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A B S T R A C T   

High energy marine regions host ecologically important habitats like temperate reefs, but are less anthropo
genically developed and understudied compared to lower energy waters. In the marine environment direct 
habitat observation is limited to small spatial scales, and high energy waters present additional logistical chal
lenges and constraints. Semi-automated predictive habitat mapping is a cost-effective tool to map benthic 
habitats across large extents, but performance is context specific. High resolution environmental data used for 
predictive mapping are often limited to bathymetry, acoustic backscatter and their derivatives. However, hy
drodynamic energy at the seabed is a critical habitat structuring factor and likely an important, yet rarely 
incorporated, predictor of habitat composition and spatial patterning. Here, we used a machine learning clas
sification approach to map temperate reef substrate and biogenic reef habitat in a tidal energy development area, 
incorporating bathymetric derivatives at multiple scales and simulated tidally induced seabed shear stress. We 
mapped reef substrate (four classes: sediment (not reef), stony reef (low resemblance), stony reef (medium – high 
resemblance) and bedrock reef) with overall balanced accuracy of 71.7%. Our model to predict potential 
biogenic Sabellaria spinulosa reef performed less well with an overall balanced accuracy of 63.4%. Despite low 
performance metrics for the target class of potential reef in this model, it still provided insight into the impor
tance of different environmental variables for mapping S. spinulosa biogenic reef habitat. Tidally induced mean 
bed shear stress was one of the most important predictor variables for both reef substrate and biogenic reef 
models, with ruggedness calculated at multiple scales from 3 m to 140 m also important for the reef substrate 
model. We identified previously unresolved relationships between temperate reef spatial distribution, hydro
dynamic energy and seabed three-dimensional structure in energetic waters. Our findings contribute to a better 
understanding of the spatial ecology of high energy marine ecosystems and will inform evidence-based decision 
making for sustainable development, particularly within the growing tidal energy sector.   

1. Introduction 

To understand ecological pattern and process, reliable information 
about the spatial distribution of habitats is essential (Brown et al., 2011; 
Cogan et al., 2009; Turner, 1989). Aerial and satellite remote sensing has 
revolutionised spatial ecology, providing spatially continuous data on a 
variety of ecologically relevant variables at high resolution across broad 
extents (Kerr and Ostrovsky, 2003; McDermid et al., 2005). This type of 

information is more challenging to collect for the seabed beyond the 
shallow clear waters that can be observed with optical remote sensing 
(D’Urban Jackson et al., 2020; Lecours et al., 2015). Advances in 
acoustic remote sensing now enable collection of high-resolution (<1m), 
spatially continuous seabed bathymetry and acoustic reflectivity 
(commonly referred to as backscatter). However, detailed seabed map
ping is still costly and inefficient compared to terrestrial remote sensing, 
such that less than 18% of the oceans has depth measurements at 1 km 
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resolution or better (Mayer et al., 2018). Other seabed properties, 
including benthic habitat characteristics, are even more challenging to 
map. Methods for observing seafloor habitats and organismal commu
nities are limited to fine to moderate spatial scales (0.01 m–1 km) using 
diver, camera, crewed/uncrewed vehicle, acoustic or physical sampling 
(van Rein et al., 2009). To generate spatially continuous benthic habitat 
maps over large extents, practitioners use statistical approaches to 
identify relationships between discrete habitat observations and 
spatially continuous environmental data and extrapolate into unob
served locations (Brown et al., 2011). 

Temperate reefs are hard-bottom marine habitats between the tro
pics and the poles, and include biodiverse ecosystems that provide bil
lions of dollars in ecosystem goods and services (Bennett et al., 2016; 
Taylor, 1998). Temperate reef substrate may be bedrock or stony 
(geogenic) or derived from organisms (biogenic), both hosting com
munities of sessile and mobile reef-associated species (Bué et al., 2020; 
Diesing et al., 2009; Holbrook et al., 1990). Due to their ecological 
importance reef habitats are listed in various national and international 
conservation legislation, including Annex 1 of the European Commis
sion Habitats Directive (European Commission, 2013). However, a lack 
of information about the distribution and characteristics of reef habitats 
hampers effective ecosystem management (Diesing et al., 2009). 
Temperate reef habitats are often found in high energy marine waters 
(Warwick and Uncles, 1980). These areas are challenging and costly to 
operate within compared to lower energy seas and as such they are less 
anthropogenically developed and less well studied (Shields et al., 2011). 
In response to the global demand for low carbon energy, energetic wa
ters are now of commercial interest to the nascent marine renewable 
energy industry (Roche et al., 2016). To ensure sustainable develop
ment, there is a growing need for baseline ecosystem information about 
energetic waters. While previous attempts at mapping temperate reefs 
have shown some success, it has proved challenging to distinguish be
tween specific reef types like bedrock and stony reef, and between reef 
and non-reef ground without considerable manual input (Dalkin, 2008; 
Eggleton and Meadows, 2013; Limpenny et al., 2010; Plets et al., 2012; 
Vanstaen and Eggleton, 2011). Biogenic temperate reefs are similarly 
challenging to map, typically requiring manual interpretation and 
digitisation of acoustic information (Jenkins et al., 2018; Limpenny 
et al., 2010; Lindenbaum et al., 2008; Pearce et al., 2014). There is a 
growing need for repeatable, cost-effective habitat mapping in high 
energy waters, to understand the spatial ecology of these understudied 
ecosystems and to support sustainable management in an evolving 
seascape of offshore activity (Dannheim et al., 2020; Jouffray et al., 
2020; Wilding et al., 2017). 

