability of flying in the risk 

zone (i.e. between 25 – 180 m) according to the MCMC intervals are (listed from most to least 

influential) Δ pressure, CWC, precipitation, TWC, temperature and pressure (Fig. 10a). Δ 

temperature, year 2024, Δ precipitation and Δ TWC seem to negatively impact the probability 

of flying in risk altitudes. Variables with no apparent influence on probability of flying in risk 

altitudes during spring are visibility and cloudiness (Fig. 10a). For the autumn seasons, Δ 

temperature seems to be the most influential variable positively impacting the probability of 

flying at risk height, followed by CWC, temperature and year 2024 (Fig. 10b). While increasing 

(a) 

(b) 

Figure 10: MCMC 

intervals for (a) spring and 

(b) autumn models with 

the probability of flying in 

the risk zone as the 

response variable. 

Posterior medians are 

depicted as light blue 

points. Thick dark blue 

segments indicate 50% 

CIs, thin segments 

indicate 90% CIs. Positive 

values on the x-axis 

correspond to positive 

associations with the low-

flight probability and vice 

versa. 
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the number of passerines flying at low heights during spring, contrastingly Δ pressure, TWC, 

precipitation and pressure seem to reduce the probability of flying at low heights during autumn. 

Additionally, increased visibility and Δ CWC resulted in less passerines passing through the 

risk height. During autumn, parameters Δ precipitation, cloudiness and Δ TWC exerted no 

influence on the probability of flying low.  

Altogether, cloudiness did not influence the flight height of passerines nor the general migration 

traffic rate during neither migratory season (Fig. 10a & b). 

Conditional effects 

Figure 11 shows the conditional effects of time of night (“ProportionOfNight”) and Julian day 

(“year_date”) on the probability of passerines flying at risk altitude during both migration 

periods. The effect of time of night followed a similar pattern during spring (Fig. 11a) and 

autumn (Fig. 11b), with only minor variation throughout the course of the night. During spring, 

the effect slightly increased towards the second half of the night and dropped minimally just 

before sunrise, without a distinct peak of the effect. In autumn, the effect initially declined after 

Spring 

(d) (c) 

(b) (a) Autumn 

Figure 11: Conditional effect plots for the explanatory variables time of night (a, b) and Julian day (c, d) on the “probability 

of flying at risk heights” as the response variable. Left plots illustrate the spring seasons, the right plots depict autumn 

season. The y-axis illustrates the migration traffic rate (MTR, n/km/h) of passerines. The blue line represents the median 

of the predicted response, the grey ribbon illustrates the 95% prediction interval. 
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sunset but then gradually rose toward the end of the night. The main difference between the two 

seasons lies in the stronger effect observed shortly before sunrise in autumn compared to spring. 

The effect of date also showed a similar pattern during spring (Fig. 11c) and autumn (Fig. 11d), 

in that the effect was strongest at the edges of the migratory periods. For both seasons the effect 

was slightly increased towards sunrise rather than sunset. In spring, the effect of date on the 

probability of flying at risk height was least pronounced in the second half of the season, around 

day 128 (May 8th). In autumn the lowest effect of date on the probability of flying at risk 

altitudes was observed within the first half of the season, round day 250 (September 7th). 

Magnitude fold change in expected bird counts 

Figures 12 and 13 depict the magnitude of fold change in odds-ratios of the probability of flying 

in the risk zone, per (set of) explanatory weather variable. The same figures including temporal 

variables are attached in the appendix (Fig. S8). The figure set-up has been explained previously 

for the MTR models (p. 23). Corresponding means and 95% CIs referenced below are 

summarised in tables 7 and 8.  

As for the previous set of models, all explanatory variables combined (“all_vars”) had an 

overall greater impact on the fold change in the odds-ratios during autumn (10.41) than during 

spring (5.89) (Fig. 12 &13, Tab. 7 & 8). However, “all_vars” impacted the passerine MTR 

approximately five times more than it impacted the probability of flying in the risk zone (Tab. 

7 & 8). Among the temporal explanatory variables, day of year (“year_date”) explained the 

biggest differences in MTR throughout the seasons (spring: 2.53, autumn: 3.26), followed by 

the proportion of night (“night”) for both seasons (spring: 1.73, autumn: 2.16). 

Combined weather variables 

As for the MTR models, combination of all weather variables (“all_weather”, table 7 & 8) had 

the largest explanatory potential for the probability of flying in the risk zone among combined 

variables. Combined pressure variables had the second highest impact on low altitude flights 

for both seasons (spring: 2.64, autumn: 2.72), followed by combined wind (spring: 2.20, 

autumn: 2.56). Combined temperature variables almost impacted low altitude flight twice as 

much during autumn (2.43) than during spring (1.37). Combined precipitation however had a 

similar slight influence on low passerine flight for both seasons (spring: 1.41, autumn: 1.26). 

Single weather variables 

Among single weather variables, Δ pressure had the greatest (positive) impact on low passerine 

flight during spring (2.24), followed by CWC which induced a maximum of a 1.96-fold increase 

of the odd-ratios of flying low (Fig. 12, Tab. 7). Further explanatory variables positively 

increasing the odds-ratio during spring are TWC (1.37), precipitation (1.30), pressure (1.26), 
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temperature (1.17) and Δ CWC (1.11). However, seeing as the respective CI 2.5% values for 

those variables are all below 1.04, the potential impact those variables have on the response 

variable should be taken with caution (see Table 7). Curiously, all variables negatively 

impacting the odds-ratio are Δ variables: Δ precipitation (1.62), Δ temperature (1.33) and Δ 

TWC (1.21). Again, Δ temperature and Δ TWC should be carefully considered as impacting the 

response variable, as the CI 2.5% values are 1.03 and 1.01 respectively (Tab. 7).  

Interestingly in autumn, Δ pressure (2.48) also seems to be the (single) explanatory variable 

exerting the greatest influence on the odds-ratio of flying in the risk zone (Fig. 13, Tab. 8). In 

contrast to spring however, an increase in Δ pressure results in decreasing number of low-flying 

migrants. TWC (2.23) had the second greatest (negative) repercussion on the odds-ratios. 

