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Abstract. The integration of wind energy into the electrical grid significantly reduces
greenhouse gas emissions by displacing conventional power plants. This study presents a
novel data-driven approach to quantify the environmental value of wind energy generation
through the Marginal Displacement Factor (MDF'), expressed in kgCOsq-equivalent per
MWh. The MDF captures changes in emissions resulting from incremental variations in
wind energy generation within an energy system, while accounting for the time-dependent
fluctuations in grid emissions driven by the generation mix and demand-supply dynamics.
Using the German energy system and the offshore wind farm Wikinger as a case study,
results reveal substantial variability in the MDF and highlight the positive impact of wind
energy on grid emission reduction. Furthermore, findings demonstrate that wake steering-
based wind farm control for maximum power production can improve the environmental
value of a wind farm within the same range as the increase in energy production.

1 Introduction

The energy transition is crucial for mitigating climate change, with renewable energy sources playing a
central role in decarbonizing the electricity grid. Wind energy, in particular, is a key driver of this shift
due to its significantly lower carbon footprint compared to conventional generation technologies [1, 2].
As the energy mix becomes more diverse, including both fossil-based and renewable sources along with
storage technologies and variable demand, grid emissions fluctuate over time. These fluctuations are
directly influenced by the generation mix, which is shaped by factors such as power generation, imports
and exports, and market imbalances. Consequently, grid emissions are not constant but vary based on
supply-demand dynamics, market conditions, and power flows within the grid.

In the dynamic and interconnected energy systems of today, clean generation technologies often dis-
place other — primarily fossil fuel-based — power plants, depending on the operational state of the system.
The changes in grid greenhouse gas emissions resulting from an incremental increase in energy pro-
duced by a displacing technology is referred to as the Marginal Displacement Factor (MDF), expressed
in kilograms of carbon dioxide equivalent per megawatt-hour produced (kgCOze/MWh). Similarly, the
additional grid emissions generated per incremental increase in demand is termed the Marginal Emission
Factor (MEF), measured in the same units as MDF [2]. The determination of MEF and MDF requires the
identification of the emissions related to the generators operating at the margin, i.e., those that actively
adjust their output to maintain grid balance. To this end, several studies have applied merit order-based
approaches, primarily aiming at the estimation of the MEF. Some derived the merit order from historical
data [3, 4] or power plant activation criteria [5], while others, such as ref. [6], extended this approach to
future energy systems, requiring a detailed modeling of all power plants and their interdependencies.
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Figure 1: The environmental value of wind farm control: by changing the wind farm power output, wind
farm control can marginally alter the generation mix in the connected energy system, ultimately affecting
the total grid emissions.

Identifying the marginal generators is a highly complex and market-dependent problem, which is in-
fluenced by regulations, policies, dispatch schedules, cross-border transfers, and real-time grid conditions.
A data-driven approach offers an effective and straightforward solution, as it implicitly accounts for all
the relevant driving factors from both markets and the grid. By capturing these dynamics in a statistical
sense, a data-driven model can predict the most likely MEF and MDFs, based on the operational state
of the considered energy system. Therefore, previous research has predominantly relied on data-driven
approaches, often employing linear regression models. An early study [7] used simple regression analysis
to map system emissions to a single system state variable. Later works [2, 8] refined this approach by
incorporating additional system variables and accounting for physical limitations of power plants. Ref. [9]
further extended the linear regression approach to account for electricity imports and exports. A more
recent study [10] applied machine learning to improve the temporal resolution of MEF estimation, but
was constrained to a limited set of system state variables in a highly renewable energy system and focused
solely on the MEF. In summary, previous research has either relied on identifying the marginal genera-
tors within market-specific merit orders — which requires data that is not publicly available and involves
large physical models with numerous assumptions — or has been limited to a narrow set of system state
variables, to specific case studies, and with a primary focus on the MEF.

