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ABSTRACT

Baseline characterization of fish and
macrozooplankton is required for marine
renewable energy (MRE) site developments such
as offshore wind, surface wave, and tidal power.
Baseline measurements typically cover a small
proportion of the total project area and need to be
scaled to develop monitoring programs at pilot
and commercial sites after installation. Spatial
representativeness, the range to  which
observations from a point source can be
interpolated, can be used to calculate the density
of point source monitoring instruments. We
demonstrate a framework for calculating the
spatial representativeness of stationary splitbeam
echosounders used to monitor pelagic fish and
macrozooplankton at MRE sites by comparing
observed variability between mobile and
stationary acoustic surveys at a proposed MRE
tidal site in Puget Sound, WA. Three approaches
were used to test the consistency of spatial
representativeness estimates. First, stationary
observations of nekton variability were compared
to mobile observations at different spatial scales
to identify the scale at which similar patterns and
variability were measured. Second, correlation
coefficient models generated from spatial and
temporal variograms and autocorrelation were
used to describe the representativeness of point
sources as a function of range. Spatial
autocorrelation was used to show that nekton
abundance measurements became independent at
300m, while temporal measurements became
independent within 24 seconds. Third, an
equation translating power law slopes of the
spatial and temporal global wavelet spectrums,
analogous to spectral densities, was used to
translate variability between spatial and temporal
measurement scales. Preliminary results indicate
that spatial (Logio(Wavelet Power) = 1.24 +
0.223logio(meters)) and temporal (Logio(Wavelet
Power) = 0.74 + 0.405logio(hours) power laws are
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equivalent at scales of approximately one month
and 1 km. Subtracting these equations gives a
scalar equation to translate between spatial and
temporal variability across measurement scales.
A standardized spatial representativeness
calculation provides an objective technique to
determine minimum monitoring effort, maximizes
the cost effectiveness of monitoring for
developers, and ensures adequate monitoring
resolution for environmental regulators.

INTRODUCTION

Marine renewable energy (MRE) projects,
such as wave and tidal power, continue to be
developed despite the uncertainty of device and
site effects on communities of fish and
macrozooplankton (i.e. nekton)[1]. In part, this
uncertainty has lead federal and state regulators
to mandate biological monitoring at MRE sites, but
sampling requirements for monitoring programs
are inconsistent among sites [2]. Determining
monitoring requirements for individual projects
has resulted in delays and increased costs of
development and permitting [3]. Regulatory
specifications and procedures using quantitative
protocols are needed to determine sampling effort
for monitoring programs and will result in
streamlined permitting and development for both
regulators and developers.

The objective of biological monitoring is to
identify effects of development on aquatic
organism species within the community. An effect
is defined as one or more statistically significant
changes between baseline and post-perturbation
measurements of the mean or variance of
biologically relevant metrics [4, 5]. The objective
of MRE site monitoring, which focuses on changes
such as nekton density over the entire domain, is
to identify effects changing the health and stability
of components or the entire ecosystem. Domain
level MRE biological monitoring programs collect
baseline measurements of nekton density,



variability, and distribution before deployment of
devices and then compare them to post-
installation measurements as a site progresses
from a pilot to a commercial array. Long term,
post-perturbation measurements can be collected
from vessel-based, mobile surveys, or from
autonomous, stationary instrument packages.
Stationary instrument packages are assumed to be
more cost effective over the lifetime duration of
MRE monitoring programs due to labor, fuel, and
ship time costs associated with mobile surveys.
Stationary surveys that produce temporally-
indexed data at single location have the added
ability to monitor temporal variability at finer
resolutions and higher precision than possible
using data from repeated, mobile surveys.

Temporally-indexed data are not without
constraints. Stationary surveys characterize
temporal variability, but the spatial variability of
ecosystem components is not quantified and
cannot be ignored [6]. Non-uniform (i.e. patchy
[7]1) nekton distributions limit the spatial accuracy
of a temporally-indexed data series, as spatial
variability in fish habitat and density increases
with spatial scale (ie. red, pink, or Brownian
noise)[8, 9, 10]. As the aerial footprint of an MRE
site increases from pilot to commercial scale,
spatial heterogeneity of fish habitats and densities
are expected to increase, with the potential for
concomitant increases in deleterious effects. At
spatial scales exceeding those of homogeneous
organism distributions [11], a single, stationary
monitoring package is no longer adequate to
characterize fish densities and dynamics of the
MRE site. Additional monitoring packages will be
required to quantify spatial variability, which also
increases the statistical power to detect change [5,
12] within a spatial domain. One major challenge
in the design of monitoring programs is to
determine the density of instrument packages
required to detect change in variables specified in
operating licenses.