Bathymetry, backscatter intensity and their derivatives are typically 
the main, or only environmental predictor variables in benthic habitat 
models beyond shallow, clear waters, as few other variables can be 
recorded at a comparable resolution. However, numerous other vari
ables are important in structuring benthic habitats. For example, water 
chemistry and temperature, when modelled at appropriate spatial 
scales, can be important predictors of benthic habitats (Davies and 
Guinotte, 2011). Hydrodynamic energy at the seabed is an important 
structuring factor for benthic habitats and communities. As well as 
imparting mechanical stress (Gove et al., 2015; Koehl, 1999), water flow 
controls water chemistry (Gutiérrez et al., 2008), particulate food supply 
(Rosenberg, 1995; Sebens et al., 1998) and larval dispersal (Cowen and 
Sponaugle, 2009). Alteration of flow regimes affects feeding efficiency, 
growth rates and settlement of benthic species that are adapted to spe
cific flow conditions (Eckman and Duggins, 1993). Critically, hydrody
namic energy affects substrate composition through sediment transport 
(Shields, 1936), which in turn controls benthic community composition 
and imparts temporal variation within the system (Coggan et al., 2012; 
Warwick and Uncles, 1980). Hydrodynamic energy has proved to be an 
important variable for mapping benthic habitat spatial distribution at 
regional and national scales with resolution of kilometres (Huang et al., 
2011; Robinson et al., 2011), but it is often overlooked or unavailable for 

predictive mapping at finer scales (Brown et al., 2011; Pearman et al., 
2020). The inclusion of simulated wave induced seabed energy 
improved predictive habitat mapping for a wave exposed region in 
temperate southern Australia (Rattray et al., 2015), and it follows that 
tidally induced seabed energy is likely to be an important predictor of 
high energy habitats in regions with fast tidal currents. However, to our 
knowledge no study has incorporated tidally induced energy at the 
seabed with high-resolution bathymetry for predictive habitat mapping 
in temperate, high tidal energy waters. 

Tidally induced hydrodynamic energy is likely to influence the dis
tribution of geogenic and biogenic reefs in different ways. Strong tidal 
currents erode and transport sediment, leaving stable substrates that 
may be colonised by epibiota to form geogenic reefs. For biogenic reefs, 
the effects of hydrodynamic energy depend on the reef-forming organ
ism. Sabellaria spinulosa is a reef-forming annelid that builds aggrega
tions of tubes from suspended coarse sediment, supporting diverse 
associated communities (Pearce, 2017). S. spinulosa reef distribution is 
likely to be influenced by the availability of resuspended sediment as 
tube-building material, in turn driven by hydrodynamic energy (Davies 
et al., 2009; Holt et al., 1998). We used semi-automated predictive 
mapping, parameterized with multibeam echo sounder derived vari
ables and incorporating simulated hydrodynamic energy data, to map 
previously unresolved potential reef habitats in a marine area of interest 
for tidal energy development. We show that tidally induced bed shear 
stress is a highly important variable for predicting high energy reef 
habitats. Our findings provide a deeper understanding of the relation
ships between hydrodynamic conditions, seabed morphology and reef 
habitats, with implications for sustainable development of under
studied, high tidal energy waters. 

2. Method 

2.1. 2.1 Study Site 

We mapped potential reef habitats in a 49 km2 area to the west of Sir 
Ynys Môn (Isle of Anglesey), Wales, UK (Fig. 1). Our study area 
comprised a 500 m buffer around a 35 km2 area leased for tidal energy 
device demonstration, which was then buffered inwards by 100 m from 
the edge of input data extent to avoid edge effects. Tidal current speeds 
at the site reach 3.7 m s− 1 and annual mean significant wave height is 
1.26–1.5 m (Royal Haskoning, 2019). Water depth within the study area 
ranges from 3 to 79 m (Fig. 1C) and the seabed comprises a range of 
benthic habitats from mobile sediment to stable cobble and bedrock 
colonised by slow growing epifauna (Whitton, 2014). The site is known 
to contain potential reef, but the spatial distribution of different reef 
types in the area is unresolved (MarineSpace, 2019). 

2.2. Habitat observations 

We collected seabed video samples within the study site in June and 
July 2019 using the RV Prince Madog (Fig. 1C, transect samples), with 
further samples obtained from a commercial ecological survey of the 
study site (Fig. 1C, point samples). Sampling locations were spatially 
well-distributed, captured a range of energy conditions, and targeted 
areas of the study site with visually different bathymetric features. For 
transect video samples we used high-resolution video (1080p, 60 frames 
per second) with a forward facing (45◦ to the seabed), mechanically 
stabilised camera (FDR X3000, Sony), with dive lights for illumination 
and parallel lasers for scaling. To record sampling positions, we used an 
ultra-short baseline (USBL) system (EasyTrak Nexus Lite, Applied 
Acoustics) calibrated to a horizontal accuracy of 8 m. We sampled 
transects by drifting for 1 h or 1 km within an hour either side of slack 
water, in current speeds of less than 1 kt. 

