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Abstract

Describing and Comparing Variability of Fish and Macrozooplankton Density at Marine Hydrokinetic
Energy Sites

Dale A. Jacques I

Chair of Supervisory Committee:
Dr. John K. Horne
Aquatic and Fisheries Sciences

Marine hydrokinetic (MHK) operating licenses require biological monitoring to quantify effects of devices
on aquatic organisms, but regulations for instrumentation, measurements, and sampling effort have not
been standardized. Assuming stationary acoustic surveys are more cost effective than repeated mobile
surveys, the abilities of stationary echosounders, ADCPs, and acoustic cameras to characterize fish
densities were compared at a MHK site in Admiralty Inlet, WA. The calibrated echosounder was most
sensitive to density changes from vertical migrations, and state-space models confirmed measurements
were robust to other variance sources including tidal currents. Peak density variance occurred at a 24-
hour period, with cyclic fluctuations in phase with tidal currents and tidal ranges. Six methods used
mobile acoustic data to estimate representative spatial ranges of stationary acoustic measurements,
resulting in values from 31 to 1,388 m. Design objectives were used to develop a generic framework for

the design of distributed monitoring networks at MHK sites.
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Chapter 1. Spatio-Temporal
Biological Monitoring at Marine
Hydrokinetic Energy Sites




1.1. Introduction

Ecological communities vary over ranges of spatial and temporal scales (Stommel 1963, Haury et
al. 1978, Levin 1992). Historically, ecological variability was treated as a statistical nuisance that limited
efforts to identify change in a quantity through space and/or time (Horne & Schneider 1995). A series of
papers disseminated the importance of variance as an ecologically significant quantity (Wiens 1989,
Levin 1992, Horne & Schneider 1995). Scale-dependent patterns of variance can be used to infer the
underlying physical and biological processes influencing an ecosystem (Platt & Denman 1975, Steele
1994, Horne & Schneider 1995), but the ability to identify these patterns is limited by the sampling
resolution relative to the extent of a survey (i.e. measurement scope; Wiens 1989, Schneider 2009).
Even though interpretation of biological variance has become more nuanced, constraints on data storage
and processing have historically limited the spatial and temporal scope of ecological surveys (Dickey &
Bidigare 2005). Recent technological advancements have enabled fine-resolution (spatial resolution <
1m, temporal resolution < 1 sec), spatiotemporal measurements over months or years (e.g. Dickey &
Bidigare 2005, Urmy et al. 2012), which were not previously possible (Porter et al. 2005). Surveys
conducted at high spatial and temporal scope also enable the identification of transient temporal
processes in space (e.g. Certain et al. 2007). In reality, repeated high-scope, mobile surveys, such as
line-transects, are cost prohibitive to repeat at the temporal resolution required to characterize temporal
patterns operating at daily or monthly periods. Sampling through space takes time, convolving spatial
and temporal variability, further obscuring the detection of temporal patterns (Stewart-Oaten et al. 1995,
Martin et al. 2005). An operational sampling tradeoff between spatial and temporal scope must be made,
which may compromise the identification of spatial or temporal patterns through time (e.g. Lie et al. 2013).

In contrast to repeated mobile surveys, networks of static, autonomous sensors may be more
cost effective to provide high-temporal scope measurements in space and time. Stationary sensor
networks are particularly effective for sampling marine environments over months or years due to the
expense of repeating mobile surveys at sea. The cost effectiveness of remote monitoring methods are
particularly attractive for prolonged studies, such as environmental impact assessments (Brando & Phinn
2007). A recent application requiring long term environmental monitoring is marine hydrokinetic energy

(MHK) installations. MHK is a suite of technologies that generate electricity from the kinetic energy of



surface waves, offshore wind, and tidal currents. As MHK technologies progress toward economic
viability, dynamic, energy-rich sites are being developed for demonstration projects (i.e. one to ten
devices) with the intent of scaling pilot project sites to large commercial arrays (i.e. tens to hundreds of
devices).

The ecological effects of generating electricity in the marine environment on mammails, fish, and
macrozooplankton (i.e. pelagic nekton) are uncertain. Hypothesized effects of MHK devices on local
pelagic nekton communities include direct strikes or impingement (APBmer 2010), repulsion due to
operational noise (Halvorsen et al. 2011) or electro-magnetic fields (Ohman et al. 2007, Normandeau
2011), or aggregation as a shelter from predators and tidal currents (e.g. artificial reefs or fish aggregation
devices; Inger et al. 2009, Polagye et al. 2011). In the United States, MHK operating licenses require
monitoring programs to quantify potential environmental effects (FERC 2008), but monitoring
requirements and the sample designs have not been standardized, and there are no recommended
analytic procedures to design monitoring programs.

The high kinetic energy that makes sites attractive for MHK development also poses challenges
to traditional marine sampling techniques. Sampling uncertainties arise at nearly every phase in the
design of monitoring programs, including:

1. Choice of instrumentation to measure nekton density through the water column that is
robust to sampling in energetic environments

2. Selection of metrics to describe change in the pelagic nekton community that are
compatible with the instrumentation

3. Design of platforms and instrumentation density that optimize monitoring sensitivity and
cost effectiveness

4. Determining minimum sampling effort that provides adequate sample coverage and
statistical power

5. Defining analytic tools to compare baseline measurements to post-installation
measurements to quantify the presence and amplitude of biological effects

This study addresses these five uncertainties when developing a biological monitoring plan for MHK

installations, and provides a framework to construct monitoring plans. To illustrate the approach and to



resolve these challenges, data from the Snohomish Public Utility District's proposed tidal MHK pilot site in

Admiralty Inlet, Puget Sound, WA was used as a case study.



Chapter 2: Active Acoustic
Characterization of Pelagic
Communities at a Tidal Marine
Hydrokinetic Energy Site




2.1. Introduction

Offshore energy resources, such as waves, tidal currents, and offshore wind, are emerging as an
economically viable form of carbon-free renewable energy. Marine hydrokinetic energy (MHK)
installations convert kinetic energy in waves and tidal currents to electricity, but the biological impact of
generating electricity in marine environments is uncertain (Boehlert & Gill 2010, Wilson et al. 2010, Frid et
al. 2012). Hypothesized effects of installing and operating MHK devices on the fish and macro-
zooplankton (i.e. nekton) community include reductions in density due to direct strike or impingement
(Wilson et al. 2007, ABPmer 2010), changes in the vertical and horizontal distribution due to noise
(Halvorsen et al. 2011), electro-magnetic fields (Ohman et al. 2007, Normandeau 2011), or sheltering
from tidal currents (e.g. artificial reefs; Inger et al. 2009, Polagye et al. 2011). The strong tides and waves
that make sites attractive for MHK developments constrain traditional forms of biological sampling, such
as nets, cameras, and optical surveys. These challenges historically made these sites difficult or
impossible to sample, creating a gap in knowledge of the local biological community and how it varies
through time and space. Uncertainty in the rate and severity of effects of a MHK device is compounded
by uncertainty in the density and distribution of nekton. The lack of historical sampling has led to a dearth
of baseline knowledge on species composition, density, distribution, and variability of nekton communities
at MHK sites needed to make informed decisions about monitoring instrumentation, metrics, and effort.
Despite these sampling challenges and the lack of biological understanding, government regulations
require MHK developers to monitor the effects of installing, operating, and decommissioning MHK
devices (FERC 2008).

In contrast to near-field monitoring, which observes direct interactions between organisms and a
device, far-field or domain monitoring quantifies effects of a device or devices on the ecological
community. An effect is defined as a statistically significant deviation in a biologically pertinent quantity of
the community, determined by comparing pre-installation to post-installation measurements (Smith 1991).
When comparing pre- and post-installation measurements, the power to statistically identify biological
effects is confounded by natural variability in quantities of interest (Underwood 1989, Morrisey 1993,
Hewitt et al. 2001). Baseline variability must be characterized to calculate the minimum detectable effect

and properly allocate sampling effort through space and time (Rhodes & Jonzén, 2011). Variability is not



merely a statistical impedance (Horne & Schneider 1995); variability is a biologically significant attribute of
a quantity that can be used as a secondary indicator of change (Underwood 1991).

Active acoustics are a suite of non-invasive aquatic sampling technologies that measure fish and
macrozooplankton (i.e. nekton) density at fine spatial and temporal resolutions. Since light is scattered
and absorbed more quickly than sound in water, acoustic technologies have longer effective sampling
ranges than optical devices and are more robust to turbid environments. Traditionally, acoustic
measurements have been collected from mobile surface vessels (e.g. Koslow 2009) to quantify spatial
distributions of fish and macrozooplankton. The constraint when measuring spatial heterogeneity in
mobile surveys is that sampling space takes time, confounding temporal and spatial variability.
Repeating mobile surveys enables the allocation of variance between time and space, but the rate at
which mobile surveys can be repeated, which defines the temporal resolution of the data set, is resource
limited. Identification of temporal patterns from repeated mobile surveys is constrained by the temporal
resolution relative to the temporal extent (i.e. temporal scope; Wiens 1989, Schneider 2009) of the data.
Recent innovations in power and data storage facilitate the remote deployment of acoustic instruments
from stationary ocean observatories, which can be used to quantify temporal variability in nekton density
and vertical distribution at high temporal resolution (e.g. Urmy et al. 2012). In contrast to mobile acoustic
surveys, stationary acoustic surveys measure density and vertical distribution of nekton at a high
temporal scope, but in a reduced volume. Based on current MHK monitoring plans (e.g. NYSERDA
2011), stationary acoustic surveys are assumed to be preferred for long-term, post-installation domain
monitoring due to the added costs of maintenance, fuel, and labor associated with vessel operation in
repeated mobile surveys.

Ideally, acoustic technologies deployed for other objectives, such as tidal resource
characterization or near-field monitoring, could be used for domain monitoring, reducing monitoring costs
by decreasing the number of deployed instrument packages. Several acoustic technologies may be
opportunistically available for domain monitoring at MHK sites, but there is a need to vet these
technologies against the community standard: calibrated scientific echosounders (Foote et al. 1987,

Simmonds & MacLennan 2005). In particular, Acoustic Doppler Current Profilers (ADCP) and acoustic



cameras have been deployed at MHK installations to characterize tidal resources and to track fish as they
approach a turbine (Polagye & Thomson 2013, Viehman & Zydlewski 2014).

The primary challenge when designing MHK domain monitoring programs is to identify
instrumentation and metrics that can measure nekton densities in energetic environments, maintain cost
effectiveness, and are capable of being deployed over extended periods. This study, conducted at a
proposed tidal current MHK pilot site in Admiralty Inlet, Puget Sound, WA provides a case study to
evaluate acoustic technologies for monitoring densities and vertical distributions of nekton over time and
space at MHK sites. To inform future efforts to monitor pelagic communities, including the pilot MHK site
in Admiralty Inlet, specific objectives of this chapter are:

1. To characterize species composition, biological diversity, and to identify species of
special regulatory concern.

2. To describe spatial and temporal variability in the density and vertical distribution of fish
and macrozooplankton in the water column.

3. To identify potential physical processes influencing those patterns, and events of
exaggerated biological variability that may pose a risk to either the device or biological
community as a whole.

4. To compare the efficacy of an ADCP, an acoustic camera, and a calibrated echosounder

to measure nekton density and vertical distribution.

Taken collectively, these objectives form a baseline characterization of pelagic nekton in Admiralty Inlet,

WA as a standard to compare to post installation measurements as part of biological monitoring plan.