An ideal statistical method used to calculate
the density of sampling packages needed to
monitor a MRE site would optimize the amount of
data collected and, at the same time, optimize the
cost of collecting measurements. For monitoring
programs using moored or bottom-deployed
instrument packages, there is a need to determine
the corresponding spatial area that a point source
measurement represents, referred to in the
literature as the ‘spatial representativeness’ [11,
13]. The area a point represents is dependent on
the spatial variability surrounding the location,
and the scale at which it is measured [9, 10]. The
variance of a measurement series is expected to
increase with both spatial and temporal scale in
most biological circumstances [9]. The power

spectrum can be used to quantify the variance of a
data series as a function of frequency or scale [14].
Assuming that variability increases with scale,
measurements are expected to become less
correlated with range from a location [15].
Correlations have been documented between
spatial and temporal scales over which physical
and biological processes operate (Appendix A) [9,
16, 17]. If these linkages exist, then there will be a
relationship between the spatial and temporal
spectra of the variable or metric used to monitor
change [17]. Using these principles, the
autocovariance of measurements in space and
time can be used to estimate the spatial
representativeness of temporally-indexed, point
source measurements.

Here, acoustic data used to index nekton
densities during a baseline study density at a
proposed MRE site in Admiralty Inlet, Puget
Sound, WA are used as a case study to compare
estimates of spatial representativeness using
three methods. Spatially- and temporally-indexed
nekton density and variance measurements at two
discrete spatial scales are used to determine
relationships between spatially and temporally-
indexed data. Since both the mean [5] and
variance [4] of variables are appropriate
monitoring metrics, the spatial representativeness
of the mean and variance of nekton density are
estimated separately.  This analysis initiates
efforts to scale point source monitoring
measurements to the domain of a MRE
commercial site and to optimize metric selection
and monitoring costs.

METHODS
Data Collection

Spatially- and temporally-indexed acoustic
surveys were used to measure baseline nekton
densities at a proposed tidal MRE pilot site in
Admiralty Inlet, Puget Sound, WA. Admiralty Inlet
is a shallow sill at the entrance to Puget Sound in
which tidal currents exceed 3.5 m/s. The
proposed pilot site is located ~750m off Admiralty
Head in ~55m of water. Active acoustics were
chosen to measure nekton density because they
are robust to many of the sampling challenges
introduced by strong tidal currents, such as
turbulence and turbidity, which limit or inhibit
other types of traditional biological
measurements. The high spatial and temporal
resolution of acoustic measurements is ideal for
quantifying spatial representativeness. Both
acoustic surveys were conducted using 120 kHz
splitbeam echosounders with a -75dB threshold.
Measurements were constrained to within 25m of
the bottom, representing approximately twice the
hub-height of the proposed tidal turbine, to



facilitate a relevant, direct comparison between
the two series. Fish and macrozooplankton
density were measured using mean volume
backscattering strength (Sy) [18], a log-normalized
acoustic estimate of nekton density.

Mobile Survey

Two spatially-indexed acoustic surveys were
conducted from May 2nd to May 13th and June 3rd
to June 14th, 2011. Each survey repeatedly
sampled two grids of transects, one north and one
south of the proposed pilot site, at both day and
night. A total of 57 sampling grids were
completed over both surveys encompassing both
grids, day and night, and all tidal states, covering
547 transects. Transects were oriented
perpendicular to the shore and the flow of the
predominant tidal current (Figure 1), and were
surveyed at approximately seven knots. The grids
cumulatively covered 16.1 km?2 with transects
spaced % km apart near the proposed pilot site
radiating to lower resolution transects spaced %z
km apart. The echosounder used during the
spatially-indexed survey sampled depths from
~20m to ~100 m, but analysis was constrained to
within 25m of the bottom.

