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ABSTRACT Renewable energy plays a key role in reducing greenhouse gas emissions. However, the
expansion of wind farms has raised concerns about risks for bird collisions. We tested different methods
used to understand whether birds’ flight occurs over wind turbines and found kernel density estimators
outperform other methods. Previous studies using kernel utilization distribution (KUD) have considered
only the 2 horizontal dimensions (2D). However, if altitude is ignored, an unrealistic depiction of the
situation may result because birds move in 3 dimensions (3D). We quantified the 3D space use of the
Griffon vulture (Gyps fulvus) in El Estrecho natural park in Tarifa (southern Spain, on the northern shore
of the Strait of Gibraltar) during 2012–2013, and, for the first time, their risk of collision with wind
turbines in an area in the south of Spain. The 2D KUD showed a substantial overlap of the birds’ flight
paths with the wind turbines in the study area, whereas the 3D kernel estimate did not show such overlap.
Our aim was to develop a new approach using 3D kernel estimation to understand the space use of soaring
birds; these are killed by collision with wind turbines more often than any other bird types in southern
Spain. We determined the probability of bird collision with an obstacle within its range. Other potential
application areas include airfields, plane flight paths, and tall buildings. © 2020 The Authors. Wildlife
Society Bulletin published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.
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Wind farms have received public and government support as a
clean source of renewable energy because they do not cause air
pollution as does the burning of fossil fuels (Stigka et al. 2014,
Yuan et al. 2015). The use of wind energy is therefore ex-
panding rapidly worldwide. The Global Wind Energy Council
reported that 2015 was another record‐breaking year for the

wind energy industry (Global Wind Energy Council 2016).
However, wind farms may be causing a large number of fatal-
ities to flying animals, affecting a large area of potential soaring‐
habitat around them (De Lucas et al. 2012, Zimmerling and
Francis 2016, Marques et al. 2020). Therefore, the expansion of
wind farms has raised concerns about their potential negative
effects on wildlife populations and associated habitat quality.
Relatively high collision fatality rates have been recorded

at several large wind farms in locations indicating that tur-
bines pose a risk, especially to large raptors and other
soaring birds (Marques et al. 2014). The Griffon vulture
(Gyps fulvus) is one of the raptor species frequently killed by
collision with wind turbines in southern Spain (Barrios and
Rodríguez 2004; De Lucas et al. 2008, 2012; Olea and
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Mateo‐Tomás 2014). For instance, Carrete et al. (2012)
found 342 dead Griffon vultures during a 10‐year period
(Jan 1998–Mar 2008) in an area of 34 wind farms with 799
turbines in the province of Cad́iz, southern Spain.
To develop efficient conservation practices, it is necessary

to know where and when a threat of collision may occur
(Wilcove 2010). The 2 most common approaches, namely
home range and utilization distribution, have been used to
depict and portray animal movements and their space use
(Rutz and Hays 2009, Kie et al. 2010, Tomkiewicz et al.

2010, Monsarrat et al. 2013). The home range is the area
“traversed by an individual [animal] in its normal activities
of food gathering, mating and caring for young” (Burt
1943:351), whereas the utilization distribution reflects the
animal’s spatial use probability density (Van Winkle 1975,
Signer et al. 2017). Recently, the home range has been
viewed as one attribute of the animal’s utilization dis-
tribution. Animal space use or home range has been quan-
tified using different methods such as minimum convex
polygon (Mohr 1947), bivariate normal method (Jennrich

