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 A B S T R A C T

Animals worldwide are facing ecological pressures from global climate change and increasing anthropogenic 
activities. To transition to a renewable energy future, extensive offshore wind development is planned globally. 
In the North Atlantic, future development sites overlap with the migratory range of critically endangered 
North Atlantic right whales (NARW) and will lead to increased risk of ship strikes, pile driving impacts, 
and other population risks. New methods to accurately detect cetaceans and provide real-time feedback for 
mitigation will be increasingly important to enact sustainable management actions to facilitate the recovery 
of the NARW. Recent developments in acoustic event detection made possible by deep learning have shown 
significantly improved detection performance across many different taxa, but such models tend to be too 
computationally expensive to run on existing wildlife monitoring platforms. Here, we use model compression 
techniques combined with an autonomous acoustic recording platform integrating an ESP32 microcontroller to 
bring real-time detection with deep learning to the edge. We test if edge-based inference using a compressed 
network running on a microprocessor entails significant performance loss and find that this loss is negligible. 
We leverage large, open-source datasets of noise from the NOAA SanctSound project for generating semi-
synthetic training datasets that encourage model generalization to novel noise conditions. Our compressed 
model achieves improved performance across all tested recording sites in the Western North Atlantic Ocean, 
demonstrating that deep learning powered wildlife monitoring solutions can provide reliable real-time data 
for mitigation of human impacts and help ensure a sustainable green energy transition.
1. Introduction

Passive acoustic monitoring (PAM) has emerged as a pivotal tool in 
wildlife conservation, offering non-invasive means to monitor threat-
ened species across diverse habitats (Gibb et al., 2019; Mellinger et al., 
2007). Acoustic monitoring leverages sound produced by animals them-
selves to gather crucial data on their presence, behavior, population 
density, and dynamics; this is particularly true for species that are 
elusive or inhabit remote areas (Blumstein et al., 2011; Gillespie et al., 
2020; Hutschenreiter et al., 2024; Van Parijs et al., 2009). PAM is 
especially applicable to the conservation and management of marine 
species that rely on sound for navigation, socialization, and foraging, 
and has become a standard component of marine population monitor-
ing (Fleishman et al., 2023) based on a wide range of acoustic recording 
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systems (reviewed in Sousa-Lima et al., 2013). As human activities 
increasingly encroach on natural habitats, PAM provides a method to 
assess the impacts of anthropogenic noise, habitat changes, and other 
disturbances on wildlife, thereby informing conservation strategies and 
policy decisions. When combined with real-time acoustic detection and 
transmission, PAM offers a unique opportunity to actively mitigate 
species loss via targeted interventions that inform dynamic changes in 
human activities like the cessation of offshore wind construction or 
temporary changes to dynamic vessel speed limits (Van Parijs et al., 
2009). Such improved tools for monitoring species distribution and 
abundance, and aiding conservation and management actions are in 
high demand in light of the current biodiversity crisis (Singh, 2002; 
Keck et al., 2025).
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Fig. 1. Visualization of data sources and Medusa smart buoy. Left: Conceptual diagram of the Medusa buoy’s real-time signal processing chain. Right: Map of the East Coast of the 
United States and Canada. The blue square represents Stellwagen Bank National Marine Sanctuary where calls for training originated. White squares denote manually annotated 
evaluation sites. The light gray area off the coast represents the approximate NARW migration range adapted from Fig. 1 in Hunt et al. (2015).  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
Among marine species, the North Atlantic right whale (NARW -
Eubalaena glacialis) exemplifies the importance of acoustic monitoring. 
The NARW is a critically endangered baleen whale with around 372 
remaining individuals (Pettis and Hamilton, 2024). Ship strikes and 
fishing gear entanglements remain the primary anthropogenic contri-
butions to NARW mortality (Knowlton and Kraus, 2001; Silber and 
Bettridge, 2012; Pettis and Hamilton, 2024) despite conservation efforts 
like vessel speed limits in NARW calving and foraging areas (NOAA 
and NMFS, 2008). Furthermore, ongoing and planned offshore wind 
developments along the East Coast of the United States and Canada 
overlap with the NARW migratory range (shown in light grey in Fig. 
1) and will increase vessel traffic and potentially harmful pile driving 
exposures (Madsen et al., 2006), underscoring the need for effective 
tools to aid conservation efforts.