Spatially indexed acoustic data were sampled
at 1 Hz using a 120 kHz transducer with a 7° beam
width (between half power points), transmitting
at 500 Watts for a 512 ms pulse duration. Surface
turbulence due to tidal currents was a major

feature in the acoustic data record and was
identified using the schools detection algorithm in
Echoview (v5.4.91 Myriax Inc.) acoustic data
processing software. School detection parameter
settings were: minimum total school length = 5m,
minimum total school height = 3m, minimum
candidate length = 5m, minimum candidate height
= 3m, maximum vertical linking distance = 10m,
and maximum horizontal linking distance = 10m.
Identified schools that intersected the 3m depth
exclusion range were excluded as surface
turbulence. Noise was removed from the data
using a -75 dB threshold, which corresponded to a
16 dB signal to noise ratio. The threshold was set
to assist the turbulence removal algorithm and to
exclude microzooplankton from the analysis. The
echosounder was calibrated using a tungsten
carbide sphere following the protocols outlined in
Foote et al.[19].

Spatial data were analyzed at 20m and 300m
horizontal resolutions depending on the analysis.
Analyses not requiring independence between
samples were analyzed at 20m horizontal
resolution, encompassing ~6 pings per bin.
Autocorrelation functions determined spatial data
became independent and identically distributed at
300m. At least five independently distributed
300m data bins were nested within each transect.

FIGURE 1. ADMIRALTY INLET, PUGET SOUND, USA. (TOP LEFT)
ADMIRALTY INLET AT THE MOUTH OF PUGET SOUND. (BOTTOM
LEFT) THE LOCATION OF THE STATIONARY ECHOSOUNDER, AT A
PROPOSED TIDAL ENERGY PILOT SITE, IS DENOTED BY THE
WHITE SQUARE IN RELATION TO THE TWO SPATIAL GRIDS
NORTH AND SOUTH OF THE STATIONARY PACKAGE, EACH
CONSISTING OF HIGH AND LOW RESOLUTION TRANSECTS.



FIGURE 2. PICTURE OF THE STATIONARY, BOTTOM
DEPLOYED 120 KHZ SPLITBEAM ECHOSOUNDER.

Stationary Survey

An autonomous, bottom deployed, upward
facing 120 kHz splitbeam echosounder sampled at
5 Hz for 12 minutes on a 2 hour duty cycle from
May 10t to June 9, 2011 (Figure 2). Similar to
the spatial survey, the transducer had a 7° beam
angle (between half power points) and
transmitted at 1000 Watts. The stationary
echosounder was deployed at the location of the
proposed pilot energy site, located in the high-
resolution portion of the north spatial survey grid
in ~55m of water and ~750m from Admiralty
Head. Noise was removed using a -75 dB
threshold, identical to the spatial survey, and data
was constrained to 25m from the bottom.

A total of 360 12-minute sampling periods
were collected over the 30-day deployment.
Stationary data was analyzed at either 1.2-second
or 24-second temporal resolution depending on
the analyses. A total of 600, 1.2-second bins and
30 24-second bins were nested within each 12-
minute cycle. Six pings were included in each 1.2-
second temporal bin; approximately equal to the
number of pings in the fine resolution (20m)
spatial data. Stationary data were determined to
be independent at 24 seconds using
autocorrelation functions. A 24-second stationary
bin (120 pings) had a similar number of pings as a
300m spatial bin (~85 pings depending on vessel
speed).

Analysis

Three methods were used to estimate spatial
representativeness of nekton density
measurements: 1) a direct comparison of
concurrent mobile and stationary measurements
at two spatial scales; 2) a correlation coefficient
model; and 3)a translation between spatial and
temporal spectra.

Direct Comparison of Concurrent Measurements

The mean and variance of nekton density
from concurrent temporally- and spatially-
indexed measurements in close proximity were
compared at two scales:- transect and grid.
Concurrent measurements were limited to spatial
measurements collected within the high-
resolution portion of either the north or south
grid. Of all transects surveyed, only eight
transects and five spatial grids met these
requirements. The discrepancy in sampling size is
due to three grids containing multiple concurrent
transects.

Temporally-indexed nekton densities were
averaged within each 12-minute sampling cycle.
The thirty, 24 second bins within each cycle were
used to calculate the mean and standard deviation
of density measurements. The mean and standard
deviation of fish and macrozooplankton densities
from the spatial survey were calculated from all
300m bins in either the transect or grid of the
concurrent observation.  Each transect was
composed of at least four complete 300m spatial
bins. Each grid was composed of approximately
ninety-four 300m spatial bins.

Concurrent measurements in space and time
were regressed using a least squares linear model.
The scale at which the model most closely
resembled the theoretical 1:1 relationship (Y =X+
0) between spatial and mobile measurements was
selected as being the most similar. This method
cannot  determine  the  precise  spatial
representativeness of the stationary device, but
suggests which spatial scale the stationary
measurements most closely represent.