Figure 1. The study area during 2012–2013 was part of the El Estrecho natural park in Tarifa (southern Spain) on the northern shore of the Strait of
Gibraltar. The Griffon vulture colony (red square) was located at an escarpment close to wind turbines (colored circles with numbers, each color represents a
group of identical turbines).
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and Turner 1969), grid square method (Siniff and Tester
1965, Macdonald et al. 1980), population utilization dis-
tribution (Ford and Krumme 1979), and kernel density
(Worton 1995). Several methods have recently been devel-
oped for the time‐explicit estimation of animal space use,
such as the dynamic Brownian bridge movement model and
bivariate Gaussian bridges (Kranstauber et al. 2012, 2014).
The kernel density estimator method has low bias, and
greater flexibility in handling complex location patterns and
in assuming location independence (Worton 1989, 1995;
Seaman and Powell 1996; Fieberg 2007; Benhamou and
Cornélis 2010).
So far, most studies estimating animal home ranges or

utilization distributions have only considered the 2 hori-
zontal dimensions (Katajisto and Moilanen 2006, Cagnacci
et al. 2010, Powell and Mitchell 2012, Fleming et al. 2015).
If altitude—the third dimension—is neglected, an un-
realistic depiction of reality may be attained for species
moving in 3‐dimensional (3D) space, such as birds, bats,
fish, or climbing species (Belant et al. 2012, Monterroso
et al. 2013). However, few studies have quantified space use
patterns in 3D. For instance, Koeppl et al. (1977) presented
a model based on an ellipsoid of a particular size, shape, and
orientation in space. It was one of the first models used to
compute home range in 3D. Hindell et al. (2011) quantified
the 3D space use of 5 different species (2 mammals and
3 bird species). They highlighted that the greatest concen-
trations of locations of southern elephant seals (Mirounga
leonina) occurred within the 1,000‐m bathymetric contour.
Simpfendorfer et al. (2012) calculated the utilization dis-

tribution of European eels (Anguilla anguilla) using 2D and
3D kernel density. They emphasized that the 2D analysis
overestimated the amount of movement overlap between
individuals by 13–20%. Recently, Cooper et al. (2014)
studied the 3D space use and overlap of American redstarts
(Setophaga ruticilla) using a direct observation method for
data collection and kernel density estimator. Their study
was confined to observing focal territories throughout each
sampling period, with birds located visually and the altitude
estimated by observers. The number of locations for each
observed bird was also limited. Nevertheless, their findings
concurred with a former study on the overestimation by 2D
analysis compared with the 3D method. They also found
that American redstarts may avoid areas of overlap,
presumably to limit interactions with neighbors.
We collected locations of an individual Griffon vulture

with the use of a bio‐logger, quantified the bird’s 2D and
3D utilization distributions, and, for the first time, its
collision risk with wind turbines using kernel utilization
distribution (KUD). We demonstrate that volumetric
analysis (3D) is more informative than planar analysis (2D)
in utilization distributions. We show that neglecting the
third dimension would provide incomplete depiction of the
aerial species’ space use, whereas 3D kernel estimators
cannot only be used to improve our understanding of the
bird’s movements, but they also can be considered as a way
to determine wildlife collision risk with an obstacle in the
territory or home ranges in conservation plans.

STUDY AREA

The study area was located in the natural park of El Estrecho,
in Tarifa (southern Spain) on the northern shore of the Strait
of Gibraltar (Fig. 1; 36°07′−36°06′N, 5°45′−5°46′W). This
area was the most southern protected area in Europe. It was
a maritime–terrestrial park along 54 km of coastline in
Andalusia and an Important Bird Area (Guerra García et al.
2009, BirdLife International 2017). In this area, Ferrer et al.
(2012) reported the greatest collision rates ever published for
birds (1.33/turbine/yr) with the Griffon vulture being the
most frequently killed species (0.41 deaths/turbine/yr). There
were several Griffon vulture colonies in the area, consisting of
approximately 320 breeding pairs in total. We focused on a
colony at an escarpment running north–south, 4 km from the
Strait of Gibraltar; with approximately 65 breeding pairs
(Del Moral 2009). Our analysis was constrained to the space
used by one tagged Griffon vulture; the space encompassed
an area of 152 km2 and included 20 wind farms with 269
operational turbines (Table 1).

