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Wind Turbines and Coastal Recreation Demand

Abstract

We examine the impact of coastal wind turbines on coastal tourism and recreation for
residents of the northern CAMA counties in North Carolina. A combination of
telephone and web survey data are used to assess the impact of coastal wind farms on trip
behavior and site choice. Most of the respondents to our telephone survey claim to
support offshore wind energy development, and independent survey data suggest that the
observed levels of support may be indicative of the broader population in this region.
Overall, we find very little impact of coastal wind turbines on aggregate recreational
visitation; loss in consumer surplus associated with wide spread wind development in the
coastal zone is insignificant at $17 (or about 1.5%). Results suggest that NC coastal
residents are averse to wind farms in the near-shore zone; average compensating variation
for wind farms one mile from the shore is estimated at $55 per household. On average,
we find no evidence of aversion to wind farms 4 miles out in the ocean, or for wind farms
located in coastal estuaries. For all wind farm scenarios, we find evidence of preference
heterogeneity— some respondents find this appealing while others find it aversive.



Wind Turbines and Coastal Recreation Demand

Dependence on fossil fuels has induced significant and diverse risks associated with
climate change, while potentially compromising U.S. national security through reliance
on foreign providers. As global energy demand rises and fossil fuel sources decline,
energy price levels and volatility have been on the rise. These forces have created a
groundswell of pressure for further consideration and exploration of options for
renewable energy sources. In 2007, North Carolina became the first state in the
Southeast to adopt a Renewable Energy Portfolio Standard
(http://www.ncuc.commerce.state.nc.us/reps/reps.htm). Under this new law, electric
utilities in North Carolina will be required to produce up to 12.5% of their energy supply
through renewable energy resources such as wind, solar, and geothermal. Wind energy
potential is great in North Carolina, and while the upfront capital costs can be quite high,
variable costs associated with maintenance and distribution are relatively small and fairly
stable. As prices for oil, coal, and gas rise, wind energy becomes economically viable.
Wind power is also attractive due to its ability to provide long-term price stability for
electric power."

Wind power installations typically consist of a grouping of turbines mounted on
towers and accompanying transmission infrastructure. These so-called “wind farms” can
include anywhere from around a dozen to as many as one hundred (or more) turbines
placed on large contiguous tracts within the landscape. The harvesting of wind energy,
however, is not without potential drawbacks. Wind farms, with their imposing towers
and whirling turbines, can create a visual dis-amenity (Alvarez-Farizo and Hanley 2002;
Ladenburg and Dubgaard 2007), can engender negative environmental and avian impacts
(Blaszquez, de Hoces, and Lehtine 2003; Pasqualetti 2004; Bergmann, Colombo, and
Hanley 2008), and may entail social justice and equity issues if local citizens’ concerns
are not integrated into planning, placement, design, or operation (Dimitropoulos and
Kontoleon 2008). Numerous studies have employed stated preference (SP) nonmarket
valuation methods to estimate stakeholder’s economic value for wind farms (Alvarez-
Farizo and Hanley 2002; Ladenburg and Dubgaard 2007; Bergmann, Colombo, and
Hanley 2008; Koundouri, Kountouris, and Remoundou 2009; Meyerhoff, Ohl, and Hartje
2010; Krueger, Parsons, and Firestone 2011). In this context, economic value is typically
defined as individuals’ willingness to pay (WTP) to convert electricity generation to
renewable wind energy facilities or individuals’ willingness to accept (WTA)
compensation for negative impacts associated with wind turbines. The existing literature
has considered many important issues in wind farm development, including negative
impacts on flora and fauna, landscape and placement effects, impacts on environmental
quality, local economic effects, and heterogeneity in individual preferences for wind
energy development.

In a comprehensive analysis of 7,500 single-family home sales across nine U.S.
states, Hoen, et al. (2009) use revealed preference (RP) nonmarket valuation methods to
assess the impact that wind power facilities have on property values. Their analysis
focuses on properties within 10 miles of 24 wind energy facilities. Whether examining
view of or distance from wind energy facilities, their findings strongly suggest that wind

! The Wall Street Journal reports that the city of Houston is saving money on municipal power after
switching one quarter of its generation to fixed-price wind-power contracts (Johnson 2008).
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turbines have no statistically significant impact on the value of surrounding residential
properties. Nonetheless, opposition to wind energy facilities often reflects a concern over
visual disamenities. The recent controversy over the Cape Wind project in Massachusetts
provides a microcosm of the issues. Proponents of the project tout the positive
environmental impacts (less carbon emissions and improved fishery habitat) and
economic benefits of wind power for Cape Cod (CPN 2010), while opponents cite
concern over impacts on birds, potential navigation problems, and negative effects on
view amenities (Save Our Sound 2010).

In North Carolina, Massachusetts, and many other states, the potential for
negative impacts is exacerbated by the fact that some of the places with the highest wind
energy potential, such as mountaintops and coastal waters, are distinguished by their
scenic vistas. A synthesis conducted by the U.S. Minerals Management Service (2007)
indicates that the primary concern of the general public relates to visual impacts of wind
turbines on the aesthetics of the coastal environment. Diminution of scenic vistas could
affect the everyday welfare of local people and inhibit tourism and recreation.

In this paper, we examine the impact of coastal wind turbines on coastal tourism
and recreation. A combination of telephone and web survey data are used to assess the
impact of coastal wind farms on trip behavior and site choice for a sample of North
Carolina coastal tourists. Overall, we find very little impact of coastal wind turbines on
aggregate recreational visitation of residents in the northern coastal counties of North
Carolina (focusing exclusively on the northern CAMA (Coastal Area Management Act)
counties). Most of the respondents to our telephone survey claim to support offshore
wind energy development; about half indicate that wind farms could enhance coastal
views, and we see little evidence that wind farms influence visitation intensity. We
estimate that under a scenario of widespread coastal wind energy development, consumer
surplus of NC coastal residents remains virtually the same. Using an internet survey with
visual representations of coastal wind turbines, we explore the impact of wind turbine
placement on beach site selection. Results suggest that NC coastal residents are averse to
wind farms in the near-shore zone; average compensating variation for wind farms one
mile from the shore is estimated at $55 per household. We find evidence of preference
heterogeneity for other wind farm placement scenarios, but the mean effects are
statistically insignificant.

Background and Previous Literature

Given current technology, offshore wind turbines are feasible to a water depth of 30
meters. New technology exists to site wind turbines to a depth of 50 meters, while 100
meter technology is on the horizon. Considering this, offshore wind turbines are feasible
from Cape Cod, Massachusetts to Cape Hatteras, North Carolina. Kempton et al. (2007)
find that much of the energy needed in New England and the Mid-Atlantic could be
supplied with wind turbines once the 100 meter technology is developed. Offshore plants
in the east have capacity factors on par with Great Plains resources, but the cost of energy
is greater because capital costs are higher (EnerNex Corp. 2010).

The benefits and costs of wind farms in coastal North Carolina should be
considered as part of the North Carolina energy policy-making process. Wind farm
benefits include reductions in carbon emissions and improved fishery habitat. Wind farm
costs include a potential diminution in visual amenities, bird and bat mortality, possible
decreases in coastal property values, and impacts on coastal recreation and tourism. The
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magnitudes of these benefits and costs for coastal North Carolina are currently unknown.
In this paper, we focus on the projected impacts of widespread coastal wind energy
development on tourist trips and tourists’ preferences for wind turbine placement in the
coastal zone, because the literature is largely lacking analysis of these aspects of offshore
wind development.