2.2. Materials & Methods

2.2.1 Overview

Species composition, density, and distribution of the pelagic nekton community are characterized
using stationary and mobile acoustic surveys, supplemented by midwater trawls, at the Snohomish Public
Utilities District’'s (SnoPUD) proposed tidal energy site in Admiralty Inlet, Puget Sound. Admiralty Inlet is
a shallow shelf connecting Puget Sound to the Strait of Juan de Fuca and the primary inlet into Puget

Sound (Figure 2.1). The proposed site is 750m from Admiralty Head at a depth of 55m at mean tide level.



Figure 2.1. Admiralty Inlet, Puget Sound, USA. (top left) Admiralty Inlet at the mouth of Puget Sound.
(bottom left) the location of the stationary echosounder, at a proposed tidal energy pilot site, is denoted by
the white square in relation to the two spatial grids north and south of the stationary package, each
consisting of high and low resolution transects.
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Tidal flows in excess of 3.5 m/s have been observed through Admiralty Inlet (Gooch et al. 2009).
Previous efforts to catalogue fish in Admiralty Inlet have observed 115 species (DelLacy et al. 1972),
including 11 species of special conservation status as defined by state and federal agencies (WDFW
2012). Snohomish Public Utility District has proposed installing two six-meter OpenHydro
(www.openhydro.com) tidal current turbines on three-meter foundations in Admiralty Inlet in the summer

of 2015.

2.2.2 Acoustic Technology Description

Active acoustics are a diverse set of technologies capable of quantifying densities and vertical
distributions of aquatic organisms, characterizing tidal flow regimes, and tracking individual targets
through space in aquatic environments (Simmonds and MacLennan, 2005). In general, acoustic
technologies emit short (e.g. 0.2 - 1ms) pulses of energy (i.e. a ping) through the water column at high
rates (e.g. > 1 sec'1). The emitted sound is reflected by fish and macroinvertebrate targets in the water
column back to the transceiver. These reflections, called acoustic backscatter, are used to enumerate or
track individual targets through space and time (Simmonds & MacLennan 2005), while the integral of
backscatter is used to estimate nekton density (Foote 1983). The fine temporal and vertical resolution (<
1m) of samples from acoustic instruments enable high-resolution measurements of nekton densities

distributed throughout the water column (i.e. density distributions).

2.2.2.1 Echosounders

Calibrated scientific echosounders are used to measure pelagic nekton density-distributions from
mobile (e.g. Koslow 2009) or stationary platforms (e.g. Doksaeter et al. 2009, Kaartvedt et al. 2009, Urmy
et al. 2012). Internationally accepted calibration protocols (Foote et al. 1987) ensure consistent operation
and data equivalency among echosounders, surveys, and years. Given the number of validation studies
and use by the international community (e.g. Love 1971, Nakken & Olsen 1977, Foote 1983, Simmonds &
MacLennan 2005), the scientific echosounder is the most vetted acoustic instrument and was used as a

benchmark to compare the efficacy of other acoustic technologies in this study.

2.2.2.2 Acoustic Cameras

Acoustic cameras operate at high frequencies (e.g. 0.7 to 1.8 MHz) and provide near optical

quality images that are used for imaging, counting, and inspection of objects or aquatic organisms
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(Simmonds & MacLennan 2005). The added resolution of acoustic cameras comes at the cost of
operational range (e.g. 15 to 80m). Yet even this range, short by acoustic standards, exceeds that of
optical technologies when used in aquatic environments. Stationary acoustic cameras have been used to
count migrating salmon (e.g. Burwen et al. 2010) and to track individual targets as they approached a
tidal turbine (e.g. Viehman & Zydlewski 2014). The ability of acoustic cameras to track individual targets
at high resolution and precision in turbid water makes them an attractive component of many near-field
MHK monitoring programs, providing the ability to detect physical strikes or impingements of individual
fish as they approach a MHK device. The use of acoustic cameras in near-field monitoring makes them
opportunistically available for domain monitoring at MHK sites, but the accuracy of integrated acoustic

backscatter measures of nekton density by acoustic cameras has not been tested.

2.2.2.3 Acoustic Doppler Current Profilers

The ADCP uses the shift in returned frequency due to the movement of suspended passive
particles (i.e. the Doppler effect) to derive water velocities. Water velocities, collected through time from
bottom deployed ADCPs, are used to determine the site feasibility for MHK tidal current installations
(Polagye & Thomson 2013). Even though ADCPs were designed to measure current velocities, the
returned backscatter can be used as an index of nekton biomass (e.g. Flagg et al. 1994, Cochrane et al.
1994, Brierley et al. 2006). The difficulty of calibrating an ADCP for biological use (Brierley et al. 1998)
limits the interpretation of backscatter to a relative index.

2.2.3 Mobile Survey

2.2.3.1 Mobile Acoustics
Snohomish Public Utilities District’'s (SnoPUD) proposed Admiralty Inlet tidal hydrokinetic energy

site was split into north and south geographic areas, approximately 1km apart. The north geographic
area was located in the main tidal channel, while the south geographic area was shielded from flood tides
by Admiralty Head (Figure 2.1). Each geographic area was repeatedly sampled by a systematic acoustic
survey, consisting of high (0.25 km) and low (0.5 km) resolution transects encompassing the proposed
location of the tidal turbines. Each sampling grid totaled 28 km of transects and covered approximately 8
km? (Figure 2.1). Surveys were repeated from May 2" to May 13", 2011 and again from June 3" to June

14" 2011.
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Table 2.1. Acoustic sampling parameters used with each acoustic technology.

Deployment Mobile Stationary

Technology Echosounder Echosounder Acoustic Camera  ADCP
Manufacturer Simrad BioSonics Sound Metrics Nortek
Model EK-60 DTX Didson AWAC
Frequency 120kHz 120kHz 700kHz 1000kHz
Beam Angle 7° 7° .08° x 14° 25°

Beam Number 1 1 48 3

Pulse length 512 us 500 ps 92 us unspecified

Ping Rate 1Hz 5 Hz 1Hz 1Hz
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A 120 kHz, hull mounted Simrad EK-60 echosounder was used to quantify nekton density and
vertical distributions during all mobile surveys. The transducer, with a transmit power of 500 W, had a
beam width of 7° (between half power points, Table 2.1). Measurements were conducted at 1 Hz with
pulse duration of 0.512 ms. The echosounder was calibrated using a 38.1 mm tungsten-carbide sphere

following protocols of Foote et al. (1987).

2.2.3.2 Direct Samples

A Marinovich midwater trawl, a 6 m x 6 m box trawl fished with 4.6 m x 6.5 m (5 ft x 7 ft) steel V-
doors, was used to identify constituents of observed backscatter during the mobile acoustic survey.
Stretched mesh sizes ranged from 7.6 cm in the forward section of the net to 3.1 cm in the codend. The
final third of the cod end was lined with a 0.9 cm knotless liner. Fish were identified to species and
measured to create length frequency histograms for each species. As a precaution to the integrity of the
net, trawling was restricted to times when the current was 1 knot or less, inhibiting species identification

and acoustic backscatter partitioning to species or functional groups.

2.2.4. Stationary Survey

An autonomous, upward looking echosounder, ADCP, and acoustic camera were mounted on
separate Sea  Spider tripods  (http://www.oceanscience.com/Products/Seafloor-Platforms/Sea-
Spiders.aspx). The tripods were deployed 750 meters from Admiralty Head (Figure 2.1), parallel to the
principal axis of tidal flow, separated by 200m. Each tripod was ballasted by 275 kg of lead weights. All
acoustic technologies concurrently sampled for 12 minutes every two hours, sampling 10% of the total
deployment time (12 minutes sampling / 120 minutes every two hours). The echosounder, a 120 kHz
BioSonics DTX, emitted a 0.5 ms pulse five times a second, transmitting 1000 W of power (Table 2.1).
The echosounder had a 7° beam angle (between half power points), and was factory calibrated by the
manufacturer prior to deployment. The acoustic camera, a Sound Metrics DIDSON, sampled in long
range “detection mode” (operating frequency 700 kHz) over a range from 2.5 m to 42.5 m. A single ping
from the acoustic camera had 24,576 discreet measurement cells, 512 vertical intervals within each of
forty-eight 0.8° horizontal and 14° vertical beams spaced 0.6° apart. The ADCP, a 1 MHz Nortek AWAC,
sampled three 25° beams angled 20° off center at 1 Hz. Sampling parameters for all instruments are

listed in Table 2.1.
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2.2.5. Acoustic Data Processing

Acoustic data, except the ADCP, were processed using Echoview software (Myriax Software,
v.5.4.91, http:\\www.echoview.com). Mobile acoustic measurements within 3m of the echosounder
transducer face and half-meter from the bottom were excluded to avoid measurements biased by
transceiver saturation and backscatter from the bottom. Mobile acoustic returns were dominated by
surface turbulence introduced by tidal currents, sometimes extending to more than 80m depth. Surface
turbulence was identified and excluded from analysis using Echoview’s schools detection algorithm
(minimum total school length = 5m, minimum total school height = 3m, minimum candidate length = 5m,
minimum candidate height = 3m, maximum vertical linking distance = 10m, maximum horizontal linking
distance = 10m). Detected schools that intersected the three-meter surface exclusion were classified as
surface turbulence and excluded from further analysis. Echosounder data were exported at a -75 dB
threshold, with a 16 dB signal to noise ratio, in order to enhance the surface turbulence exclusion
algorithm.

Stationary acoustic measurements were limited to a range of 3 to 26m from the transducer face,
corresponding to the maximum range of the ADCP and twice the vertical footprint of the proposed
OpenHydro turbine. Stationary backscatter measurements were exported using a -75 dB threshold,
identical to the mobile echosounder survey. Cells which failed to meet the signal to noise ratio in the
echosounder were filtered from all gears.

Both the acoustic camera and the ADCP data were limited by a lack of a signal to noise range,
calibration, and time varied gain (TVG) correction. In the absence of an ambient noise estimate, neither a
signal to noise threshold nor calibration could be applied to either technology. A time varied gain (TVG)
correction for beam spreading, was retroactively applied to the ADCP measurements following protocols
by Nortek (2001). Signal loss due to absorption was restored using an absorption coefficient of 358.4
dB/km (c.f. Table 2.3 in Simmonds & MacLennan 2005). A TVG assuming spherical spreading was
manually applied to each acoustic camera beam (Simmonds and MacLennan 2005), with an estimated
absorption coefficient of 258 dB/km calculated using the equation from Francois & Garrison (1982).
Acoustic camera measurements between 15-19 m were excluded to remove a band of continuous noise,

attributed to a second acoustic bottom. Since continuous vertical data are required to calculate vertical
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distribution metrics, the excluded measurements were filled with the mean measurements of the entire
ping.

2.2.6. Data Binning

Observed variability in a quantity is dependent on the scale at which the quantity is measured
(Wiens 1989, Schneider 2009). One of the main objectives of this study was to characterize variability in
nekton density-distributions. Correlation coefficients, lagged in space or time, were used to determine the
minimum spatial or temporal scale at which mobile or stationary measurements of nekton density were
independent, and the analysis resolution of each survey was set to these scales (Schneider 1990). The
autocorrelation of vertically integrated measurements of mean S, (units dB re 1 dB re 1 yPa; MacLennan
et al. 2002) was used to determine the range at which measurements became statistically independent.
This range was used as the horizontal resolution of the data.

Once mobile and stationary horizontal resolutions were determined, mean S, was exported in 1m
vertical bins to match the vertical resolution of the ADCP. Data from these one-meter vertical analysis
cells were used to derive four metrics summarizing the vertical distribution of nekton density within each

horizontal analysis cell, producing four summary metrics for each spatial or temporal analytic cell.

