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A B S T R A C T

With the rapid expansion of offshore wind energy, concerns have emerged regarding its effects on marine or
ganisms. This study evaluated physiological responses of juvenile Larimichthys crocea and Paralichthys olivaceus to 
underwater noise from offshore wind farms, including pile driving and turbine operation. Oxygen consumption 
rate (OCR), osmolality, and catecholamine levels were measured. Compared to controls, L. crocea exposed to 24- 
h pile driving noise showed a significantly higher OCR (0.316 vs. 0.225 mg O2 g− 1 h− 1, p < 0.01) and elevated 
osmolality (271 vs. 224 mOsm kg− 1, p < 0.05). In contrast, P. olivaceus showed significantly lower OCR (0.105 
vs. 0.113 mg O2 g− 1 h− 1, p < 0.01). Catecholamine levels remained unchanged in both species. Notably, these 
nocturnal species exhibited heightened sensitivity to noise at night. Turbine operation noise elicited no signif
icant physiological responses. These findings emphasize species-specific responses and highlight the need to 
consider underwater noise in marine ecosystem management.

1. Introduction

With the increasing utilization of marine environments, ambient 
noise levels in the low-frequency range (below several hundred hertz), 
detectable by marine organisms, increased by approximately 19 dB re 1 
μPa between 1950 and 2007 (Frisk, 2012). Furthermore, the climate 
change induced melting of sea ice has been reported to cause a 16 dB re 1 
μPa increase in ambient noise levels in the East Siberian Sea within a 
month (Han et al., 2021). These changes are expected to accelerate in 
the future with population growth, coastal urbanization, increasing 
maritime traffic, and expanding marine resource development (Di 
Franco et al., 2020). As part of the global response to climate change and 
resource depletion, the development of renewable energy sources has 
been expanding rapidly, with offshore wind farms (OWFs) emerging as a 
key alternative (Nicholson, 2024). As of 2023, OWF installations 

generate 75.2 GW of energy, accounting for 7.4 % of the total global 
wind energy capacity (Global Wind Energy Council, 2024). In Korea, 
both pile driving and turbine operational noise generated during OWF 
development have been measured off the southwest coast, with reported 
source levels of 183–184 dB re 1 μPa2s for pile driving (Han and Choi, 
2022) and a ~20 dB increase in tonal noise near 198 Hz during turbine 
operation (Yoon et al., 2023).

However, the construction and operation of OWFs introduce various 
environmental stressors, including underwater noise (from pile driving 
and turbine operation), magnetic fields, and suspended sediments 
(Cieślewicz et al., 2025; Xu et al., 2025). Anthropogenic noise can 
disrupt marine organisms’ communication, foraging, orientation, terri
torial defense, and reproductive activities (Duarte et al., 2021; Sidda
gangaiah et al., 2024; Kim et al., 2024). It is now globally recognized as a 
major component of marine noise pollution, prompting governments 
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and research institutions to assess its environmental impacts and 
establish regulatory criteria for underwater noise (Bergström et al., 
2014; Popper et al., 2014; Southall et al., 2019). In 1998, the National 
Oceanic and Atmospheric Administration established an international 
expert panel to study the effects of underwater noise on marine mam
mals, leading to substantial research efforts in this field (Jerem and 
Mathews, 2021). However, such effects on fish remain understudied, 
despite their vast biomass in marine ecosystems and significant role as a 
food resource for humans.

Research on the effects of underwater noise on fish has focused 
primarily on behavioral responses, although physiological assessment 
represents a complementary approach (Duarte et al., 2021). As physio
logical measures can detect subtle stress responses that may not be 
evident through behavioral observation, their incorporation could 
enhance our understanding of noise impacts on fish. Physiological pa
rameters serve as critical indicators of stress in fish, encompassing 
neuroendocrine regulation, the metabolic rate, and osmoregulatory 
function (El-Dairi et al., 2024). Catecholamines, such as epinephrine and 
norepinephrine, modulate cardiovascular and respiratory processes 
under stress (Reid et al., 1998). Osmoregulation is essential for the 
maintenance of homeostasis, enabling fish to adapt to varying salinities 
(Fridman, 2020). As environmental stressors can disrupt the ionic 

balance, osmolality serves as a physiological indicator of stress re
sponses. Respiratory function is also a crucial determinant of stress, as 
oxygen consumption reflects metabolic demands and adaptive responses 
(Sopinka et al., 2016). The respiratory responses of fish to underwater 
noise have often been assessed using the dissolved oxygen (DO) con
centration (Bruintjes et al., 2016b) and/or ventilation rate as a proxy 
(Nedelec et al., 2016), but reliance on these endpoint-based measures 
may lead to the overlooking of temporal physiological adjustments. 
Given the prolonged nature of noise-induced stress, the real-time 
monitoring of the oxygen consumption rate (OCR) is essential for the 
elucidation of stress response dynamics and habituation in fish.