To extract discrete observation data without introducing multiple 
operator errors, a single operator reviewed and classified the transect 
video footage. Starting from 1 min after the frame started moving 
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steadily on the seabed, we assigned a class for reef substrate and a class 
for potential S. spinulosa reef (Table 1) to each 30 s section. Classes were 
derived from published definitions of reef habitat categories developed 
to aid environmental management, conservation and spatial planning, 
in which benthic habitats are categorised according to how closely they 
resemble stony reef or biogenic Sabellaria spinulosa reef (Hendrick and 
Foster-Smith, 2006; Irving, 2009; Limpenny et al., 2010). We only 
recorded observations for sections in which the seabed was visible at 
close enough range to confidently assess particle size using the parallel 
lasers for at least 50% of the section. We classified reef substrate as 
sediment (not reef), stony reef (low resemblance), stony reef (mid-high 
resemblance) or bedrock (Irving, 2009). While we initially classified 
stony reef into three resemblance classes, there were few high resem
blance observations, so we combined mid and high resemblance ob
servations (Table 1). We classified potential biogenic (Sabellaria 
spinulosa) reef separately to substrate because S. spinulosa can colonise a 
range of substrates, and initial data exploration indicated that the pre
dictor variables we used, mainly morphological descriptors, were un
likely to distinguish between stony reef and stony reef colonised by 
S. spinulosa. After preliminary data exploration we classified S. spinulosa 
observations as not reef, comprising samples with no S. spinulosa tubes 
present and those with individual tubes of less than 10% cover, and 
potential reef, comprising samples with colonies over 2 cm high or more 
than 10% cover (Table 1). We extracted positions of the video obser
vations to within 8 m horizontal accuracy by matching the video time
stamps to the USBL timestamps. Data from one transect were discarded 
due to low positional accuracy. 

We reclassified an additional point video sample dataset obtained 
from a commercial ecological survey of the study site to our classifica
tion system based on the percent cover of substrates and S. spinulosa reef 
recorded. These data were derived from drop down video sampling of 
the study area in 2018 and had been analysed for biotope mapping with 
percent cover of species and substrates quantified (MarineSpace, 2019). 
We gridded the combined transect and point video observations on a 20 
m resolution grid matching the environmental data, assigning the class 
with the highest rank (Table 1) where there were multiple observations 
in a grid cell to give a single observation per grid cell. We had a total of 
500 and 509 observations for substrate and Sabellaria spinulosa respec
tively, the difference due to S. spinulosa reef obscuring the substrate in 
some samples. 

2.3. Environmental predictor variables 

To predict the spatial distribution of potential reef habitats we used 
morphological derivatives from bathymetry data and a measure of 
seabed energy as environmental predictor variables (Table 2). Ba
thymetry data (1 m horizontal resolution) were collected using a mul
tibeam echo sounder (MBES) for the study site in 2018 during a 
commercial survey (Royal Haskoning, 2019) (Fig. 1C). We generated six 
morphological derivatives from the bathymetry data using the Surface 
Parameters and Raster Calculator tools in ArcGIS Pro (ESRI, CA, USA) and 
the Benthic Terrain Modeller v3.0 plugin (Walbridge et al., 2018; Wright 
et al., 2005). The derivatives we used were slope, curvature, eastness, 
northness, relative difference from mean value (RDMV) and vector 
ruggedness measure (VRM)(Lecours et al., 2017; Sappington et al., 
2007; Wilson et al., 2007). We selected these based on their demon
strated predictive power in the literature, their hypothesised predictive 
power within the context of this study, and following recommendations 
from Lecours et al. (2017). Morphological derivatives are typically 
calculated using a square window with an edge length of 3 pixels, but 
the scale at which they are generated and the way in which they are 
calculated for different scales can influence their predictive power 
(Misiuk et al., 2021; Porskamp et al., 2018). We define the scale of a 
derivative as the edge length of the square window containing the 
bathymetric information that influences the calculation, or the “analysis 
distance” sensu Misiuk et al. (2021). We generated all morphological 
derivatives at scales of 3, 6, 15, 30, 60, 100 and 140 m, an approximate 
geometric progression from the minimum window size up to the scale of 
the hydrodynamic data used (150 m, see below), beyond which we 
assumed predictive capability to be minimal in the context of our study. 
For scales of 3 m–60 m we calculated derivatives by mean-aggregation 
of the bathymetry data to 2, 5, 10 and 20 m, up to the spatial preci
sion of ground truth samples, then calculated derivatives using a 3 × 3 
pixel window. For scales of 100 m and 140 m we calculated derivatives 
from the 20 m resolution bathymetry using 5 × 5 and 7 × 7 pixel win
dows. These methods of “resample-calculate” and “k x k window” are 
the most effective for characterising features and information at 
different scales (Misiuk et al., 2021). Derivatives calculated using ba
thymetry resolution of 1, 2, 5 and 10 m were mean-aggregated to 20 m 
to match the resolution of the remaining data. Multi-collinearity in 
predictor variables was tested and resolved by systematically removing 

Fig. 1. A & B) Location of the study site (black square in A) in north west Wales, UK. C) Bathymetry of the study area (white boundary) showing point and transect 
drop-down video sampling locations. D) Modelled tidally induced mean bed shear stress across the study area. 
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highly collinear derivatives until the variance inflation factor for all 
predictors was below 10, using the usdm package in R (Dormann et al., 
2013; Naimi et al., 2014; R Core Team, 2021) (Supporting information 
Fig. S1). All derivative data were generated across the full extent of the 
bathymetry data where the k x k window contained no missing data. 