NARWs produce a variety of sounds including impulsive gunshot 
calls (primarily vocalized in surface active groups) and long-range 
upcalls that seem to function as contact signals (Matthews and Parks, 
2021). Upcalls are produced by both socializing and isolated whales 
and are the standard vocalization for detecting NARW populations
(Parks et al., 2011; Urazghildiiev and Clark, 2007; Van Parijs et al., 
2009; Wade et al., 2006). Typical approaches to upcall detection lever-
age lightweight feature extraction algorithms operating on spectrogram 
representations of upcalls (Baumgartner and Mussoline, 2011; Gillespie, 
2004). Such algorithms have been widely used for real-time detection 
on both moored listening systems and gliders (Baumgartner et al., 2013; 
Palmer et al., 2022).

Recently, Shiu et al. (2020) demonstrated that convolutional neural 
networks (CNNs) are capable of outperforming traditional feature-
based techniques for detecting NARW upcalls by a large margin. Palmer 
et al. (2022) leverages this neural network in a two-stage detection 
algorithm which first detects vocalizations using an edge-based de-
tector (Gillespie, 2004), then transmits the signal to a shore-based 
computer running the neural network which verifies the detection 
before notifying a user. This configuration results in significantly more 
accurate detections, but recovers fewer low-amplitude signals than a 
pure CNN approach. Padovese et al. (2021) demonstrated that data 
augmentation techniques can further improve the performance of a 
neural network, particularly in cases of data scarcity which is com-
mon when working with endangered species. Data augmentation also 
2 
enables researchers to incorporate acoustic information from a wide va-
riety of contexts, potentially improving detector performance in novel 
environments (Stowell, 2022).

Here, we introduce the first CNN for endangered marine species 
detection capable of running in real-time on a microcontroller by 
leveraging compressed neural networks. We propose a new data aug-
mentation framework simulating the presence of target signals in highly 
diverse acoustic soundscapes to improve detection performance across 
a wide geographic range. We show that model compression has neg-
ligible impact on detection performance, and our final model demon-
strates significantly improved real-time detection performance across 
the NARW migratory range.

2. Methods

We develop a robust, real-time NARW detection algorithm suitable 
for deployment on a CNN-capable acoustic recording unit. We train this 
network using a mix of real right whale upcalls and semi-synthetic clips 
including known right whale upcalls inserted into diverse soundscapes 
to improve model performance in novel noise conditions. Using full-
integer quantization, we compress the resulting network to enable 
real-time operation onboard a microcontroller. We perform a robust 
performance evaluation of our network to understand detection per-
formance and long-term stability in novel noise contexts. Lastly, we 
characterize detection performance as a function of signal-to-noise ratio 
(SNR) to estimate the active space as a function of masking noise level, 
and compare this to other established NARW detection algorithms.

2.1. Training models for deployment on hardware

We design our feature extraction and processing pipeline for de-
ployment on a Medusa smart buoy, an acoustic monitoring solution 
currently being developed by Loggerhead Instruments (Sarasota, FL, 
USA) (Mann et al., 2024). The Medusa utilizes an ESP32-S3-WROOM-1 
(hereafter termed ESP) microcontroller developed by Espressif Sys-
tems (Shanghai, China) to facilitate distributed real-time detection 
algorithms running onboard multiple buoys. All models are trained 
in a desktop environment using full precision floating point (FP-32) 
operations and data. Trained models are compressed to 8-bit signed 
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integer (Int-8) format using post-training quantization in TensorFlow 
Lite Micro (TFLite) before being loaded onto the Medusa microcon-
troller (Abadi et al., 2015). To facilitate clear downstream comparisons 
with the different configurations of our approach, we refer to the 
uncompressed FP-32 models as ‘NARWnet’ and the compressed Int-8 
models as ‘NARWnet-Lite’.