This study was conducted to evaluate the physiological responses of 
Larimichthys crocea and Paralichthys olivaceus, two marine fish species 
with high fishery value, to underwater noise exposure during OWF 
construction and operation. We assessed the physiological responses of 
the fish to short-term pile driving noise as well as prolonged pile driving 
and turbine operation noise. Along with our findings, we reviewed the 
effects of underwater noise, magnetic fields, and suspended sediments 
on fish metabolic rates. This study aims to provide scientific evidence on 
the physiological impacts of underwater noise on commercially impor
tant fish species, thereby supporting the development of appropriate 
assessment frameworks for OWF activities.

Fig. 1. (a) Experimental design for the monitoring of fish oxygen consumption rates under underwater noise exposure. (b) The test species (Larimichthys crocea, large 
yellow croaker and Paralichthys olivaceus, olive flounder). (c) Sound characteristics of pile driving noise (PD1 and PD2 exposures) and turbine operation noise (TO 
exposure). (d) Experimental procedure. DO, dissolved oxygen. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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2. Materials and methods

2.1. Experimental design

We modified a closed circulation chamber system developed by Chu 
et al. (2020) to monitor the physiological changes in fish exposed to 
underwater noise (Fig. 1a). The system consisted of upper, middle, and 
lower layers of chambers connected by tubing. Each chamber was 27 cm 
in diameter and 26 cm in height, with 1-cm-thick transparent acrylic 
walls, and held ~12.3 L seawater. The upper chamber was continuously 
supplied with air by a pump (YP-10A, 9 W; Jung Su Industry, Gimhae, 
South Korea). The middle chamber held the fish and was where respi
ration occurred, consuming oxygen. To recirculate seawater back into 
the upper chamber, a return pump (UP500, 50 W; HyubShin Water 
Design, Seoul, South Korea) was used in the lower chamber. Oxygen 
consumption by the fish was monitored by calculating the difference in 
DO concentrations between the upper and lower chambers. Two systems 
were used per experimental group, with two replicates. For underwater 
noise exposure, a circular tank (110 cm in diameter and 30 cm in height, 
with 1-cm-thick opaque white acrylic walls) containing freshwater was 
equipped with an underwater speaker (LL916C; Lubell Labs Inc., Co
lumbus, OH, USA). The speaker was centrally positioned, with four 
middle chambers placed around the perimeter.

2.2. Test species

Juvenile large yellow croaker (L. crocea, n = 80) and olive flounder 
(P. olivaceus, n = 80) were collected from local fish farms in South Korea 
(34◦43′N, 127◦46′E and 36◦27′N, 126◦29′E, respectively; Fig. 1b). Their 
mean total lengths were 98 ± 13 and 127 ± 20 mm and their mean wet 
weights were 16.2 ± 6.3 and 22.3 ± 4.4 g, respectively. The fish accli
mated in stock tanks (0.7 × 0.4 × 0.6 m, holding ~140 L seawater) 
under laboratory conditions (water temperature = 20 ± 1 ◦C, salinity =
35 psu, light/dark cycle = 10/14 h) for at least two weeks. To maintain 
fish fitness, individuals with diseases or significant size differences were 
regularly isolated and excluded from the experiments. We provided dry 
floating pellets once daily, except on the day before the experiment to 
ensure at least 24 h fasting. Following the experiments, which involved 
blood sample collection for biochemical analysis, the fish were hu
manely sacrificed with a 2-phenoxyethanol solution (Sigma-Aldrich, 
Saint Louis, MO, USA).