To generate a predictor variable of seabed energy, we used a 3D 
Regional Ocean Modelling System hydrodynamic model with a 

horizontal resolution of 150 m and 20 vertical layers, covering the north 
west Wales region, derived from a larger extent model (Ward et al., 
2015). The model was set to compute and output mean tidally induced 
bottom bed shear stress over a typical spring-neap tidal cycle (Fig. 1D). 
Fast tidal currents are generated at the site as the tide flows around the 
Isle of Anglesey and produce a local maximum of bed shear stress. Tidal 
current speed and bed shear stress are reduced close to the coastline and 

Table 1 
Drop-down video classification. Each 30 s section of video was assigned a class for reef substrate and potential biogenic reef. Class ranks were used to reduce multiple 
observations to a single ground truth observation per pixel of environmental data. Distance between laser points = 50 mm.  

Class Qualifier Rank Example 

Reef Substrate 
Sediment (not reef) Less than 10% particles of 64 mm or more. 1 

Stony reef (low resemblance) 10–40% particles of 64 mm or more. 
Epifauna present. 

2 

Stony reef (mid-high 
resemblance) 

Over 40% particles of 64 mm or more. 
Epifauna present. 

3 

Bedrock reef Bedrock present 4 

Biogenic reef 

Not S. spinulosa reef No S. spinulosa tubes seen, or S. spinulosa tubes present but covering less 
than 10% 

1 

Potential S. spinulosa reef S. spinulosa colonies of over 2 cm height or with over 10% cover 2 
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further offshore. Mean bed shear stress is a good predictor of substrate 
composition at regional scales (Ward et al., 2015) and is likely to have a 
mechanistic influence on reef substrates and benthic communities. Ba
thymetry for the ROMS model was provided from EMODnet (EMODnet 
Portal, September 2015 release) and bottom friction was controlled 
through a quadratic bottom drag coefficient set at 0.003 (Ward et al., 
2015). Ocean boundary conditions were taken from the TOPEX/PO
SEIDON global tidal model (TPXO). The model validates well against the 
Holyhead tide gauge harmonic data (Supporting information Fig. S2). 
We resampled the 150 m resolution bed shear stress data to 20 m using 
nearest neighbour without interpolation to match the spatial resolution 
of the morphological environmental data. As the hydrodynamic model 
incorporated bathymetry, and raw bathymetry within the depth range of 
the study site was not expected to have a mechanistic effect on benthic 
substrate or biogenic reef distribution, raw bathymetry was not included 
as a predictor variable. High quality backscatter data were not available 
for the full extent of the study area. 

2.4. Classification model and predictive mapping 

For classification and predictive mapping of reef substrate and po
tential biogenic reef we used Random Forests, an ensemble machine 
learning algorithm based on classification trees (Breiman, 2001; Cutler 
et al., 2007). Radom Forests perform consistently well for benthic 
habitat mapping in a range of contexts and require minimal tuning 
(Mitchell et al., 2018; Wicaksono et al., 2019). The approach is 
non-parametric, making it a suitable choice given the characteristics of 
our sampling design and data. We implemented classification algorithms 
using the randomForest and caret packages in R (Kuhn, 2008; Liaw and 
Wiener, 2002; R Core Team, 2021). To estimate model performance 
with spatially clustered observations we implemented spatially buffered 
leave-one-out cross validation using the blockCV package (R Core Team, 
2021; Valavi et al., 2019), using a buffer radius of 250 m, exceeding the 
median spatial autocorrelation range of our environmental predictor 
variables. In this method, a Random Forest model is trained on all 
reference data except for a test sample and the samples within a spatial 
buffer around it, then the model is used to predict the test sample. This is 
repeated using all reference samples as test samples and model perfor
mance is estimated from an error matrix of observations against pre
dictions. Each Random Forest classification model used 1500 trees and 3 

variables tested at each split, hyperparameters that we derived from 
preliminary tuning. We used down-sampling to balance classes in 
training data. The entire reference dataset was then used to train a final 
model to make predictions for all pixels across the study site. We map
ped spatially explicit uncertainty in predictions as the model-generated 
probability of the predicted class for each pixel (Mitchell et al., 2018). 
Tree-based classifiers can resolve complicated non-linear relationships 
but cannot extrapolate beyond the extent of the training data. We 
therefore also mapped the area of applicability for the model perfor
mance estimates, outside of which the combinations of environmental 
predictor data were too dissimilar to the training data to be able to es
timate performance (Meyer and Pebesma, 2021). To help interpret the 
model performance we produced plots of variable importance and par
tial dependence plots using the randomForest package. Variable impor
tance plots show how strongly each variable influences model 
predictions. We used the Gini index to measure importance, describing 
the purity of nodes in a tree-based classifier (Breiman, 2001). Partial 
dependence plots visualise the influence of an individual variable on the 
relative likelihood that an observation will be predicted as a certain class 
(Friedman, 2001). 