Assessing Visual Impact

The potential for wind energy development in coastal locations has been assessed
in studies by the National Renewable Energies Laboratory (NREL), and other state,
regional, and local commercial feasibility studies. One study commissioned by the North
Carolina General Assembly concluded there is potential for utility-scale wind energy
production in North Carolina, particularly the eastern Pamlico Sound (UNC 2009.)
While this study assessed the relevant meteorological, ecological, statutory, and
infrastructure requirements, limitations, and synergies, the study did not evaluate the
potential direct or indirect aesthetic and visual impacts, particularly in the intensive
tourist economy of the Outer Banks. The potential for visual impact of wind turbines
creates possible conflict and debate, including Not in My Back Yard (NIMBY) and Not in
My Beautiful Ocean (NIMBO) effects. In the case of the Cape Wind project of
Massachusetts, visual impacts prompted assessments, including nighttime and field-of-
view of the proposed project, resulting in redesign, such as the number of turbines,
removal of daytime aviation lighting, and narrowing the field of view visible from shore,
to reduce visual effects (Rodgers and Olmsted 2008.) Although major utility-scale wind
energy projects in nearshore marine locations such as Cape Wind have elicited ardent
opposition (Phadke 2010), recent surveys in other regions with offshore potential (such as
the Mid-Atlantic) have shown far lower potential opposition or substantial support
(Firestone, et al. 2009).

Delineating technical feasibility zones is often the first step in assessing wind
farm development. In this phase, early location selection policy may elicit public
reaction or participation. Technical feasibility and public acceptability typically reduce
the potential wind energy development areas to a small set of alternative sites. In this
process, multi-criterion evaluation (MCE) techniques have been deployed to objectively
compare alternatives (Gamboa and Munda 2007). This method has been illustrated to
serve as more than a technical refinement procedure, but also as a learning process to
reveal tradeoffs and comprehensive assessments of impacts. One quantifiable parameter
of interest is the viewshed, or the zone of visual impact of the development. Viewshed
mapping is a technique that provides for the estimation of the extent of viewshed across a
landscape. Viewshed mapping can identify a binary visual basin area and has the
capability of doing so for numerous alternative sites across a landscape and for measuring
spatially coincident geographic features and summarizing impacts (e.g., land use,
population, habitats) using a Geographic Information Systems (GIS) (Mdller 2006.) In
a published comparison of visual preferences based on landscape simulations, Oh (1994)
evaluates four alternative visualizations (wireframes, surface models, combined
wireframe and surface models, and image processing simulations.) Image processing-
based simulations provided the highest realism among the methods.

Assessing Economic Value



Most existing valuation research has focused on Europe and has employed stated
preference (SP) methods to estimate WTP or WTA compensation for new wind energy
facilities (Alvarez-Farizo and Hanley 2002; Ladenburg and Dubgaard 2007; Bergmann,
Colombo, and Hanley 2008; Koundouri, Kountouris, and Remoundou 2009; Meyerhoff,
Ohl, and Hartje 2010). Exceptions include Hanley and Nevin (1999) — a comprehensive
cost benefit analyses of renewable energy alternatives in Scotland; Dimitropoulos and
Kontoleon (2008) — which employs SP methods to examine political factors which
influence local acceptance of wind farm investments in Greece; and Krueger, Parsons,
and Firestone (2011) — which estimates external costs of coastal wind turbines (at varying
distances) on inland and coastal residents in Delaware. Our analysis is most similar to
that of Ladenburg and Dubgaard (2007, 2009) and Krueger, Parsons, and Firestone
(2011).

The placement of turbines further offshore can limit their visual impact on coastal
populations, but moving the turbines into deeper water increases construction,
maintenance, and transmission costs. Recognizing these tradeoffs, Ladenburg and
Dubgaard (2007) use a choice experiment (CE) to examine the preferences of Danish
residents for locating turbines further offshore. They find positive willingness to pay
(WTP) for locating wind farms further from land (distances of 12km, 18km, and 50km,
relative to an 8km baseline). Also, they find that residents that are more likely to see
offshore wind farms — either from their residence or while engaged in recreational
boating, fishing, or beach visitation — exhibit significantly higher WTP for locating
turbines further offshore (Ladenburg and Dubgaard 2009). They express concern over
the viability of coastal recreation and tourism in the presence of offshore wind turbines.

Krueger, Parsons, and Firestone (2011) use CE to measure Delaware residents’
WTP for offshore wind farms (relative to a fossil fuel status quo). They find increasing
WTP to locate turbines further offshore (up to a distance that is too far to see), but no
significant value for specific locations along the Delaware coastline. Krueger, Parsons,
and Firestone estimate separate choice models for inland residents, those residents with
close proximity to Delaware Bay, and those residents with close proximity to the ocean.
Still, they find some evidence of heterogeneity within these groups. The distance one
lives from the coast increases the probability of selecting offshore wind farms over fossil
fuels for the inland and ocean samples, but decreases the probability for the bay sample.
Annual costs per inland Delaware household of observable offshore wind farms at a
distance of 0.9 miles, 3.6 miles, 6 miles, and 9 miles are $19, $9, $1, and $0 (all values of
WTP are relative to a distance too far to see). Corresponding costs for ocean (bay)
residents are $80, $69, $35, and $27 ($34, $11, $6, and $2), respectively. Krueger,
Parsons, and Firestone allow for royalties stemming from wind power generation to be
paid to the state of Delaware, and they find a preference for payments to green energy
and beach replenishment funds (over the general state fund). Surprisingly, they find
diminishing utility associated with increased royalty payments.

Given the lack of attention to the projected impacts of offshore wind farms on
coastal tourism, we focus on recreational beach visitation in North Carolina. We use
travel cost models and combine revealed preference (RP) and stated preference (SP)
methods in order to measure the impact of widespread coastal wind farms on the
economic value of beach visitation. The primary model is estimated with data collected



via telephone. With a sub-sample of internet data, we conduct a CE to examine the
influence of the location of wind turbines on coastal recreation site choice.

Methods

We examine the impact of offshore wind turbines on coastal tourism within the
framework of recreation demand models. We first consider the aggregate demand for
trips to the North Carolina coast under current conditions, how this demand would
change in the future if current conditions persisted, and how demand would change in the
future under a scenario in which wind turbines are located offshore at all 31 major beach
destinations in North Carolina. As such, we combine revealed (RP) and stated (SP)
preference data to analyze the impact of widespread wind farm development on the
economic value of coastal visitation. Our second application considers site choice on a
single beach trip occasion. We examine the influence of beach site characteristics, such
as the presence and location of wind farms, on site choice probabilities. We discuss the
econometric methods behind each of these analyses in turn.

Pooled Site-Frequency Demand Model
For analysis of aggregate NC beach recreation demand, we specify individual
utility for coastal visitor i during period j as u; =u(y;,z;,d;), where yjj is the number of

recreation trips to the North Carolina coast in period j, z;; represents consumption of a
numeraire good during period j, and g; is the quality of NC recreation trips during period j
(assumed to be exogenous to individual choice). Assume u(*) is quasi-concave,
bounded, and twice differentiable. The budget constraint is given by m; = yic; + 2,

where, mj; is income for individual i during period j, ¢;; is individual i’s travel cost to NC
coast — a combination of explicit (gas and vehicle wear-and-tear) and implicit
(opportunity cost of time) costs of travel to a site — during period j, and numeraire price is
normalized to unity. Constrained optimization produces the demand function for
recreation trips:

yij = f(Cij, i, my), oy
for individual i during period j.