Scaling means: Correlation Coefficient Model

A correlation coefficient model was used to
describe how representative measurements were
as a function of range from a location following
Anttila et al. [11]. Correlation coefficients were
calculated as a function of range, and squared to
yield a coefficient of determination (R2), the
proportion of variability explained by correlation.
Correlation coefficient models were constructed
for each transect, from data exported at a 20m
resolution. The coefficient of determination for all
transects (n = 547) were averaged at each range.
A power law was fit to these averages, (i.e. the
theoretical autocorrelation structure in red noise
[15]), using a least squares model. Two
thresholds were used to determine
representativeness. A predetermined threshold of
of Rz = 0.50 was taken from [11], which developed
this technique for water quality monitoring in
inland lakes. A second threshold was statistically
derived from the 95% significance level of lagged



correlation coefficients. Assuming a random data
series, lagged-correlation coefficients are
distributed around zero with a variance of 1/n,
with n the length of the data series. The 95%
confidence interval of lagged correlation
coefficients is 2/vVn. Since correlation coeffecients
were calculated for each transect, the median data
series length of all transects was used (2600
meter transect sampled at a 20m resolution,
yielding n = 130 samples). Therefore the 95% CI
for a lagged correlation coefficient given the
median transect length was 0.175. Squaring the
lagged correlation coefficient 95% CI yields the
95% CI for the coefficient of determination, which
was 0.03 for our data. This threshold corresponds
to the range at which observations became
approximately statistically independent.

Scaling Variability: Translating between Spatial and
Temporal Spectra

The spatial scale at which temporal variability
can be considered representative can be
calculated from the relationship between spatial
and temporal variability. Given that processes
operating over larger spatial scales usually occur
at larger temporal scales (Appendix A; excluding
highly predictable celestial events such as tides
and diel periods) [9, 16, 20], it is reasonable for
longer temporal measurements to represent
larger spatial scales. Equivalent spatial and
temporal scales will observe equivalent amounts
of variability. Using the relationship between
spatial and temporal spectra, the variance at the
largest temporal scale analyzed up to % of the
time-series (Nyquist frequency [14]), and then
translated to a spatial scale. At these coincident
scales, we expect to see identical amounts of
spatial and temporal variability. As the largest
temporal scale of our monitoring increases, the
spatial scale to which it is representative will also
increase.

Wavelet analysis simultaneously decomposes
a data series into time and frequency domain to
analyze localized deviations from the expected
spectral power [21]. By averaging across times,
the global wavelet spectrum is mathematically
equivalent to the power spectra [22, 23, 24]. A
global wavelet spectra was calculated for all 547
spatial transects and 360, 12-minute temporally-
indexed periods using the high-resolution data.
The mean global wavelet power was then
calculated at each spatial and temporal scale.
Global wavelets were calculated using a Morlet
wavelet ranging from the minimum resolution to
the Nyquist frequency (see [21] for discussion).
Global wavelet power was calculated as a function
of scale instead of frequency to standardize
irregularities in transect length. Both wavelet

power and scale were log normalized, and a best
fit line was regressed using linear least squares for
both spatially- and temporally-indexed data.
These best-fit lines were then used to calculate the
spatial scale at which an equivalent amount of
variance was measured at the largest temporal
scale.

Lagged coefficient of determinations, used in
the spatial correlation coefficient model above, are
equivalent to the square of the autocorrelation
function. The autocorrelation function is the
autocovariance standardized to the variance of the
series. The power spectrum is the Fourier cosine
transform of the autocovariance [14]. The spatial
correlation coefficient model and the comparison
of spectra are mathematically linked, but this
method allows for the direct comparison between
spatial and temporal variability.

RESULTS

Direct Comparison of Concurrent Measurements
Temporally-indexed measurements of nekton

were significantly correlated to spatially-indexed
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FIGURE 3. DIRECT COMPARISON OF CONCURRENT
SPATIAL AND TEMPORAL MEASURMENTS OF FISH
AND MACROZOOPLANKTON DENSITY AT THE (TOP)
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measurements at both transect and grid spatial
scales (Figure 3). Although the slopes of both
lines were significantly greater than zero, they
were well below the theoretical slope of a 1:1
relationship. Using a 1:1 relationship (Y =X + 0)
between spatial and temporal measurements as a
standard, nekton density within a single transect
was more strongly related to stationary
measurements than nekton densities within a
grid. The slope of the transect scale comparison
line (m = 0.392) was more than twice the slope of
the same comparison done at the grid scale (m =
0.175). The intercept of the transect scale
comparison was ~25% smaller than at the grid
scale (b = -44.64 and -60.263, respectively).
Qualitatively the variance of each measurement,
denoted by error bars, looks to be roughly
correlated between mobile and spatial surveys,
but more highly correlated at the transect level.