To address these limitations, this work introduces a data-driven approach with a general formulation to
calculate both the MEF and the MDFs for all considered generation technologies, using standard system
data often made publicly available by transmission system operators. The study focuses on the MDF of
wind energy and the effects of wind farm control (WFC) on grid emission in particular. Advancements
in WFC technologies have significantly improved the ability of wind power plants to generate and deliver
additional electricity to the grid, depending on the wind resource availability. This capability enables
the estimation of the additional displaced grid emissions attributable to WFC, thereby allowing for a
more explicit quantification of the environmental value of WFC, as visualized in Fig. 1. Once quantified,
the time-varying nature of the environmental value of WFC could be leveraged to maximize its impact
by increasing the power output of the wind farm during time periods when the grid is predominantly
supplied by higher-emission power plants. Furthermore, the environmental value of WFC could be
assessed alongside its economic value, considering fluctuating energy market conditions and effects of
WEFC on the structural health of wind turbine components, to develop a multi-objective control strategy
that balances economic and environmental sustainability. It is also possible that, in the future, the
displacement of carbon-emitting plants might be incentivized, thereby providing an additional revenue
stream. While this paper does not directly explore these aspects, the developed method and results
provide a foundation for future research on value-based WFC strategy optimization.
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2 Methodology
2.1 Time series of emissions
First, the total emissions occurring in the considered energy system are determined from time series.
In this study, the scope of an energy system is defined to correspond to the boundaries of a country.
However, the approach is more general and can be applied to regions with lower or higher granularity,
such as control areas or bilateral market zones.

Since electricity grids are characterised by a high level of interconnectivity, the total emissions F
for different operational states of an energy system at a given time ¢ depend on the emissions due to
electricity generation within the country as well as the emissions from electricity imports and exports:

Niech Nye Nne
E(t)= Y exP{ () + Y enc(®) PP () — eins(t) Y Pra?(1). (1)
k=1 nc=1 nc=1

Here, Nyecn denotes the number of generation technologies operating within the country, P/ the aggre-
gated power production from a particular generation technology k, ex the technology-specific emission
intensity, PP the electricity imported from N,. neighbouring countries, e, the average emission inten-
sity of the respective neighbouring country, P *P the electricity exported to a given neighbouring country
nc, and e;,: the average emission intensity due to production within the country under consideration.
The average emission intensity of a neighbouring country e,. at a given time instant ¢ is calculated
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where N;'¢, denotes the number of generation technology in the neighbouring country nc.

Similarly, the average emission intensity due to production within the country under consideration
eint 18 calculated as

enc(t)

(2)

fc\f;elcn ekplgen (t)
eint(t) = Nioon Dgen .
21" B

To simplify the notation, the dependency on time ¢ is omitted in the following.

(3)

2.2  Marginal displacement vector
As shown in the previous section, the time-varying overall system emissions depend on the generation
mix of the considered country as well as the imports and exports from the neighbouring countries. The
electricity supply, in turn, depends on the electricity demand within the country. Therefore, the total
system emissions E can be expressed as

E = f(p), (4)

where p is a column vector of length p containing the system state variables demand D, all various
generation technologies within the grid such as wind energy P,,, photovoltaic P;, gas, coal, nuclear, etc.,
and imports Pjy,p, and exports Py, to and from neighbouring countries:

-
B:[DanaP87---7Pimp7Pezp] (5)
Next, Principal Component Analysis (PCA) is used to reduce the dimensionality of the problem and
decouple the features by transforming them into a set of uncorrelated principal components, minimizing
interdependencies while retaining the most significant variance in the data. This can be written as

where p, s the mean of p, ensuring data centering for PCA, © is the vector of length € containing
the principal components, and T is a transformation of coordinates with dimension p x €, which is
numerically calculated using the Matlab implementation of PCA [11]. An Artificial Neural Network
(ANN) Y, described in detail in the next section, is used to map the principal components to the total
system emissions. Therefore, Eq. (4) can be rewritten as:

E=Y(@). (7)
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The changes in system emissions with respect to infinitesimal changes in the system state variables can
be determined via the partial derivative of Eq. (7), resulting in the definition of the marginal displacement

de = —0F, which writes
oY\ "
de=—| == 96.
e (6 > © (8)

The negative sign ensures that marginal displacements are positive when emissions are displaced and
negative when additional emissions are generated in the considered energy system.
Next, the grid balance constraint is introduced, ensuring that changes in demand are always met by
supply and vice versa:
v'op=n'dp=0, (9)

with v being a column vector of length p containing a value of —1 at the position occupied by demand
in vector p and 1s elsewhere, and n being the unit vector of v:

1
y:[—1,1,17...,1}T, EZTB ﬂTﬂ:l- (10-12)
p

Given an arbitrary variation dp, the corresponding variation that satisfies the grid balance constraint
writes
opt=(I- MT) p. (13)

Combining Eq. (6), (8) and (13) leads to the definition of the marginal displacement vector:
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This marginal displacement vector contains the MEF at the location of D in vector p, and the MDFs for

the respective generating technologies as well as imports and exports at their respective positions in p.
The derivatives of the emission function with respect to the principal components, noted

oY [ay oy oy ]’ 1s)
00 |00, 00,77 00e | ’
are calculated numerically using central finite differences applied to the trained ANN:

00, 2A0;

Notice that the principal components are orthogonal to each other and therefore represent independent
features. The step size AO; is determined by multiplying the relative step width w with the quantile span
between the 2.5% quantile Q2 5 and the 97.5% quantile Qg7.5 of the respective principal components:

AO; =w (Qe,97.5 — Qo,,2:5) - (17)

2.8  Artificial neural network for emission prediction
An ANN is trained to predict the grid emissions for a given set of system state variables at a specific
time. The ANN is implemented in Matlab [12] as a shallow feed-forward network with one hidden
layer containing 350 neurons. The network is trained for 500 epochs using the Levenberg-Marquardt
optimization algorithm based on default values [12], with hyperbolic tangent activation functions in both
the hidden layers and the output layer. The dataset is split into 65% for training, 20% for validation,
and 15% for testing. The model performance is evaluated using the R? score, where a value of 1 indicates
perfect correlation between predicted and actual values, and the Root Mean Squared Error (RMSE),
which quantifies the average prediction error in the same units as the target variable. The inputs and
target datasets are normalized to a range between 0 and 1 to improve training stability and performance.
The number of neurons and epochs are selected such that the ANN predictions are robust not only
for the target function but also for its derivatives, as required for the calculation of the MDF according
to Eq. (14). Figure 2 presents the results of a parametric study exploring different neuron and epoch
configurations using the dataset described in the Results section. The network performance, along with
the mean and standard deviation (SD) of both total system emissions and the MDF of wind, are used



EERA DeepWind Conference 2025 10P Publishing
Journal of Physics: Conference Series 3131 (2025) 012044 doi:10.1088/1742-6596/3131/1/012044

RMSE [MtCO2¢] Emissions [MtCO2e/h] Emissions [MtCO2e/h| MDF [kgCO2e/MWh| MDF [kgCO2e¢/MWh]|

0.13 0.14 0.15 0.16 23.2 23.22 7.46 7.47 400 450 500 50 100 150 200 250
E ] EE— ] EE ] EE ] E ]
Emissions: SD MDF: Mean MDF: SD
X
ol
i
200 400 600 200 400 600 200 400 600 200 400 600
Nr. Epochs Nr. Epochs Nr. Epochs Nr. Epochs Nr. Epochs

Figure 2: Results of the parametric study investigating the effects of varying number of neurons and
epochs on the ANN performance (RMSE of the system emissions), ANN target prediction in terms of
mean and standard deviation of the system emissions, and prediction of the MDF of wind in terms of
mean and standard deviation. The red cross marks the selected configuration for the case study.

as performance indicators. The final configuration is manually chosen as a trade-off between robust-
ness, computational efficiency, and minimizing the risk of overfitting. As the MDF exhibits significant
sensitivity to the selected training function, the impact of the training function choice, along with the
propagation of uncertainties in data and model parameters, will be investigated in a follow-up study.

The target grid emissions are calculated according to Eq. (1). Table 1 lists the final set of input
variables for the ANN. To simplify the input features, imports and exports are aggregated as total net
imports and total net exports across all neighboring countries. This differs from the approach used to
calculate the ANN target emissions, where imports and exports are treated separately for each neighboring
country, reducing complexity and computational demand while still capturing essential system dynamics.
Time series data for electricity generation, imports, and exports are taken from the open-source ENTSO-E
Transparency Platform [13]. Electricity demand is computed as the net sum of generation, imports, and
exports. Table 1 provides the corresponding ENTSO-E data tags for each input variable. Each dataset is
downloaded at the highest available frequency and subsequently resampled to quarter-hourly time steps.