We consider a 3x1-vector of recreation demand counts, y; = [y;j], with one
observation per individual on RP (j = 1) and the remaining observations pertaining to SP
(1 = 2, 3) under current (j = 2) or projected (j = 3) conditions. Landry and Liu (2011)
review a number of econometric models available for the analysis of stacked site-
frequency demand models. All of these approaches make use of count models for panel
data. We define E[yjj|xij] = exp(ﬂ’xij + &) = pijexp(ei), where x;; includes travel costs to NC
beaches (cjj), travel costs to substitute beach recreation sites, income(m;;), demographic
factors, and dummy variables for j =2 and j = 3. We assume exp(e;) follows a

Gamma(a ™, « ) distribution with a mean of 1 and a variance of «, producing the
following probability density function:

F(ZJ: Yi +a]a“ {ZJ:,UU +a
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with the likelihood function given as the sum of (2) over all individuals in the sample.
The model is commonly known as the multivariate Poisson-Gamma or random effects
Poisson model.” The conditional mean and variance are given by E(y;fx;j) = #; and

Var(yijlxi) = 14 +a’1(,uij)2, respectively. This model allows for positive correlation

among recreation demand across the j periods. The model has a closed-form solution and
is estimated by maximum likelihood.

With y;; measuring trips per year, annual consumer surplus (CS) for individual i
under conditions gj is the integral of expected recreation demand over travel cost, from
the current level of cost (c°) to infinity:

CS; = Lfem(ﬁ'iij + B.c)dc
B E(yij | Xij) )
B,

where f. is the NC travel cost parameter, and E 'iij represents the inner produce of

covariates and parameters other than NC travel cost. CS under conditions j is a measure
of the economic value of access to NC beaches. For j =1, we have an RP measure of
economic value under current conditions. Assuming income, travel costs, the overall
price level, and beach conditions remain constant over time, CS under j = 2 is an SP
measure of economic value associated with projected future demand under current
conditions. On the other hand, if individuals expect changes in income, travel costs,
prices, or beach conditions relative to j = 1, CS under j = 2 is an SP measure of economic
value associated with projected future demand and expected future conditions. The j =2
treatment provides a baseline for which to compare economic value under the scenario of
interest, j = 3. Our j = 3 scenario entails widespread installation of wind farms at all 31
major beach destinations along the NC coast. As both involve projected demand under
common conditions, the only induced difference between economic welfare associated
with j = 2 and j = 3 is the presence of wind farms along the NC coast (Whitehead, Haab,
and Huang 2000). Thus, CS;j; — CS;3 provides a measure of the annual loss in economic
value attributable to coastal wind farms in NC. Confidence intervals for consumer
surplus are estimated with the Krinsky-Robb Procedure (1986).

Site Choice Model

For analysis of NC beach site choices, we employ the random utility model
(RUM). We assume that individuals choose beach sites that yield the highest level of
utility. Individual i’s utility associated with a choice j among a set of choices t, denoted
Uy, is a function of site characteristics, X, and travel costs, cij. Our application of
RUM uses the method of choice experiments (CE), an SP method that allows the
researcher to select elements and levels of site characteristics xj;: and to define levels of

Cijt In order to learn about preferences for beach site characteristics. (More on this
method below.) Individual utility can be decomposed into an observable portion,

Vi (xijt,cijt;&,ﬁ), and an unobservable portion known only by the subject, &;,:

2 We also attempted to estimate the Discrete Factor Method model (Landry and Liu 2011), but the factor
loading parameters were not statistically significant.



Uy = Vi (xijt,cijt;&,ﬁ) +g, ifsite]is selected
Uit =Eior if no trip is taken (4)
where a and ,5 are unknown parameters, associated with site characteristics and travel
costs, respectively, to be estimated. The probability of individual i choosing a site j over
other choices h in set t, is thus:
ut Prl.\/ut (Xut 1 Vijt e a ﬂ) + gut >Vlht (tht ' Clht , & ﬂ) + glht ' Vh * J]

|jt Pr[glht 8ljt <Vljt (let ' Cljt ' a ﬁ) Vlht (tht’ iht? a ﬁ) Vh * J] (5)
Expression (5) is a cumulative probability distribution, indicating the likelihood that the
difference in the error terms (g;) is below the differences in the observable portions of
utility (Train 2003). Given an assumption about the distribution of the difference in
errors g(si), the choice probability can be obtained as:

Py = [ em =&y <V =V, VN = jl0(&)dz;, (6)
where I(*) equals one when the expression in brackets is true, zero otherwise.

Various choice models can be developed by making different assumptions about
the distribution g(e;) (and possibly introducing other elements of random variation). We

assume the observable portion of utility is additive: V;, =& x;, +ﬁcm. We choose to

employ the repeated mixed logit (RXL) model (Herriges and Phaneuf 2002; Train 1999).
We assume the ¢;;, are i.i.d. extreme value variates for all i, j, and t, and the choice

probabilities for any set t are conditional on an individual-specific vector ;. Including
alternative specific constants for J - 1 alternatives in the choice set, the conditional choice
probabilities are given by:

EXp ('//,dut + al ijt +ﬂcljt)
Ijt ((/j a ﬁ) 1 ’
ZeXp(‘//diht + Xy + Ciny)
h

where dij; = 1 for choice alternative j =1, ... J - 1, zero otherwise, and & =& /o and
p= ,E | o (where o is the scale parameter of the extreme value distribution). We assume
a; ~ ¢la| 1, Q), where ¢is a multivariate normal probability density with mean p and
diagonal covariance matrix Q. Since ¢, are i.i.d. for all t, the conditional probabilities

for a series of choices j = {ji,...jr } is given by the product of (7) across the T choice
occasions:

()

T e)<p(‘//,dljt+al Ijt+IHCIJt)
(l/j e HzeXp(W,d.htt + X it +ﬁcihtt)

The unconditional choice probabllltles are:

P, = [P (w.a. Bp(a| 1. Q)da (©)
The likelihood function is the product of (9) over all individuals in the sample. The

means of the y and f parameters, as well as the means and variance terms for « are
recovered from Simulated Maximum Likelihood estimates.

(8)



Compensating variation (CV) provides a measure of the incremental change in
economic value associated with changes in beach site characteristics (e.g., the presence of
wind turbines). Conditional on aj CV for a small change in site characteristic k is
defined as:

v, = AX, (aik) , (10)
-p
for each k element of the vector x. The distribution of CV is simulated by repeatedly
drawing from the posterior distribution of . Mean, median, standard deviation, and
confidence intervals can be calculated from the simulated distribution. Details on the CE
are provided in the next section.

Visualization Techniques

Terrestrial photographs were used as the image background for daylight-hours,
summertime landscape visualization. Photos were taken using a 10megapixel digital
camera and converted to Tagged Image File Format (TIFF) on a personal computer.
Next, various object models of wind turbines were evaluated for overlaying on a
superimposed image plane onto the background photograph, with inclusion of associated
haze, illumination, reflectance, and shadowing for the relevant solar geometry. The
CanVIS software program and turbine models from the NOAA Coastal Services Center
(NOAA 2010) were used to develop the prototype images. To estimate the height of the
turbine in each image, a calibration photo of the feature (reference) at a known distance
and height is needed. Equation (11) was used to calculate the appropriately scaled height
for visualizing a large utility scale 3+ MW, 80m tall turbine with 50m blade diameter:

If =2 2 r (11)

where the desired image height of feature, If, is determined from estimating Dr =
Distance from reference feature, Df = distance from feature, Ar = actual height of
reference feature, Af = actual height of feature, Ir = image height of reference feature. At
distances greater than 4-5 kilometers, the curvature of the earth is factored by estimating
the height of the feature that is obscured by the horizon and cropping the image height of
the feature.

Data
Given budget limitations, we chose to focus our study on households in the designated
“CAMA” (Coastal Area Management Act) counties of North Carolina’s Outer Banks
(OBX) region. This includes 16 counties in all — four coastal (Carteret, Hyde, Dare, and
Currituck) and twelve adjacent to the coast (Beaufort, Bertie, Camden, Chowan, Craven,
Gates, Hertford, Pamlico, Pasquotank, Perquimans, Tyrell, and Washington) as shown in
Figure 1. Our rationale for this approach is practical; we have a limited budget and want
to focus on a limited geographic region. We expect that single-day trips (with no
overnight stay) are the most common type of trip to NC beaches for households in this
region. Thus, we are more comfortable producing models of economic behavior with a
common preference structure.