2.2. Data sources

We utilize several commonly used datasets for network training and 
evaluation (see Supplemental Section S1 for a summarizing table). The 
2013 Detection, Classification, Localization, and Density Estimation 
(DCLDE) workshop focused on detecting NARW upcalls and gunshots 
and provided seven days of continuous recordings from Marine Au-
tonomous Recording Units (MARUs) deployed at the Stellwagen Bank 
National Marine Sanctuary (SBNMS) off the coast of Massachusetts in 
2009 (blue square in Fig.  1) (Gillespie, 2019). Recordings were man-
ually annotated for individual upcalls. Following workshop procedure, 
the first four days containing 6916 upcalls are used for training and the 
next three days containing 2766 upcalls are used for evaluation.

To supplement the raw DCLDE upcall recordings, we incorporate 
additional upcalls recorded at SBNMS for data augmentation. The 
Marinexplore and Cornell University Whale Detection Kaggle Challenge 
(hereafter termed Kaggle dataset) contains two-second clips of man-
ually verified upcalls and noise generated from an automated upcall 
detection system (Karpištšenko et al., 2013). We select a subset of 600 
sufficiently high SNR upcalls for generating a semi-synthetic training 
dataset by visually browsing spectrograms of upcalls for distinct and 
clear signals.

We utilize a large dataset of background noise recordings during 
data augmentation to expose the network to diverse acoustic con-
texts during training. The National Oceanic and Atmospheric Admin-
istration (NOAA) Sanctuary Soundscape Monitoring Project (Sanct-
Sound) deployed passive acoustic recorders at eight marine sites around 
the United States in 2018 and has made the recordings freely avail-
able (NOAA Office of National Marine Sanctuaries and US Navy, 2020). 
From each location, we extract one 10-s recording every 30 min for 
one day a month throughout 2019, except for one site in Hawaii where 
recordings were only available from December to May at the time 
of access. These randomly subsampled SanctSound clips are used as 
noise data for generating semi-synthetic training datasets under diverse 
background noise conditions.

To evaluate model generalizability, we utilize two additional hand-
labeled datasets. Recently, NOAA, along with the Northeast Fisheries 
Science Center (NEFSC), released a combined dataset totaling eight 
days of continuous recordings from six sites throughout the Western 
North Atlantic (white squares in Fig.  1, not including Gulf of St. 
Lawrence, Canada) (Pacific Marine Environmental Laboratory et al., 
2023). Annotators labeled individual upcalls at two levels of confi-
dence to include cases where there are possible right whale upcalls 
that could not be confidently assigned a species. To directly compare 
model performance to the human annotator, we evaluate the number of 
recovered upcalls using the high confidence labels, and false detections 
against the lower confidence labels to ensure that we do not assign a 
false detection to a signal that resembles an upcall, but is impossible 
for a human to distinguish. We supplement this data with the B* test 
dataset produced by Kirsebom et al. (2020) which contains fifty 30 min 
recordings annotated by hand for individual upcalls from the Gulf of 
St. Lawrence, Canada between 2015 and 2017, amounting to 1157 
additional upcalls (white square in the Gulf of St. Lawrence, Canada in 
Fig.  1) (Simard et al., 2020). Together, these datasets amount to nine 
days of expert annotated, unseen recordings throughout the migratory 
range of the NARW, providing an openly available benchmark dataset 
with which to evaluate our network.