Emission intensities for the considered technologies are sourced from the ecoinvent database v3.7.1 [1],
using the ‘Allocation cut-off by classification’ system model. Germany is selected as the geographic
scope, serving as a representative reference for emission intensities across the studied European countries.
Emission intensities are adjusted to include only operational emissions of the generating technologies, as
only these can be displaced in real-time on the electrical grid. On the other hand, life-cycle emissions
linked to infrastructure such as powerplants, transmission or distribution grids are omitted because they
cannot be displaced by a change in wind power generation. Transmission and distribution losses are
implicitly included in the original datasets.

2.4  Wind farm performance and control optimization

The simulation software FLORIS [14] is used to calculate both the baseline power production and the
increased power potential achieved through wake steering. Velocity deficits are calculated using the Jensen
model [15] with a wake decay coefficient of 0.05 and are combined via root-sum-square superposition.
Wake deflections are determined using the Jiménez model [16] with default parameters. The Serial-
Refine method [17] is applied to generate look-up tables with optimized yaw angles ranging from -30° to
+30° for each turbine, considering all possible combinations of ambient wind speed and wind direction.
Discretization is set to 1m/s for wind speed, 1° for main inflow directions, and 2.5° for other directions.
Optimum yaw angles are then linearly interpolated to accommodate any arbitrary combination of wind
speed and direction within the operational regime.

3 Results

3.1 Marginal displacement factor in Germany

As a first step, the proposed method for calculating the MDF of wind is applied to the German energy
system, using time series data from 2021 and 2022. After performing PCA, five principal components
are retained, capturing more than 97% of the total initial variance. Half of the shuffled dataset is used
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ANN Column(s) in ecoinvent base activity [1] Emission Factor
Feature ENTSO-E dataset [13] (adapted for direct operational emissions only) (kgCO2e/MWh)
Demand Domestic supply’ - acc. to Eq. (1)?
Wind Wind Offshore? electricity prod., wind, 1-3MW turbine, offshore 0.2
Wind Onshore3 electricity prod., wind, 1-3MW turbine, onshore 0.2
Solar Solar3 electricity prod., photovoltaic, 570kWp open ground 0.0
Lignite Fossil Brown coal / Lignite? electricity prod., lignite 1221.9
Hard coal Fossil Hard coal® electricity prod., hard coal 1049.6
Oil Fossil Oil3 electricity prod., oil 846.5
Gas Fossil Gas? electricity prod., natural gas, conv. power plant 421.8
Nuclear Nuclear? electricity prod., nuclear, pressure water reactor 4.4
Hydro Hydro Pumped Storage?® electricity prod., hydro, pumped storage 883.1
Hydro Run-of-river3 electricity prod., hydro, run-of-river 0.0
Hydro Water Reservoir? electricity prod., hydro, reservoir, non-alpine region 44.8
Other RE Ceothermal® electricity prod., deep geothermal 0.0
Marine? average of used renewable emission factors 122.6
Other renewable3 average of used renewable emission factors 122.6
Biomass® heat and power co-generation, wood chips, 6667 kW 52.6
Waste? zero since emissions are allocated to waste producer 0.0
Other Conv.  Other® average of used conventional emission factors 885.0
Fossil Coal-derived gas® average of used conventional emission factors 885.0
Fossil Oil shale3 average of used conventional emission factors 885.0
Fossil Peat3 average of used conventional emission factors 885.0
Imports Neighbors to Germany* - acc. to Eq. (2)
Exports CGermany to neighbors* - acc. to Eq. (3)

I Electricity demand is computed as the net sum of inland generation, imports, and exports.
2 The total emissions E derived from Eq. (1) are divided by the electricity demand.

3 ENTSO-E dataset: Actual Generation per Production Type

4 ENTSO-E dataset: Cross-Border Physical Flow

Table 1: Features of the artificial neural network, used ENTSO-E datasets with associated specifications
[13], as well as emission factors and their corresponding base activities from the ecoinvent database [1].

for training the ANN, achieving R2 scores of 0.996 for training and 0.995 for testing. The full time
series is used for the statistical analysis of the MDF, while two representative weeks — one in winter and
one in summer — are selected for demonstration purposes. However, given the nature of the underlying
open-source database [13], this analysis can easily be extended to any country, market, or control zone
within the European Union using data from the past ten years.