Increase in variables Δ CWC (1.26), precipitation (1.23), pressure (1.22) and visibility (1.22) 

also resulted in declining numbers of migrants in the risk zone (Tab. 8). Δ Temperature had the 

largest positive impact, inducing a maximum 2.01-fold change of the odd-ratios, followed by 

CWC (1.86) and temperature (1.40).  

Cloudiness had no influence on the response variable during both migratory seasons. During 

spring, visibility also had negligible influence on the odds-ratios (Fig 12, Tab. 7). Additionally, 

Δ TWC exerted no influence on the odds-ratios in autumn (Fig. 13, Tab. 8). 
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Table 7: Median and corresponding CI 2.5% and 97.5% values for the magnitude of fold change in odds-ratios of 

the probability of flying in the risk zone, during spring. Light orange background indicates negative association with 

low-altitude flight and refers to the MCMC interval results. Bold variables depict the three most influential (single) 

explanatory variables. 

Risk zone - Spring 

Variable Median CI 2.5% CI 97.5% 
Year 1.17 1.04 1.32 

year_date 2.53 1.89 3.45 

Night 1.73 1.47 2.05 

Precipitation 1.30 1.03 1.68 

Δ Precipitation 1.62 1.18 2.21 

Pressure 1.26 1.01 1.77 

Δ Pressure 2.24 1.65 3.06 

Visibility 1.08 1.00 1.31 

Cloudiness 1.07 1.00 1.25 

Temperature 1.17 1.01 1.61 

Δ Temperature 1.33 1.03 1.80 

TWC 1.37 1.03 1.89 

Δ TWC 1.21 1.01 1.62 

CWC 1.96 1.47 2.62 

Δ CWC 1.11 1.01 1.43 

All precipitation 1.41 1.15 1.75 

All pressure 2.64 1.93 3.61 

All temperature 1.37 1.08 1.80 

All wind 2.20 1.72 2.85 

All weather 4.28 3.36 5.49 

All variables 5.89 4.73 7.43 

  

Figure 12: Magnitude of fold-change in the odds-ratios (ORs) of the probability of flying in the risk zone, per (set of) 

explanatory variable for spring. Dashed x-intercept at 1 depicts no fold-change. Thick dark green segments 

represent the 50% CIs, thin segments represent the 90% CI. 
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Table 8: Median and corresponding CI 2.5% and 97.5% values for the magnitude of fold change in odds-ratios of 

the probability of flying in the risk zone, during autumn. Light orange background indicates negative association 

with low-altitude flight and refers to the MCMC interval results. Bold variables depict the three most influential 

(single) explanatory variables. 

Risk zone - Autumn 

Variable Median CI 2.5% CI 97.5% 
Year 1.06 1.00 1.15 

year_date 3.26 2.46 4.40 

Night 2.16 1.83 2.56 

Precipitation 1.23 1.08 1.40 

Δ Precipitation 1.06 1.00 1.23 

Pressure 1.22 1.02 1.49 

Δ Pressure 2.48 1.97 3.10 

Visibility 1.22 1.03 1.45 

Cloudiness 1.07 1.00 1.22 

Temperature 1.40 1.03 2.00 

Δ Temperature 2.01 1.62 2.50 

TWC 2.23 1.77 2.84 

Δ TWC 1.09 1.00 1.32 

CWC 1.86 1.48 2.32 

Δ CWC 1.26 1.02 1.59 

All precipitation 1.26 1.12 1.43 

All pressure 2.72 2.20 3.36 

All temperature 2.43 1.91 3.16 

All wind 2.56 2.09 3.13 

All weather 7.07 5.84 8.58 

All variables 10.41 8.69 12.52 

 

 

 

 

 

 

 

 

 

 Figure 13: Magnitude of fold-change in the odds-ratios (ORs) of the probability of flying in the risk zone, per (set of) 

explanatory variable for autumn. Dashed x-intercept at 1 depicts no fold-change. Thick dark purple segments 

represent the 50% CIs, thin segments represent the 90% CI. 
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Discussion 

The aim of this study was to determine the varying degrees of the influence of meteorological 

parameters on migration intensity of nocturnal passerines, with particular focus on 

environmental predictors for low-altitude flight where migrants are faced with increased 

collision risk with wind turbines. The foundation of this study was constituted by radar data 

collected over four migration seasons (spring and autumn of 2023 and 2024) near the North Sea 

coastline in Northern Germany, Husum.  

MTR - Migration traffic rate (birds/h/km) 

In line with our hypothesis and previous research, we demonstrate overall wind conditions to 

be the main meteorological predictor for nocturnal passerine migration intensity during both 

migratory seasons (“all wind”, Tab. 5 & 6). Furthermore, we found temperature to increase 

MTR during both seasons, and Δ pressure, i.e. the change in barometric pressure compared to 

the previous day, to strongly influence migratory decisions during autumn.  

Among the wind assistance parameters, increased tailwind was positively associated with MTR 

during both seasons, while increased sidewind generally declined numbers of birds aloft (Fig. 

6). Overall, the impact of tailwind support on the migration intensity was higher during autumn 

than spring, with tailwind conditions (TWC) being the single most influential weather variable 

during fall migration. Winds in central Europe are generally less supportive for fall migration 

(e.g. Kemp et al. 2010, Nussbaumer et al. 2022; reflected in our wind data, see Fig. S1 – S3), 

as the prevailing west and southwest winds are experienced as head- or crosswinds by birds 

migrating south-westwards. Additionally, both frequency and speed of tailwinds over central 

Europe have increased during the last 40 years (Gordo 2007), further facilitating advantageous 

wind regimes during spring and unfavourable wind conditions during fall migration. 