In addition to continuous detection performance, we are also in-
terested in our network’s ability to detect upcalls as a function of 
3 
SNR to help quantify the detection range based on background noise 
conditions. We also utilize the B and C upcall clips and SNR values 
from Kirsebom et al. (2020) comprised of 3309 and 3000 clips respec-
tively. The B dataset contains expert verified three-second clips gen-
erated by a non-deep learning detector recorded during 2018 from the 
same deployment location as B*, see Kirsebom et al. (2020) and Simard 
et al. (2020) for more information about the detector and dataset. The 
C dataset contains a subset of extracted clips from the DCLDE dataset 
described above. Kirsebom et al. (2020) also computed SNR values for 
all clips which we use as ground truth values to estimate detection 
performance across SNR. We also select a subset of 150 high SNR 
upcalls from the B dataset to use as an unseen set of positive samples 
during model evaluation using the same SNR criterion outlined above.

2.3. Spectrogram generation

Following previous works, we treat the task of detecting NARW 
upcalls as an image classification problem and convert acoustic signals 
to two-dimensional, single channel spectrogram ‘images’ (Goëau et al., 
2016; Stowell, 2022). After resampling audio to 1 kHz using the Re-
sampy package (McFee, 2016) in Python, we calculate a Fast Fourier 
Transform (FFT) in Tensorflow with a 256 ms Hann window, a 42 ms 
step length, and a window length of 3 s. We then crop out frequency 
bins 13 through 77 to construct a tight spectrogram of 64 × 64 pixels 
representing around 50–300 Hz (app. 4 Hz spectral resolution) and 
from 0 to 3 s (app. 50 ms temporal resolution) (Fig.  2). To generate 
an equivalent spectrogram on the ESP microcontroller, we process a 
3-s audio buffer with an 8 kHz sampling rate and utilize a 2048-point 
FFT (equivalent to 256 ms) with a 336-point step length (equivalent to 
42 ms).

2.4. Data augmentation framework

To improve performance in novel environments, we design a data 
augmentation pipeline that represents NARW upcalls in new contexts. 
First, we select a subset of 600 high SNR upcalls from the two-second 
Cornell Kaggle clips and track the fundamental frequency contour in 
0.2 s steps using custom Matlab software. We use a time-frequency 
filtering algorithm described in Madsen et al. (2012) to isolate the 
energy from the fundamental frequency resulting in ‘clean’ upcall 
waveforms. We randomly implement time stretching and pitch shift-
ing (Wei et al., 2020; Xu et al., 2018) on de-noised signals of up to 
20% and 10% respectively. These represent conservative values based 
on the natural variation found in upcall production (Matthews and 
Parks, 2021). Ultimately, signals are injected into NOAA SanctSound 
recordings at random SNR between −12 and 12 decibels (dB) measured 
in the 50–225 Hz band. A random offset was introduced to shift signals 
within the three-second window while still displaying the full contour.

2.5. Training configurations and compressed model architecture

To demonstrate the efficacy of our data augmentation strategy, we 
train models with multiple data augmentation configurations. As a 
direct comparison with Shiu et al. (2020) which uses the DCLDE dataset 
for training, we first train a model with no augmentation. Three-second 
windows are extracted around all 6916 labeled upcalls in the DCLDE 
dataset. As above, upcalls are shifted randomly in time so that the full 
upcall contour is present in the three-second window, and an additional 
6916 noise segments are randomly sampled from the periods of time 
between labeled upcalls.

Next, we apply our data augmentation strategy and mix clean 
upcalls from the Kaggle dataset with randomly selected background 
noise segments from SanctSound. Here, we use a 30x upscaling factor 
to produce 18,000 augmented upcalls, as well as an additional 18,000 
noise segments. We trained models using (a) only synthetic data, and 
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Fig. 2. Data extraction and augmentation. The full data augmentation pipeline showing (a) raw two-second clips from the Kaggle dataset, (b) the de-noised upcall contour, (c) 
the same contour with different degrees of pitch shifting and time stretching, and (d) time shifting and noise mixing with upcalls embedded in NOAA SanctSound clips.
(b) a combination of the original and synthetic datasets totaling 49,832 
three-second clips.