Spatial Correlation Coefficient Model

The representativeness of nekton density
measurements decayed rapidly in space (Figure
4). Less than half the variability in nekton density
could be explained beyond 20m. As in traditional
autocorrelation, representativeness at range 0 is
1. Ideally, a  statistical model of
representativeness would start at range 0, but
representativeness decayed so rapidly within the
first 20m that that a power law fit using the
perfectly correlated data at range 0 overestimated
the representativeness of measurements within
40m, and underestimated the representativeness
beyond 40m (Figure 4, top). To model the decay,
the power law was not constrained through a
representativeness of 1 at range 0. After 20m, the
representativeness decayed following a power law
(Y = 0.3392e0168X), where X is the number of 20m
lags and Y is the representativeness (Figure 4,
bottom).

The range at which observations are
representative can be calculated using the
predetermined thresholds of representativeness,
R2= 0.5 and 0.03, and solving for the range (X) in
the spatial correlation coefficient model.
Unfortunately, R? = 0.50 falls within the first 20m,
where the power law model breaks down. Linear
interpolation between range 0 and range 20m
suggests a representative range of 15m at the R? =
0.5 threshold. The spatial representativeness
calculated at the RZ = 0.03 threshold is 300m.
Variability of representativeness estimates
between transects decreased with range. Over
tidal cycles, autocorrelation did not change
significantly in slack or extreme tide states
(<0.5m/s and >1.5m/s, respectively) in either the
mobile or stationary surveys (Figure 5).

Comparison of Spatial and Temporal Spectra

As expected, spatial and temporal spectra of
nekton density increased with scale (Figure 6).
The intercept of the resulting spatial and temporal
best-fit spectral lines are almost identical,
suggesting that variability within a 1.2 second bin
and 20m spatial bin are equivalent. The spectral
power in both the stationary and mobile data sets
increased with scale, consistent with a traditional
red or pink spectra. Variability surrounding the
spectra remained consistent across both spatial
and temporal series and across scales.

The log normalized global wavelet power at
the Nyquist frequency of the temporal spectra was
1.524. An equivalent amount of variability
occurred at 688m spatial scales in the spatial
spectra. The spatial representativeness of a 12
min temporal measurement is 688m when scaled
using nekton variability. This range is more than
double that determined by the correlation in
means, but is consistent with the conclusion from

the direct comparison analysis that the equivalent
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spatial scale must be smaller than that of a
transect.

DISCUSSION

Point measurements of mean nekton density
were estimated as being representative of 15 or
300m, depending on the coefficient of
determination threshold chosen for
“representativeness”. These ranges translate to
site-monitoring instrument densities of 1,414.78
or 3.56 instruments per square Kkilometer.
Obviously, it would not be economically viable to
develop regulations requiring 1,414.78
instruments per square kilometer, but the method
(spatial correlation coefficient models) and
threshold (R2= 0.5) used to calculate this number
were derived from monitoring water quality in a
lake, which varies over much larger spatial scales
relative to distributions of aquatic organisms [7,
11]. We have proposed a new statistical technique
to calculate a coefficient of determination
threshold more suitable for biological monitoring,.
Using this technique, a coefficient of
determination threshold of 0.03 was used, which
correlates to the distance at which horizontal
nekton density measurements became statistically
independent. This threshold, dependent in part
on the baseline monitoring effort, appears to be
more economically viable for biological
monitoring and a more realistic expectation for
regulators.

The spatial representativeness of the
variance, 688m, was more than double the range
of the mean representativeness and equates to
only 0.68 instruments per square kilometer. An
important caveat to scaling temporal to spatial
variance is that the linearity of both the spatial

and temporal spectra must be validated before
scaling variability. The linear relationship of the
spatial or temporal spectra cannot be extrapolated
beyond the scales that have been directly

measured. Deviations from linearity, will
compromise estimates of spatial
representativeness. Estimating spatial

representativeness requires a dedicated baseline
survey that exceeds the spatial and temporal
scales used to translate variability.