Combination of these factors may partly explain why autumn migrants are more dependent on 

supportive tailwind conditions in mid-latitudes for the migratory progression than spring 

migrants, with passerines mainly exploiting nights with positive wind assistance during their 

fall journey. This observed correlation corroborates what was previously recorded for the 

relationship between wind and nocturnally migrating passerines (e.g. Richardson 1990, 

Bruderer & Liechti 1998, Åkesson & Hedenström 2000, Ernie et al. 2002, 2005, Liechti 2006, 

Alerstam 2011, Brust et al. 2019, Benjumea et al. 2024). Strong headwinds have been shown 

to weaken a migrant’s propensity to take off (e.g. Werber & Sapir 2025) and can greatly affect 

the energetic cost of migration (Lack 1960, Liechti 2006, Gordo 2007), sometimes even 

promoting an accumulation of birds “outlasting” inclement weather (“Zugstau”, coined by 
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Schüz 1952). Tailwind has further been proven to offer indispensable support to cover large 

geographic barriers (e.g. Kranstauber et al. 2015, 2023, Nilsson et al. 2019) such as the North 

Sea basin. Accordingly, our findings also support the “sit-and-wait” hypothesis of optimal 

migration (Liechti & Bruderer 1998, Kemp et al. 2010, Åkesson & Hedenström 2000), 

suggesting that the gain in flight distance under supportive wind outweighs the cost of waiting 

out less beneficial winds, particularly during autumn.  

While tailwind was the main predictor for intense migration during fall, crosswind had the 

strongest (negative) effect among wind-assistance variables during spring migration (Fig. 8). 

Sidewinds not only increase energy expenditure during flight (e.g. Liechti 2006), but strong 

crosswinds may also cause migrants to be drifted off their intended route (Chapman et al. 2016), 

requiring birds to adjust their flight trajectories to maintain their intended migratory routes. 

Even though birds are incapable of predicting wind, migratory populations exhibit adaptive 

responses to wind drift, by either partially allowing drift, actively compensating for it (e.g. 

McLaren et al. 2012, Chapman et al. 2016, Horton et al. 2016b, Bruderer et al. 2024) or even 

increasing self-powered airspeed (Schekler et al. 2024). This behavioural flexibility of 

migratory animals is crucial in minimising energy expenditure and ensuring accurate navigation 

(e.g. Chapman et al. 2011, et al. 2016). As spring migration is often thought to be more time-

sensitive due to the selective pressures related to breeding (e.g. Kokko 1999, Kappeler 2022), 

accurate navigation toward breeding grounds may be particularly crucial during spring to ensure 

the individual’s fitness (Kokko 1999).  

Interestingly, the relative change to the preceding night in the tested wind and precipitation 

parameters (Δ TWC, Δ CWC, Δ precipitation) was generally not of high biological relevance 

and had a much smaller impact on the MTR than the corresponding night-of-migration 

parameters, during both seasons. As anticipated, autumn migration was found to be additionally 

favoured by increase in Δ pressure, temperature and visibility and decreasing precipitation (Fig. 

9), suggesting a selective preference for “favourable” weather conditions. Corroborating our 

findings, previous studies on passerines suggest that birds modify migratory behaviour in 

response to barometric pressure changes, particularly during autumn migration (Metcalfe et al. 

2013, Chumra et al. 2020, Cooper et al. 2023). These results support the notion that birds prefer 

migrating under favourable weather conditions, as rising atmospheric pressure typically 

indicates the onset or approach of a high-pressure system. Such systems are characterised by 

subsiding air masses, which inhibit cloud formation and are typically associated with stable, 

fair-weather conditions. 
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During spring, air temperature and the change in air temperature had the strongest positive 

association with nocturnal migration activity of passerines (Fig. 6 & 8). Besides endogenous 

programs regulating birds annual cycles (e.g. Åkesson & Helm 2020, Kappeler 2022, p. 87), 

avifauna relies on exogenous cues for the initiation of the annual spring migration, and air 

temperature has been repeatedly shown to govern both, spring migration phenology (e.g. 

Richardson 1990, Gordo 2007, Kelly et al. 2016, Haest et al. 2018) and intensity (Richardson 

1990, Kelly et al. 2016, Van Doren & Horton 2018, Gulson-Castillo et al. 2023). As competition 

for breeding opportunities favours early arrival at the breeding sites in spring (e.g. Kokko 1999, 

Nilsson et al. 2013), correlation between higher temperatures and increased migration activity 

during spring were anticipated.   

Against our expectations, spring migration was reduced by increasing pressure and visibility. 

While this observation seems counterintuitive, it may be explained by a potential correlation 

between clear nights (i.e. increasing pressure and high visibility) and biotic or abiotic factors 

not considered in this study, that may negatively affect spring migration. Seeing as sidewind 

was found to strongly reduce spring migration activity in this study, clear nights might also be 

associated with intense winds perpendicular to the desired track direction, but more research 

has to be done to gain inside on the observed correlation.  

Migration was found to be more evenly distributed throughout the night in spring, with 

maximum numbers observed in the middle of the night (Fig. 3a & 7a). On the other hand, fall 

migration shows a stronger peak earlier in the night and migration intensity declines in the 

second half of the night (Fig. 3b & 7b). These patterns are supported and discussed by previous 

research on passerines (e.g. Kranstauber et al. 2023, Werber & Sapir 2025). Spring migrants 

may have a higher incentive to speed up migration - due to the selective pressure related to 

breeding – and typically adopt a time-minimising approach on their annual journeys (e.g. 

Alerstam 2011). Consequently, during spring, passerines may use the entire night to progress 

northwards, leading to more evenly distributed migration fluxes throughout the night. On the 

contrary, more than twice the number of passerines migrated in autumn than in spring (Tab. 4, 

Fig. 2). As adult migrants are accompanied by their offspring, who undertake these long 

journeys for the first time, the inexperience of juvenile migrants may result in adjusted, energy-

minimising behaviour, for example shorter flight periods (i.e. the decline of MTR in the second 

half of the night). What may further attribute to the observed differences in nocturnal migration 

patterns between spring and autumn may be the varying flight directions and geographic 

trajectories of passerines passing through the study area. In spring, most migrants passing 

through the study area travel in a north-easterly direction (~ 220° observed in our study area 
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but see Bradarić et al. 2020, 2024, Bruderer & Peter 2022), which often requires them to cross 

parts of the North Sea before reaching the mainland. Passerines typically initiate their nocturnal 

flight at dusk (e.g. Richardson 1990, Newton 2008) and therefore, it is likely that many 

individuals initiate their nocturnal flight from the Dutch coastline or the Frisian Islands, 

necessitating a longer overwater flight segment before reaching the region around Husum. 