Models were trained using either an NVIDIA A6000 Desktop or 
an NVIDIA RTX 3070 Laptop. Model training was done in Tensorflow 
2.10.1 for 50 epochs using the Adam optimizer with a learning rate of 
0.001, 𝛽1 of 0.9, 𝛽2 of 0.999, 𝜖 of 1e−7, and a batch size of 64 (Kingma 
and Ba, 2014). Following He et al. (2016) we do not train with dropout. 
To monitor progress across all data configurations throughout training, 
we use the same test dataset made up of 2766 upcalls and an equal 
number of noise segments from the last three days of DCLDE recordings. 
As a result, the performance on the DCLDE test dataset may be inflated 
due to observer bias when selecting a model, even if models were 
never trained directly with the test data. However, we consider the 
standard DCLDE 2013 train/test splits to be auto-correlated as they 
are sequential in nature. As such, we denote the 2013 test dataset a 
‘familiar’ noise environment.

We implement a Resnet style CNN based on the Tensorflow imple-
mentation of Resnet-50, but with significantly fewer parameters (He 
et al., 2016). We first learn a batch normalization on the spectrogram 
input to discourage very small or very large weights throughout in-
ference to aid in downstream quantization (Ioffe and Szegedy, 2015; 
LeCun et al., 2002). The rest of the model architecture closely re-
sembles (He et al., 2016), but with smaller convolution kernels and 
fewer layers throughout (Supplemental Info Section S3). For single 
class detection, we convert the 256 convolution output features to a 
distribution between 0 and 1 using a densely connected prediction layer 
4 
with a sigmoid activation. In total, our NARWnet and NARWnet-Lite 
networks are made up of around 375,000 trainable parameters.

For model compression, we utilize full integer post-training quanti-
zation using TFLite and convert spectrogram inputs and model weights 
to 8-bit signed integer format. We treat each model’s training data as 
its representative dataset during compression for simplicity. Lastly, the 
resulting TFLite model is converted to a C source file for compilation 
into the larger Medusa firmware, along with its corresponding scale and 
shift factors for operation on the edge.

2.6. Performance assessment using continuous data

To process continuous recordings with uncompressed NARWnet 
models, we inference every 0.1 s to produce a near continuous time-
series of model outputs following Shiu et al. (2020). To mirror real 
world operating conditions, we evaluate compressed NARWnet-Lite 
networks every 0.5 s, generating a coarser time-series output. In both 
cases, we compare the network output with a predefined detection 
threshold t to determine if an upcall is present or not. The start and 
end points of a detection correspond to the midpoints of three-second 
detection windows at which the network output crosses t. Similar 
to Kirsebom et al. (2020), we apply a moving average to the output 
time-series to account for transient spikes or misses in the network 
output. We determine the moving average for each model empirically 
by testing values between 50%–85% of the window length. See Sup-
plemental Section S2 for a detailed figure showing the continuous data 
processing pipeline.
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To evaluate model performance, we calculate precision, recall, and 
the number of false positives using the scoring tool provided in the 
DCLDE 2015 Workshop (Roch, 2015). Precision and recall are com-
mon metrics for model evaluation; precision quantifies the propor-
tion of correct predictions, while recall quantifies the proportion of
calls that were detected, whereas false positives are incorrect predic-
tions (see Roch, 2015 for detailed explanations). Since continuous data 
is primarily made up of ambient noise, these metrics do not account 
for background noise ‘detections’ which are a common component 
in model evaluations. Instead, the rate at which a model incorrectly 
classifies background noise as an upcall indicates its robustness to vari-
able background noise conditions. Following previous works, we report 
overall model performance by calculating the Area under the Precision–
Recall Curve (AUC) using Scikit-Learn (Pedregosa et al., 2011) in 
Python. AUC curves are generated by computing continuous detections 
at fifty detection threshold points between 0.1 and 1.0. Shiu et al. 
(2020) suggest that 20 FP/H is the maximum false detection rate that 
can be verified by a human analyst, so we also report the recall inter-
cept at 20 and 5 false positives per hour (FP/H) calculated by dividing 
the number of false positives by the total recording time to offer insight 
into different operating modes for our model; a model configured to run 
at 20 FP/H will require more user supervision compared to a model at 
5 FP/H.