The East Carolina University Center for Survey Research implemented a
telephone survey in the summer of 2009. Twenty dollar gift cards to local merchants
were used as an incentive for respondents. Contact was made with 1,162 households, of
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which 361 completed the telephone survey (for an overall response rate of 31%). Those
that completed the telephone interview were invited to participate in an internet survey
that included wind turbine visualizations. Of the 361 telephone respondents, 118
households participated in the internet survey (33% of the telephone respondents; 10% of
the households contacted). Given the differences in sample sizes, we treat the telephone
and internet surveys separately in this paper. We discuss each dataset in turn.

Telephone Data

The telephone survey collected information on respondents’ knowledge &
perceptions of climate change and opinions about and support for wind energy projects.
Data was collected on number of trips to NC beaches in the previous 12 months and how
many of these trips were single-day and overnight visits (RP data). The survey inquired
about intentions to visit NC beaches in the next 12-months, specifically eliciting the
beach the respondent would likely visit on their next trip and the overall planned number
of trips (SP data). The contingent scenarios were then described as follows:

“Now we are interested in how your beach trips might change if there are wind
farms in North Carolina.

Scenario 1: Suppose that a wind farm is built at [insert beach respondent
is most likely to visit]. The wind farm has 100 windmills, standing about 400 feet
high and 1 mile from the shore. The next time you go to the beach would you still
go to this beach, a different beach without a view of a wind farm, or would you
take no beach trip at all?

Scenario 2: Now suppose that similar wind farms are built at each of the 31
major beach towns in North Carolina. How many total beach trips would you
expect to take to North Carolina beaches in the next 12 months?”

The survey included a question to identify those that live at a NC beach and those that
own property at a NC beach. Lastly, demographic factors, such as education, income,
age, household size, marital status, and political ideology, were collected.

The first column of table 1 includes raw descriptive statistics for the 313
respondents that did not live at the beach or own beach property and made no more than
150 trips in the previous 12 months. (As we are interested in estimating models of
recreation demand within the travel cost framework, we focus on beach tourists.) The
average respondent took almost 12 trips to NC beaches in the previous 12 months, 9 of
which were day trips and 3 of which involved overnight stay. The average respondent
planned almost 15 trips for the next 12 months. Eighty-nine percent of respondents
indicated that they would maintain their planned beach visit on their next trip, with 100
wind turbines present 1 mile offshore (scenario 1, above). Over 6% indicated they
would visit a different beach (without wind turbines) under this scenario, while almost
5% indicated they would not make a beach trip. Overall trips under the contingent
scenario of widespread wind farms at all major 31 beach destinations (scenario 2, above)
is slightly over 14.
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The most common RP site visited was Nags Head (26.7%), followed by Atlantic
Beach (26.3%), Kill Devil Hills (8.4%), and Emerald Isle (7.8%). As such, travel cost for
aggregate trips to the NC coast is measured using distance to Nags Head or Atlantic
Beach, whichever is smaller. Travel costs to substitute sites are measured using distance
to Myrtle Beach, SC and Virginia Beach, VA. All travel costs are calculated using
monetary costs of $0.54 per mile (AAA 2009). Travel time costs are calculated assuming
average speed of 50 miles per hour and using 1/3 of the implicit hourly wage as a
measure of the opportunity cost of time.

Seventy-two percent of respondents expressed concern over potential climate
change (either “very concerned” or “somewhat concerned”), and 82% “strongly agreed”
or “somewhat agreed” with the statement, “most of the increase in temperature during the
past 50 years has been caused by manmade pollution”. Ninety-one percent claim to
support wind energy development, in general, and, somewhat surprisingly, about half of
respondents thought that offshore wind farms could have a positive impact on the overall
view at the beach. About 87% (84%) expressed support for wind energy development at
the nearest beach to their house (all NC beaches).

An independent survey of property owners in Kitty Hawk, NC supports the notion
of widespread support for wind energy development on the coast (91% affirmative
response) (Town of Kitty Hawk 2010). Only 9% of Kitty Hawk survey respondents
expressed concern over the unattractive appearance of wind turbines, while 7% were
concerned about obstructed scenic views. The majority of Kitty Hawk survey
respondents considered wind turbines attractive (20%) or ‘neither attractive nor
unattractive’ (65%).

Nonetheless, the demographic statistics in table 1 suggest that our sample is not
representative of the overall population in the 16 northern CAMA counties of NC. In
particular, our sample appears to be older, more educated, have greater income, and more
heavily weighted towards females than the overall population when compared to U.S.
Census data for these counties (third column of table 1.) We correct for these factors
using normalized inverse probability weights, composed of the population proportions
divided by sample proportions (where the proportion is above or below the median for
age and income level). The corrected descriptive statistics can be found in column 2 of
table 1. The weighted means exhibit lower past trips (9) and planned trips (around 9.75
under current and wind scenario conditions). The effect of wind turbines on intended
visitation for the next beach visit diminishes somewhat in the weighted sample, as 92%
indicate they would visit the same beach (with 4% visiting a different beach and 4%
engaging in some other activity). Weighted descriptive statistics indicate slightly more
concern over climate change (78%) and greater support for wind energy (92%). It is
noteworthy that the majority of respondents (44%) consider themselves politically
conservative; if our sample were biased towards supporters of wind energy, we might
expect a higher proportion of respondents that self identify as liberal or moderate.
Overall, while perspectives on wind energy appear in line with the Kitty Hawk survey
data (Town of Kitty Hawk 2010), the potential for unobserved differences between the
sample and population, in terms of climate change concern and support for wind energy
projects, remain in the data.

Internet Data
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We turn next to the internet survey data. Telephone respondents that agreed to
participate in the internet portion of the study were given a URL (via telephone and e-
mail) to access the survey, which was programmed using Perseus software. Each
respondent had a unique identification number so that data could be linked across the
survey instruments. The $20 incentive (gift card) was only provided to those that
completed both surveys, and this was made clear at the initiation of the telephone survey.

The primary component of the internet survey was a choice experiment (CE) that
included visualizations to depict conditions at NC beaches with and without wind farms
in the sounds or offshore waters. The CE examines tradeoffs that tourists make when
selecting a destination for coastal recreation, using generic beach destinations that vary
only along dimensions specified by the researcher. The dimensions of site characteristics
(the xij: matrix, above) that we chose to analyze are: i) presence/absence of wind farms in
offshore waters and distance from the shore (when present); ii) presence/absence of wind
farms in sound waters and distance from the shore (when present); iii) number of people
on the beach (beach congestion); and iv) onsite fees for parking. Travel distance, which
determines travel cost, was also included as a site attribute. The initial instructions for
the CE were as follows:

“Imagine you are deciding on a destination for a single-day beach trip (i.e. no
overnight stay). In what follows we have laid out a set of alternatives for this
decision. Each alternative is described by characteristics of the available sites.
The characteristics have a number of levels. The characteristics and possible
levels are below:”

The attributes and levels for the CE are depicted in table 2. The levels of travel
distance (“Distance from Home”) varied by proximity to the coast. For those respondents
in the four coastal counties (Carteret, Hyde, Dare, and Currituck), the possible distances
were 20, 40, and 60 miles, while for those in the twelve adjacent counties (Beaufort,
Bertie, Camden, Chowan, Craven, Gates, Hertford, Pamlico, Pasquotank, Perquimans,
Tyrell, and Washington), the possible distances were 60, 90, and 120 miles. Parking fees
varied at $0, $4, and $8 per day. Ocean and sound view, the last two site attributes, took
three levels each: unobstructed by wind turbines, turbines one mile from the shore, or
turbines 4 miles from the shore. Visualizations were developed to provide a sense of
what the ocean and sound would look like under each condition. An example of a choice
set is included in Figure 2; this figure depicts conditions for each level of visual
obstruction in the sound and on the ocean. Each visualization presents an array of wind
turbines (if applicable) along the horizon and includes a pier to provide a scale of
reference.® The instructions continued:

“We would like to know how these characteristics affect your choice of
destination for a single-day beach trip. For each choice that you make, you will
be shown three alternative sites. Pick the site that you would most like to visit.
Assume that the sites are completely the same except for the differences in
characteristics that are listed.