Consequently, their arrival in the study area tends to occur later in the night. In contrast, during 

autumn migration, birds tend to fly in a more south-south-westerly direction (~30°; flight 

direction over Northern Europe: Nilsson et al. 2019, Bradarić et al. 2020, 2024, Bruderer & 

Peter 2022), following largely inland routes. In line with Kranstauber et al. (2023) reasoning, 

birds may stop immediately before crossing geographic barriers, such as the North Sea, to 

recover and avoid daytime crossing. As a result, a pronounced migration peak occurs early in 

the following suitable night (Fig. 7b), when the previously gathered birds initiate the crossing 

simultaneously. However, it should be noted that the observed local flight direction does not 

necessarily reflect the overall “true” track direction of the migration (e.g. Åkesson & 

Hedenström 2000). This is particularly relevant for our study area, as coastal areas tend to 

concentrate higher numbers of migrants (e.g. Horton et al. 2016a), likely because many species 

use topographical landmarks such as coastlines as orientational cues on their journey (Alerstam 

& Pettersson 1977, Åkesson 1993, Bruderer & Liechti 1998, Horton et al. 2016b, Brust et al. 

2019, Kranstauber et al. 2023). Moreover, migratory species with different life-history 

characteristics have been observed to show different phenological and nocturnal patterns during 

migration (e.g. Benjumea et al. 2024). Disentangling species-specific effects of time of night 

and weather dependency should provide further clarification regarding the characteristics of 

bird migration in our study area.  

Our findings further revealed that date had a stronger influence on nocturnal migration intensity 

than weather variables (single or combined, Tab. 5 & 6) in both seasons, with the effect being 

more pronounced during autumn. The relatively synchronised timing of spring migrants (e.g. 

Newton 2008, Alerstam 2011) may limit the explanatory power of date alone. In contrast the 

autumn migration period is typically more prolonged and less synchronised (e.g. Newton 2008, 

Alerstam 2011), involving not only experienced adults but also large numbers of juveniles 

migrating for the first time. Overall, the results suggest strong temporal variations between 

migratory seasons, with the more extended nature of autumn migration allowing date to emerge 

as an even stronger predictor of migratory activity. 
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FHD - Flight height distribution (25 – 1025 m) 

What factors influence flight at risk height (< 180 m)? 

Contrary to our expectations, no relevant differences in mean flight altitude were observed 

between the migratory seasons. Due to the vertical limitation of the radar used, this study 

focussed on altitudes between 25 – 1025 m above ground level (a.g.l.). Although the mean 

migration altitude of nocturnal passerines was approximately 300 m, their highest densities 

were consistently observed within the lowest two height bins (i.e. 75–175 m), as revealed by 

the full vertical distribution (Fig. 4). Numbers of migrants gradually decreased with inclining 

heights throughout all seasons studied (Fig. 4) and about a third of migrants travelled within 

the “risk altitude” range. Previous studies in the temperate zone revealed similar patterns of 

most intense migration activity at low levels and a pronounced decrease with height (e.g. 

Eastwood 1967, Bellrose 1971, Blokpoel & Burton 1975, Hüppop et al. 2006, Fijn et al. 2015). 

Nocturnal migrants have further been shown to prefer travelling through lower altitudes at 

coastal sites compared to inland sites (Horton et al. 2016a). Corroborating our findings and 

reviewing 40 years of radar migration studies regarding the vertical distribution of migratory 

birds, Bruderer et al. (2018) summarised that up to 30 % of nocturnal migration occurs within 

the lowest 200 m interval a.g.l., 50 % below 700 m and the 90% quantile reaching heights 

between 1400 and 2100 m. The remaining 10% of migrants are usually scattered up to about 

4000 m above sea level (asl).  

Several empirical studies have reached the conclusion that wind plays a fundamental role in the 

flight heights selected by nocturnally migrating birds, with migrants mostly selecting flight 

altitudes with maximum flow assistance, consequently minimising travel time and energy 

expenditure (e.g. Dokter et al. 2011, Schmaljohann et al. 2009, Kemp et al. 2013, Horton et al. 

2016a, Bradarić et al. 2024, but see Bruderer et al. 2024). While wind assistance parameters did 

emerge as significant predictors of low-altitude flight in our study, they only exhibited the 

second strongest effect among weather variables across both seasons (“all wind” in Tab. 7 & 

8). As anticipated, our results suggest that stronger crosswinds were associated with an 

increased likelihood of passerines flying within the risk-altitude range, but the effect was more 

pronounced in spring (Fig. 10, 12 & 13). Combination of the overall preference for lower 

altitudes observed in this study (mean height below 315 m across all seasons, Fig. 3) and a 

higher proportion of low-altitude migration under negative wind assistance, indicates that 

passerines may fly close to the ground to reduce the effect of overall hostile wind conditions 

(e.g. Alerstam 2011, Horton et al. 2016a), as wind speeds typically increase with altitude 
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(Pennycuick 2008, Bruderer et al. 2018). Moreover, maintaining a low flight altitude provides 

the opportunity to land quickly should environmental conditions worsen (Bruderer et al. 2018). 

Kemp et al. (2013) studied the vertical distribution of nocturnally migrating avifauna in the 

Netherlands and found that improved tailwind increased the probability of elevating the flight 

heights, however birds depicted a general preference for low-altitude flight (~ 0.4 km) and 

concentrated around the lowest altitudes with acceptable wind conditions. While tailwinds 

facilitated migratory departure in both seasons (see MTR), its effect on flight altitude selection 

appeared to differ between the seasons. In autumn, favourable tailwinds were associated with a 

drastic decrease in the proportion of birds flying within the risk zone, suggesting that migrants 

ascend into higher altitudes when wind support allows for more efficient, energy-saving flight. 