To assess the performance of a predictive mapping model, an error 
matrix and a selection of metrics should be considered in the context of 
the aims of the model and the user’s interests (Foody, 2002; Olofsson 
et al., 2014). The error matrix documents the predicted and observed 
classes of the test samples, giving an estimate of the model performance 
for new, unknown observations. We generated a selection of standard 
and recommended performance metrics from the error matrix (Foody, 
2002; Mitchell et al., 2018; Olofsson et al., 2014; Pontius and Millones, 
2011). No single measure can fully describe performance of a classifi
cation model, but here we present balanced accuracy as an overall 
measure that accounts for imbalance in class prevalence (Brodersen 
et al., 2010). For consistency with other studies we also present overall 
accuracy as the proportion of correct predictions out of total predictions, 
and Cohen’s kappa coefficient (Cohen, 1960), although their use has 
been discouraged (Brodersen et al., 2010; Foody, 2020; Pontius and 
Millones, 2011). To give context to the overall accuracy value, the no 
information rate is provided, equal to the proportion of the most prev
alent class and therefore being the accuracy value that would be ach
ieved by predicting all observations as one class. User’s and producer’s 
accuracies provide class-wise insight. The user’s accuracy estimates the 
reliability of the map for a user, describing the proportion of the pre
dictions of a class that were actually observed to be that class. The 
producer’s accuracy, also known as sensitivity, or true positive rate, 
estimates the ability of a model to correctly map the land- or seascape, 
describing the proportion of known observations of a particular class 
that were correctly predicted as that class. The complement of sensi
tivity is specificity. Specificity, or true negative rate, describes how 
many observations that were known to not be a class were correctly 
predicted to not be that class. Finally, we present quantity disagreement 
and allocation disagreement (Pontius and Millones, 2011). These mea
sures provide information about the way in which the observations and 
predictions differ. High quantity disagreement indicates large differ
ences in class prevalence while a high allocation disagreement indicates 
a large proportion of misclassifications (Warrens, 2015). For further 
explanation of the metrics used see the Supporting Information. 

3. 3. Results 

3.1. 3.1 Reef substrate 

We predicted the distribution of reef substrate in the study area by 
classifying the substrate into four classes: sediment (not reef), stony reef 
(low resemblance), stony reef (mid-high resemblance) and bedrock reef 
(Fig. 2A). Most observations were correctly predicted for each class 
(Table 3), reflected in the overall balanced accuracy of 71.7% (Table 4). 
For all classes, misclassifications were mostly in classes similar to the 

Table 2 
Environmental predictor variables used to predict reef substrate and 
biogenic reef for each 20m × 20 m pixel in the study area after sys
tematic removal of multi-collinear variables. *Vector ruggedness mea
sure at 60 m scale was included in the reef substrate model but not the 
biogenic reef model.  

Variable Scale (m) 

Curvature 3 
140 

Eastness 3 
30 
140 

Northness 3 
30 
140 

Relative difference from mean value 3 
15 
60 
140 

Slope 30 
140 

Vector ruggedness measure 3 
15 
30 
60* 
140 

Mean bed shear stress 150  
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target class (Table 3). For example, sediment was mostly misclassified as 
stony reef (low resemblance) and rarely as bedrock. User’s accuracy, 
estimating the reliability of the mapped pixels, was highest for stony reef 
(mid-high resemblance) (65.5%) and lowest for stony reef (low resem
blance) (47.2%). Producer’s accuracy, indicating the consistency of 
correctly predicting known observations, was highest for sediment 
(66.9%) and lowest for stony reef (low resemblance) (47.6%). The 
reference data and predictions differed due to misclassification (allo
cation disagreement = 37.2%), more than due to differences in class 
prevalence (quantity disagreement = 6%) (Table 4). 

The most important variables for predicting reef substrate classes in 
the study area were vector ruggedness measure at scales from 3 m to 
140 m, and mean bed shear stress (Fig. 3). Partial dependence plots of 
the three most important variables showed that areas with high fine- 
scale (3 m) ruggedness were more likely to be classified as bedrock 
and less likely to be classified as sediment, while areas with high broad- 
scale (140 m) ruggedness were more likely to be classified as stony reef 
and less likely to be classified as bedrock (Fig. 4). Areas with high mean 
bed shear stress (over 2.55 Nm− 2) were more likely to be classified as 
bedrock or stony reef (mid-high resemblance) and less likely to be 

Fig. 2. A) Predicted reef substrate classes with visually apparent misclassified areas masked out. B) Probability of the predicted class for each pixel. C) Area of 
applicability for the performance estimates of the classifier. Areas in grey have environmental variables too dissimilar to the model training data to estimate 
performance. 

Table 3 
Error matrix for the model predicting reef substrates following spatially buffered cross validation. True 
positives are in grey. Values are normalised by the total number of observations for each class, such that the 
columns sum to 1. 

Table 4 
Performance estimates for the model predicting reef substrates following 
spatially buffered cross validation.   