® We thank Laurynas Gedminas and the Renaissance Computing Institute at ECU for producing the
visualizations.
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You can also choose to make no trip (or stay home). For each choice, please
indicate which trip you would take or whether you would rather stay home than
visit one of the sites offered.

You will make six choices overall. Please treat each choice as if it is independent
of the other choices that you’ve made. That is, when making your second choice,
treat it as if it is the only choice you are making.”

Our experimental design implies 3° possible choice profiles. We choose a fractional
factorial design of 36 profiles, designed with SAS Macros %MktEx and %ChoiceEff,
which is fully efficient for a linear experimental design and from which main effects can
be estimated (Huber and Zwerina 1996; Kuhfeld 2005). The %MktBlock SAS Macro was
used to efficiently partition our 36 profiles into 2 blocks of 6 choice sets with 3 profiles
each. Each choice set also included a no-trip (stay home) option. (See Figure 2.)

Table 3 presents descriptive statistics for the internet sample. Again, we find
evidence that our sample is skewed towards older females, with greater education and
income. Given the relatively small dataset, inverse probability weights that take all of
these factors into account proved to be somewhat imprecise (leading to higher model
standard errors), so we only correct for income and education level. The weighted
descriptive statistics are presented in the second column of table 3, with U.S. Census data
in the third column for comparison. The internet data are more heavily skewed towards
adjacent (77%) rather than coastal (23%) counties. The internet sample also appears
more avid than the telephone sample, with 28 NC beach trips, on average, in the previous
12 months. Again, the majority of respondents consider themselves politically
conservative.

Results

Table 4 contains regression results for the multivariate Poisson-Gamma mixture model
(AKA Random Effects Poisson). Each model includes intercept shifters and own-price
interaction terms for the SP scenarios (j = 2, 3).* The first column presents results for the
raw data, and the second column presents results for the weighted data. Results indicate
statistically significant and negative own-price effects, and responsiveness to price is
greater under the SP scenarios. Substitute price coefficients are positive and statistically
significant in both models, while the income coefficients are negative and significant.
The negative age coefficient for the weighted model indicates an inverse relationship
between beach recreation demand and age. Gender and education coefficients are not
statistically significant in either model. The SP intercept shifters are statistically
significant and indicate an upward shift of the demand function under both SP scenarios.
The parameter for SP demand under current conditions is greater than the parameter for
SP demand under the wind scenario for the raw data model, while the opposite pattern
holds for the weighted data. The alpha dispersion parameter is statistically significant in
each model.

* Likelihood ratio tests support the inclusion of own-price-SP interaction parameters: Xz(dfzz) =44.70 for the
raw data and y*r=) = 24.16 for the weighted data; both p-values are less than 0.0001.
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Table 5 presents conditional expectations of demand and elasticity & welfare
estimates. Measures of expected demand consistently exceed the raw moments (as
expected given the functional form). But, following the raw data, demand appears to
diminish slightly for the SP wind scenario relative to the SP baseline for the raw data
model, while SP demand is virtually the same for the two SP scenarios for the weighted
model. Price elasticity of demand for trips to North Carolina beaches is -1.4 to -1.9,
indicating somewhat high responsiveness of recreation demand to changes in travel cost.
Estimates of price elasticity derived from SP data indicate greater responsiveness, -1.6 to
-2.2. Cross-price elasticity for trips to Myrtle Beach (Virginia Beach) is around 1.8 (1.07
to 1.31), and the income elasticity is negative (-0.25 to -0.32) indicating beach recreation
is an inferior good.

Annual consumer surplus (CS) is calculated via equation (3) using sample
enumeration, and confidence intervals are produced by the Krinsky-Robb bootstrapping
procedure. CS from the RP data is estimated at $1456 per household, per year for the
raw data or $1082 for the weighted data; these correspond with welfare estimates of $113
per trip for the raw data model and $94 per trip for the weighted data model. CS for the
projected demand (SP data) under current conditions is $1636 per household, per year for
the raw data or $1068 for the weighted data. Notably, the raw data model indicates
greater stated intensity of expected visitation and higher economic value under current
resource quality conditions. The weighted model, however, indicates greater stated
visitation, but slightly lower overall economic value. The lower value reflects more price
responsive (elastic) demand (as the price coefficient is present in the denominator of (3)).
The change in demand and economic value across RP and SP data associated with current
resource conditions may indicate expected changes in income or price levels or could
indicate hypothetical bias — a possible lack of reliability inherent in data on projected
behavior. In any event, SP demand under current conditions provides a baseline against
which we can compare behavior under the wind farm scenario (wind farms at all 31
major beach destinations in North Carolina). Annual CS for the wind scenario is $1540
per household for the raw data or $1051 per household for the weighted data. The wind
scenario welfare point estimate for the raw data is $96 (5.8%) below the baseline, but
only $17 (1.5%) below for the weighted model.

We turn next to results for the Choice Experiment (CE). The parameters of the
choice model are estimated using Simulated Maximum Likelihood using 1500 Halton
draws at the individual level. We ‘burn’ the first 20 draws in order to reduce the
correlation between the Halton sequences for each random parameter. The parameter
estimates are displayed in table 6. The first column presents results for the raw data,
while the second column presents results for the weighted model.

For both models, the no-trip option has a large negative coefficient, indicating a
loss in utility relative to the trip alternatives. Dummy variables for trip alternatives A and
B are not statistically significant for the raw data, but are significant in the weighted
model; the excluded category is trip alternative C. For the weighted model, findings
suggest some sort of ordering effect in the data — respondents in the weighted model were
more likely to choose the first or second alternative over the third. This could be
evidence of bias stemming from fatigue due to respondents making repeated choices, as
profile ordering is orthogonal to site attributes by design. The travel cost and parking
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cost parameters are negative and statistically significant in each model. The parking cost
parameters are an order of magnitude larger than the travel cost parameters.

The coefficients for site characteristics (level of beach congestion and the
presence of wind turbines in the sound or ocean (at varying distances)) were assumed to
follow a multivariate normal distribution with diagonal covariance matrix. Dummy
variables are included for medium and high beach congestion, with low congestion as the
excluded category. The mean parameter for medium congestion is not statistically
significant in either model. The mean parameter for high congestion, however, is
negative and statistically significant in the raw data model (negative and not statistically
significant for the weighted data). This indicates that high beach congestion can decrease
the probability of site visitation. The standard deviation parameters for site congestion
are generally estimated with precision and tend to be rather large.® We construe this as
evidence of heterogeneity of preferences for beach congestion.

Dummy variables are included for wind turbine scenarios: turbines in the ocean, 1
mile out; turbines in the ocean, 4 miles out; turbines in the sound, 1 mile out; and turbines
in the sound, 4 miles out. The excluded categories are ‘no wind turbines in the ocean’
and ‘no wind turbines in the sound’. Only the coefficient for ‘ocean wind turbine, 1 mile
out’ is statistically significant. The mean parameter for one-mile-ocean is negative and
statistically significant in each model, indicating a reduction in site utility when wind
turbines are located in close proximity to the beach on the ocean side. The mean
parameters for other wind turbine scenarios are positive (with the exception of sound
placement, 1 mile out, in the weighted model), but not statistically significant. The
standard deviation parameters for wind farm location are precisely estimated and indicate
significant variability in preferences for placement of wind turbines.