This finding is consistent with the abovementioned notion that birds adopt an energy-

minimising strategy during autumn migration (e.g. Newton 2008), likely due to the birds being 

accompanied by their inexperienced offspring as well as the generally less supportive wind 

patterns for southwest-oriented routes in Central Europe (Fig. S1 – S3, Kemp et al. 2010, 

Nussbaumer et al. 2022). In summary, the strong dependence on supportive winds during 

autumn migration was reflected in both, the significant increase in overall migration intensity 

(Fig. 6) and the decrease in low-altitude flights under tailwind conditions (Fig. 10). 

Conversely, during spring, increased tailwind components were slightly positively associated 

with a higher proportion of migrants flying within the risk altitude range. While this might 

appear counterintuitive, it likely reflects a combination of seasonal and atmospheric dynamics. 

Tailwind typically acts as a strong departure cue, often prompting birds to initiate migration 

during the early hours of the night (e.g. Richardson 1990, Newton 2008), when the atmosphere 

is still thermally stable and vertically stratified (Pennycuick 2008). Under such conditions, 

vertical mixing is limited, and birds may remain within lower atmospheric layers, below 

temperature inversions or cloud bases. Additionally, maintaining lower altitudes may allow 

migrants to better optimize wind assistance or to retain visual contact with coastal landscape 

features that support orientation (e.g. Bruderer et al. 2018). Moreover, since wind direction and 

speed can substantially change with altitude (Pennycuick 2008), it is plausible that the tailwind 

component used in our analysis - measured at ~ 28 m above ground level (Tab. 1 & 2) - was 

only favourable for migration within these lower air layers. This vertical variability in wind 

conditions could therefore help explain the unexpectedly observed association between stronger 

tailwinds and increased low-altitude flight activity during spring. However, this association 

between supportive winds and reduced flight altitudes in spring was only marginally 
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pronounced (see Tab. 7), and its underlying mechanisms remain unclear. Further research would 

be valuable to further elucidate this pattern. 

Curiously, among the meteorological variables Δ pressure exerted the strongest effect on the 

probability of flying at risk height, again with opposing effects between the two migratory 

seasons (Fig. 12 & 13). In line with our hypothesis, during autumn migration, rising Δ pressure 

resulted in a preference for higher flight altitudes of passerines. As described above, increasing 

atmospheric pressure is typically associated with the development of high-pressure systems, 

which leads to subsiding air masses and mostly stable weather conditions – conditions that are 

generally favourable for bird migration. Under such stable conditions, increasing flight altitudes 

may allow migrants to exploit more consistent and faster wind currents, while simultaneously 

benefiting from reduced turbulence (Pennycuick 2008). Correlational evidence suggests that a 

wide range of taxa - including insects (Pellegrino et al. 2013), mammals (Turbill 2008) and 

birds (Chmura et al. 2020, passerines: Cooper et al. 2023) - alter their behaviour in response to 

atmospheric pressure changes. Moreover, manipulative experiments on captive sparrows 

(Zonotrichia spp.) indicate that individuals not only respond to the weather changes associated 

with varying barometric pressure but are also capable of directly sensing pressure shifts and 

adjusting their behaviour accordingly (Breuner et al. 2013, Metcalfe et al. 2013). Consequently, 

when detecting rising barometric pressure during autumn, migratory birds may respond by 

increasing flight altitude to optimize their speed and energy efficiency, taking advantage of 

higher wind speeds commonly found at greater heights (Alerstam 2011, Horton et al. 2016a). 

Flying at higher altitudes can reduce frictional resistance due to lower air density (Pennycuick 

2008), allowing birds to cover greater distances with the same amount of energy - a strategy 

that may be especially important for inexperienced juvenile migrants. While we observed that 

rising Δ pressure was associated with increased overall migratory activity in autumn (MTR, 

Fig. 6), it also corresponded with a reduced probability of low-altitude flights. This suggests 

that under conditions of increasing barometric pressure, birds not only initiate migration more 

readily but also ascend to higher altitudes and are therefore exposed to a lower risk of collision 

with wind turbines during this period. 

In contrast to autumn, our findings for spring migration revealed that an increase in barometric 

pressure relative to the previous night led to a higher proportion of birds flying within the risk 

zone. At first glance this pattern may seem counterintuitive. However, it can likely be attributed 

to the atmospheric conditions that typically accompany high-pressure systems. As air descends 

within these systems, it heats up, frequently resulting in the formation of temperature inversions 

(Pennycuick 2008). These inversions can suppress vertical mixing and produce stable 
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atmospheric layers, often accompanied by a low cloud base that may act as a physical and visual 

barrier for ascending birds. The study area is frequently exposed to moist maritime air masses 

that promote persistent cloud formation throughout the year (see Tab. 3). This is supported by 

our meteorological dataset, which shows an average nightly cloud cover of approximately 6 

oktas during both migration periods. The combination of thermally induced inversions and 

substantial cloud likely encourages migrants in spring to remain in lower air layers, beneath 

these stable atmospheric boundaries. Flying below the cloud base may facilitate visual 

orientation along coastal topography, a strategy well documented by previous studies (Able 

1970, Alerstam & Pettersson 1977, Åkesson & Sandberg 1999, Horton et al. 2016b). 

Additionally, this behaviour may be reinforced by the previously discussed strong seasonal time 

constraints experienced by spring migrants, who are under pressure to reach the breeding 

grounds early to maximize their reproductive success (e.g. Kokko 1999). Under such 

conditions, birds during spring may prioritize timely departure and rapid route progression over 

energetically optimal flight altitudes, which may result in increased use of low-altitude airspace. 