Overall Sediment Stony 
reef (l) 

Stony 
reef (m- 
h) 

Bedrock 
reef 

Total observations 500 130 143 143 84 
User’s accuracy 0.571 0.621 0.472 0.655 0.534 
Producer’s 

accuracy/ 
Sensitivity 

0.579 0.669 0.476 0.517 0.655 

Specificity 0.855 0.857 0.787 0.891 0.885 
Quantity 

disagreement 
0.06 0.02 0.002 0.06 0.038 

Allocation 
disagreement 

0.372 0.172 0.3 0.156 0.116 

Balanced accuracy 0.717     
Accuracy 0.568     
No information rate 0.286     
Kappa 0.421      
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classified as sediment or stony reef (low resemblance) (Fig. 4). A reli
ability heat map of classification probabilities showed variation in the 
consistency of predictions among samples (Supporting information 
Fig. S3). 

The model predicted much of the visually rugged ground in the 
highest energy central region of the study area to be bedrock reef, with 
stony reef (mid to high resemblance) predictions concentrated in the 
high energy region where the ground was less rugged (Fig. 2A). A 
mixture of the two stony reef classes was predicted throughout the 
moderate energy regions where there was relatively smooth seabed and 
a mixture of sediment and stony reef (low resemblance) was predicted in 
the lowest energy regions. We could visually interpret certain seabed 
features like bedrock outcrops from the raw bathymetry data and 
qualitatively assess the performance of the predive model for some of 
the study area extent. The model appeared to perform well for these 
areas, with most visually apparent bedrock outcrops being correctly 
classified. Visually apparent misclassifications were mostly concen
trated around feature boundaries, but there were notable mis
classifications of apparent sediment waves as bedrock. Spatially explicit 
classification probabilities showed that the probability of assigned 
classes was moderate for most of the mapped area, with a mean ± sd of 

0.47 ± 0.11 (Fig. 2B). The area of applicability analysis indicated re
gions of the study area where combinations of environmental variables 
were poorly represented in the training data and therefore model per
formance estimates were not reliable. The regions outside the area of 
applicability were mostly high energy, high ruggedness areas of 
apparent bedrock in the central study area and very low energy areas 
close to the shore in the eastern study area (Fig. 2C). 

3.2. Potential Sabellaria spinulosa biogenic reef 

Our classification model aimed to predict two classes for Sabellaria 
spinulosa: not reef, encompassing samples with no S. spinulosa seen and 
those with S. spinulosa present but not forming reef, and potential reef, 
encompassing samples with low, medium or high resemblance to a 
biogenic reef. The model predicted most observations correctly with a 
balanced accuracy of 63.4%, but there was a high proportion of mis
classifications (Table 5, Table 6). The potential reef class had a pro
ducer’s accuracy of 64% but a low user’s accuracy of 29.6% due to a 
high number of false positives (Table 6), suggesting that a map of pre
dicted spatial distribution based on environmental variables would not 
be reliable. A reliability diagram indicated that the model was not well 

Fig. 3. Relative importance of predictor variables in the model predicting reef substrate. Variable importance is quantified by the mean decrease in the Gini index if 
the variable is not included within the Random Forest model. The Gini index is a measure of node purity. 

Fig. 4. Partial dependence plots for the three variables with highest importance in the model predicting reef substrate. The plots visualise the influence of each 
variable on the likelihood that an observation is predicted to be each of four classes. For example, observations with low mean bed shear stress are less likely to be 
classified as bedrock reef or stony reef (mid-high resemblance) and more likely to be classified as sediment or stony reef (low resemblance). 
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calibrated and underpredicted the potential reef class (Supporting in
formation Fig. S4). 

The variable importance plot for this model showed that mean bed 
shear stress was the single most important variable for predicting po
tential S. spinulosa reef, with the remaining variables having much lower 
importance (Fig. 5). A partial dependence plot for the effect of mean bed 
shear stress on class predictions showed that the potential S. spinulosa 
reef was less likely to be predicted above mean bed stress of 2.52 Nm− 2 

(Fig. 6B). 

4. Discussion 

We used a machine learning approach to map previously unresolved 
temperate reef habitats in a high tidal energy marine region, finding that 
hydrodynamic energy at the seabed and ruggedness measured at mul
tiple scales were the most important predictors of potential reef habitats. 
Our model predicting geogenic reef classes generated useful predictions, 
but our model predicting biogenic Sabellaria spinulosa reef did not satisfy 

our objectives. 
Our reef substrate model performed well, with a balanced accuracy 

of 71.7%. The performance was sufficient to provide useful information 
about the distribution of potential temperate reef habitats relative to the 
environmental variables in our study site. While not directly compara
ble, other studies with similar contexts and model frameworks have 
reported overall accuracies of 81–93% (Haggarty and Yamanaka, 2018), 
and 69.7% (Porskamp et al., 2018). We were able to predict stony reef 
using hydrodynamic and seabed morphology data with a user’s accuracy 
of 65.5%. As an ecologically important habitat listed in the EC Habitats 
Directive Annex 1, there is a need for environmental managers of 
member states to understand the spatial distribution of this habitat in 
their jurisdictional waters. Identifying and evaluating the habitat by 
remote sensing rather than direct observation or sampling has histori
cally proved challenging (Irving, 2009; Limpenny et al., 2010). Our 
findings are encouraging and suggest that it will be possible to develop 
protocols to identify areas of potential stony reef using remotely sensed 
and modelled environmental data, enabling targeted sampling and 
improved efficiency in resource use for environmental management. 