2.3. Sound characteristics

The original recording of pile driving noise from Nedwell et al. 
(2003) and onshore wind turbine generator uploaded to Freesound 
(https://freesound.org/people/HerbertBoland/sounds/114594/) were 
edited into 1-h track using Audacity 3.0.2 (https://www.audacityteam. 
org), respectively. The pile driving and turbine operation noise tracks 
were played back through the underwater speaker connected to an 
amplifier (PMP550M; Behringer, Willich, Germany), a transformer 
(AC203E; Lubell Labs Inc.), and a laptop.

The sound pressure level (SPL) was measured at 18 points at a depth 
of 15 cm in the circular tank of the middle layer using a hydrophone 
(TC4032, 5–120,000 Hz frequency range, − 170 dB re 1 V μPa− 1 

receiving sensitivity; Teledyne RESON, Slangerup, Denmark) connected 
to a preamplifier (EC6070; Teledyne RESON), with a band-pass filter 
applied in the frequency range of 100–5000 Hz. The SPL distribution in 
the tank was contoured using Surfer 8 software (Golden Software, 
Golden, CO, USA) for the visualization of spatial data (Fig. 1c). The root 
mean square sound pressure level (SPLrms) of the ambient noise was 130 
dB re 1 μPa, and this level reached 139 dB re 1 μPa during turbine 
operation noise playback. For reference, the pump was operated 
continuously for circulation, contributing to the relatively high level of 
ambient noise. The zero-to-peak sound pressure level (SPLz–p) of the pile 
driving noise playback was 179 dB re 1 μPa. Signal analysis software 

(HD-300; Rectuson, Changwon, South Korea) was used to calculate and 
analyze the SPLrms and SPLz–p values. The waveforms and power spectral 
densities of the original recordings were analyzed using the PAMGuide 
package (Merchant et al., 2015) in MATLAB (R2024b; MathWorks, 
Natick, MA, USA; Fig. S1).

2.4. Experimental procedure

The OCR of the fish was monitored over 26–27 h, depending on the 
experimental group (Fig. 1d). To stabilize the water temperature and DO 
level, the water pump (BT-10, 10 W; Chuangxing Co., Zhongshan, 
China) and return pump circulated seawater for at least 12 h after the 
experimental system had been set up. Ten fish were transferred from the 
stock tanks to the middle chambers and acclimated to the experimental 
environment for at least 4 h. The experimental groups were: 1) control 
(no additional noise playback), 2) PD1 (1 h pile driving noise playback 
followed by one additional playback at the same time the next day), 3) 
PD2 (24 h pile driving noise playback), and 4) turbine operation noise 
(TO, 24 h turbine operation noise playback). Each group was tested with 
two replicates, using two middle chambers (one chamber per replicate), 
each containing 10 fish. The sample size (n = 10 fish per replicate) was 
determined based on the experimental design of Chu et al. (2020), which 
demonstrated sufficient statistical power under comparable conditions. 
At the end of the experiment (after 26 or 27 h), the fish in each group 
were anesthetized and blood samples were collected for biochemical 
analysis.

2.5. Oxygen consumption analysis

Optical sensors (OPTOD, 0–20 mg L− 1 measurable range, 0.01 mg 
L− 1 resolution; Aqualabo, Champigny-sur-Marne, France) were installed 
in the middle of the lids of the upper and lower chambers. The DO 
concentration and water temperature were recorded every minute 
during the entire experiment using a module (RTU V2; Dongmoon ENT 
Co., Seoul, South Korea). OCRs were calculated using the method of 
Jobling (1982) (Eq. (1)): 

OCR
(
μg O2 g− 1 h− 1)

=
[(

Ci − Cf
)
× F

]/
W (1) 

where Ci and Cf are the DO concentration (mg O2 L− 1) before (i.e., upper 
chamber) and after (i.e., lower chamber) fish respiration, respectively; F 
is the flow rate (L h− 1) of the closed circulation chamber system; and W 
is the total wet weight (g) of the fish in the middle chamber. The mean 
OCR during the first hour of the OCR monitoring period was used to 
represent the baseline physiological state, and the mean OCR values for 
each experimental group are shown in Table 1.