2.2.7. Metrics to Characterize Nekton Density and Vertical Distribution

Four metrics were used to measure density and vertical distributions of nekton in the water
column; mean volume backscattering strength (mean S,), center of mass, inertia, and an aggregation
index. Mean volume backscattering strength (MacLennan et al. 2002) is a depth-independent metric of
nekton density integrated through the entire water column. The remaining three metrics, selected from a
suite of metrics developed by Burgos & Horne (2008) and further refined by Urmy et al. (2012),
summarize the vertical distribution of nekton measured in one-meter increments through the water
column. The first of these metrics, center of mass (units: m), is a metric of the mean weighted location of
backscatter in the water column relative to the bottom. Inertia (units: m2) measures nekton dispersion
and is analogous to the variance of nekton distribution surrounding the center of mass. The aggregation
index (units: m'1) measures the vertical patchiness of backscatter through the water column. The
aggregation index is calculated on a scale of 0 to 1, with 1 being aggregated. Collectively these four

metrics are referred to as “Echometrics”.
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2.2.8. Covariates

Julian day, time of day, tidal speed, daily tidal range (range between high tide and low tide within
a day), and tide state (flood vs. ebb) were all hypothesized to affect nekton density and distribution. Time
of day was used as a proxy for light intensity, associated with diel vertical migration in nekton (Banse
1964). Both mobile and stationary measurements were categorized as day (06:00 — 18:00), night (22:00
— 02:00), or crepuscular (04:00 and 20:00) based on naval sunrise/sunset times. Mobile measurements
were also categorized by month (May/June) and sampling grid (North/South).

Both mobile and stationary acoustic data were linked to tidal velocities measured at ten meters off
bottom and collected at ten-minute intervals by the ADCP. Tidal velocities were used to categorize tidal
speed and tidal state. Tidal speed was measured as a continuous variable (0.1 m/s bins) and
summarized into a categorical variable (slack, moderate, and extreme). Slack (< 0.5 m/s), moderate
(0.5m/s < moderate < 1.5m/s), and extreme (> 1.5m/s) tidal categories were identified from modes in the
histogram of tidal current speed, allocating the first and fourth quartiles into slack and extreme tidal speed
categories. Ebb or flood tidal states were assigned using the dominant tidal heading relative to the
principal tidal axis. In addition to instantaneous tidal velocity, tidal range is a proxy for tidal speed
integrated through a 24-hour day. The cube of tidal speed, proportional to tidal power (Betz 1966), was

used as the covariate of tidal speed.

2.2.9. Characterizing Backscatter Variability

Covariates influencing median nekton densities and vertical distributions in both the mobile and
stationary data were categorically analyzed using an approximation of the 95% confidence interval of the
median extending +/- 1.57 of the interquartile range divided by the square root of the sample size
(Chambers et al. 1983). These confidence intervals, based on asymptotic normality of the median,
identify significant differences between covariate categories of approximately equal sample sizes. The
insensitivity of this method to the underlying distribution of the covariate makes it particularly useful for
Echometric data, because it provides a single statistical tool to analyze each metric, regardless of the

underlying distribution and is insensitive to statistical outliers (Chambers et al. 1983).

2.2.10. Wavelet Analysis

Wavelet transformations decompose a time series into frequency domain at every time step in a

series, resulting in a two-dimensional heat-map illustrating the variance contributed by each temporal
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period at each time step (Torrence & Compo 1998, Figure 2.2). Wavelet power (i.e. variance) heat maps,
called scalograms, identify the variance at each time step (x-axis) across a spectrum of temporal scales
(y-axis). Localized differences in the scales of peak variances identify transient or transitory patterns in
the scales contributing to the variability observed in a time series. Traditional frequency domain analysis
techniques, such as spectral power, are constrained to a global analysis of the series and cannot identify
localized transient or transitory patterns in variance (Saunders et al. 2005). Localized decomposition of
wavelet transforms eliminates assumptions of stationarity that bias or inhibit spectral analysis in many
biological contexts (Torrence & Compo 1998, Saunders et al. 2005). Horizontally integrating wavelet
power at a single scale through time (i.e. the global wavelet spectrum) measures the variance contributed
by each scale across the series, analogous to the power spectrum (Torrence & Compo 1998). Vertically
integrating all scales within a given time step (i.e. scale averaged wavelet power) decouples observed
variability from scale, providing an instantaneous estimate of variance across scales.

Assuming that underlying physical processes influencing a data series can be inferred from the
periods at which a data series varies (Platt & Denman 1975, Steele et al. 1994), the relative influence of a
cyclical physical process can be inferred from the variability measured in its corresponding temporal
scale. Leveraging this concept, the wavelet scalogram can be used to identify locally significant physical
processes influencing each metric of nekton density or vertical distribution. The global wavelet spectrum
provides a statistically rigorous metric of the variability contributed by each scale across the entire time
series (i.e. power spectrum; Percival 1995, Perrier et al. 1995, Torrence & Compo 1998). Periods
contributing statistically significant amounts of variance to the time series can then be included as Fourier
series covariates in time series models as a proxy representing the underlying physical processes which
could not be directly measured.

A continuous, Morlet mother wavelet-transform was applied to the data to describe the structure
of the variability in the stationary Echometric series. Morlet mother wavelets offer precision in the
frequency domain at only a slight cost to precision in the time domain (Mallat 1989). A continuous
wavelet transform, with twelve steps per octave, increased the scale resolution twelve-fold compared to
discrete wavelet transforms. The temporal scales analyzed ranged from 4 hours (twice the resolution of

each time series) to 256 hours (35.5% of the total series length), with 84 analyzed scales increasing
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Figure 2.2. Wavelet Analysis and its applications. The data series (top) is decomposed into frequency
domain at every time step to create the scalogram (center). The sum of wavelet power across all times
within a band of periods is the global wavelet spectrum (right), analogous to spectral power. The scale
averaged wavelet power (bottom) is the sum of wavelet power across all periods at each time step. All
three panels on the left share a common time series ordinate.
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exponentially as 222

where i is the scale step with 12 steps per octave. The beginning and ending of
each stationary Echometric series was padded with zeroes (Torrence and Compo 1998) to facilitate
analysis near the start and end of the time series. These zeroes create edge effects, which artificially
dampen wavelet power near the edges of the time series. The reduced power near an edge is
exaggerated at large scales, decreasing the power to identity large scales as statistically significant.
Statistical significance in localized wavelet power in the scalogram was tested against a white noise null
hypothesis at a 95% confidence level (Torrence and Compo 1998). A full review of the considerations
and calculations when using wavelet analysis is beyond the scope of this paper, but can be found in
Torrence and Compo (1998) and Cazelles et al. (2008).

The significance of all 84 discreet scales was tested against white- and red-noise null
hypotheses. A white noise null hypothesis is a constant value across all scales, equal to the variance of
the time series. The red noise spectrum, a more realistic and conservative spectrum assuming
autocorrelation (Torrence & Compo 1998), was modeled as a first order autoregressive process with the
variance and autocorrelation empirically derived from the time series. Each theoretical spectrum was
multiplied by the 95% confidence x* statistic with two degrees of freedom to create a 95% confidence
interval (Torrence & Compo 1998). Statistically significant scales were included in time-series models as
Fourier series.

The mean wavelet power across all scales at a given time step (i.e. scale averaged wavelet
power) is an instantaneous metric of variance across all scales (Torrence and Compo 1998). Volatile
periods of a time series (i.e. instances of high-localized variability) are characterized by sharp peaks in a
quantity and high scale averaged wavelet power. Peaks in quantities such as biological density or mean
vertical distribution, are assumed to increase the risk (i.e. the probability of occurrence multiplied by the
severity) of nekton interacting with a device. Instantaneous variance in nekton density and vertical
distribution is an easily measured proxy for the risk of biological interactions. Given that variance is
dependent on the scale at which it is measured, variance estimated risk may be exaggerated or
dampened by an arbitrary analytical scale. By taking the mean variance across all measurement scales
at a given time, the scale averaged wavelet power decouples variance from the measurement scale,

creating a time specific index of variance independent of scale (Torrence & Compo 1998). Scale
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averaged wavelet power can be used as a proxy for risk that is not biased by measurement scale,
creating a time series of biological risk.

Similar to the global wavelet spectrum, peaks in the scale averaged wavelet power can be tested
against a white- or red-noise null hypothesis. The white-noise scale averaged wavelet is equal to the
variance of the series, while the theoretical red-noise spectrum was modeled as a first-order
autoregressive process with known variance and autocorrelation. The 95% confidence interval for both
the white- and red-noise spectrum was derived from the 95% confidence )(2 statistic with two degrees of
freedom (Torrence and Compo 1998). Periods of statistically significant peaks in variance were identified

as events of greater risk of biological interactions.

2.2.11. MARSS State-Space Time Series Models

Multivariate Auto-Regressive State-Space (MARSS) models are linear, multivariate, first-order
autoregressive, time-series models assuming Gaussian error in the modeling of populations (i.e. state)
and the measurement of those populations (Holmes et al. 2012). MARSS models assume that the true
population in the modeled series are hidden by measurement error. Using a maximum likelihood
framework, MARSS models apply a Kalman smoother to estimate the state at each time step from
measurements represented in the time series. The state model includes four components to concurrently
model each population or metric. First, auto-regressive matrices relate population estimates from the
previous time step to the current step, and allow for auto-regressive coefficients between different
metrics. Multivariate matrices relate each metric to each covariate with a unique coefficient. A linear
trend can be added, and the error structure of each population is capable of including the variance and
covariance between several modeled populations (Holmes et al. 2012). The observation process
includes a linear scaler, multivariate matrices to change the sampling bias as a function of environmental
covariates, and an error structure capable of including the covariance between separate concurrently
modeled series. The best-fit model, identified by the small sample size corrected Akaike information
criteria (i.e. AICc; Holmes et al. 2012), estimates the true quantity at each step and provides a 95%
confidence interval.

MARSS models have several unique attributes that make them attractive for time series

modeling, particularly for modeling nekton density and vertical distribution at tidal current sites. First,
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MARSS models don’t require concurrently modeled series to be treated independently. Although each
metric measures a unique quantity, metrics of vertical distribution may be related due to predictable
nekton behavior, such as diel vertical migration. MARSS models enable these inter-dependencies to be
expressed as auto-regressive terms in the state equation or covariance terms in the error matrix. The
ability to include covariates in the observation process is valuable when measurement precision may be
compromised by environmental challenges, such as tidal currents. The best-fit model provides insight to
the variability of fish and macrozooplankton distribution in high flow areas, and statistically test if there are
non-uniform sampling biases introduced by the environment.

The stationary metric series derived from acoustic backscatter data were modeled through time
using MARSS models. To meet assumptions of normality, each metric series was demeaned and
normalized using a z-score transformation. An additional logqo transformation was applied to the
positively skewed aggregation-index before applying the z-score transformation. Daily tidal range,
instantaneous tidal speed, Julian day, and a Fourier series defined by a 24-hour period were included as
possible covariates in both the process and observation equations. Twenty-one models increasing in
complexity were iteratively tested using forward model selection. Models varied from random walk
models to multivariate processes with autoregressive relationships between metrics. The models, listed in
ascending order of AICc values in Table (2.3), were forward selected. Model goodness of fit was
analyzed from AlCc using the quasi-Newton “BFGS” algorithm (Holmes et al. 2012). The distribution of
model residuals was scrutinized for randomness using goodness of fit, residual QQ plots, and

autocorrelation diagnostic plots.