Estimates of compensating variation are presented in table 7. Compensating
variation for not taking a trip is $270 ($341) for the weighted (raw) model. We interpret
this as average value of a hypothetical beach trip in our choice experiment.
Compensating variation for a $1 increase in the onsite parking fee is $10 to $12. This
result likely reflects the widespread lack of paid parking on the Outer Banks of North
Carolina and a strong preference for this status quo. The result indicates that the average
beach visitor is willing to drive a significant distance (incurring additional travel cost) to
avoid beach parking fees.

Willingness-to-pay to avoid moderate congestion is around $21 for the raw data
model, but negative for the weighted data model (-$6). The modest negative value
indicates a slight preference, on average, for moderate levels of beach congestion.
Willingness-to-pay to avoid high congestion is $105 for the raw data model and $32 for
the weighted model. Confidence intervals for these welfare estimates (and those
associated with wind turbines, discussed below) are estimated using the standard
deviation parameters associated with the multivariate normal mixing distribution (rather
than the standard error of the mean coefficient). As such, there is much larger variability
in the confidence intervals. For willingness-to-pay to avoid congestion, in all cases there
is significant variability in utility parameters. The magnitudes of the estimated standard
deviations are rather large relative to the means, indicating significant heterogeneity of
congestion preferences among the sampled population.

® Standard tests for statistical significance of standard deviation parameters are biased because the null
hypothesis is on the boundary of the parameter space.
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Compensating variation for the presence of wind turbines one mile off the beach
is $55 ($102) for the weighted (raw) data model. The estimated standard deviations
imply significant variability in the aversion to this placement scenario. Point estimates
for the other wind turbine scenarios tend to be smaller in magnitude and highly variable
(reflecting low statistical significance of the mean parameters and relatively large
standard deviations).

Discussion

Overall, we find little impact of offshore/sound wind turbines on recreational visitation of
residents in the northern CAMA counties of North Carolina. Respondents to the
telephone survey took around 9 trips to North Carolina beaches in the previous 12-
monthsl, plan to take almost 10 trips in the next year, and will take approximately the
same number of trips if wind turbines were built at each of the 31 major beach towns in
North Carolina. Hanley and Nevin (1999) find similar results for the installation of wind
turbines on a rural estate in Scotland; none of their respondents indicated that they would
avoid the estate entirely if there was a wind farm, and over 90% indicated that the wind
farm would have no effect on future trips.

The average planned trips masks individual level variation in our data, however.
While some respondents indicated that they would take less trips under the wind farm
scenario, others indicated that they would increase trips under this scenario.
Approximately half of the respondents “strongly agreed” or “somewhat agreed” that wind
turbines could have a positive impact on the overall view at the beach. The overall
insensitivity of aggregate recreation demand to our contingent wind farm scenario could
be evidence of sample selection bias, as the effect persists with inverse probability
weights to correct for non-response bias. In particular, we are concerned that our sample
may be skewed towards individuals that support wind farms. We note, however, that the
majority of respondents (44%) self-identify as politically conservative, rather than liberal
(13%), moderate (19%), or ‘other’ (22%). If our telephone sample were skewed towards
wind energy supporters, we might expect a higher proportion of liberals and moderates in
the sample (though our sample still could be skewed relative to population proportions).
Also, an independent survey of Kitty Hawk residents reveals similar patterns of support
for wind energy development (Kitty Hawk 2010).

Regression results for annual aggregate NC beach demand indicate price elasticity
that increases (becomes more elastic) under the SP scenarios. The increasing sensitivity
to travel cost is at odds with standard conjecture regarding hypothetical bias, which
would suggest less sensitivity to price in SP measures. This could be construed as
evidence of the perceived validity of our SP scenarios, and may also reflect poor
macroeconomic outlook that induces greater price sensitivity among respondents. NC
beach demand in the northern CAMA counties is sensitive to travel costs to both Virginia
Beach, VA and Myrtle Beach, SC, with both substitute site travel costs increasing
demand for NC beach visitation, ceteris paribus. Results suggest that demand is
decreasing in age and that NC beach trips are an inferior good.

Consumer surplus (CS) estimates for NC beach trips are about $1082 per year for
our preferred model (weighted for non-response bias), or around $94 per trip. Most of
the respondents in our dataset took day trips to the beach, so the per-trip estimate
primarily applies to a single beach day. This is similar to previous results in the literature
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(Bin et al. 2005; Whitehead et al. 2008; Lew and Larson 2008). Projected future CS
under current conditions is slightly lower at $1068 per year, which is reduced to $1051
under the wind scenario. The $17 loss in CS is slightly more than 1% of the SP baseline.
This suggests very small (if not inconsequential) costs associated with the installation of
wind energy facilities at all major North Carolina beach destinations.

While this result is encouraging for the economic viability of offshore wind in
North Carolina, we bring attention to the important caveat that our sample only includes
residents from the coastal region of North Carolina. Most of these residents make day
trips to the beach, and thus create less economic impact per trip. Moreover, this
population has very limited substitution possibilities relative to those that travel greater
distances for beach recreation. Tourists from the Mid-Atlantic, Northeast, and Midwest
regions of the U.S. often travel significant distances to access warm water beaches. This
population is much more likely to spend a week or more onsite, thus creating greater
economic impact. Also, this population has a larger set of viable alternatives for beach
recreation. If these coastal tourists are averse to wind farms and recognize alternative
sites that do not have visible turbines, we might expect a greater diminution in tourism in
coastal North Carolina. The impact of offshore wind turbines on recreation decisions of
this group of tourists remains an important topic for future research.

Having wind turbines at every major beach destination is a somewhat drastic
scenario given current tentative plans for limited development of offshore wind energy.
By exploring this scenario, we attain a sense of the impacts of what we might construe as
a worst-case scenario for coastal recreation and tourism. Under this characterization, the
cost estimates derived can be construed as an upper bound on the likely costs. Our SP
scenario, however, does not explore the relationship between turbine placement (i.e.
location, offshore or in the sounds, and distance from the shore) and recreation behavior.
To this end, we gathered additional internet data that made use of visual depictions of
offshore wind turbines (a capability that was not possible with the telephone instrument).
Recent research indicates that visual representations can be effectively integrated within
choice experiments and that visual attributes perform better, in terms of reducing biases,
than numerical representations of visual phenomena (Bateman et al. 2006).

Our choice experiment (CE) examines the impact of wind farms, offshore and
located in the sound, on beach site choice. In each trip profile, offshore conditions are
either free of wind farms, wind farms can be seen 1 mile from the shore, or wind farms
can be seen 4 miles from the shore. Conditions in the sound receive a similar treatment:
either the sound is free of wind farms, wind farms can be seen a mile from the shore, or 4
miles from the shore. Offshore and sound conditions are treated independently in the CE.
The experiment is designed so that these two trip attributes are orthogonal, and thus both
offshore and sound conditions can be evaluated independently. Each trip profile also
includes travel distance to the beach site, beach congestion, and parking fees.
Participants in the CE evaluated six choice sets which were composed of three trip
profiles and included a no-trip option.

Results from the mixed logit model indicate that parking fees and travel costs
both have a negative impact on site choice, with the parking fee parameter differing from
the travel cost parameter by an order of magnitude. Compensating variation for a $1
increase in parking fee is around $10 to $12, indicating that beach visitors will incur
greater travel cost in order to avoid parking fees. This could suggest that there is some
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utility in travel to the beach that is not being accounted for in our travel cost measure, or
may be indicative of a strong negative disposition towards beach parking fees in North
Carolina. The latter interpretation could reflect a strong preference for the status quo
conditions on the Outer Banks in which parking fees are rare.