2.6. Biochemical analysis: catecholamine and osmolality

The fish were anesthetized for 10 min in 1 L seawater containing 0.3 
mL 2-phenoxyethanol (Sigma-Aldrich). To prevent blood clotting, 1-mL 
syringes with 26-gauge needles were coated with heparin (H3149-10KU; 
Sigma-Aldrich) prior to blood sample collection. The blood was drawn 
from the caudal peduncle and centrifuged at 3000 rpm and 4 ◦C for 10 
min using a microcentrifuge (1730R; Labogene, Allerød, Denmark). The 
supernatant (plasma) was transferred into a 1-mL Eppendorf tube for the 
catecholamine and osmolality measurements. Catecholamine was 
measured using a fish catecholamine ELISA kit (MBS015865; MyBio
source, San Diego, CA, USA) and analyzed with a microplate reader 
(Infinite F Nano+; Tecan, Männedorf, Switzerland). Following the 
calibration of an osmometer (Osmomat 3000D; Gonotec, Berlin, Ger
many), 50 μL plasma was used for the osmolality measurement.

2.7. Statistical analysis

The short-term effects of pile driving noise were evaluated in the PD1 
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group over three 1-h periods before, during, and after exposure. To 
assess the effects of prolonged noise, data from a 24-h exposure period 
were compared among experimental groups. Although the control group 
was not exposed to additional noise, the same periods were evaluated for 
comparison. The Kruskal–Wallis tests were used to identify differences 
in OCR across the experimental periods, groups, and photoperiod 
(McDonald, 2014). The Mann–Whitney U test with Bonferroni correc
tion was performed for post-hoc analysis. Differences in the catechol
amine concentration and osmolality were evaluated using Student’s t- 
test for two groups and one-way analysis of variance (ANOVA) with 
Scheffé’s post hoc test for three groups (Zar, 2009). The statistical an
alyses were performed using SPSS 25.0 (IBM Corporation, Armonk, NY, 
USA; Field, 2013).

3. Results and discussion

3.1. Physiological responses of fish to short-term pile driving noise

Pile driving noise induced stress responses in large yellow croaker 
(Fig. 2a). In the first trial, the mean OCR was significantly higher during 
exposure in the PD1 group than it was before exposure in the same group 
(0.219 vs. 0.195 mg O2 g− 1 h− 1, H5,354 = 201, p < 0.01) and in the same 
period in the control group (0.219 vs. 0.211 mg O2 g− 1 h− 1, p < 0.01). 
The second trial yielded consistent results (0.311 vs. 0.288 mg O2 g− 1 

h− 1, H5,354 = 319, p < 0.01 and 0.311 vs. 0.213 mg O2 g− 1 h− 1, p < 0.01, 
respectively). In the PD1 group, the OCR did not return to pre-exposure 
level after exposure in the first trial (0.208 vs. 0.195 mg O2 g− 1 h− 1, 
H5,354 = 201, p < 0.01), but it did in the second trial (0.298 and 0.288 
mg O2 g− 1 h− 1, H5,354 = 319, p > 0.7). The catecholamine concentration 
did not differ between the control and PD1 groups (102 and 121 ng 
mL− 1, t(9) = − 1.10, p > 0.3). The osmolality was significantly higher in 
the PD1 group than in the control group (262 vs. 224 mOsm kg− 1, t(16) 
= 2.43, p < 0.05).

The response of olive flounder to pile driving noise differed from that 
of large yellow croaker (Fig. 2b). In the first trial, the mean OCR was 
significantly lower during exposure in the PD1 group than it was before 
exposure in the same group (0.135 vs. 0.140 mg O2 g− 1 h− 1, respec
tively; H5,354 = 178, p < 0.01) and in the same period in the control 
group (0.135 vs. 0.141 mg O2 g− 1 h− 1, p < 0.01). The opposite trend was 
observed in the second trial (0.107 vs. 0.103 mg O2 g− 1 h− 1, H5,354 =

329, p < 0.01 and 0.107 vs. 0.084 mg O2 g− 1 h− 1, p < 0.01, respectively). 
The catecholamine concentration did not differ between the control and 
PD1 groups (103 and 118 ng mL− 1, respectively; t(13) = − 0.73, p > 0.4). 
The osmolality was significantly lower in the PD1 group than in the 
control group (258 vs. 284 mOsm kg− 1, t(16) = − 2.59, p < 0.05).