2.2.12. Acoustic Technology Comparisons

Stationary echosounder measurements functioned as a standard to compare the ADCP and
acoustic camera measurements. First, the ability of both acoustic technologies to measure nekton
distribution through time and tidal cycles was compared to measurements by the echosounder. This
pattern matching assessment assumes that acoustic technologies lacking the sensitivity to identify
patterns in nekton density-distributions also lack the sensitivity to identify changes in nekton communities
after a perturbation. Second, measurements from both the ADCP and acoustic camera were regressed

against concurrent echosounder measurements. Significant, positive relationships at two-temporal and
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Figure 2.3. Length frequency distribution of the six most abundant species collected in 36 midwater
trawls. Trawls targeted aggregations and are representative of species length frequency distributions and
not relative abundances.
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two-vertical measurement resolutions were tested using a repeated measures ANOVA (a = 0.05) with a

Bonferroni correction.

2.3. Results
2.3.1. Trawl Catches

A total of 41 fish species were collected by the 36 mid-water trawls that were evenly distributed
between May and June, 2011. Six fish species were represented by greater than 30 individuals collected:
Pacific herring (Clupea pallasii), copper rockfish (Sebastes caurinus), Northern lampfish (Stenobrachius
leucopsarus), Pacific sand lance (Ammodytes hexapterus), soft sculpin (Psychrolutes sigalutes), and
spotted ratfish (Hydrolagus colliei) (Figure 2.3). The longest of these dominant species was the spotted
ratfish measuring an average of 417 mm. Midwater trawls were not randomly conducted, but targeted at
specific aggregations or to characterize the species composition of the fish community, thereby limiting
the interpretation of these data to presence/absence and length frequency distributions (as opposed to an
independent metric of species abundance). Four species, copper rockfish, Pacific herring, and ratfish
were caught in single trawl hauls exceeding 30 individuals. A total of 328 Pacific herring, 275 Pacific
sand lance, 353 copper rockfish, and 156 spotted ratfish were collected. The largest specimen sampled
was a 870 mm spiny dogfish (Squalus acanthias), one of three spiny dogfish collected in the survey.
2.3.2. Patterns in Nekton Density and Vertical Distribution

2.3.2.1. Mobile Acoustic Survey
Mobile acoustic surveys were repeated daily and nightly from May 2" 2011 to May 13" 2011

and June 3™, 2011 to June 14", 2011 sampling 56.5 mobile survey grids. Effort was evenly distributed
between May (n=28.5) and June (n = 28) and the North and South grids (Table 2.2). The median
horizontal autocorrelation of the vertically integrated mobile density measurements reached 0 at 300m, so
the horizontal analysis cell size was set at 300m. A 300m analysis cell resulted in at least four cells within
each transect, and up to ten in the south grid. Mobile acoustic sampling effort was focused during
daylight hours, with 76% of mobile grids conducted during day (13 at night & 43.5 daytime). A total of
5,054, 300m analytic cells were created from the acoustic backscatter data. These cells were
approximately equally distributed between the north (n = 2,468) and south (n = 2,568) sampling areas

and between the May (n = 2,510) and June (n = 2,544) sampling periods. Mobile acoustic data were
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Table 2.2. Allocation of line transects and mid-water trawl effort in Admiralty Inlet, Puget Sound in May
and June, 2011.

Month Activity Diel Period North Grid  South Grid
May Acoustic Grids  Day 12 10.5
Night 3 3
Trawling Day 5 8
Night 3 2
June Acoustic Grids  Day 11 10
Night 3 4
Trawling Day 7 8
Night 1 2
Total Acoustic Grids  Day 23 20.5
Night 6 7
Total 29 27.5
Trawling Day 12 16
Night 4 4

Total 16 20
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Figure 2.4. Nekton density and vertical distributions measured from repeated mobile surveys illustrating
(a) changes between diel periods (day, night), (b) geographic differences between north and south survey
grids, and (c) distributional changes as a function of tidal states (slack, moderate, extreme).
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collected across a spectrum of tidal current speeds, with a majority of observations in moderate (0.50 m/s
< moderate < 1.50 m/s; n = 2751) tidal currents compared to slack (< 0.50 m/s; n = 969) or extreme (>
1.50 m/s; n = 741) tidal current speed categories. Over the mobile survey, the mean metric of nekton
density (vertical mean of mean S,) was -73.45 dB, ranging from -79.87 dB to -39.66 dB. On average,
nekton were centered 27.50 m off the bottom and dispersed with a variance of 181.3 m® The mean index
of aggregation, on a scale of 0 to 1, was 0.159 m™".

Mean nekton density and vertical distributions differed between the north and south sampling
grids. Mean nekton density was 0.477 dB higher in the north than the south (north mean S, = -73.22 dB;
south mean S, = -73.70 dB, p = < 0.001, Figure 2.4). Nekton in the south sampling grid were, on
average, located 8 m closer to the bottom (north center of mass = 31.59 m; south center of mass = 23.61
m, p < 0.001), less dispersed (-144.54 m?, p < 0.001), and 19.5% more tightly aggregated (north
aggregation index = 0.142 m™"; south aggregation index = 0.169 m™, p < 0.001). Backscatter distributions
during repeated mobile measurements were consistent with nekton diel vertical migration behavior.
Nekton density did not significantly change across diel periods (day mean S, = -73.40 dB; night mean S,
= -73.63 dB, p = 0.086), but moved higher in the water column (day center of mass = 27.27 m; night
center of mass = 28.27 m, p = 0.027). As expected, nekton became more dispersed (day inertia = 171.57
m?; night inertia = 213.54 m?, p < 0.001) and less aggregated at night (day aggregation index = 0.173 m™;
night aggregation index = 0.096 m™, p < 0.001).

Nekton density distributions measured during mobile surveys changed between May and June.

Nekton density increased 43% from May to June (May mean S, = -74.25 dB; June mean S, = -72.67 dB,

p < 0.001), moved lower in the water column (May center of mass = 28.00 m; June center of mass

27.00 m, p = 0.011), and became more aggregated (May aggregation = 0.185 m™; June aggregation
0.127 m™, p < 0.001). Nekton dispersion did not change between May and June (p = 0.420).

Using a Tukey’s honestly significant difference post hoc test, mobile backscatter measurements
of nekton decreased by 0.69 dB at extreme tidal current speeds (slack-moderate: p = 0.703, moderate-
extreme: p < 0.001), while nekton dispersion increased during slack tides (slack-moderate: p = 0.004,

moderate-extreme: p = 0.830). Nekton mean weighted location (slack-moderate: p = 0.141, moderate-
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Figure 2.5. Mobile acoustic measurements measuring nekton (a) mean density, (b) mean weighted
location, (c) dispersion, and (d) aggregation within each geographic sampling grid (blue; N = North, S =
South), month (red; M = May, J = June), tidal speed (green; S = slack (< 0.5 m/s), M = moderate (0.5 <
moderate < 1.5 m/s), E = extreme (> 1.5 m/s)), and diel period (yellow, D = day, N = night). Whiskers
extend to 1.5 times the interquartile range. Box widths are proportional to the square root of the sample
size, with a grand sample size of 5,054 samples. Overlapping notches are used to test significant
differences between the medians of categories where notches extend to 1.58 times the interquartile range
divided by the square root of the number of samples (c.f. Chambers et al. 1983 for technique details).
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extreme: p = 0.113) and aggregation (slack-moderate: p = 0.573, moderate-extreme: p = 0.959) remained
consistent across tidal currents.

Significant patterns emerged in the median measures of nekton density distributions as the mean,
with two exceptions. Median nekton density was nearly identical between the north and south sampling
areas (north median mean S, = -74.22 dB, south median mean S, = -74.21 dB, Figure 2.5), but increased
from day to night (day median mean S, = -74.34 dB; night median mean S, = -73.87 dB). All other
patterns observed in median nekton density-distributions were consistent with those observed in mean

distributions.

2.3.2.2. Stationary Survey

Stationary echosounder measurements were collected for twelve-minutes every two hours from
May 9™ 2011 to June 8", 2011 resulting in 360 sampling periods. Stationary measurements of integrated
backscattering strength became statistically independent at a 24-second temporal lag within each
sampling period, as determined by autocorrelation. Each sampling period was divided into 30, 24-second
horizontal bins, resulting in 10,800 independent sampling periods, 10,130 of which had concurrently
collected tidal velocities. Stationary data was also analyzed at the coarser 12-minute temporal scale,
creating 360 equally spaced analysis cells for time series analysis. Stationary data were collected across
tidal current categories (slack: n = 1894, moderate: n = 5065, extreme: n = 3171), tidal states (flood tides:
n = 5216, ebb tides: n = 4914), diel periods (day: n = 6277, night: n = 2719, crepuscular: n = 1815).
Nekton density ranged from -90.02 dB to -51.57 dB.

The 360 12-minute sampling bins were used to create a time series for each metric (Figure 2.6).
A saw-tooth, diel pattern dominated values in all four series, but a larger periodic wave also appeared to
be present in nekton density, center of mass, and dispersion. Nekton density increased 2 dB through the
time series (p = 0.007), equating to a 58% increase in nekton density within the month deployment. The
center of mass moved 3 m higher in the water column through the deployment (p = 0.007), and nekton
became more highly dispersed (p = 0.008). The aggregation index remained close to zero throughout
most of the time series, punctuated by an episodic presence of high aggregation values. Statistical tests

were not applied to the aggregation index because the data were not normally distributed.
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Figure 2.6. Patterns in nekton density and vertical distribution measured from stationary, upward facing
echosounder. Density and vertical distributions were indexed as a function of (a) time, (b) time of day
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the ordinate quantities are density (metric: mean S,; units: dB, re 1 yPa), mean weighted location from
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aggregation index; units: m'1).
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Figure 2.7. Stationary acoustic measurements measuring nekton (a) mean density, (b) mean weighted
location, (c) dispersion, and (d) aggregation within each tidal state (purple; F = flood, E = Ebb), tidal
speed (green; S = slack (< 0.5 m/s), M = moderate (0.5 < moderate < 1.5 m/s), E = extreme (> 1.5 m/s)),
and diel period (yellow; D = day, N = night, C = crepuscular). Whiskers extend to 1.5 times the
interquartile range. Box widths are proportional to the square root of the sample size, with a grand
sample size of 10,800 samples, and 10,130 in across the tidal categories. Overlapping notches are used
to test significant differences between the medians of categories where notches extend to 1.58 times the
interquartile range divided by the square root of the number of samples.
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Patterns in the density and distribution of backscatter versus time of day were consistent with
nekton diel vertical migration behavior (Figure 2.6). Acoustic backscatter more than doubled at night
(+3.5 dB at night, p < 0.001, n = 10,800), moved higher in the water column (+5.6 m at night, p < 0.001),
and became more dispersed (+20.5 m? at night, p < 0.001). Qualitatively, aggregation index values
increased during daylight hours. Variability in all metric values remained relatively consistent through the
time of day (Figure 2.6). Nekton density decreased as tidal speed increased (-0.70 dB (m/s)'1, p < 0.001,
n = 10,130), and moved closer to the bottom (-1.90 m (m/s)'1, p < 0.001) while becoming less dispersed (-
8.13 m? (m/s)'1, p < 0.001). Nekton aggregation was independent of tidal speed (p value=0.701). In
general, variability observed in metric values decreased with tidal speed.

Patterns in the median nekton density and distribution metric values were consistent with mean
patterns, varying through time and tidal cycles. Small differences between flood and ebb tides were
observed in median nekton densities (-77.8 dB to -77.2 dB, Figure 2.7), center of mass (16.9 m to 16.7 m,

Figure 2.7), and dispersion (74.8 m®to 73.7 m?, Figure 2.7).