While AUC scores offer descriptive results that encapsulate both 
recall and precision, real-time operation necessitates a single, fixed 
detection threshold. Thus, quantifying a model’s ‘fixed’ performance 
by using a single threshold in different contexts is crucial to facilitate 
consistent and comparable performance across use cases. We leverage 
the detection threshold values corresponding to an average of 5 and 
20 FP/H on the Kirsebom B* dataset to understand how each model 
behaves ‘out of the box’ in novel acoustic environments. The Kirsebom 
B* dataset provides a unique perspective into the long-term variability 
of a detection algorithm in different contexts. The fifty 30 min record-
ings represent unique seasonal and diel contexts between 2015 and 
2017. To visualize performance, we plot the precision and recall for 
each of the fifty sites along with the kernel density function computed 
using the 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑘𝑑𝑒 function with four equipotential lines from 
the SciPy python package (Virtanen et al., 2020). Furthermore, the 
NEFSC dataset comprises unseen recordings in mostly novel contexts 
throughout the NARW migratory corridor. We test if a single detection 
configuration is sufficient to enable consistent, distributed detection 
performance across multiple sites.

2.7. Detection probability vs. SNR

To assess model performance in different background noise con-
ditions, we report the Recall at 20 FP/H across SNR using our data 
augmentation pipeline. In order to investigate performance of the 
continuous detection framework, we leverage our data augmentation 
strategy to create semi-synthetic 30-s clips with a single, centered 
upcall. Using the unseen subset of 150 high SNR calls taken from 
the B dataset (Kirsebom et al., 2020), we first extract ‘clean’ upcall 
contours using the same procedure from the data augmentation step. 
Next, we mix clean upcalls with 30-s background noise clips from 
periods between upcalls in the B* dataset (Kirsebom et al., 2020). We 
generate four, 30-s clips per clean upcall at 20 SNR levels from −20 
to 20 dB for a total of 12,000 semi-synthetic clips, each with a single 
upcall at a specified SNR value.

By leveraging the results of the theoretical detection curve, we 
estimate the detection range of our network using the noise propagation 
model and ambient noise measurements off the coast of Maryland, 
USA described by Bailey et al. (2018). The model is defined as 𝑅𝐿 =
𝑆𝐿 − 16.1𝑙𝑜𝑔10(𝑅) where R is the distance (m) from source to receiver, 
RL is received level, and SL is the source level. Here, RL, SL, and noise 
level (NL) measurements are measured between 70.8–224 Hz and are 
reported as root-mean-square (rms) values. If a call is detected when 
5 
the RL exceeds the background NL by a critical SNR corresponding to 
50% detection probability, we can calculate detection range using 𝑅 =
10

𝑆𝐿−𝑁𝐿−𝑆𝑁𝑅
16.1 . We use noise measurements taken around the Maryland 

Wind Energy Area from an array of 12 hydrophones over a 3-year 
survey period (Bailey et al., 2018). Some of the recording sites were 
nearby a shipping channel, thus noise levels represent realistic noise 
conditions that could occur during a deployment. The 50th percentile 
noise level from this study, measured in the 70.8–224 Hz band, ranged 
between 100–105 dB re. 1 μPa (rms) across recording sites. Similarly, 
the lowest 10th percentile noise levels ranged between 90–97 dB re. 
1 μPa, and the highest 90th percentile noise levels ranged between 
109–117 dB re. 1 μPa (Fig. 4.7.1k in Bailey et al., 2018). We also 
assume an upcall SL of 155 dB re. 1 μPa (rms) based on Trygonis et al. 
(2013).