Pile driving noise has been reported to induce acute physiological 
and behavioral changes in fish, which may recover (Bruintjes et al., 
2016a) or habituate (Neo et al., 2015) in the short term. In this study, the 
stress level of large yellow croaker remained elevated throughout the 1- 
h noise exposure period, suggesting that the physiological impact of 

noise persists during exposure. Niu et al. (2023) reported that large 
yellow croaker had strong behavioral responses to pile driving noise at 
1530 m, with the peak-to-peak SPL reaching 180.5 dB re 1 μPa (~174.5 
dB re 1 μPa SPLz–p, adjusted by subtracting 6 dB under the assumption of 
sinusoidal signals). This noise level is comparable to that used in our 
study, suggesting that farmed fish confined in sea cages, where move
ment is restricted, would be particularly vulnerable. Consistent with 
Bruintjes et al. (2016b), interspecific differences in respiration changes 
according to species-specific sensitivity to sound were observed in this 
study, highlighting the need for the species-specific investigation of 
noise effects.

Although the plasma catecholamine concentration was higher in the 
PD1 group than in the control for both species in this study, the differ
ences were not significant. Cui et al. (2024) reported that the epineph
rine level in large yellow croaker was significantly higher than in the 
control immediately after 1-h exposure to low-frequency (200, 630, and 
800 Hz) noise. These findings suggest that noise exposure initially 
triggers catecholamine secretion, but that its effect diminishes rapidly 
over time. This pattern could be attributed to the short half-life of cat
echolamines in fish blood (Rothwell et al., 2005), leading to their 
degradation during the post-exposure recovery period. As a result, the 
timing of measurement is critical for the detection of significant differ
ences, as the catecholamine level may already have returned to baseline 
by the time of sampling. Changes in osmolality showed species-specific 
responses to noise exposure, with a significant increase in large yellow 
croaker and a decrease in olive flounder, in this study. Increases in 
osmolality may be linked to elevated OCRs, as noise-induced stress leads 
to cortisol secretion (Celi et al., 2016), which enhances Na+/K+-ATPase 
activity and ion retention (Laiz-Carrión et al., 2002). In contrast, olive 
flounder likely employed an energy conservation strategy (Zeng et al., 
2019), down-regulating ion transport to reduce osmotic demands and 
metabolic expenditure. These findings highlight the species-specific 
nature of osmoregulatory responses to noise stress, and thus the need 
for tailored assessments of anthropogenic stressors in different fish 
species.

3.2. Physiological responses of fish to prolonged underwater noise

The temporal variation in the OCR differed depending on the noise 
source during prolonged (24-h) exposure (Fig. 3a). Under pile driving 
noise exposure (PD2 group), the OCR of large yellow croaker increased 
progressively, with more pronounced elevation at night; it peaked at 
0.394 mg O2 g− 1 h− 1 approximately 11.6 h after playback. By contrast, 
TO group showed temporal fluctuations similar to those of the control 
group. During the entire exposure period (1–25 h), the mean OCR in the 
PD2 group was significantly higher than that in the control group (0.225 
vs. 0.316 mg O2 g− 1 h− 1, H2,4317 = 2761, p < 0.01), with no significant 
difference from that in the TO group (0.225 and 0.224 mg O2 g− 1 h− 1, 
respectively; p > 0.9). The OCRs of olive flounder in all groups showed a 
decreasing trend over time. The mean OCR in the PD2 group was 

Table 1 
Mean oxygen consumption rate of test species in each experimental group.

Scientific name 
(Common name)

Experimental group Individuals per replicate 
(n)

Replicates 
(n)

Experimental time 
(h)

Total exposure time 
(h)

Mean OCR (mg O2 g− 1 

h− 1)

Larimichthys crocea 
(Large yellow 
croaker)

Control 10 2 27 0 0.224 ± 0.016
Pile driving noise 1 10 2 27 2 0.245 ± 0.034
Pile driving noise 2 10 2 26 24 0.313 ± 0.044
Turbine operation 
noise

10 2 26 24 0.224 ± 0.014

Paralichthys olivaceus 
(Olive flounder)

Control 10 2 27 0 0.111 ± 0.022
Pile driving noise 1 10 2 27 2 0.122 ± 0.013
Pile driving noise 2 10 2 26 24 0.106 ± 0.012
Turbine operation 
noise

10 2 26 24 0.112 ± 0.010

Abbreviation: OCR, oxygen consumption rate.