2.3.3. Wavelet Analysis

The time series (n = 360) was decomposed into time-frequency space using wavelet analysis
(Figure 2.2). The cone of influence, denoted by the dotted white line, identifies the extent to which
padded zeroes dampen power (i.e. edge effects). Statistically significant (a = 0.05) areas of the
scalogram, tested using a Chi-square distribution assuming white noise, are traced with a black line.
Mean S,, center of mass, and inertia significantly varied at the 24-hour diel period (Figures 2.8, 2.9, 2.10).
Nekton density, center of mass, dispersion, and aggregation locally varied over a period of ~256 hours
(~2 weeks) within the cone of influence, but the padded zeroes at larger periods weakens the signal near
the beginning and end of the time series. Troughs in the daily tidal ranges on May 11" and May 26",
2011 coincided with an event that caused nekton center of mass to vary at the 12 hour period instead of
the 24 hour period. The event on May 26" corresponded to a sharp spike in the variance of nekton
density at the 24-hour period, while variance in nekton mean weighted location and dispersion was
dampened at the same 24-hour period.

Peaks in the global wavelet spectrum at the 24-hour period suggested that variance in nekton

density, center of mass, and dispersion were principally influenced by the diel tidal cycle (Figures 2.8, 2.9,
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global wavelet spectrum (right), analogous to the power spectra. Summing vertically yields the scale
averaged wavelet power (bottom), an estimate of variance across scales.
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Figure 2.9. Wavelet decomposition of the temporal variability in nekton mean weighted location relative to
the bottom. The time series (top panel) is decomposed into the scalogram (center). Summing horizontally
across the scalogram yields the global wavelet spectrum (right), analogous to the power spectra.
Summing vertically yields the scale averaged wavelet power (bottom), an estimate of variance across

scales.
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2.10). Tested against both red and white noise null hypotheses, the aggregation index also varied with
diel period, but the peak was not statistically significant (Figure 2.11). A peak corresponding to the 256
hour period appeared in each metric’s global wavelet spectrum, but was only significant in the spectra of
nekton density (Figure 2.8). Peaks in scale-averaged wavelet power exceeding the red noise 95%
confidence interval only occurred twice in the density, mean weighted location, and dispersion spectra
(Figures 2.8, 2.9, 2.10). Both peaks were related to the trough in tidal range on May 26", 2011. The
scale averaged variance of nekton density exceeded the red noise 95% confidence interval during the
tidal trough, while scale averaged variance of nekton dispersion peaked on May 28". Scale averaged
variance of nekton mean weighted location peaked on May 14" 2011, but did not exceed the red-noise

threshold (Figure 2.9).

2.3.4 MARSS Model:

Two time series models were chosen based on AICc values. The best model included nekton
density and vertical distribution as a function of the cube of tidal speed, the cube of tidal range, Jullian
day, and a 24-hour time period. This model included first order autoregression between the density and
three vertical distribution metrics and succeeded in capturing the diel periodicity (large coefficients
relating the 24 hour period to nekton distributions). Model residuals of all four metrics were not random.
The biased, non-random structure of the model residuals in all four metrics removed this model from
consideration.

The second model was built from prior knowledge of nekton behavior in high energy
environments. This model included all environmental covariates ([tidal speed]3, [tidal range]s, Julian day,
and Fourier 24-hour series), auto-regressive density-dependent vertical distributions, and unique
observation errors for each metric. This model consistently underestimated observed metric values by a
factor of approximately two. This constant bias was corrected by multiplying expected values by the
inverse of the slope of the best-fit line relating observed values to expected values. A correction value of
two was applied to predicted mean S,, center of mass, and inertia. A correction factor of 2.5 was applied
to predicted aggregation index values. Even though this bias correction was not accounted for in the
AlCc calculation, this model was still the second best fit (Table 2.3, Figure 2.12) of all models. After

applying the model correction, predicted values were highly correlated to observed values in all metrics
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Table 2.3. AICc selection criteria for iterations of MARSS model selection. D&U denotes diagonal and
unequal matrices, while id denotes identity matrices. The B matrix is the autoregressive coefficients, with
off diagonals in the B matrix measuring autoreggressive density dependence. TS3 is the cube of tidal
speed, TR3 is the cube of tidal range, DN is Julian day, and 24H is a Fourier series with a period of 24-
hours to model diel periods. See Holmes et al. (2012) for description of the structure of MARSS models
and how matrices relate mathematically.

Model # AlCc Structure Process Covariates OCbser\{atlon
ovariates

16 3339.5* B off diagonals All D: 24H

Theoretical 3352.9 B=off diagonols, All None
Z=D&U

18 3358.1 B off diagonals All D: All

15 3360.2 B off diagonals All D: TR3

14 33701 B off diagonals All D: TS3

11 33715 B=D&U, TS3, TR3, 24H None
Z=id

10 3372.9 B=D&U, DN, TS3, 24H None
Z=id

7 3374.2 B=D&U, DN & 24H None
Z=id

8 3374.7 B=D&U, TS3 & 24H None
Z=id

12 3398.9 B=D&U, All None
Z=id

9 3401.6 B=D&U, TR3 & 24H None
Z=id

17 3408.0 B off diagonals All D: TS3, TD3, 24H

3413.8 B=D&U, 24H None

Z=id

4 3600.3 B=D&U, TS3 None
Z=id

AR-1 3627.5 None None None

3 3632.3 B=D&U, DN None
Z=id

1 3635.1 B=D&U, None None
Z=id

2 3635.1 B=D&U, None None
Z=id

5 3643.5 B=D&U, TR3 None
Z=id

Random Walk 3818.1 None None None

13 Degenerate B off diagonals All None
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Table 2.4. Model parameters of the best MARSS model.

Metric Model Component Covariate Model Estimate
Mean S, B (Auto-Regressive) Mean S, (t— 1) 0.492
Mean S, C (Covariate) 24 Hour (cosine) -0.439
Mean S, C (Covariate) 24 Hour (sine) 0.066
Mean S, C (Covariate) 24 Hour (total) 0.444
Mean S, C (Covariate) Day Number 0.107
Mean S, C (Covariate) Tidal Range® 0.077
Mean S, C (Covariate) Tidal Speed’ 0.017
Mean S, Q (Process Error) Mean S, 0.060
Mean S, Z (Scaler) 1.059
Inertia B (Auto-Regressive) Inertia (- 1) 0.459
Inertia B (Auto-Regressive) Density Dependence -0.640
Inertia C (Covariate) 24 Hour (cosine) -0.357
Inertia C (Covariate) 24 Hour (sine) -0.102
Inertia C (Covariate) 24 Hour (total) 0.371
Inertia C (Covariate) Day Number 0.049
Inertia C (Covariate) Tidal Range’ 0.089
Inertia C (Covariate) Tidal Speed’ -0.205
Inertia Q (Process Error) 0.114
Inertia Z (Scaler) 1.046
Center of Mass B (Auto-Regressive) Center of Mass (t— 1) 0.264
Center of Mass B (Auto-Regressive) Density Dependence 0.231
Center of Mass  C (Covariate) 24 Hour (cosine) -0.515
Center of Mass  C (Covariate) 24 Hour (sine) -0.156
Center of Mass  C (Covariate) 24 Hour (total) 0.538
Center of Mass  C (Covariate) Day Number 0.106
Center of Mass  C (Covariate) Tidal Range® -0.017
Center of Mass  C (Covariate) Tidal Speed”® 0.076
Center of Mass  Q (Process Error) 0.116
Center of Mass  Z (Scaler) 1.139
Aggregation B (Auto-Regressive) Aggregation (t— 1) -0.079
Aggregation B (Auto-Regressive) Density Dependence -0.502
Aggregation C (Covariate) 24 Hour (cosine) 0.446
Aggregation C (Covariate) 24 Hour (sine) -0.109
Aggregation C (Covariate) 24 Hour (total) 0.459
Aggregation C (Covariate) Day Number 0.025
Aggregation C (Covariate) Tidal Range® -0.060
Aggregation C (Covariate) Tidal Speed’® 0.037
Aggregation Q (Process Error) 0.203
All R (Observation Error) 0.462
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Figure 2.12. Observed (red lines) and MARSS time series models (black lines) of nekton density (top),
aggregation (2nd from top), mean weighted location (2nd from bottom), and dispersion (bottom).
Modeled values are encompassed by 95% confidence interval (grey dashed line) and generated from
best fit Multivariate AutoRegressive State-Space model (MARSS models) as chosen by AlCc (Holmes et

al. 2012).
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Figure 2.13. (Left) Observed vs. modeled quantities of nekton density and vertical distribution. (Right)
Time series of model residuals, demonstrating independence and identical distribution through time.
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(R%neansv = 0.70; R%centorofmass = 0.69; Riinertia = 0.62; R%ggregation = 0.83, Figure 2.13). Caution should be
used in interpreting R? values due to the presence of the observation error term, artificially inflating the R?
value.

The relative influence of each environmental covariate on each Echometric series was related by
a coefficient (C). The 24-hour Fourier series was the dominant process influencing all four Echometrics
(C24.nour(totaly->mean.sv = 0.444; Co4 hour(total)->center.of mass = 0.538; Co4 hour(total)->inertia =0-371; C24 hour(total)->aggregation=
0.459, Table 2.4). Nekton density increased through time (Cgay->meansv = 0.107) and to a lesser extent
with tidal range (Ctgalrange->mean.sv = 0.077). Nekton mean vertical location was dominated by the 24-hour
period, but also increased through time (Cgay->centerotmass = 0.106), while decreasing with tidal speed
(Ctigal.speed->centerofmass = 0.076). Nekton inertia was inversely related to tidal speed (Crgaispeed->inertia =
-0.205), and positively related to Julian day (Cgay-»ineria = 0.049) and tidal range (C tairange->inertia = 0.089).
Nekton aggregation was dominated by diel period, but was also negatively related to tidal range
(Ctigal.range->aggregation = -0.060). The autoregressive coefficient (B) between nekton density at sequential
time steps was 0.490. Nekton mean-location and inertia were positively autocorrelated (Bcenter.of mass(t-1)-
scenter.ofmass = 0.264; Bineria-1)->ineria = 0.459), while aggregation was slightly negatively autocorrelated
(Baggregation(t-1)->aggregation = -0.079). Inertia and aggregation were inversely density-dependent, decreasing
proportionally more with nekton density than as an autoregressive function (B mean.svt-1)->inertia = -0.640;
Brmean.Sv(t-1)->aggregation = -0.502).  Nekton center of mass was density-dependent (Bmean sv(t-1)->center.of. mass=
0.231). The error in the process model (Q) was unique for each metric (diagonal and unequal), and
relatively small compared to the effects of model parameters (Qmean.sv = 0.060; Qcenter.ofmass = 0.116; Qinertia
= 0.114; Qaggregation = 0.203). Observation errors (R) were found to be equal across all metrics (Ra =

0.462). A complete list of the best fit parameters are summarized in Table (2.4).