In combination with the results regarding tailwind and increased low-altitude flight, it is likely 

that favourable wind assistance during spring may have predominantly occurred within lower 

atmospheric layers, thereby reinforcing the tendency of migrants to remain at low altitudes even 

under increasing barometric pressure conditions. Altogether, these findings reflect the seasonal 

trade-offs that migratory birds must navigate when selecting flight altitudes. Thus, in spring - 

in strong contrast to the patterns observed during autumn migration - the interaction between 

atmospheric structure in relation to elevated barometric pressure and time constraints appears 

to outweigh the benefits of higher-altitude flight. 

Given that rising barometric pressure is typically accompanied by rising temperatures, one 

would expect similar responses to both explanatory variables. However, our results reveal 

contrasting effects of Δ pressure and Δ temperature on flight altitude selection (Fig. 10, Tab. 7 

& 8). Previous research has shown that birds flying over land at mid-latitudes tend to avoid 

altitudes with colder air layers (Kemp et al. 2013). Early radar studies over the North Sea 

similarly suggest a “ceiling effect” of temperature, with birds ascending to heights just below 

the freezing level (Eastwood 1967, p. 222). In line with this, we observed a weak tendency of 

spring migrants to avoid colder air layers prevalent higher up, but elevating their flight height 

with increasing Δ temperature (Tab. 7). In contrast, during autumn, warmer temperatures 

relative to the previous night were associated with a markedly higher number of migrants flying 

lower, within the risk-altitude range. This positive correlation may reflect an increased 

migratory readiness observed under warm thermal conditions (as previously discussed in the 
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context of the MTR), without a simultaneous improvement in vertical flight conditions. Overall, 

it is hard to say whether the birds were reacting to pressure or temperature as such or to 

associated weather variables not captured in our data or analysis, particularly as the results for 

Δ temperature and Δ barometric air pressure showed contrasting effects. More study of apparent 

pressure and temperature responses in regard to flight height choice in coastal areas is needed 

before firm conclusions on this point can be drawn.  

Against our expectation, visibility had no influence on flight altitude choice of spring migrants, 

but did lead autumn migrants to elevate their flight heights, potentially making use of 

unobscured flight with more favourable wind conditions. Conflicting results for precipitation 

during spring migration were observed: while increasing Δ precipitation induced low-altitude 

flight, precipitation alone was a strong predictor of elevated flight height (Tab. 7). Similarly, 

more birds flew at risk heights under rainy conditions in spring, while the opposite was true for 

fall migration.  

Nevertheless, it should be mentioned that delta variables used in this study should be carefully 

considered, as they were calculated from hourly data and thus do not accurately reflect 

comparison of weather conditions between two nights, but rather between two hours, 24 hours 

apart. As atmospheric conditions such as precipitation or wind parameters are prone to rapidly 

shift at coastal sites, delta variables depicting changes in weather conditions on an hourly basis 

should be handled with caution. Variables used that typically do not show great hourly 

fluctuations are barometric pressure and air temperature. Using large-scale weather data for the 

calculation of delta variables as well as averaged nightly values - ideally originating from the 

migrants’ departure sites - would likely provide clearer insights into the relationship between 

changes in weather variables and flight altitude selection during migration (e.g. Richardson 

1990). Due to the spatiotemporal variations of meteorological parameters, the “local” weather 

likely correlates more if the wintering or stopover site is close to the study area, rather than 

further away. 

Moreover, contrary to expectations and previous studies (e.g. Eastwood 1967, p. 217), cloud 

cover showed no biologically relevant effect as an explanatory variable, on either migratory 

intensity or flight altitude for neither migratory season. This may reflect the flexibility of 

nocturnally migrating passerines, which are capable of switching between multiple orientation 

mechanisms when celestial cues are obscured (Kappeler 2022, p. 80 - 83). Furthermore, we 

found flight decisions to be predominantly influenced by wind conditions, temperature and 

pressure changes, whereas cloudiness may play a more indirect or secondary role. Another 
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possible explanation stems from the fact that the variable used to quantify cloud cover in this 

study did not capture ecologically relevant aspects such as cloud base height or thickness of the 

cloud layer. These aspects may play a critical role in birds' decisions to initiate flight and in 

determining their chosen flight altitude, as nocturnal migrants have been found to elevate their 

flight height above cloud layers or even fly within clouds (e.g. Eastwood 1967, p. 217). Finally, 

as our study area is located in close vicinity to the North Sea coast, where overall average cloud 

coverage is typically higher compared to inland locations (also reflected in the meteorological 

dataset used, Tab. 3), limited seasonal variance in cloud cover may have further obscured 

potential effects.  

Temporal variation of flight altitude 

Among temporal variables, Julian day (i.e. day of year) had the largest effect on the likelihood 

of reducing flight altitude in both seasons, depicting similar patterns (Fig. 11 c & d) but exerting 

a stronger effect during fall (Tab. 7 & 8). The effect of date was most pronounced at the 

beginning and end of both migration seasons, where the probability to fly at risk height was 

increased. This pattern may be best explained by movements of local (non-migratory) birds, 

which likely account for a substantial proportion of overall bird activity during the seasonal 

edges. However, the effect of local birds might not be the only reason for the observed pattern. 

Bradarić et al. (2024) studied flight altitudes in the same region but offshore and observed 

distinct seasonal patterns of low-altitude migration, with day of year also showing a stronger 

influence on autumn migrants. In line with their discussion, seasonal variation in low-altitude 

migration may likely reflect differences in weather-driven migration phenology between short- 

and long-distance nocturnal migrants within the region. Temporal variations in the choice of 

flight altitude may thus be explained by the species composition of migrants travelling through 

Husum. Previous studies reveal that short-distance migrants in the regions tend to rely heavily 

on wind assistance during both spring and autumn, whereas long-distance migrants are more 

influenced by temperature and precipitation patterns in autumn (Haest et al. 2018, et al. 2019). 