2.8. Baseline configurations

We utilize the model and pretrained weights in Shiu et al. (2020) 
released along with the Deep learning in PAMGuard tutorial as a 
baseline deep learning model (hereafter termed Baseline) (Macaulay, 
2021; Shiu et al., 2020). As the full detection pipeline was not released 
with the model weights, we follow all implementation details from 
the original paper for spectrogram generation and normalization with 
two-second sound clips. Spectrogram values are normalized by dividing 
each value by the sum of all squared spectrogram values. However, the 
non-maximum suppression classification step was not released, so we 
instead use the same continuous classification method detailed in this 
work operating every 100 ms.

As a real-time baseline, we run the PAMGuard (Gillespie et al., 
2008) implementation of the Right Whale Edge Detector (hereafter 
abbreviated RWED) which is used to detect upcalls on the Cornell auto-
buoy and CABOW systems (Gillespie, 2004; Palmer et al., 2022; Spauld-
ing et al., 2009). Following the implementation details from Gillespie 
(2004) and the corresponding PAMGuard documentation, we compute 
a FFT using a hann window of 256 frames with an overlap of 131 
frames. We evaluate minimum detection thresholds 3–6 with a 6 dB 
SNR sound threshold between 0 and 1000 Hz. With a detection thresh-
old of 4, the RWED can recover about 89% of upcalls above 9 dB 
SNR (Shiu et al., 2020).

3. Results

3.1. Real-time inference

When running on an ESP microcontroller, inference for the com-
pressed NARWnet-Lite model takes about 75 ms and FFT calculation 
and spectrogram generation take about 44 ms and 81 ms respectively, 
for a total step-time of 200 ms. Thus, our NARWnet-Lite configuration, 
which operates every 500 ms, is capable of running in real-time on 
an ESP microcontroller without a significant performance drop relative 
to the uncompressed NARWnet configuration despite a 10x reduction 
in the resulting model weights file size (Fig.  3 and Table  1). Real-
time audio processing, including spectrogram generation and model 
inference, results in a power draw of approximately 263 mW (71 mA at 
3.7 V), while the full system draws approximately 666 mW (180 mA) 
with GPS and Iridium enabled. In a real-world test, a Medusa ran 
for 36 h on one 3.7 V 5Ah LiPo battery with satellite transmissions 
every 10 min and GPS on continuously. However, a 9 W solar panel is 
sufficient to power the Medusa during the Summer.
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Fig. 3. Continuous performance in familiar noise environments. Left: Precision vs. Recall and Right: FP/H vs. Recall curves on three sequential days of DCLDE test data. The 
NARWnet and Baseline models operate with a step of 0.1 s, whereas the NARWnet-Lite model operates with a step of 0.5 s.
Table 1
Comparison of network configurations in familiar noise environments. Results for AUC 
and Recall at 5 and 20 FP/H on three days of familiar DCLDE test data. All models, 
including the compressed NARWnet-Lite model, are evaluated at 0.1 and 0.5 s step size 
to quantify the performance loss due to reduced inference speeds.
 Model AUC Step Recall

 5 FP/H 20 FP/H 
 NARWnet 0.915 0.1 s 0.82 0.95  
 0.904 0.5 s 0.79 0.94  
 NARWnet-Lite 0.914 0.1 s 0.82 0.95  
 0.904 0.5 s 0.79 0.94  
 Baseline (Shiu et al., 2020) 0.898 0.1 s 0.81 0.93  
 0.874 0.5 s 0.79 0.91  

3.2. Performance in familiar noise environments

Our NARWnet and NARWnet-Lite models achieve an AUC of 0.915 
and 0.904 respectively, exceeding or matching the current best models 
on the three days of continuous DCLDE Test data despite seeing 5x 
fewer samples in the compressed NARWnet-Lite case. Our configuration 
of the baseline model achieves an AUC of 0.898, a decrease of 0.005 
from the published results (Shiu et al., 2020) (Fig.  3 and Table  1). 
Results for models trained with limited data configurations can be 
found in Supplemental Info Section S4.