2.3.5. Acoustic Technology Comparisons

Echometric series for the acoustic camera (Figure 2.14) and ADCP (Figure 2.15) did not contain
the same magnitude of variability as observed in the echosounder series. At night, both the acoustic
camera and ADCP characterized significant increases in nekton density (acoustic camera: + 0.57 dB at
night, p < 0.001, R?= 0.010, n = 10,811, Figure 2.14b; ADCP: + 0.45 dB at night, p < 0.001, R?= 0.009, n

= 10,811, Figure 2.15b) and center of mass (acoustic camera: + 0.56 m, p < 0.001, R® = 0.052,
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Figure 2.14. Patterns in nekton density and vertical distribution measured from stationary, upward facing
acoustic camera. Density and vertical distributions were indexed as a function of (a) time, (b) time of day
(mean + 2 standard deviations), and (c) tidal speed (mean + 2 standard deviations). From top to bottom,
the ordinate quantities are density (metric: mean S,; units: dB, re 1 yPa), mean weighted location from
bottom (metric: center of mass, units: m), dispersion (metric: inertia; units: m?), and aggregation (metric:
aggregation index; units: m'1).
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Figure 2.15. Patterns in nekton density and vertical distribution measured from stationary, upward facing
ADCP. Density and vertical distributions were indexed as a function of (a) time, (b) time of day (mean + 2
standard deviations), and (c) tidal speed (mean + 2 standard deviations). From top to bottom, the
ordinate quantities are density (metric: mean S,; units: dB, re 1 yPa), mean weighted location from
bottom (metric: center of mass, units: m), dispersion (metric: inertia; units: m?), and aggregation (metric:
aggregation index; units: m'1).
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n = 10,811 Figure 2.14b; ADCP: + 0.36, p < 0.001, R® = 0.019, n = 10,811, Figure 2.15b), but not the
same magnitude as the echosounder (+ 3.51 dB, + 5.61 m). Both the acoustic camera and ADCP
observed lower dispersions of nekton at night, which contrasts with the pattern in the echosounder
echometric series.

In contrast to the echosounder, nekton density (i.e. mean S,) increased with tidal speed in the
acoustic camera (slope = 0.87 dB(m/s)'1, p < 0.001, R?=0.053,n = 10,130) and ADCP data (slope = 0.70
dB(m/s)'1, p < 0.001, R?=0.041,n = 10,130). Yet, both technologies observed significant decreases in
nekton center of mass (acoustic camera: slope = -0.55 m(m/s)"1, p < 0.001, R? = 0.114, n = 10,130;
ADCP: slope = -0.30 m(m/s)'1, p < 0.001, R®=0.033,n = 10,130) and dispersion (acoustic camera: slope
-0.20 m*(m/s)™, p < 0.001, R* = 0.002, n = 10,130; ADCP: slope = -0.50 m*m/s)”, p < 0.001, R? = 0.005),
consistent with the echosounder.

At the finest resolution (24 s by 1 m analysis cell), mean S, measured by the echosounder was
positively related to the relative mean S, measured by the acoustic camera (p < 0.001, R?=0.016, Figure
2.16a) and the ADCP (p < 0.001, R? = 0.008, Figure 2.16b). Variance in nekton density increased in both
the acoustic camera and ADCP measurements as the echosounder mean S, measurements increased.

The relative ability of the stationary acoustic technologies to characterize vertical distributions of
nekton through the water column at a given time was examined by comparing pairs of echometric values
between the echosounder and the acoustic camera (Figure 2.17) or the ADCP (Figure 2.18) at a
resolution of 24 s temporal and 1 m vertical bins. A significant and positive relationship between
coincident measures of density (p < 0.001, R? = 0.018) and center of mass (p < 0.001, R? = 0.023)
occurred between the echosounder and the acoustic camera. There were no significant relationships in
the inertial and aggregation index values between the echosounder and the acoustic camera (Figure
217, Table 2.5). Relationships in echometric values between the echosounder and the ADCP differed
depending on the metric (Figure 2.18, Table 2.6). Mean S, was positively related between the two
technologies (p < 0.001, R? = 0.009) with the variance increasing with the amplitude of the echosounder.

There were no positive relationships in the center of mass, or aggregation index comparisons (Table 2.5).
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Table 2.5. Correlation between stationary acoustic camera or ADCP with stationary echosounder in
quantities of nekton density and vertical distribution at a 24 second temporal resolution. CoM represents
center of mass and Al represents aggregation.

Acoustic Camera ADCP
Metric Density CoM Inertia Al Density CoM Inertia Al
P-value <0.001 <0.001 0.374 0.301 < 0.001 0.087 < 0.001 0.052
R? 0.018 0.023 <0.001 <0.001 0.009 <0.001 0.013 < 0.001
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Table 2.6. Correlation between stationary acoustic camera or ADCP with stationary echosounder in
quantities of nekton density and vertical distribution at a 12-minute temporal resolution. CoM represents

center of mass and Al represents aggregation.

ADCP Acoustic Camera
Metric Density CoM Inertia Al Density CoM Inertia Al
P-value 0.033 0.523 0.175 0.292 <0.001 0.005 0.097 0.938

R? 0.010 <0.001 0.002 < 0.001 0.029 0.019 0.005 -0.003
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Figure 2.16. Concurrent measurements of nekton density from the stationary echosounder and acoustic

camera (left) or ADCP (right) collected at a temporal resolution of 24 seconds and vertical resolution of

one meter.
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Figure 2.17. Concurrent water column summary statistics of nekton (a) density (units: dB re 1 pPa), (b)
mean weighted location (units: m), (c) dispersion (units: m2), and (d) aggregation (units: m'1) between a
stationary, upward facing acoustic camera and echosounder collected at a 24-second temporal
resolution.
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Figure 2.18. Concurrent water column summary statistics of nekton (a) density (units: dB re 1 pPa), (b)
mean weighted location (units: m), (c) dispersion (units: m2), and (d) aggregation (units: m'1) between a
stationary, upward facing ADCP and echosounder collected at a 24-second temporal resolution.
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Figure 2.19. Concurrent water column summary statistics of nekton (a) density (units: dB re 1 yPa), (b)
mean weighted location (units: m), (c) dispersion (units: m2), and (d) aggregation (units: m'1) between a
stationary, upward facing acoustic camera and echosounder collected at a 12-minute temporal resolution.
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Figure 2.20. Concurrent water column summary statistics of nekton (a) density (units: dB re 1 pPa), (b)
mean weighted location (units: m), (c) dispersion (units: m2), and (d) aggregation (units: m'1) between a
stationary, upward facing ADCP and echosounder collected at a 12-minute temporal resolution.
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Comparisons between the echosounder and the acoustic camera (Figure 2.19) and ADCP
(Figure 2.20) were also conducted using 12-minute temporal bins to investigate the presence of a scale-
dependent pattern. The decrease in resolution decreased variability in measurements of nekton density
and distribution that may have confounded relationships at the finer (i.e. 24 second) temporal resolution.
Decreasing the temporal grain size reduced the sample to 358 concurrent samples. When comparing the
acoustic camera to the echosounder, there were significant relationships in the mean S, (Figure 2.19a,
Table 2.5; p < 0.001, R? = 0.029) and center of mass (Figure 2.19b, Table 2.5; p = 0.005, R? = 0.019), but
no relationships in inertia (Figure 2.19c, Table 2.5) or aggregation index (Figure 2.19d, Table 2.5).
Probability and significance values are summarized in Table (2.5).

Comparison of ADCP to echosounder data binned at 12 minute intervals resulted in significant
relationships with the mean S, (Figure 2.20a, Table 2.6; p = 0.033, R? = 0.010). Variance in the ADCP
measurement of nekton density increased as nekton density increased. No trends were significant in the
center of mass (Figure 2.20b, Table 2.6), inertia (Figure 2.20c, Table 2.6), or aggregation (Figure 2.20d,
Table 2.6) comparisons.

2.4. Discussion

Tidal currents at MHK sites add a layer of complexity to temporal patterns of nekton density and
vertical distribution. Nekton densities and vertical distributions at the Admiralty Inlet site varied through
time, but were in phase with periodic physical processes at the site. If coincident cycles in physical and
biological processes are assumed to be evidence of bio-physical coupling, then the relative influence of
physical processes can be inferred from the amplitude of variance at corresponding temporal periods
(Platt & Denman 1975, Steele et al. 1994). The global wavelet spectrum measures the variance
contributed by each period, and thus can be used as one measure of the relative influence of physical
processes on nekton density distributions. MARSS models with z-score standardized metrics and
environmental covariates allowed for the direct comparison of influence of each covariate on each metric,
providing two independent measures of the influence of each period or covariate. Both the global wavelet
spectrum and the MARSS models identified the 24-hour period as the dominant source of nekton
variability, consistent with diel vertical migrations (Neilson & Perry 1990, Axenrot et al. 2004, Benoit-Bird

& Au 2004). This result contrasts to the observation that nekton density and vertical distributions were
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predominantly influenced by tidal velocities at a tidal current MHK site in New York's East River
(NYSERDA 2011).

Even though tidal speeds were hypothesized to dominate nekton density distributions based on
previous measurements (NYSERDA 2011), both the global wavelet spectrum and MARSS models
identified tidal speed and tidal range as secondary influences. The global wavelet spectrum identified
similar magnitudes of variance in nekton vertical distributions at the fortnightly lunar period (i.e. tidal-
range) as at the 12.5 hour, semi-diurnal period of tidal cycles, or 6.25 hour period of tidal velocities,
suggesting that tidal range may also influence nekton density distributions. However, the ability to identify
fortnightly periods in the global wavelet spectrum was constrained by the short sampling extent relative to
fortnightly tidal cycles. The time series was padded with zeroes to analyze the wavelet power near the
beginning and end of the series, dampening the global wavelet spectrum at large periods. For this
reason, the MARSS model may be a better indicator of the true influence of tidal range compared to tidal
speed. The MARSS models included tidal range in the best-fit model, with higher influence over nekton
density and aggregation than tidal speed. Fish behavior and availability to sampling is known to change
as a function of lunar period (e.g. Bos & Gumanao 2012), but was not thought to strongly influence
nekton density distribution at MHK tidal sites (NYSERDA 2011). But the influence of tidal cycles extends
beyond the observed fortnightly periodicities, as changes in the period of variance in mean S,, center of
mass, and inertia were observed during the neap tide on May 26". With only one neap tide in the series it
is impossible to know if the corresponding deviation in variability was a coincidence or a pattern. A longer
sample series is required to identify whether patterns of nekton density and vertical distribution change as
a result of neap tides.

Although the MARSS models and global wavelet spectrum identified similar processes, the
MARSS models had a analytical advantages when compared to global wavelet spectrum. The most
pronounced advantage was the MARSS model’s increased sensitivity to identify tidal speed, tidal range,
and Julian day, which were not identified by the global wavelet spectrum. Unlike the global wavelet
spectrum, which only measures the amplitude of variance, MARSS models identify whether there is a
positive or negative relationship between covariates and metrics, and quantifies the error in both the

process model and observation. The observation component of MARSS models did not identify any
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environmental covariates as significantly influencing the measurements of nekton density or vertical
distribution, reinforcing that the echosounder is a viable tool for domain monitoring at tidal MHK sites and
that there was no bias in the results due to the method.