Mean tidally induced bed shear stress was one of the most important 
variables in predictive models for both reef substrate and potential 
Sabellaria spinulosa biogenic reef. Our results support findings from wave 
exposed coastal regions (Porskamp et al., 2018; Rattray et al., 2015), 
showing that hydrodynamic energy is an important predictor of reef 
habitats in high energy waters. Seabed ruggedness calculated at scales of 
3 m, 15 m and 140 m were also important variables for predicting reef 

Table 5 
Error matrix for the model predicting potential Sabellaria spinulosa reef 
following spatially buffered cross validation. True positives are in grey. 
Values are normalised by the total number of observations for each class, 
such that the columns sum to 1. 

Table 6 
Performance estimates for the model predicting potential Sabellaria spinulosa 
reef following spatially buffered cross validation.   

Overall Not reef Potential reef 

Observations 509 409 100 
User’s accuracy 0.587 0.877 0.296 
Producer’s accuracy/Sensitivity 0.634 0.628 0.64 
Specificity 0.634 0.64 0.628 
Quantity disagreement 0.228 0.228 0.228 
Allocation disagreement 0.141 0.141 0.141 
Balanced accuracy 0.634   
Accuracy 0.631   
No information rate 0.804   
Kappa 0.187    

Fig. 5. Relative importance of predictor variables in the model predicting potential Sabellaria spinulosa reef. Variable importance is quantified by the mean decrease 
in the Gini index if the variable is not included within the Random Forest model. The Gini index is a measure of node purity. 

Fig. 6. Partial dependence plot showing the influence of mean bed shear stress 
in the model predicting reef substrate. The plot visualises the influence of a 
single variable on the likelihood that an observation is predicted to be potential 
biogenic reef or not. Observations with high mean bed shear stress are less 
likely to be classified as potential reef and more likely to be classified as not 
biogenic reef. 
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substrate. These variables had low multicollinearity indicating that they 
represented features of different scales in the seascape. For instance, 3 m 
ruggedness may represent individual boulders or topographically com
plex bedrock, 15 m ruggedness may represent raised patches of cobbles 
and boulders surrounded by more erodible sediment, and 140 m 
ruggedness may represent large-scale bedforms and glacial features in 
the region (Van Landeghem et al., 2009). Interestingly, where there was 
high 140 m scale ruggedness, stony reef was predicted rather than 
bedrock, suggesting that bedrock bathymetry was more homogenous 
than stony reef at this scale in our study area. Our results support an 
increasingly recognised need to include predictor variables at multiple 
scales for benthic habitat mapping (Lecours et al., 2015; Misiuk et al., 
2021; Porskamp et al., 2018). As with bathymetric indices, the ability of 
bed shear stress to structure and predict benthic habitats is likely to 
differ across spatial scales. Variation in water flow influences species 
distribution by controlling proximal factors across scales. For instance, 
suspended food availability is influenced by topographically driven 
turbulence at the centimetre scale (Prado et al., 2020), and by oceano
graphic processes like upwelling at the kilometre scale (Navarrete et al., 
2005). Fine-scale hydrodynamic energy information with resolution 
comparable to bathymetry data across regional extents would likely 
enhance the performance of predictive models. This would benefit 
benthic habitat mapping and marine species distribution modelling to 
better understand patterns and processes at organism-centric scales. 
However, unlike bathymetry that is relatively stable through time, hy
drodynamic conditions are highly variable, making simulating and 
validating them at fine spatial scales logistically and computationally 
challenging with current technology. 

Our predictive model for Sabellaria spinulosa biogenic reef was 
largely driven by the singular important variable of bed shear stress. 
Although the performance metrics were low and the use of the model to 
generate a predictive map was not appropriate, the results still provide 
valuable insight into the environmental variables characterising 
S. spinulosa reef. S. spinulosa reef was not predicted to occur in the areas 
of the study site with highest energy, suggesting that bed shear stress 
was a limiting factor for the habitat above 2.52 Nm− 2. Higher flow rates 
may present barriers to larval settlement, tube building or feeding, but 
there is little existing information on the environmental limits of the 
species (Davies et al., 2009). This threshold in bed shear stress corre
sponded with one driving substrate predictions, above which bedrock 
and stony reef (mid-high resemblance) were more likely to be predicted. 
This may indicate that substrate suitability influenced a lack of 
S. spinulosa reef predictions in this area. While few observations of 
S. spinulosa reef on bedrock were recorded, stony reef substrate was 
found to support S. spinulosa reef in lower energy parts of the study area. 
There may be an interaction between substrate and bed shear stress 
influencing biogenic reef development that would need further research 
to elucidate. Bathymetric derivatives had low importance as predictor 
variables for potential S. spinulosa biogenic reef, suggesting that they 
were ineffective in explaining the variation in S. spinulosa reef presence 
among observations. S. spinulosa is difficult to detect using multibeam 
bathymetry acoustic data and expert interpretation of higher resolution 
side scan sonar data is recommended to locate potential reefs (Limpenny 
et al., 2010). Although our original acoustic data resolution was rela
tively high at 1 m, it may have still been too low to distinguish 
S. spinulosa reef morphology in a topographically variable area domi
nated by stony reef, and more observations of reef presence may be 
needed to train an effective model. Sabellariid reefs are dynamic in both 
space and time in terms of their emergence, density and patchiness 
(Jackson-Bué et al., 2021; Jenkins et al., 2018; Pearce et al., 2014), and 
can survive periods of burial due to sediment transport (Hendrick et al., 
2016). This presents further challenges in both detecting reef habitats 
and identifying their environmental niche with a limited temporal scale. 
Observations through time are needed for an improved understanding of 
the environmental conditions suitable for S. spinulosa reef habitat 
development. 