The coefficients for beach congestion and the presence of wind turbines were
assumed to follow a multivariate normal distribution with diagonal covariance matrix.
We find some evidence that high beach congestion reduced the probability of site
selection, but standard deviations of the congestion parameters were generally large,
indicating significant heterogeneity in utility associated congestion. Willingness-to-pay to
avoid high congestion is $105 for the raw data model (but statistically insignificant for
the weighted model).

Offshore wind farms one mile from the shore induce a significant and negative
mean utility effect on beach visitors (relative to the excluded category of no wind
turbines offshore), while the mean effects of other placement options are not statistically
significant. Compensating variation for wind farms one mile from the shore is $55.
Given the large estimated standard deviation, the 95% confidence interval of
compensating variation is -$71.97 to $177.17. If, however, we use the standard error of
the mean effect to estimate the 95% confidence interval, the range does not include
negative values. Thus, the choice experiment data indicate that beach visitors from the
northern CAMA counties in North Carolina are aversive to ocean wind farms in close
proximity to the beach, and the compensating variation for the presence of wind farms is
large relative to the average value of a beach visit (around $94). For ocean wind farms
further out (4 miles) and for wind farms located in the sounds, however, we do not find a
statistically significant effect. For all scenarios the standard deviation of the wind farm
utility effect is large, indicating significant heterogeneity within the sample. Overall, our
results suggest that the installation of wind farms in the sounds of North Carolina’s
coastal region or far out in the ocean will have the no appreciable effect on recreation and
tourism. Nonetheless, the caveat that we are focusing on coastal NC residents has
gravity. More research on other types of visitors is needed to explore whether the pattern
of results we find can be interpreted more broadly.

Conclusions

The push towards renewable energy sources raises many important questions about the
economic viability of alternative energy sources and the external effects of alternative
energy development. Wind energy is a promising prospect for many parts of the U.S.
Wind turbines, however, can create a visual dis-amenity that may affect property values,
local residents, tourist behavior, or other factors. From a practical perspective, this dis-
amenity can create a significant dilemma, as areas with greatest wind energy potential are
often those with scenic vistas (mountain ridges and coastal landscapes).

We use a combination of telephone and web survey data to assess the impacts of
coastal wind farms on trip behavior and site choice, focusing on residents in the northern
CAMA counties of North Carolina (adjacent to North Carolina’s Outer Banks). Overall,
we find little impact of widespread coastal wind energy development on aggregate
recreational visitation. Most telephone survey respondents (92%) claim to support
offshore wind energy development, and over half (60%) indicate that wind farms could
have a positive impact on the overall view at the beach. Further, we see little evidence of
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impact on trip-taking. The average household made about 9 trips to North Carolina
beaches in the previous 12-months, planned to take almost 10 trips in the next year, and
would take approximately the same number of trips if wind turbines were built at each of
the 31 major beach towns in North Carolina. Accordingly, we estimate that lost
consumer surplus under the wind energy scenario is about $17, or 1.5% per year.

Our internet survey employs visual representations of coastal wind turbines to
examine the effect of wind turbine placement on beach site selection. We find evidence
that NC coastal residents are averse to wind farms in the near-shore zone; average
compensating variation for wind farms one mile from the shore is estimated at $55 per
household. For all wind farm scenarios, we find evidence of preference heterogeneity —
some respondents find the scenario appealing while others find it aversive. For wind
farms located further out in the ocean or located in the sounds we find no evidence of
negative impacts on recreation visitation, on average. Future research that focuses on
local residents could explore the extent to which “place theory” influences acceptability
of what some may considerable undesirable land uses (Devine-Wright 2005).
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Table 1: Descriptive Statistics for Telephone Survey Data

Variable Definition Obs Raw | Weight | Census
t_tripsl Total trips to NC beaches in previous 12- | 312 11.81 9.09
months (RP) (18.08) | (14.74)
d_tripsl Single-day trips to NC beaches in 313 8.57 7.28
previous 12-months (RP) (16.36) | (13.06)
on_tripsl Overnight trips to NC beaches in 313 3.12 1.86
previous 12-months (RP) (6.74) (5.11)
t trips2 Trips to NC beaches over next12-months | 304 | 14.76 9.76
under current conditions (SP) (40.84) | (23.85)
t_trips3 Trips to NC beaches over next12-months | 302 14.10 9.77
w/ wind farms (SP) (41.48) | (25.30)
same_beach | Respondent would visit same beach 313 0.89 0.92
under wind farm scenario (0.32) (0.27)
diff_beach Respondent would visit different beach 313 0.06 0.04
under wind farm scenario (0.24) (0.19)
no_beach Respondent would visit no beach under 313 0.05 0.04
wind farm scenario (0.21) (0.19)
concern_cc Very or somewhat concerned over 313 0.72 0.79
climate change (0.45) (0.41)
anthro_cc Strongly or somewhat agreed that most 313 0.91 0.86
recent climate change is due to manmade (0.39) (0.35)
pollution
wind_support | Strongly or somewhat support coastal 313 0.91 0.92
wind energy development (0.28) (0.27)
wind_impact | Very positive or positive impact of wind | 313 0.53 0.60
farms on view at the beach (0.50) (0.49)
wind_support | Strongly or somewhat support wind 313 0.88 0.90
_near energy development at nearest beach (0.33) (0.30)
wind_support | Strongly or somewhat support wind 313 0.84 0.86
_all energy development at all NC beaches (0.37) (0.35)
ptr Travel cost to NC beach (closest of Nags | 313 | 160.86 | 176.90
Head or Atlantic beach) (477.44) | (235.03)
MBsub_ptr Travel cost to Myrtle Beach, SC 313 | 43552 | 306.82
(444.56) | (368.31)
VBsub_ptr Travel cost to Virginia Beach, VA 313 | 262.77 | 190.76
(469.08) | (224.88)
inc Household income (in thousands) 258 | 78.80 52.00 42.2
(50.27) | (43.81)
male Male respondent 312 0.38 0.49 0.48
(0.48) (0.50)
age Respondent age 308 54.65 44.45 39.66
(15.34) | (19.68)
less_hschool | Less than High School education 313 0.03 0.30 0.21
(0.16) (0.46)
hschool High School is highest educational 313 0.24 0.29 0.32
attainment (0.43) (0.46)
some_coll Some college is highest educational 313 0.31 0.27 0.28
attainment (0.46) (0.44)
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college College or graduate school is highest 313 0.42 0.13 0.17
educational attainment (0.49) (0.34)
env_org Member of environmental organization 310 0.11 0.51
(0.31) (0.22)
liberal Respondent considers themselves 313 0.17 0.13
politically liberal (0.37) (0.33)
moderate Respondent considers themselves 313 0.30 0.19
politically moderate (0.46) (0.40)
conservative | Respondent considers themselves 313 0.37 0.44
politically conservative (0.48) (0.50)
other_poly Respondent considers themselves 313 0.15 0.22
something other than liberal, moderate, (0.36) (0.42)

or conservative

Note: Standard deviations in parentheses
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Table 2: Attributes and Levels for the Beach Site Choice Experiment

Attribute

Levels

Distance from Home - number
of one-way miles travelled to get
to the beach

“Coastal” counties: 20 miles; 40 miles; 60 miles
“Adjacent” counties: 60 miles; 90 miles; 120 miles

People on the Beach — number
of people per mile on the
surrounding beach

low (1 — 20 people per mile); moderate (20 — 80
people per mile); high (more than 80 people per mile)

Parking Fees — the amount you
have to pay to park your car

$0 per day, $4 per day, $8 per day

Ocean View

a clear view of the ocean; wind farm 1 mile out; wind
farm 4 miles out

Sound View

a clear view of the sound; wind farm 1 mile out; wind
farm 4 miles out
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Table 3: Descriptive Statistics for Internet Survey Data