B. Kim et al.                                                                                                                                                                                                                                     Marine Pollution Bulletin 218 (2025) 118139 

4 



significantly lower than that in the control group, with no significant 
difference from that in the TO group (0.113 vs. 0.105 and 0.113 mg O2 
g− 1 h− 1, H2,4317 = 306, p < 0.01 and p > 0.9, respectively). The mean 
OCRs of large yellow croaker and olive flounder were higher during the 
dark period (3–17 h) than during the light period (0–3 and 17–26 h; 
Fig. 3b).

The substantial increases in OCR at night suggest that the impact of 
noise exposure depends on the diel rhythm of fish. Fish in the Sciaenidae 
family, commonly known as “drums” or “croakers,” were reported to 
exhibit peak spawning activity and associated vocalizations (viz., 

drumming) from evening to dawn (Holt et al., 1985; Connaughton and 
Taylor, 1995). Additionally, the small yellow croaker (Larimichthys 
polyactis, formerly Pseudosciaena polyactis) has been reported to show 
crepuscular and nocturnal feeding activity (Xue et al., 2005). Thus, the 
prioritization of conservation measures to mitigate the adverse effects of 
anthropogenic noise for species such as croakers, which depend criti
cally on acoustic signaling for reproduction—an essential determinant 
of population sustainability—is warranted. Olive flounder, previously 
documented as a nocturnal species exhibiting high activity levels and 
elevated OCRs at night (Liu et al., 1997), was more affected by nighttime 

Fig. 2. Oxygen consumption rates (OCRs), catecholamine concentrations, and osmolality in the control and pile driving noise 1 (PD1, short-term exposure) groups 
for (a) L. crocea and (b) P. olivaceus. To compare the short-term effects of pile driving noise on OCRs, 1-h means from the pre-, during-, and post-exposure periods in 
the first and second trials were analyzed.
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noise in this study.
Catecholamine concentrations did not show change significantly in 

response to underwater noise exposure in either species in this study 
(Fig. 3c). For large yellow croaker, ANOVA revealed significant differ
ences among experimental groups (control vs. PD2 vs. TO, 102 vs. 105 
vs. 67 ng mL− 1, F2,15 = 4.82, p < 0.05), but Scheffé’s post hoc test 
revealed no significant pairwise difference. For olive flounder, no sig
nificant difference was found among experimental groups (control, PD2, 
and TO, 103, 127, and 119 ng mL− 1, respectively; F2,26 = 1.20, p > 0.3). 
Osmotic responses to noise exposure differed between species (Fig. 3d). 
In large yellow croaker, the osmolarity was significantly higher in the 
PD2 group than in the control group, but did not differ significantly 
between the TO and control groups (control vs. PD2 vs. TO, 224 vs. 271 

vs. 260 mOsm kg− 1; F2,23 = 5.42, p < 0.05). In contrast, the osmolarity 
did not differ significantly among olive flounder groups (control, PD2, 
and TO, 284, 271, and 288 mOsm kg− 1, respectively; F2,24 = 2.52, p >
0.1). These results suggest that prolonged underwater noise exposure 
induces species-specific physiological responses, with large yellow 
croaker displaying greater osmotic sensitivity, potentially due to its 
reliance on acoustic communication, and olive flounder exhibiting a 
more stable osmotic profile.

These findings contrast with those of Wang et al. (2025), who re
ported that exposure to underwater wind turbine noise for 21 consec
utive days in a laboratory setting significantly disrupted the feeding, 
swimming velocity, and growth rate of both large yellow croaker 
(L. crocea) and blackhead seabream (Acanthopagrus schlegelii). In their 

Fig. 3. (a–b) Oxygen consumption rates (OCRs), (c) catecholamine concentrations, and (d) osmolality in the control, prolonged pile driving noise (PD2), and turbine 
operation noise (TO) groups. (b) OCR variations according to the photoperiod, analyzed using means from 10-h light and 14-h dark periods.
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study, behavioral and physiological indicators showed cumulative stress 
under continuous noise exposure. In comparison, our results from a 24-h 
experiment revealed no significant change in oxygen consumption or 
osmolality under turbine operation noise, suggesting inter-study varia
tion in noise duration, characteristics, and fish holding conditions. These 
contrasting findings emphasize the importance of exposure duration in 
shaping physiological responses. They also underscore the need for long- 
term experiments to evaluate the potential cumulative impacts of 
operational noise (Popper and Hawkins, 2019).