Misclassifications were identified both in the error matrices and 
through manual inspection of the generated predicted maps. Most mis
classifications were in classes most similar to the target class, which is to 
be expected with a classification system that discretises the continuous 
variation of a natural environment (Foody, 2002; Wang, 1990). This was 
most evident in the low performance metrics for the stony reef (low 
resemblance) class, which represented an intermediate on a continuum 
of cobble and boulder percent cover between sediment and stony reef 
classes. The challenging nature of this classification task was reflected in 
the high proportion of relatively low pixel-wise predicted class proba
bilities, particularly where a mixture of sediment and stony reef classes 
were predicted (Fig. 2B). Continuous mapping approaches can represent 
gradients in natural environments better than hard classification, but at 
a cost of interpretability for end users (Feilhauer et al., 2020). Misclas
sification of sediment wave bedforms as bedrock were visually identified 
and could largely be explained by a paucity of observations in areas with 
low energy but high ruggedness. As the classification algorithm can only 
learn from the training data, with no rugged sediment observations in 
the training data, rugged ground was most likely to be predicted as 
bedrock or stony reef. This suggests that semi-automated and manual 
interpretation mapping methods are complementary and the use of 
multiple methods will ultimately improve the quality of benthic habitat 
maps (Diesing et al., 2014). Other sources of uncertainty included the 
limited field of view of video observations (approx. 1 × 1 m) relative to 
the pixel size of the final map (20 × 20 m), and the potential for the 
observed substrate (e.g., sediment) to be a veneer over another substrate 
(e.g., bedrock or biogenic reef). This is a particular concern in areas with 
strong tidal currents where high volumes of sediment are periodically 
transported and deposited during a tidal cycle and a single observation 
in time cannot capture such transience. Our predictive models may have 
been improved with multibeam echo sounder backscatter data across 
the extent of the study area. However, collection of high quality back
scatter requires additional survey time and optimal sea state conditions, 
and it is an unstandardised variable (Lamarche and Lurton, 2018). 
Further, where a thin layer of sediment overlays hard substrate back
scatter can be highly variable, making it less valuable as a predictor of 
observed substrate (Lucieer et al., 2013). 

Accuracy metrics are useful for assessing the performance and use
fulness of a model for a specific application but should not be used in 
isolation to compare different models and studies (Bennett et al., 2013; 
Mitchell et al., 2018). The performance of benthic habitat mapping 
varies with decisions made throughout planning, data collection and 
analysis, leading to a lack of standardisation (Strong, 2020). For 
instance, choices in model framework, scale and choice of environ
mental variables, the number of observation classes used and whether to 
use a geomorphic or biological basis to classes, all affect different aspects 
of the resulting map product (Ierodiaconou et al., 2018; Porskamp et al., 
2018; Smith et al., 2015). A predicted map should therefore be consid
ered along with its error matrix, several performance metrics and 
spatially explicit uncertainty estimates in a case-by-case basis to deter
mine its suitability for a particular user and purpose (Congalton, 1991; 
Foody, 2002). It should also be recognised that that the performance 
estimates evaluate the classification model, rather than the true accu
racy of a predicted map. Ideally probability sampling would be used to 
collect independent training and validation data for a predictive model 
to make design-based inference (Cochran, 1977; Olofsson et al., 2014), 
but this is rarely achieved for benthic mapping with resource limitations 
and the logistical constraints of sampling at sea, especially in high en
ergy environments. To address the limitations of imperfect sampling 
design, methods have been developed to estimate a model’s ability to 
predict into unobserved space. These include the methods applied here 
of spatial cross validation and area of applicability analysis (Meyer and 
Pebesma, 2021; Ploton et al., 2020). 

The findings of this study support the use of predictive mapping as an 
efficient and repeatable tool for ecosystem management in logistically 
challenging environments like high tidal energy waters. These 
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traditionally less anthropogenically developed and understudied regions 
are seeing novel industrial interest from the nascent marine renewable 
energy industry, generating demand for cost effective means to gather 
baseline ecosystem information (Shields et al., 2011; Wilding et al., 
2017). We found that tidally induced seabed shear stress was a powerful 
variable for predicting reef habitats in high tidal energy temperate seas, 
and highlighted the importance of calculating bathymetric morpholog
ical derivatives at multiple scales for benthic habitat mapping. Our re
sults will contribute to a better understanding of the spatial ecology of 
temperate reef ecosystems and will inform evidence-based decision 
making for ecosystem management in high energy marine areas. 
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