This baseline characterization of nekton density distribution through time can be used to identify
instances of high risk of biological interactions with a MHK device. Risk is the product of the probability of
an event occurring and the severity of that event. Using this definition, the probability of a fish-device
interaction is related to the vertical distribution of nekton and the severity to nekton density. Assuming
that nekton densities and vertical distributions are not changed by the presence of a device, then the
probability and severity of biological interactions are related to the both the mean and variance of nekton
density. Increases in the mean nekton density or a decrease (i.e lowering) in the mean weighted, vertical
location increase the severity and the probability of occurrence of an event (i.e. the mean risk of
interaction). Increases in the variance of a metric increases the likelihood of an extreme interaction such
as a dense aggregation of fish close to the bottom. Using this logic, the risk given a set of environmental
conditions can be inferred from the MARSS models of nekton density and vertical distribution. MARSS
models indicated that nekton are more dense and concentrated lower in the water column at high tidal
speeds and at maximum tidal ranges occurring during daylight hours. These conditions coincide with
peak energy production periods, indicating that the mean risk of biological interactions is related to
potential energy production. In contrast, the statistically significant peak in scale-averaged variance of
nekton density was associated with troughs in the tidal range, a day in which potential energy production
would be minimized. If troughs in tidal range are associated with peaks in the variance of nekton density
(i.e. the variance of risk), then we’d expect a heightened risk of extreme biological interactions occurring
fortnightly during neap tides. Taken together, | conclude that the mean risk of biological interactions is
increased in environmental conditions associated with peak potential energy production, while the risk of
an extreme event is maximized during low energy production, neap tides.

Using estimates of risk to predict biological interactions with MHK devices makes several
assumptions. First, that nekton densities and vertical distributions will not be altered by the presence of a
MHK device. Second, that risk scales with nekton density, vertical distribution, and variance in density.

Notably, risk estimates do not make assumptions about any mechanisms through which nekton and a
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device interact, only that nekton within the vertical footprint of a device have a greater probability of
interacting with a device. The small error in both the process and observation models of MARSS time
series models of nekton density distributions relative to the influence of covariates suggest that the time
series model could be used in a limited predictive capacity. The predictive capacity of the best-fit time
series model was not tested, and would likely break down quickly due to the auto-regressive framework
that compounds modeling errors through time. Given continuous near-real-time monitoring, predictions of
risk, even a few hours in advance, could be used to modify operation of MHK devices to minimize or
mitigate potential biological interactions. Even if MARSS models are not used to predict, knowledge of
how environmental covariates influence nekton density and vertical distributions can be used to identify
environmental conditions associated with potential increases in nekton density or vertical overlap with a
device. Scale-averaged wavelet power, a proxy for risk of extreme events, cannot be calculated in real-
time due to the limitations of edge effects in wavelet analysis. Still, future research could model scale-
averaged wavelet power to identify the environmental conditions that increase the probability of extreme
events.

Similar patterns in nekton density distributions were observed between mobile and stationary
surveys. The stationary survey, consistent with its higher temporal scope, was able to identify temporal
patterns in nekton behavior due to diel vertical migrations and tidal currents that could not be resolved in
the mobile survey. The observed biodiversity in trawl catches are difficult to compare to other sites due to
the lack of historical direct sampling at tidal MHK sites. The trawls collected 41 different species of fish,
compared to 115 that have historically been observed at the site (DelLacy et al. 1972), and there is no
record of where those species were sampled relative to the pilot MHK site. Trawl catches were included
in this thesis to help identify species observed within acoustic backscatter and to inform future Admiralty
Inlet monitoring programs of the dominant fish species, and their length distributions.

The omission of environmental covariates describing observation error in the final MARSS model
provides evidence that echosounder measurements were not significantly biased by tidal currents,
reaffirming that the echosounder is the standard by which to compare other acoustic technology’s ability
to monitor MHK sites. Nekton density and vertical distribution measured by the stationary echosounder

varied as a function of time of day and tidal currents. These patterns were not observed in the backscatter
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data from the acoustic camera or the ADCP. Coincident measurements of nekton density and vertical
distribution measured by the ADCP and acoustic camera were loosely correlated to measurements from
the calibrated echosounder, suggesting either fine scale (< 200 m) spatial heterogeneity in nekton
between devices or imprecise measurements by the ADCP and acoustic camera. Patterns in the
observed variability of nekton density and vertical distribution measured by the acoustic camera and
ADCP were either inconsistent with or smaller in magnitude than those measured by the echosounder.
Based on the ability of the calibrated scientific echosounder to identify patterns not present in the ADCP
or acoustic camera data, the echosounder is recommended as the technology to monitor pelagic nekton
density and distribution at MHK sites. Acoustic cameras and ADCPs will be deployed at MHK sites to
characterize tidal flow properties and to monitor near-field nekton interactions with devices, regardless of
pelagic monitoring requirements, but they cannot be relied on to characterize nekton distribution patterns.

This study provides a case study for baseline domain monitoring at a proposed MHK tidal site.
Results from this study also provide a framework to analyze baseline data, and to compare post-
perturbation measurements during energy production or decommissioning MHK sites. Changes in the
mean or median of metrics can be tested using an ANOVA or notched box-plot, respectively.
Unfortunately, ANOVA models comparing pre- and post-installation measurements are confounded by
variability in nekton as a function of covariates. MARSS time-series models can decouple the added
variance in nekton density distributions from environmental covariates, and can identify perturbations in
nekton communities once devices are installed. Wavelet analysis can be used to quantify cyclical
variability, including measuring differences in the amplitude of the variance or the scales at which
communities change after MHK device installation. Finally, baseline data can be used to infer conditions
of heightened risk. During periods of heightened risk, monitoring efforts can be increased or pre-emptive
operational changes can be initiated to mitigate interactions. When data collection rates potentially
overwhelm analysis rates, one alternative to taking random subsamples of data for monitoring analyses
would use results from MARSS models to identify high-risk conditions for important variables and
increase monitoring efforts or alter operations during these times.

These methods provide a framework to characterize baseline nekton density and vertical

distributions at MHK sites, but the general approach is applicable to other marine monitoring programs.
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Advances in remote sensing are shifting the approach to environmental monitoring in coastal areas from
direct surveys to remote sensing technologies (Brando & Phinn 2007), enhancing both the cost
effectiveness and resolution of monitoring programs. Remotely deployed stationary echosounders
measured nekton density and vertical distribution at fine spatial and temporal resolution, enabling the
quantitative description of patterns through time. Quantitative descriptions of patterns and periodicities in
baseline measurements of pertinent quantities can be used to make inferences about potential biological

effects of any marine development, broadening the application of this approach.



Chapter 3: Comparison of
Methods to Calculate the
Representative Range of Point
Measurements: Implications for
Ecological Network Design
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3.1. Introduction

Regional questions of aquatic community distribution patterns and influencing processes
are large and complex, with species varying and interacting through space and time over a range
of scales (Steele et al. 1994, Wu 1999). Regional ecological complexity precludes the ability to
measure all interacting variables, so inferences must be drawn from samples. Sampling effort,
instrumentation, and deployments are limited by logistics (i.e. time and resources). Samples are
indexed by time, space, or a combination of the two depending on the variable of interest and the
sampling technology. Traditionally aquatic species distributions have been sampled using mobile
surveys (e.g. ship-based, abundance estimates), collecting discreet or continuous spatially-
indexed measurements of density, abundance, or biomass. However, it takes time for a vessel to
survey space, potentially convolving spatial and temporal variability when the geographic
sampling domain is large. Depending on the magnitude of spatial and temporal variability within
the domain, the convolution of time and space can bias observed patterns (Martin et al. 2005).
Technological advancements in remote sensing technologies, computer processing, data
storage, and data management have broadened the array of available sampling techniques for
large spatial domains, which increases the range of possible ecological analyses (e.g. Barau &
Ludin 2012). As an example, biological samples can be obtained from spatially distributed, point-
source sensors within integrated networks to provide high temporal resolution, spatially
distributed samples over time (e.g. Porter et al. 2005).

The enhanced temporal scope (i.e. the resolution of measurements relative to the range)
of stationary sensor networks increases the statistical power to identify ecological patterns across
temporal scales. Since ecosystem management depends on the ability to understand ecosystem
patterns and processes (e.g. Thiel et al. 2007), increased statistical power increases the ability to
detect change in the mean (Fairweather 1991, Mapstone 1995, Osenberg et al. 1994) and
variance (Underwood 1991, Morgan et al. 1994, Landres et al. 1999) of ecologically pertinent
variables. In a monitoring context, pre-perturbation measurements are used as a baseline to
provide a post-perturbation comparison to quantify the magnitude and assess the impact of

change (Underwood 1991). Each stationary sensor, collecting data before and after a
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perturbation, functions as paired pre- and post-installation measurements controlled for spatial
variability. Increasing the number of paired pre- and post-perturbation measurements for
comparison increases the statistical power to identify effects of change in monitored variables
(Underwood & Chapman 2003).

Organism distributions are patchy (Levin 1992) and autocorrelated in space (Legendre
1993), adding complexity when interpreting point source density or abundance data. Since
biological similarity decays with geographical distance (Legendre 1993, Soininen et al. 2007),
uncertainty is introduced when interpolating point source measurements across space. The
decay in similarity with distance has been attributed to heterogeneity in physical habitats (Nekola
& White 1999), biological aggregation (Roughgarden 1977), predation (Wiens 1976), and
patchiness produced by environmental constraints on organismal dispersal (Garcillan & Ezcurra
2003) or physiological limitations (e.g. neutral theory, Hubbel 2001). Distance decay in similarity
within biological communities and their environment leads to the observed scale-dependence of
biological variability (Wiens 1989), compared to random processes, which demonstrate uniform
variation across all spatial and temporal scales (i.e. scale-independence; Gilman et al. 1962).
The consequence of distance decay is that the degree to which sample A resembles sample B
decreases with increasing distance until point measurements can no longer be considered
homogenous. Interpolation of point measurements beyond this range increases uncertainty and
interpretation errors (Milewska & Hogg 2001, Martin et al. 2005, Anttila et al. 2008). If the
objective is to represent an area or volume, efforts to collect additional measurements within this
range (i.e. at finer spatial resolutions) are sub-optimally allocated and could be used to increase
the extent of the survey. Rooted in Tversky and Kahneman’s (1974) psychological concept of
“representativeness heuristics”, the maximum range to which point-measurements can be used to
resolve spatial variability in the surrounding domain has been termed the “spatial
representativeness” of point-source samples (Janis & Robeson 2004). When solving complex
problems in uncertain circumstances, “people typically rely on the representativeness heuristic, in
which probabilities are evaluated by the degree to which A is representative of B, that is, by the

degree to which A resembles B” which creates predictable and systematic errors (Tversky &
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Kahneman 1974). Rather than using the term “spatial representativeness”, we will use
“representative range” to avoid the wrath of our secondary education English teachers who
forbade the use of derivational suffixes in a non-discriminatory manner (e.g. “ness monsters”).
The concept of representative range evolved in meteorology to optimize networks of rain
gauges and thermometers (Brooks 1947, Huff & Neill 1957). At the onset, it was realized that
optimum sensor density was dependent on the focal quantity (e.g. temperature, rainfall.) and
objective, forecasting or hindcasting of a monitoring network (Brooks 1947). Early studies of
meteorological network design focused on the required number of sensors or gauges randomly
placed to achieve a predetermined accuracy of the mean of a quantity through a spatial field (e.qg.
Rycroft 1949). It was soon realized that spatial structure influenced the representative range of
sensors within networks, and the focus shifted from the number of sensors to the spacing
between sensors (Hershfield 1965, Hutchinson 1969). Representative range estimates calculated
using spatial autocorrelation assumes homogenous or smooth decay between sensors
(Hutchinson 1969). In the late 1960s, the focus of network optimization changed from spatial
autocorrelation between sensors to the relative error introduced by spatially interpolating points
(Gandin 1970) or areas (Kagan 1966). Meteorological networks are often composed of sensors
that must be stationary (e.g. rain gauges), inhibiting a priori measurements of spatial variability to
estimate network representative range. This limitation prompted Rodda (1971) to identify a priori
optimization of sensor density as the principal objective of network design. Despite this
shortcoming, methods proposed in 1960s and 1970s have recently been used for sensor network
optimization (e.g. Milewska & Hogg 2001, Ciach & Krajewski 2006). Since the 1970s,
representative range studies diversified to focus on the effects of spatial and temporal analytic
cell size (i.e. binning; Ciach & Krajewski 2006), and post-hoc network optimization such as cluster
analysis (e.g. Sulkava et al. 2011) and variogram nugget time series (e.g. Janis & Robeson
2004). Approaches developed within other disciplines’ specific applications were derived in
isolation, producing a spectrum of sampling and analytical approaches, and collectively lacking a
standardized threshold or definition of “representative” (Janis & Robeson 2004, Ciach &

Krajewski 2006). A consensus has yet to be reached on the best technique to calculate



62

representative range of static sensor networks (c.f. Milewska & Hogg 2001, Janis & Robeson
2004, Anttila et al. 2008).