METHODS

We captured a Griffon vulture using a foot‐snare trap. We
attached a bio‐logger as a backpack using a harness made of
Teflon (Chemours, Wilmington, DE, USA) ribbon with
one strap fitted across each wing and another strap below
the crop (Kenward 2000). The capture and release took
place on 11 September 2010. We attached distinctive yellow
patagial markers, with a unique combination of numbers
and letters (i.e., 9FJ) to both wings. This method was
shown to be harmless to the bird and led to no detectable
changes from its normal behavior (Reading et al. 2014). Our
Griffon vulture was a male, subadult, and with a body mass
of approximately 7 kg.
We used the Bird Tracking System biologger developed at

the University of Amsterdam (Bouten et al. 2013). The key
features of this bio‐logger are solar rechargeable batteries,
light weight (45 g, <0.6% of body mass), 2‐way data‐
communication, 4‐megabyte flash memory (capable of

Table 1. Wind turbine data: model name, number, hub height, blade
length, and total height (in meters) in El Estrecho natural park in Tarifa
(southern Spain) on the northern shore of the Strait of Gibraltar, where
space‐use activity by a Griffon vulture was studied during 2012–2013.

Model
Color on
Fig. 1

No. of
turbines

Hub
height

Blade
length

Total
height

ECOTECNIA
ECO‐74

34 70 35.5 105.5

ENERCON
E‐70

20 84 33.5 117.5

GAMESA G‐80 30 67 40.0 107.0

GAMESA G‐87 11 78 42.3 120.3

MADE AE‐56 43 60 27.3 87.3

MADE AE‐59 55 60 28.8 88.8

VESTAS V‐72 4 78 36.0 114.0

VESTAS V‐80 6 78 40.0 118.0

VESTAS V‐90 66 80 44.0 124.0
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storing 60,000 Global Positioning System [GPS] fixes), and
a GPS tag with high‐resolution temporal intervals from 3 to
7,200 seconds. This bio‐logger had a biometric pressure
sensor and transferred the GPS data (with 3D coordinate
positions) to a base station. It could be programmed remotely
using the BirdTracking software (http://www.uva‐bits.nl/).
The positional and altitude mean errors were 1.13m and
1.42m as shown by a test of stationary bio‐loggers GPS in
open space (Bouten et al. 2013). We used the GPS fixes and
their properties to quantify the Griffon vulture’s 3D move-
ment to determine the overlap of air space use between the
bird and wind turbines. We retrieved the GPS fixes of our
Griffon vulture for 18months (Feb 2012–Jul 2013). These
data comprised 169,778 locations at 5‐minute intervals. The
procedures of this research, including the bird trapping and
bio‐logger tagging were conducted with permission from the
Consejería de Medio Ambiente of the Junta de Andalucía
(Regional Council for the Environment).

Data Analysis

The Griffon vulture is a diurnal species; therefore, we
considered only data points collected during daytime and
filtered out stationary locations (speed <4 m/sec). We used
the remaining 12,611 locations to quantify KUDs (50% and
95%) in 3D (Benhamou and Cornélis 2010). The multi-
variate kernel density estimate is defined by
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where x= (x1, x2, …, xd) is an independent and identically
distributed sample of a random variable X, h is the band-
width, and K is the kernel function of dimensions d.
We used a plug‐in bandwidth selector to estimate the

smoothing factor matrix. This method provides adequate
results in the utilization distribution estimation and

Figure 2. The activity space of a tagged Griffon vulture estimated by 2D kernel utilization distribution (KUD) for 17 months (Feb 2012 to Jul 2013) in
El Estrecho natural park in Tarifa (southern Spain) on the northern shore of the Strait of Gibraltar. Panel (a) demonstrates the bird’s entire activity space
use, whereas panel (b) depicts the portion where wind turbines were located (black circles represent a portion of entire turbines).
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requires less intensive computation compared with other
methods, such as least‐squares cross‐validation or the ref-
erence method. We quantified monthly 2D and 3D KUDs
(50% and 95%) for the Griffon vulture using the “ks”
package (Duong 2007) in Program R Statistical environ-
ment (version 3.2.3, www.r‐project.org, accessed 5 Sep
2016). At the location of each turbine, we extracted the
value of probability density generated by the 2D kernel
function. In a similar fashion, we extracted the density
values generated by the 3D kernel, but this time the total
height of a turbine (i.e., turbine height plus blade length)
was considered. This is the sum of the turbine’s height, the
length of a blade, and the land elevation determined using
a digital elevation model. In addition, we considered the
value for the probability density in both 2D and 3D KUD
as a proxy of the plausible collision risk. Then we used the
Mann–Whitney–Wilcoxon test to examine any significant
differences in the extracted values. In 2D and 3D KUD,
values above the third quartile (i.e., the greatest 25% of the
values) were selected as a proxy for plausible collision with