The step width w required for Eq. (17) is determined first. Figure 3 illustrates the effect of varying the
step width on the mean and SD of the MDF of wind. As expected, these metrics converge for sufficiently
small step widths. Within this study, the proposed method is intended to analyze the environmental
value of both the baseline production and the effects of WFC in a 350 MW wind farm, as described in the
next section. Therefore, the step width is determined by perturbing the wind energy production in the
studied time series by the rated power of the wind farm, calculating the resulting changes in the principal
components, and comparing them with the step size defined in Eq. (17). This process yields a maximum
allowed step width of 1.51%, which, as shown in Fig. 3, is considered to be sufficiently small.
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Figure 3: Impact of the step width w on the mean and standard deviation of the MDF of wind. A dashed
line indicates the step width selected for the case study.
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Figure 4: Histogram distributions of MEF and MDFs for the 10 main considered features in Germany
during 2021 and 2022. The mean values are indicated by orange dashed lines.

While this analysis primarily focuses on the MDF of wind energy, the proposed method is capable of
predicting the MEF and the MDF for all features involved. Accordingly, Fig. 4 presents the histograms
and mean values for the MEF and MDF distributions of the 10 most significant features. Wind, solar,
and nuclear power generally exhibit positive MDFs, indicating a beneficial impact on the grid emissions.
In contrast, increased demand, as well as increased hard coal and lignite generation, typically worsen
the environmental performance of the grid. Hydropower, gas, imports, and exports have either positive
or negative environmental impacts, depending on the other system state variables. The widespread
variation in the MDF distributions underscores the importance of accounting for their time-dependent
nature when assessing the environmental value of these technologies at a specific moment. The MDF of
wind has an average value of 441.1 kgCOqoe/MWh, with a 99% data-based confidence interval ranging
from -88.6 to 1,068.7 kgCO2e/MWh. This indicates that wind energy is displacing various combinations
of generators across most of the studied generational technologies as listed in Table 1, with an average
impact comparable with the emission factor of gas power plants. However, wind energy can sometimes
cause additional emissions in the grid when the MDF of wind is negative, which may be either associated
with phenomena like congestion management requiring fossil power plants for compensation or numerical
errors in the ANN, warranting further research. The fact that the other MDF distributions also fall
within the physically plausible ranges of the studied generation technologies — except for a few outliers
due to numerical errors — supports the validity of the proposed method for calculating MDF's.

As expected, wind energy generation primarily causes a positive impact on the environmental per-
formance of the grid, although the magnitude of this effect is highly time-dependent. To explore this
further, Fig. 5 presents two sample time series from Germany in 2022, illustrating the generation mix,
imports and exports, total system emissions, and MDF of wind during two exemplary weeks in summer
and winter, respectively. The winter week is characterised by strong wind but limited solar availability,
significant gas-fired generation, and substantial electricity exports. In contrast, the summer week ex-
hibits a slightly lower demand, less wind but abundant solar resources, and fluctuating shifts between net
imports and exports due to solar variability. In both cases, the total system emissions highly depend on
the availability of wind and solar resources. Notably, the system emissions predicted by the ANN align
well with those calculated using Eq. (1), reinforcing the previously reported high R? performance indices.

The MDF of wind exhibits significant variability, ranging from -53.9 to 1,215.1kgCOse/MWh in the
exemplary winter week, with a weekly average of 555.1 kgCO2e/MWh. In the summer week, values range
from -237.1 to 1089.4kgCOge/MWh, with an average of 426.4 kgCOse/MWh. These findings align with
the previously presented statistical analysis of the full two-year time series, but suggest that MDF values
tend to be higher in winter. Additionally, the MDF of wind shows distinct daily fluctuations, often
reaching its lowest values around noon and peaking around midnight. Pronounced shifts seem to occur
during periods of rapid changes in solar and wind energy generation.
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Figure 5: Time series of supply, demand, calculated and predicted system emissions, and the MDF of
wind for two exemplary weeks in winter (left) and summer (right) in Germany in 2022.