3.3. Effects of anthropogenic stressors on fish respiratory processes

We reviewed 15 studies in which the effects of stressors from 
anthropogenic maritime activities on fish respiratory processes (respi
ration and ventilation) were assessed (Fig. 4 and Table S1). The stressors 
were underwater noise in 10 studies (Simpson et al., 2015; Simpson 
et al., 2016; Bruintjes et al., 2016a; Bruintjes et al., 2016b; Debusschere 
et al., 2016; Nedelec et al., 2016; Radford et al., 2016; Spiga et al., 2017; 
Harding et al., 2018; Palma et al., 2019), magnetic fields in 3 studies 

(Formicki, 1992; Perkowski and Formicki, 1997; Jakubowska et al., 
2021), and suspended sediment in 2 studies (Hess et al., 2017; Chu et al., 
2020). The studies of underwater noise were allocated to impulsive 
(Fig. 4a) and continuous (Fig. 4b) sound groups, and significant respi
ratory responses were compared using SPLz–p and SPLrms units, 
respectively.

Juvenile European seabass (Dicentrarchus labrax) showed a decrease 
in the OCR (viz., respiration rate) when exposed to pile driving noise 
(SPLz–p of 210 dB re 1 μPa) near a construction site (Debusschere et al., 
2016). In playback experiments, the opercular beat rate (OBR; viz., 
ventilation rate) increased at exposure levels of 200–201 dB re 1 μPa in 
outdoor setting (Bruintjes et al., 2016a) and >167 dB re 1 μPa in indoor 
setting (Spiga et al., 2017). For larvae, increases in the ventilation rate 
were observed at 163 dB re 1 μPa for pile driving noise and 158 dB re 1 
μPa for airgun noise in indoor setting (Radford et al., 2016).

Juvenile European eel (Anguilla anguilla) showed increases in the 
respiration rate when exposed to playback of ship noise (SPLrms, 
148–149 dB re 1 μPa) in outdoor and indoor settings (Simpson et al., 
2015). Increases in the ventilation rate were observed at levels 

Fig. 4. Mini-review of the effects of underwater noise on fish respiration across indoor, outdoor, and in situ settings. (a) Impulsive sound sources, including pile 
driving and seismic airgun noise. (b) Continuous sound sources, including ship, motorboat, and drilling noise. Detailed metadata and additional information on other 
stressors (magnetic fields and suspended sediments) are provided in Table S1.
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exceeding 139–141 dB re 1 μPa in indoor setting (Bruintjes et al., 
2016a). Adult cichlid (Cynotilapia zebroides), a lake-dwelling species, 
showed increases in the respiration rate when exposed to motorboat 
noise at 127–142 dB re 1 μPa in field setting and to playback at 112–121 
dB re 1 μPa in outdoor setting (Harding et al., 2018). Analogously, the 
ventilation rate of adult long-snouted seahorse (Hippocampus guttulatus) 
increased upon exposure to motorboat noise at 112–137 dB re 1 μPa in 
field setting (Palma et al., 2019). Juvenile European seabass (D. labrax) 
had an elevated ventilation rate upon exposure to playback of drilling 
noise at 132 dB re 1 μPa in indoor setting (Spiga et al., 2017).

Taken together, these results demonstrate that increases in OBR 
serve as a consistent indicator of respiratory stress under noise exposure 
across diverse taxa. As a non-invasive and relatively simple endpoint, 
OBR measurements are advantageous in both laboratory and field 
studies; however, they do not precisely reflect the actual oxygen con
sumption rate. In contrast, our study employed a quantitative approach 
using direct OCR measurements, which, although more accurate, 
required specialized equipment and was constrained by limitations in 
experimental duration and scale. Accordingly, the selection of physio
logical endpoints should be tailored to experimental constraints and 
biological characteristics of the test species, balancing practicality with 
measurement precision.