Variable Definition Obs | Raw | Weight | Census
adjacent Resident of adjacent county 118 .64 7
(.48) (.42)
ocean Resident of ocean county 118 .36 23
(.48) (.42)
t tripsl Total trips to NC beaches in previous 12- 112 | 43.16 27.77
months (RP) (95.77) | (73.57)
inc Household income (in thousands) 97 88.56 63.11 | 42.25
(46.16) | (43.26)
male Male respondent 111 37 .33 0.486
(.48) (.47)
age Respondent age 109 51.38 51.96 | 39.662
(13.86) | 17.73
hschool High School is highest educational 112 13 49 0.323
attainment (.34) (.50)
some_coll Some college is highest educational 112 27 .29 0.287
attainment (.44) (.45)
college College or graduate school is highest 112 .58 .18 0.170
educational attainment (.50) (.38)
env_org Member of environmental organization 108 14 12
(:35) (:32)
liberal Respondent considers themselves 112 19 .10
politically liberal (.39) (.30)
moderate Respondent considers themselves 112 .29 .29
politically moderate (.46) (.46)
conservative | Respondent considers themselves 112 .35 44
politically conservative (.48) (.50)
other_poly Respondent considers themselves 112 14 13
something other than liberal, moderate, or (.35) (.34)
conservative

Note: Standard deviations in parentheses.
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Table 4: Random Effects Poisson Regression Model Results

Raw Data Weighted Data
Variable Coefficient Standard Error Coefficient Standard Error

ptr -0.0088*** 0.0010 -0.0107*** 0.0014
ptrxfuture -0.0012*** 0.0003 -0.0015*** 0.0004
ptrxfuture_wind | -0.0013*** 0.0003 -0.0018*** 0.0004
MBsub_ptr 0.0042*** 0.0006 0.0057*** 0.0009
VBsub_ptr 0.0050*** 0.0006 0.0056*** 0.0009
inc -0.0032* 0.0018 -0.0061*** 0.0023
male 0.1235 0.1471 0.2583 0.1655
age -0.0016 0.0050 -0.0127*** 0.0043
hschool 0.0835 0.5246 -0.1870 0.2288
some_coll 0.5190 0.5215 -0.0056 0.2327
college 0.4548 0.5208 0.1953 0.2950
future 0.3251*** 0.0287 0.2135*** 0.0399
future_wind 0.2819*** 0.0292 0.2403*** 0.0406
constant 0.4534 0.5540 1.0072*** 0.3284
alpha 1.1672%** 0.0939 0.9947*** 0.0928
observations 757 (256 individual responses) 757 (256 individual responses)
InL -2901.10 -1911.90

LRT (df) p-value

1119.14 (13) p<0.0001

1469.36 (13) p<0.0001

Note: *** - statistically significant for 1% chance of Type | error; ** - statistically
significant for 5% chance of Type | error; * - statistically significant for 10% chance of

Type | error.
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Table 5: Conditional Expected Demands, Elasticities, and Welfare Estimates

Raw Data Weighted Data
Elyilxil (RP) 12.88 11.54
E[y2|xi] (SP) 16.40 12.96
E[ys|xi] (SP_wind) 15.60 13.07
€op: OWN-price elasticity (RP) -1.41 -1.89
Eop_future: OWN-price elasticity (SP) -1.61 -2.16
Eop_future_wind: OWN-price elasticity
(SpP_win d) -1.62 -2.21
&cp_MB- Cross-price elasticity for
Mpyrtle Beach 1.83 175
€cp_VB. _cross-price elasticity for 131 107
Virginia Beach
&inc. INCOMe elasticity -0.25 -0.32
Consumer Surplus (RP) $1456.30 $1082.08
(95% confidence interval) ($1227.73 - $1784.90) ($890.49 - $1375.25)
Consumer Surplus (SP) $1635.86 $1068.41
(95% confidence interval) ($1387.86 - $1988.40) ($888.63 - $1336.75)
Consumer Surplus (SP_wind) $1539.91 $1050.70

(95% confidence interval)

($1313.48 - $1865.61)

($877.86 - $1312.05)

28




Table 6: Mixed Logit Model Results

Raw Data Weighted Data
Variable Coefficient Standard Error Variable Coefficient

Mean: no_trip | -3.7155*** 0.3448 -3.3026*** 0.5350
Mean: altA -0.1064 0.2747 0.5863*** 0.2415
Mean: altB 0.2067 0.1630 0.4491*** 0.1605
Mean: ptr -0.0109*** 0.0020 -0.0122*** 0.0029
Mean: park fee | -0.1302*** 0.0221 -0.1221*** 0.0285
Mean: -0.2166 0.1851 0.0864 0.2145
med_cong

Mean: hi_cong | -1.1583*** 0.2245 -0.4124 0.2629
Mean: oceanwl | -1.0772*** 0.2775 -0.6693* 0.3604
Mean: oceanw4 | 0.0412 0.2171 0.1933 0.3067
Mean: soundwl | 0.0177 0.1961 -0.3473 0.2759
Mean: soundw4 | 0.4484 0.2810 0.0747 0.2455
SD: med cong | 1.0398*** 0.2363 0.4439 0.3129
SD: hi_cong 1.3635*** 0.2946 0.6862*** 0. 2956
SD: oceanwl 1.6901*** 0.2914 0.9194*** 0.3460
SD: oceanw4 1.7021%** 0.2601 1.2585*** 0.3853
SD: soundw1 1.2086*** 0.2445 0.8211*** 0.2648
SD: soundw4 1.0481*** 0.2359 0.7109* 0.3670

observations

2768 profiles; 692 choices
(118 individual responses)

2768 profiles; 692 choices
(118 individual responses)

InL

-7144.634

-7148.544

LRT (df) p-value

94.61 (11) < 0.0001

98.92 (11) < 0.0001

Note: *** - statistically significant for 1% chance of Type | error; ** - statistically
significant for 5% chance of Type | error; * - statistically significant for 10% chance of

Type | error.
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Table 7: Welfare Estimates for Visualization Choice Experiment

Raw Data Weighted Data
No-trip $341.25 $270.14
($290.24, $394.22) ($196.81, $342.89)
Park_fee $11.99 $9.95
($8.59, $15.38) ($6.16, $13.93)
Medium Congestion $20.81 -$6.24
(-$138.13, $175.90) (-$67.70, $52.98)
High Congestion $104.69 $32.39
(-$91.74. $313.73) (-$59.40, $127.35)
Oceanl $102.48 $54.58
(-$160.58, $360.65) (-$71.97, $177.17)
Ocean4 -$2.24 -$18.77
(-$260.35, $254.34) (-$191.25, $147.16)
Sound1 -$1.03 $26.25
(-$186.17, $180.45) (-$82.12, $136.64)
Sound4 -$42.25 -$6.92
(-$200.49, $117.75) (-$103.39, $91.60)

Note: Confidence intervals for ‘no-trip” and ‘park fee’ are estimated using the variability
in fixed mean parameters to boot strap the mean. Confidence intervals for the other site
attributes are estimated using the mean and standard deviation parameters to simulate the
distribution of willingness-to-pay. The latter gives rise to larger confidence intervals that
reflect individual heterogeneity.
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Figure 1: Study area location.
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Figure 2: Example of Choice Set for Beach Site Choice Experiment

No
Trip
(stay

home)

Trip A

Trip B

TripC

People on the Beach: 40 - 200

People on the Beach: more than 200

People on the Beach: less than 40

Distance from home: 120 miles

Distance from home: 90 miles

Distance from home: 60 miles

Parking Fee: $0

Parking Fee: $4

Parking Fee: $8

Ocean View: 1-mile wind farms

Ocean View: 4-mile wind farms

Ocean View: no wind farms

Sound View: 4-fni|é wmdfarms

T~

Sound View:~nd wind farms
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