The species composition of birds within the order of Passeriformes (Linnaeus 1758) migrating 

through central Europe is diverse, with typical long-distance migrants being the Grasshopper 

Warbler (Locustella naevia) or the Nightingale (Luscinia megarhynchos) (Berthold et al. 1998), 

whereas the Blackbird (Turdus merula) or the Eurasian Bullbinch (Pyrrhula pyrrhula) are 

among the short-distance migrants (Berthold et al. 1998). Variation in weather conditions 

encountered at differing areas of departure may thus influence altitude selection by shaping the 

atmospheric environment experienced during the migratory flight.  
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The effect of time of night did not greatly differ between seasons and showed almost constant 

patterns throughout the night (Fig. 11). In both seasons, however, the effect exhibited a slight 

increase during the second half of the night, which may reflect birds landing shortly before 

sunrise (e.g. Newton 2008). Nevertheless, this would also imply a corresponding peak earlier 

in the night as the birds initiate their nocturnal flight, which was not observed. Consequently, 

the effect of night may also be inhibited by movement of local birds, but no firm conclusions 

can be drawn.  

In which season are migrants facing a higher collision risk? 

Interestingly, a greater number of weather variables were positively associated with low-altitude 

flight during spring compared to autumn (Tab. 7 & 8). This suggests that spring migrants are 

more prone to flying in the collision-risk altitude range under a wide array of meteorological 

conditions. This pattern likely reflects the strong seasonal selective pressure associated with 

early arrival at breeding grounds during spring, prompting birds to initiate migration even under 

suboptimal vertical conditions. In contrast, the autumn migration appears to be more selective, 

with less weather parameters encouraging low-altitude flight and a higher occurrence of 

conditions inhibiting flight in the risk zone. While CWC led to increased probability of low-

altitude flight in both seasons, crosswinds generally decreased number of migrants aloft in both 

seasons. Thus, we found CWC does not result in elevated collision risk regarding absolute 

numbers of migrants.  

Moreover, when comparing variables that positively influenced both, migration intensity and 

the likelihood of flying at risk altitudes, temperature and TWC were positively associated with 

both response variables in spring. During autumn, only temperature showed a consistent 

positive effect on both, higher overall migration intensity and an increased occurrence of low-

altitude flights. Therefore, according to our results the absolute number of migrants in the risk 

zone is highest under warm temperatures during both seasons and further elevated in spring 

under tailwind conditions.  

Limitations and future direction 

Some limitations should be considered when interpreting the results of this study. Due to the 

scope constraints of this master thesis, crosswind components were analysed as absolute values, 

without accounting for the specific direction of lateral wind. However, recent findings highlight 

the importance of crosswind direction in migratory decision-making: for instance, Werber and 

Sapir (2025) demonstrated that birds actively avoid drifting toward ecological barriers, such as 

the Mediterranean Sea, by landing when winds blow in unfavourable directions and 
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preferentially depart when winds are oriented away from such obstacles. Similar patterns have 

been reported in other studies (e.g. Horton et al. 2016b), emphasising the role of the direction 

of sidewind encountered in barrier-crossing strategies. Therefore, incorporating directional 

crosswind components may yield more insights into migratory behaviour and flight height 

choice in our study area. 

Another key limitation - shared by comparable radar-based migration studies - is the underlying 

assumption that migratory birds exhibit consistent decision-making regarding flight altitude, 

regardless of temporal or spatial context. Since we assessed wind assistance based on an 

average migration direction per season for all passerine species, the effect of tail- and crosswind 

on migration intensity and choice of flight altitude may be potentially reduced in our findings. 

This generalisation overlooks inter- and intraspecific behavioural variability and may obscure 

species-specific or individual responses to tail- and crosswind conditions. Incorporating 

species-specific or individual track directions would likely enhance our understanding of the 

effects of wind support on flight altitude selection in nocturnally migrating passerines. Lastly, 

wind data in this study were obtained from a single near-surface level (~ 28 m a.s.l., see Tab. 1 

& 2), rather than from vertically resolved atmospheric profiles. As a result, potential variation 

in wind conditions at flight-relevant altitudes could not be captured, further limiting the 

precision of wind effect estimates. 

Conclusions 

In this study, several variables were found to exert opposing effects on migratory behaviour 

between spring and autumn, reflecting the different ecological pressures shaping migration in 

each season. We found weather conditions to play a critical role in fine-tuning both departure 

decisions and flight altitudes of nocturnally migrating passerines. Our findings regarding the 

MTR of passerines are consistent with previous research, and although the isolated effect of 

precipitation on MTR appears minimal, the combined influence of multiple weather variables 

suggests a selective preference for “favourable” weather conditions. Passerines at coastal 

stopover sites, as discussed particularly along the German North Sea coast, may extend their 

stay until such optimal weather conditions arise. Further emphasising the importance of wind 

conditions in shaping migratory strategies, birds generally preferred strong tailwinds and 

avoided headwinds. With respect to flight altitude, our study provides the first evidence from 

this region that changes in atmospheric pressure significantly influence the probability of flying 

within altitudes associated with increased collision risk from wind turbines (25 - 180 m), with 

contrasting effects across seasons. These findings suggest that passerines can flexibly adjust 

their behaviour in response to dynamic atmospheric conditions such as barometric pressure and 
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wind. Overall, this work offers a detailed perspective on migratory decision-making at a mid-

latitude coastal site. Understanding these behavioural adaptations are particularly valuable for 

informing more effective and targeted wind turbine curtailment strategies, helping to balance 

the need for renewable energy development with the protection of (declining, e.g. Both et al. 

2006) migratory bird populations. 
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Figure S1: Windroses depicting both wind direction (i.e. direction the wind is coming from) and wind speed (yellow to blue) for spring migration periods of 2023 

and 2024 in Husum, Germany. Mean wind direction of the month is noted on the respective figures. Data was downloaded from the opendata.dwd.de. 

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
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Figure S2: Windroses depicting both wind direction (i.e. direction the wind is coming from) and wind speed (yellow to blue) for the autumn migration period of 2023 in Husum, 

Germany. Mean wind direction of the month is noted on the respective figures. Data was downloaded from the opendata.dwd.de. 

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
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Figure S3: Windroses depicting both wind direction (i.e. direction the wind is coming from) and wind speed (yellow to blue) for the autumn migration period of 2024 in Husum, 

Germany. Mean wind direction of the month is noted on the respective figures. Data was downloaded from the opendata.dwd.de. 