A considerable amount of effort has also been dedicated to examining the correlation,
coherence, and permanence of ecological quantities in time and space (Legendre 1993, Posadas
et al. 2006, Soininen et al. 2007), but few ecological studies have incorporated this structure to
spatial and temporal design of monitoring programs (e.g. Rhodes & Jonzén 2011). Several
studies, rooted in the reality that monitoring networks are usually resource limited, have quantified
the optimal spatial and temporal allocation of a pre-determined pool of sampling effort based on
spatial and temporal biological variability (e.g. Gray et al. 1992, Kitsiou et al. 2000, Rhodes &
Jonzén 2011), or have optimized sensor density or allocation of established networks (e.g.
Siljamo et al. 2008). The challenge when applying representative range calculations to ecological
point sensors is identifying a threshold of what is considered “representative” with a meaningful
biological interpretation. The first study to focus on the implications of representativeness range
in ecological modeling was Jacobs (1988), who used autocorrelation models to investigate the
representativeness of an arctic climate sensor network that was incorporated in muskoxen and
caribou population models. The United Nations’ Food and Agriculture Organization (FAO)
released a technical paper (Gray et al. 1992) devoted to the biological assessment of marine
pollution effects on benthos, which described quantitative and qualitative techniques to estimate
the number of replicate and the optimal spatial allocation of random samples. Anttila et al. (2008)
incorporated both autocorrelation and interpolation error in a study of water quality sensors in
inland lakes. In another study, structure functions were used to quantify the independence of
measurements in space as a function of range to estimate the spatial and temporal
representativeness of the timing of birch tree blooming events in Europe (Siljamo et al. 2008). To
our knowledge, the first a priori optimization of an ecological sampling network occurred in 2013,
where cluster analyses were used to identify homogenous Alaskan eco-regions for sensor
placement (Hoffman et al. 2013). Even though temporal variance is known to change through
space (Damian et al. 2003, Certain et al. 2007), estimates of representative range have focused

on the distance decay of the mean of a quantity and not the variance.
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This study was undertaken to compare six methods used to define representative ranges
of point measurements using fish densities collected by active acoustic echosounders in Puget
Sound, WA.

3.2. Materials & Methods

Six methods were chosen to quantify the representative range of temporal point
measurements (Table 3.1). Four of these methods estimate the representative range of the
mean of a quantity, with the remaining two estimating the representative range of the variance.
The six methods mirror the evolution of techniques used to optimize meteorological sensor
networks, and can broadly be categorized into four approaches: 1). Distance between sensors
based on the spatial correlation, 2). Sample size calculations assuming random sampling to
detect a minimum threshold of change, 3). Scales at which spatial and temporal variability are
equivalent, and 4). Maximization of spatial variance.

The first approach calculates the optimum distance between sensors based on the
relationship of spatial measurements. Only one method was examined within this approach,
using empirical measurements to model the decay of spatial autocorrelation with distance (e.g.
Anttila et al. 2008). The range at which measurements become independent is the range that
measurements are considered representative. This method evolved in the mid- to late 1960s in
meteorology (Hershfield 1965), and has the most widespread acceptance in biological or
ecological studies (e.g. Jacobs 1988, Anttila et al. 2008).

Historically, spatial autocorrelation models of representative range evolved to models of
interpolation error (e.g. Kagan 1966, Gandin 1970, Milewska & Hogg 2001). Lacking a
meaningful error threshold to determine representative range, the interpolation error was not
explicitly used to calculate a representative range, but was used to describe the uncertainty
introduced by adopting each approach or method. In this study, interpolation error curves, for
linear and areal interpolation, are used to quantify the error introduced by each of the four
methods used to quantify the representative range of the mean.

The second approach assumes a random sampling framework to identify biological

changes through space or time (e.g. Rycroft 1949). Assuming sensors collect data at fixed points
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Table 3.1. Properties of all six methods examined to estimate the representative range of

ecological point sensors.

Method Srl:;r:;g EESH% Analytical Approach Root or Reference
Gray’'s Sample Size Paired t-test/Repeated
Calculation Mean No Measures ANOVA Gray et al. (1992)
t-test Sample Size Mean No Paired t-test/Repeated Sullivan
Calculation Measures ANOVA (2006)
t-test Power Analysis Mean No Paired t-test/Repeated Zar
Measures ANOVA (2010)

Coefficient of . _
Determination Model Mean Yes Autocorrelation Anttila et al. (2008)
Theoretical Spectra Variance  Indirectl Modeled Spatial Power See: Gilman et al.

y Spectra (1962)
Equivalent Spatial and . . Empirical Spatial and .
Temporal Scales Variance Indirectly Temporal Power Spectra See: Wiens (1989)
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before and after a perturbation, the number of sensors can be calculated from a paired t-test
sample size calculation. Three proposed methods fit within the random sampling approach: Gray
et al. (1992) calculated the number of required replicates using a derivative of minimum sample
size calculations for a paired t-test or repeated measures ANOVA (Sullivan 2006), the repeated
measures, paired f-test was used as the second method, and the third method is a sample size
calculation for a paired t-test including statistical power (Zar 2010).

Although changes in temporal variance can be used as a secondary metric of biological
change (Underwood 1991), there is no reason to assume that temporal variance matches the
spatial structure of the mean (as spatial models of temporal variance differ from spatial models of
the mean; c.f. Damian et al. 2003, Sampson et al. 2001). To illustrate using examples, Certain et
al. (2007) demonstrated spatial heterogeneity in the temporal variance of seabird populations and
Damian et al. (2003) provided a method to assess spatial heterogeneity in the temporal variance
of precipitation. No studies have proposed methods to quantify the representative range of
temporal variance measurements.

Point measurements of temporal variance have an equivalent spatial range over which
they can be interpolated. The third and fourth approaches quantify representative ranges (i.e.
spatial period) of temporal variance, which necessitates a switch from the spatial to frequency
domain. The third approach modeled the theoretical power spectrum as a function of the spatial
autocorrelation model developed for the second approach. The spatial period at which 95% of
the maximum observed variance in fish density was observed was set as the representative
period of variance. The final approach compared the empirically derived spatial and temporal
power-spectra to identify equivalent scales of spatial and temporal variability by identifying
periods at which identical magnitudes of spatial and temporal variability were observed.

3.2.1. Representative Range of the Mean

3.2.1.1. Correlation Coefficient Models

The most intuitive methods used to quantify representative range are lagged
autocorrelation functions (i.e. correlograms) and semi-variograms (Jacobs 1988), which describe

the positive or negative relationship among measurements in a series through time or space
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(Legendre 1993, Mgnness & Coleman 2011). Lagged Pearson’s product-moment correlation
coefficients (p) define the correlation between all measurements at a given lag (h), which can be
simplified as the covariance (C) of measurements at lag h standardized by the variance (62):

C(h)

ph) = —;

(1]

where covariance is a quantity used to measure similarity. The lagged autocorrelation can be
interpreted as the degree to which measurement A resembles measurement B relative to the

variance in the system as a whole, which can be modeled using an exponential model:

p() = p(0)e™® 2]

where ’b‘(O) is the autocorrelation at lag 0, d is the number of lags, and a is the inverse scale
height, the range at which the autocorrelation decays by a value of e (Kagan 1972). In theory,
’b‘(O) should always be one, indicating a perfect autocorrelation at lag-0. In practice, these lags
often deviate from one due to variability operating below the sampling grain that cannot be
resolved. Lagged correlation coefficients are used to estimate biological patch sizes (Legendre
1993), and to determine analysis resolutions that do not violate statistical assumptions of
independence (Schneider 1990). The squared correlation coefficient is mathematically identical
to the coefficient of determination (RZ), which quantifies the proportion of variability described
from spatial correlation.

In contrast, semi-variograms (y) measure the dissimilarity at each lag (h) as half the

average squared difference of all measurements (z) at each lag:

LV 2(x; + h) — 2(x)]? [3]

Y(h) = oo Zis

Dissimilarity typically increases with distance, until semi-variance asymptotically approaches half
the variance of the series. Semi-variograms are usually described by three parameters, the
range, sill, and nugget (Gringarten & Deutsch 2001). The range parameter is the lag at which the

semi-variance approaches half the variance, or the sill. Beyond this range, measurements
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become statistically independent and the variance will no longer increase with distance. In
theory, there should be no dissimilarity (semi-variance) at a range of zero, as measurements
should be perfectly autocorrelated. In practice, there is often semi-variance below the grain size,
quantified by the nugget. Covariance and semi-variance are quantities that measure similarity

and dissimilarity, which sum to the variance (Gringarten & Deutsch 2001).

C(h) +2y(h) = 6° [4]

The lagged correlation coefficient inversely mirrors the semi-variance, and is the complement to

the semi-variance standardized by the variance (Mgnness & Coleman 2011):

In Equation [6], the lagged correlation coefficients approach zero at the same range as the semi-
variance approaches the sill, and fo‘(O) is the compliment of twice the semi-variogram nugget
standardized by the variance. Spherical semi-variogram models are analogous to the
exponential decay model of spatial autocorrelation. Selection of correlograms or semi-
variograms is largely a matter of preference and precedent within a discipline when analyzing
one-dimensional data (Mgnness & Coleman 2011). Semi-variograms are slightly more robust to
departures from stationarity than lagged autocorrelation functions and can describe two-
dimensional, irregularly spaced measurements. Semi-variogram analysis and interpretation has
been hampered by ambiguity in terminology (Bachmaier & Backes 2008) and statistical testing in
the absence of permutations (c.f. Walker et al. 1997). Autocorrelation functions, mathematically
identical to lagged correlation coefficients, remain more intuitive to a broad audience. For this
reason, modeled variograms parameters have previously been used to fit correlation coefficient
models to parsimoniously and intuitively describe the decay of representativeness with range

(Anttila et al. 2008).
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Assuming a random data series, lagged-correlation coefficients are distributed around
zero with a variance of 1/n, with n bins the length of the data series. Assuming a random
distribution, the 95% confidence interval of lagged correlation coefficients is 2/\/, where [ is the
number of lags in the series. Substituting 2/7/ for 5(k) in Equation [2], and then solving for the
representative range (r,) as the range given by the number lags (d) of grain size g:

2 2
)
p(0)

Trep = —9 T [7]

A coefficient of determination model was applied to describe how similarity in fish density
decayed with distance in Admiralty Inlet. Lagged Pearson’s correlation coefficients were
calculated within each transect (n=547), then squared to create lagged coefficients of
determination (Rz). An exponential decay model was fit to the lagged correlation coefficients and
coefficients of determination across all transects using a least squares algorithm. Once the range
was calculated, the area of a circle defined by the representative radius was calculated. These
areas were scaled to a square kilometer to make inferences about the n