high risk. We calculated the frequency distribution of
plausible risk pertaining to the turbines to determine
which turbines might be relatively dangerous in the course
of data gathering.

RESULTS

The 2D KUD of our tagged Griffon vulture showed that
all the wind turbines were located in the core and extended
home range, where the KUD values were relatively high
(Fig. 2). Values extracted from the 2D KUD were greater
than for the 3D model at the turbine locations
(Mann–Whitney–Wilcoxon Test W = 72,351, P < 0.001).
The 3D kernel estimation of the Griffon vulture’s occur-
rence covered a large area of space use (Fig. 3): 50% and
95% KUD were estimated to be 476 km3 and 11,120 km3,
respectively (more situations related to Fig. 3 are available
in Supporting Information, available online). Values ex-
tracted from the 3D kernel estimation showed a high
probability density in the winter and early spring of 2012
and 2013. The results showed that there was no sign of

Figure 3. (a) Representation of 3D kernel utilization distribution (KUD) of a Griffon vulture for 17 months (Feb 2012 to Jul 2013) in El Estrecho natural
park in Tarifa (southern Spain) on the northern shore of the Strait of Gibraltar. The green and purple shapes indicate 50% and 95% KUDs. The digital
elevation model is presented. Panel (b) reveals that, in 3D space use, there is no overlap between the bird’s space use and wind turbines.
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collision risk in May and June in both years because the
Griffon vulture was not in the vicinity of the turbines.
However, the concentration of collision risk increased in
March and April of both years (Fig. 4).
In 3D space, just 3 turbines had a relatively high risk (i.e.,

above the third quartile) in 12 out of 17 months, whereas
7 turbines appeared to have such a risk in 2D space. The
maximum number of turbines that had a relatively high risk
in 3D and 2D space were 55 and 62, respectively (Fig. 5).
To be specific, the high risk occurred in 2 months (Feb and
Apr) for 3D and in 3 months (Feb, Apr, and Jun) for 2D
space use. Turbines located in the southern part of the study
area, in the vicinity of the Griffon vulture colony, had a

relatively high risk of collision in both the 3D and 2D
analyses (Fig. 6).

DISCUSSION

We used kernel utilization distribution (KUD), for the
first time, to understand the plausible collision risk be-
tween wind turbines and bird occurrence. Our results
demonstrate the advantage of 3D KUD for modeling 3D
space use by birds and, in particular, the comparative risk
of a bird colliding with a turbine. Although 2D analyses
are useful to summarize information on the location of
individuals (Simpfendorfer et al. 2012), volumetric anal-
yses (i.e., with altitude added as a third dimension) pro-
vide a more detailed depiction of species’ occurrence.
Using a 3D KUD, we show that the most dangerous
times and greatest‐risk turbines can be identified. This
information can be used to reduce the mortality rate
caused by bird collisions with turbines and offers wildlife
managers insights on how to minimize the probability of
such collisions (Belant et al. 2012).
To date, the probability of collision has been studied by

analyzing a range of complex factors such as the species’
flight behavior, topography, and weather (De Lucas et al.
2008). Those studies were conducted with the aim of re-
ducing the avian mortality rate at wind farms, particularly of
raptors (Barrios and Rodríguez 2004, DeVault et al. 2005,
Drewitt and Langston 2008, Tellería 2009, Bellebaum et al.
2013). However, 3D space use was not considered and we
show that including 3D space may influence results. A trial
mitigation measure was instigated by Regional Council for
the Environment in 2008–2009 that power companies se-
lectively shut down some wind turbines when raptors were
observed in their vicinity. This measure reduced the Griffon
vulture fatality rate by 50% (De Lucas et al. 2012). The trial
also demonstrated that the distribution of Griffon vulture
mortality was not uniform, which is consistent with our
results from the 3D KUD approach. Additionally, this ap-
proach can be considered in turbine selection if mechanisms
are implemented to shut down the turbines when birds are
in the vicinity.
In Europe, an environmental impact assessment (EIA) is