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
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Table S1: Summarised hourly air temperature and precipitation for all four seasons studied. All data is calculated from mean values of 5 DWD stations: Hattstedt, Erfde, Leck, 

Schleswig and Sankt Peter-Ording (see table 2). For precipitation, the seasonal sum was calculated, as hourly rain data is less meaningful. Distinct migratory seasons are 

differentiated by green (spring) and grey (autumn) colouring. 

Year Season 

Temperature (°C) Precipitation (mm) 

Min Mean Median Max Min Mean Median Max Sum 

2023 
Spring -2.54 6.50 6.97 16.18 0 0.11 0 2.98 78.46 

Autumn -11.06 10.72 11.36 20.76 0 0.21 0 5.06 290.27 

2024 
Spring 0.02 8.48 8.61 17.94 0 0.11 0 3.94 72.38 

Autumn -2.36 10.83 11.14 22.52 0 0.12 0 9.30 170.92 

 

 

Table S2: Summarised hourly visibility, cloudiness and barometric pressure (at ~20 m asl, see table 1 and 2) for all four seasons studied. All data was calculated from mean values 

of 3 DWD stations: Leck, Schleswig and Sankt Peter-Ording (see table 2). Cloudiness is depicted in a range from 0-8, 0 indicating no clouds, 8 indicating full cloud coverage. Distinct 

migratory seasons are differentiated by green (spring) and grey (autumn) colouring. 

 

 

Year Season 

Barometric pressure (hPa) Visibility (m) Cloudiness (0-8) 

Min Mean Median Max Min Mean Median Max Min Mean Median Max 

2023 
Spring 980.1 1012.0 1013.5 1031.8 1177 29482 28782 70813 0 5.55 7.33 8 

Autumn 970.0 1005.6 1005.8 1026.7 860 28627 28130 67317 0 6.35 7.33 8 

2024 
Spring 982.5 1008.0 1008.1 1026.7 777 28858 28488 72437 0 6.39 7.67 8 

Autumn 981.1 1013.2 1013.5 1032.6 1577 27749 28187 67893 0 5.83 7.33 8 
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Table S3: Summarised hourly wind data and estimated flight direction of nocturnally migrating passerines. Wind data was calculated from mean values of 3 DWD stations: Leck, 

Schleswig and Sankt Peter-Ording (see table 2). Estimated flight direction was derived from the radar echoes. 

 

 

 

Table S4: Top 5 high MTR nights across all altitude bins (25 – 1025 m) in descending order, for all four migratory seasons. MTR sums are rounded to full numbers for a simplified 

overview. MTRs are summed per night, with the civil twilight defining the border of day/night. 

Year Seasons 

Estimated flight 

direction (°) 
Wind direction (°) Wind speed (m/s) 

Min Mean Median Max Min Mean Median Max 

2023 
Spring 220 13.33 180.02 176.67 350.00 0.97 4.19 3.93 11.63 

Autumn 30 16.67 194.58 206.67 353.33 0.97 4.14 3.63 14.73 

2024 
Spring 220 20.00 178.51 193.33 350.00 0.93 4.17 3.98 10.73 

Autumn 30 10.00 191.7 200.00 356.7 0.80 3.61 3.20 11.03 

2023 2024 

Spring Autumn Spring Autumn 

Date Sum MTR Date Sum MTR Date Sum MTR Date Sum MTR 

21st Mar 18171 7th Oct 54347 14th Mar 15307 2nd Oct 45682 

13th Apr 11920 31st Oct 29759 6th Apr 13020 10th Oct 32385 

9th Apr 11338 15th Oct 26332 5th Apr 9116 14th Oct 25313 

22nd Apr 10209 16th Oct 18137 12th Apr 7533 27th Sep 17592 

24th Mar 9939 12th Oct 16908 13th Mar 7415 13th Oct 16798 
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Figure S4: Stacked bar showing summed MTR (n/km/h) of passerines for the entire study period (four migratory seasons) in Husum, Germany. Bars depict summed MTR of single 

nights (dark blue) and days (orange). 
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a) 

b) 

Figure S5: Posterior predictive checks for the (a) spring and (b) autumn models with MTR (n/km/h) as the response 

variable. The blue depicts the actual bird observations. For each bin, the red line indicates the 90% posterior interval 

from the model predictions, the red dot indicates the mean. In each plot, the rightmost bin (in dashed line) puts together 

all the counts above the previous bins. 
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b) 

a) 

Figure S6: Posterior predictive checks for the (a) spring and (b) autumn models with the probability of flying in the risk 

zone as the response variable. The blue depicts the actual bird observations. For each bin, the red line indicates the 

90% posterior interval from the model predictions, the red dot indicates the mean. In each plot, the rightmost bin (in 

dashed line) puts together all the counts above the previous bins. 
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b) 

a) 

Figure S7: Magnitude of fold-change in expected bird counts, per (set of) explanatory variable for (a) spring and (b) 

autumn. Dashed x-intercept at 1 depicts no fold-change. Thick dark glue segments represent the 50% CIs, thin 

segments represent the 90% CI. 
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a) 

b) 

Figure S8: Magnitude of fold-change in the odd-ratios of flying in the risk zone, per (set of) explanatory variable for 

(a) spring and (b) autumn. Dashed x-intercept at 1 depicts no fold-change. Thick dark glue segments represent the 

50% CIs, thin segments represent the 90% CI. 
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a)  

b)  

Figure S9: Plots depicting the conditional effects of the top three most influential (see Tab. 5 & 6) weather variables on the response variable (MTR, n/km/h) for (a) spring and (b) autumn 

models. 
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a)  

b)  

Figure S10: Plots depicting the conditional effects of the top three most influential (see Tab. 7 & 8) weather variables on the response variable (probability of flying in the risk zone) for (a) 

spring and (b) autumn models. 
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Figure S11: Failures and disruptions of the radar recording. Provided by the manufacturer of the radar, Swiss Birdradar 

Solution AG Winterthur, Switzerland. 