3.2 Displaced emissions through wind farm control

The environmental value of both the baseline performance of a wind farm and the effects of WFC is
evaluated using the offshore wind farm Wikinger [18] for the year 2022 as a case study. Wikinger was
commissioned in 2017, is located in the Baltic Sea, and is connected to the German electricity grid. The
wind farm consists of 70 turbines with a total nominal capacity of 350 MW, and is modeled in FLORIS,
as described in Sect. 2.4. Due to limited access to the actual turbine performance curves, the Adwen
AD5-135 turbines are replaced with NREL 5-MW Reference Turbines [19], which have the same rated
power and a similar rotor diameter. The hub height is set to its actual value of 97.5m. Hourly inflow
time series are obtained from ERA5 [20], with wind speed scaled to hub height using the power law with
the alpha exponent determined for each time step based on the reference wind speeds at a height of 10 m
and 100 m, respectively. The turbine positions are extracted from OpenStreetMap data [21].

As shown in Fig. 6, the farm layout is well-suited for enhancing total power output through yaw-
optimized wake steering. Over the course of 2022, the calculated baseline energy production of 1400.8 GWh
can be increased by 3.15% through WFC using wake steering. The associated grid emissions displaced
by Wikinger are determined by multiplying the time series of the wind farm power production with the
corresponding values for MDF of wind. Accordingly, Wikinger displaced 686.6 MtCOqe in 2022, with
a potential increase of 2.99% through wake steering. On average, the electricity displaced by Wikinger
corresponds to emissions of 490.3 kgCOgse/MWh. This value is 25 to 77 times higher than the carbon
footprint of typical offshore wind farms [22], underscoring the significant role of wind energy in reducing
the carbon intensity of the connected energy system.

Finally, Fig. 7 illustrates the wind farm power production and the corresponding displaced grid emis-
sions, both with and without wake steering, for the same two exemplary weeks analyzed previously.
The respective weekly means are indicated by dashed lines. In both weeks, the baseline production of
Wikinger fluctuates significantly between zero and nominal capacity due to wind variability, with higher
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Figure 6: Flow field at the Wikinger wind farm for the main inflow direction and mean wind speed,
shown for (a) the baseline scenario, and (b) the wake steering scenario, visualized with FLORIS [14].

average power outputs in the winter week due to better resource availability. The trend in displaced grid
emissions generally follows the power production but exhibits notable deviations due to the pronounced
variability of the MDF of wind, as discussed earlier. This effect is particularly evident during periods
of rated power production, where the power output remains constant while the displaced grid emissions
fluctuate considerably. Similarly, the trends in additional power production and increased displaced emis-
sions due to wake steering follow similar patterns, while relative changes sometimes differ significantly.
Gains of up to 38.3 MW for power and 14.8 tCOqe/h for emissions displacements are observed, with their
peaks occurring at different times. On average, wake steering yields higher benefits in the summer week,
as the wind farm operates less frequently at rated power, leaving more room for incrementing the power
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Figure 7: Time series of the baseline power generation and displaced emissions at Wikinger, and additional
benefit from wake steering, for two exemplary weeks in winter (left) and summer (right) in 2022.
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output when sufficient wind is available. Notably, at two instances, the wind farm production slightly
increases the grid emissions due to a negative MDF of wind. This effect could be mitigated through con-
trol actions, such as shutting down turbines at such moments. Further investigation into these negative
values and their impact on control strategies will be subjects of future research.

4 Conclusion

This paper presented a novel data-driven method for calculating the time-varying grid emission displace-
ments related to demand, generation technologies, and import and exports of a given country, control or
market zone, with a particular focus on the MDF of wind energy. The approach was demonstrated for
the German energy system in the years 2021 and 2022. The environmental performance of an offshore
wind farm connected to the German electricity grid was evaluated both for its baseline operation and for
potential improvements through wake steering-based WFC. Overall, wind energy generation significantly
reduces grid emissions, with average emission displacements comparable to the emission factor of gas
power plants. The case study of the Wikinger offshore wind farm showed that wake steering for maxi-
mum power production could enhance the environmental performance of the farm by approximately 3%,
which is within the range of the observed increases in energy yield. However, the time-dependent nature
of the MDF of wind leads to considerable fluctuations in the environmental performance of wind farms,
with displaced emissions spanning the entire portfolio of typical generation technologies. Future work
will focus on optimizing operational strategies to maximize the environmental benefits. Additionally,
trade-offs involving energy yield, fatigue loads, reliability, and economic revenue will be explored, along
with the simultaneous optimization of environmental-aware control strategies and layout of a wind farm.
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