The number of stationary monitoring
instruments will increase as the aerial footprint of
the MRE site increases to insure adequate spatial
monitoring, with concomitant increases in
monitoring program cost. The MRE industry is
striving to remain cost competitive with
traditional energy sources, having the benefit of
established infrastructure, standardized
monitoring regulations, and economical source
material (e.g. natural gas). MRE monitoring
programs must remain cost effective as a site
scales from a pilot to a commercial scale. One
way to minimize monitoring costs is to minimize
the number of monitoring packages. An obvious
statement with potentially large impact. Current
costs to engineer, deploy, maintain, retrieve, and
analyze a stationary echosounder package has
been estimated at $250,000 [25]. Without
objective methods to estimate sampling effort,
regulators are forced to use best guesses about the
efficacy of proposed monitoring. Uninformed
regulatory specifications lead to two possible
outcomes: either an excess of monitoring
instruments, which unnecessarily increases
monitoring costs, or too few monitoring
instruments, which would lower the probability of
detecting biological effects. Biological monitoring
is a significant cost of MRE projects [3], but it
should not be the factor that inhibits the growth of
a new industry sector that is competing with
established energy providers.

It should be noted that many current MRE
monitoring programs are focused on directly
observing or quantifying specific interactions
between individual organisms and MRE devices.
Although these programs are more effective at
quantifying the effect of devices on individual
organisms due to a specific stressor (e.g. direct
strike or impingement), they cannot detect if the
biological community as a whole has been
affected. Although there is a need for near-device
monitoring, this paper presents multiple methods
to determine the optimal instrument density for
domain  monitoring using point source
instruments.

The longevity of scaling equivalents is
uncertain and an interesting question in itself.
Previous studies [6,11,13], limited in number,
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focus on the spatial representativeness of
temporally indexed measurements, but none have
investigated the temporal representativeness of
spatially indexed measurements. In theory, these
scaling factors could be inverted to calculate the
temporal representativeness of spatial
measurements.

To determine the spatial equivalence of point
location, temporally-indexed data for use in long
term biological monitoring programs, we
recommend pre-installation baseline studies
measuring both spatial and temporal variability in
any and all potential monitoring metrics. This
baseline study is an essential component of site
characterization requirements.

CONCLUSIONS

1). Both spatially- and temporally-indexed
baseline surveys are needed to establish
monitoring programs. In this case, both spatial
and temporal variability of nekton density were
measured to estimate the area that data from a
stationary, bottom-mounted echosounder
represents. The only way to measure both spatial
and temporal variability is to conduct two
separate surveys simultaneously. Although
initially costly, estimating spatial
representativeness of point source data will
objectively determine the required density of
monitoring instruments and reduce long-term
costs of the monitoring program.

2). The methods presented in this paper are
flexible and objective dependent. Biological or
physical variables can be used as monitoring

metrics to detect change in a quantity of interest.
This approach can be applied to monitoring
programs that focus on either the mean or
variance of a quantity, giving developers and
regulators the flexibility to identify which
metric(s) are best suited to detect significant
change at each MRE site.

3). This paper presents a quantitative method to
estimate the density of stationary packages
needed to monitor an MRE site. This method
simplifies the design of a monitoring program and
can be used to objectively determine the
monitoring expectations of regulators and
responsibility of developers. Given appropriate
spatial and temporal data, regulators can use this
approach to calculate and specify the number of
monitoring packages as part of site permitting and
licensing .
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APPENDIX A: LINKAGES IN SPATIAL AND TEMPORAL
SCALE OF PHYSICAL AND BIOLOGICAL PROCESSES
AND MODELS.
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RELATIONSHIP BETWEEN SPATIAL AND TEMPORAL
SCALE. (TOP) FIGURE FROM STEELE ET AL. [16]
DEMONSTRATING TEMPORAL-SPATIAL LINKAGES
IN BOTH BIOLOGICAL AND PHYSICAL PROCESSES.
(BOTTOM) FIGURE FROM WIENS [9]
DEMONSTRATING STUDIES CONDUCTED AT FINE
SPATIAL SCALES OVER LONG PERIODS OF TIME
HAVE LOW PREDICTIVE POWER. STUDIES
COVERING LARGER SPATIAL SCALES SHOULD BE
CONDUCTED OVER COMPARABLE TEMPORAL
SCALES.
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