required prior to the construction of new wind farms. The
anticipated effects of development on the site’s bird pop-
ulations are included in the EIA (Environmental Impact
Assessment Directive 97/11/EC). Ferrer et al. (2012)
ascertained that risk assessment studies had erroneously
assumed a linear relationship between the frequency of
observed birds and fatalities. They concluded that the cor-
relation between predicted and actual fatalities can be im-
proved by changing the scale of studies and concentrating
on the location of each proposed turbine. Our findings, with
the focus on the location of the turbines, support this
conclusion and offer a new tool for performing such calcu-
lations. Specifically, the proxy of plausible collision risk per
turbine can be estimated by deriving the values generated by
3D KUD. This 3D model can assist wind farm developers
to calculate the risk of installing a turbine at a specific lo-
cation. Prior to calculating risk, preconstruction data are

Figure 4. The value of probability density extracted from 3D kernel
utilization distribution from month 1 (February 2012) to month 17 (July
2013) at the location of the wind turbines. It shows a relatively high space‐
use activity by a Griffon vulture in the winter and early spring of 2012 and
2013 in El Estrecho natural park in Tarifa (southern Spain) on the
northern shore of the Strait of Gibraltar.
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Figure 5. The total number of turbines with a relatively high risk of
plausible collision in 12 months out of the entire study period by Griffon
vulture in 2D (above) and 3D space (below) in El Estrecho natural park in
Tarifa (southern Spain) on the northern shore of the Strait of Gibraltar
during 2012–2013.

6 Wildlife Society Bulletin



needed for target species. Our 3D approach could also be
used during the postconstruction and operational phases of
wind farms, helping management to predict periods of high
risk and reduce the number of bird collisions by selectively
curtailing certain wind turbines.
We purposely used recorded movement data for a tagged

Griffon vulture rather than simulated data to depict the real
situation. Griffon vultures have similar flight and foraging

behavior (Bosè and Sarrazin 2007, Xirouchakis and
Andreou 2009, Mateo‐Tomás and Olea 2011), so these
results could be generalized to other individuals. Although
this new application of 3D KUD can be used for identifying
collision risk between obstacles and species in 3D space,
some aspects of the method need to be investigated further.
For example, more research into producing easily inter-
pretable results with confidence measures is needed.

Figure 6. Spatial distribution of wind turbines with a relatively high collision risk in 12 out of 17 months (the entire study period) for a Griffon vulture in
2D (above) and 3D (below) space use in El Estrecho natural park in Tarifa (southern Spain) on the northern shore of the Strait of Gibraltar during
2012–2013.
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In addition, spatiotemporal autocorrelation in movement
data is an important issue because this yields an under-
estimation of an individual’s space use (Fleming et al. 2015).
So far, in animal movement research, many studies have
focused on autocorrelated data in 2D, whereas 3D data
studies might well be required (Fieberg 2007, Fleming and
Calabrese 2017). We expect this new application of 3D
KUD to offer exciting opportunities for exploring the
process of volumetric analysis in animal movement research,
such as spatial autocorrelation in estimating risk and the
need to develop methods for 3D kernel density estimators.
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Additional supporting information may be found in the
online version of this article.

Figure S1. The different situations of space use of Griffon
vulture in El Estrecho natural park in Tarifa (southern
Spain) on the northern shore of the Strait of Gibraltar
during 2012–2013. The space use displayed along (a) the
X‐, Y‐ and Z‐axis, (b) X‐ and Z‐axis, and (c) Y‐ and Z‐axis,
in 3 figures. The green and purple shapes indicate 50% and
95% kernel utilization distributions (KUDs).
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