All reviewed studies of the effects of magnetic fields and suspended 
sediments were conducted in indoor settings (Table S1). The respiration 
rate of rainbow trout (Oncorhynchus mykiss) embryos increased upon 
exposure to static magnetic fields of 5–300 mT (Perkowski and Formicki, 
1997), but did not change in larvae exposed to a 10-mT magnetic field 
for 40 days (Jakubowska et al., 2021). Larval brown trout (Salmo trutta) 
had an increased ventilation rate upon exposure to 51–70-mT magnetic 
fields (Formicki, 1992). In contrast, long-term (40-d) exposure to elec
tromagnetic fields had no significant effect on the respiration rate of 
larval rainbow trout (O. mykiss; Jakubowska et al., 2021). More recently, 
Xu et al. (2025) assessed the effects of electromagnetic fields up to 2 mT 
on large yellow croaker (L. crocea) and blackhead seabream 
(A. schlegelii), observing significant reductions in opercular movement 
alongside elevated oxidative stress and immune responses. Collectively, 
these studies suggest that while freshwater species exhibit variable 
sensitivity to strong static magnetic fields, even moderate (2 mT) elec
tromagnetic exposure may impair respiratory performance in marine 
fish, particularly under long-term or cumulative stress conditions. 
Future studies should therefore consider exposure duration and species- 
specific susceptibility when evaluating electromagnetic impacts.

OWFs generate underwater noise and electromagnetic fields, 
creating a unique scenario of co-occurring stressors. Noise from pile 
driving and turbine operation may elevate the metabolic demand and 
stress level of fish, whereas electromagnetic fields from submarine ca
bles could interfere with their orientational behaviors (Putman et al., 
2014; Hutchison et al., 2020). This combined exposure may disrupt 
migration and foraging, affecting population dynamics (Klimley et al., 
2021). With the expansion of offshore infrastructure for renewable en
ergy development, anthropogenic impacts are expected to increase, 
necessitating a greater focus on their cumulative effects.

Juvenile coral reef fish (Acanthochromis polyacanthus, Amphiprion 
melanopus, and Amphiprion percula) showed species-specific sensitivity 
to suspended sediments at concentrations of 45–180 mg L− 1 (Hess et al., 
2017). The respiration rate of juvenile olive flounder (P. olivaceus) 
increased upon exposure to sediment concentrations of 1000–4000 mg 
L− 1 (Chu et al., 2020). Coastal development projects, including OWF 
construction, port expansions, and dredging activities, frequently result 
in the simultaneous generation of underwater noise and increased sus
pended sediment levels. Gill function can be impaired by elevated 
sediment levels, necessitating increased respiratory effort (Sutherland 
and Meyer, 2007), and noise exposure simultaneously raises the meta
bolic rate, compounding physiological stress. Moreover, sediment- 
induced reductions in water clarity may exacerbate behavioral disrup
tions caused by noise, affecting fish habitat use (Wenger et al., 2011) and 

prey–predator interactions (Wenger et al., 2013). As human activity 
around coastal areas increases, the stressors affecting marine organisms 
are becoming increasingly diverse and complex. Thus, future research 
should focus on the evaluation of the combined effects of multiple 
stressors, rather than individual factors. Environmental impact assess
ments should also address synergistic interactions among various 
stressors, such as underwater noise, electromagnetic fields, and sus
pended sediments, and their cumulative effects on marine life.

4. Conclusion

In this study, the effects of underwater noise generated during OWF 
construction and operation on the oxygen consumption rate, catechol
amine level, and osmolality in fish were evaluated. Short-term pile 
driving noise elicited species-specific physiological responses in 
L. crocea and P. olivaceus, while prolonged exposure revealed diel vari
ations in OCRs, with nighttime responses being more pronounced. 
Continuous turbine operation noise did not induce significant physio
logical changes in either species. These findings address the research 
objective by demonstrating that the physiological responses of 
commercially important marine fishes vary according to noise type, 
exposure duration, and species-specific traits. We also reviewed the 
physiological effects of additional anthropogenic stressors including 
magnetic fields and suspended sediments, to provide broader ecological 
context. Given the diversity and complexity of stressors associated with 
offshore developments, future assessments should prioritize investi
gating cumulative and potentially synergistic effects. To enable effective 
assessment under field conditions, intensive laboratory-based studies 
are still required. The findings of this study also provide valuable in
sights for the addressing of policy issues related to the expansion of 
renewable energy and social challenges such as public acceptance, both 
of which are crucial for OWF development and environmental man
agement. As wind energy remains a promising and sustainable energy 
source, minimizing ecological risks during the construction phase will 
be critical. Rapid but strategically timed turbine installation alongside 
consideration of species-specific and diel physiological sensitivity may 
serve as effective mitigation strategies to reduce physiological stress in 
fish populations.
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