3.3. Performance in novel noise environments

On the 25-h continuous B* Kirsebom dataset from the Gulf of St. 
Lawrence, our NARWnet and NARWnet-Lite models achieve an AUC 
of 0.957 and 0.948 respectively, compared to 0.853 for the baseline 
(Fig.  4 and Table  2). From Shiu et al. (2020) and Supplemental Info 
Section S4, we see a slight decrease in performance for networks 
trained with DCLDE data only when evaluating on the B* Kirsebom 
dataset compared to a significant increase when utilizing our data 
augmentation strategy during training. Thus, our data augmentation 
strategy that mixes known right whale upcalls into highly diverse 
background noise conditions improves performance when deploying 
in novel noise environments. As the performance decrease due to 
single site training far outweighs the performance decrease caused by 
differences between our configuration of the baseline and the published 
version, we consider our results an accurate comparison between the 
models. See Supplemental Info Section S4 for results from other training 
configurations.
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Table 2
Comparison of models in novel noise environments. Results for AUC and Recall at 5 
and 20 FP/H on fifty 30 min recordings from the Gulf of St. Lawrence (B* dataset). 
We report the threshold required to operate at an average of 5 and 20 FP/H across 
the entire dataset. Also shown are results for the RWED with thresholds 4 and 5 
which represent the high recall and high precision configurations which correspond 
to approximately 16.4 and 3.6 FP/H respectively. We do not compute AUC for the 
RWED as we only evaluate four different configurations.
 Model AUC Recall Threshold

 5 FP/H 20 FP/H 5 FP/H 20 FP/H 
 NARWnet 0.957 0.91 0.97 0.76 0.46  
 NARWnet-Lite 0.948 0.90 0.97 0.83 0.50  
 Baseline (Shiu et al., 2020) 0.853 0.74 0.86 0.82 0.68  
 RWED (Gillespie, 2004) – 0.43 0.65 5 4  

Furthermore, by inspecting the per-recording recall using a fixed 
threshold across two years of recordings for the compressed NARWnet-
Lite model compared to the baseline configurations, we observe a 
significant mean recall boost at the same mean false detection rate 
(Fig.  5). See Supplemental Info Section S5 for results of the pairwise 
statistical tests and detailed recall and FP/H values.

Of the six sites processed from the NEFSC data, our two model 
configurations perform comparably to, or better than the baseline in 
all locations when using a fixed threshold. The models perform most 
similarly at SBNMS, where the training data was recorded, and at NE-
Offshore, which is relatively close by. However, in novel contexts the 
performance gain is more noticeable (Fig.  6, Table  3, and Supplemental 
Info Section S6).

3.4. Performance at varying SNR

Both NARWnet and NARWnet-Lite versions of our model demon-
strate strong detection ability across SNR compared to the baseline 
algorithms. While the models have comparable detection performance 
at very low SNR (<10 dB theoretical), our data augmentation strategy 
appears to improve detection consistency with better signal clarity 
regardless of the context (Fig.  7 and Supplemental Info Section S7). For 
our real-time NARWnet-Lite configuration, 50% detection probability 
occurs at around −6.5 dB SNR, compared to approximately −5.5 dB 
SNR and −1 dB SNR for the baseline CNN and RWED. As evidenced 
by Fig.  7(b), these values correspond to improved theoretical real-
time detection ranges across noise levels. Combined with our simple 
detection range approximation, 𝑅 = 10

𝑆𝐿−𝑁𝐿−𝑆𝑁𝑅
16.1 , an improvement of 

5.5 dB SNR in the critical detection threshold effectively doubles the 
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Fig. 4. Continuous performance in novel noise environments. Left: Precision vs. Recall and Right: FP/H vs. Recall curves on fifty 30 min recordings from the Gulf of St. Lawrence 
(B* dataset). Curves represent NARWnet and NARWnet-Lite configurations of our model running at 0.1 and 0.5 s step size respectively compared with the baseline model running 
at 0.1 s step size. Results for the RWED are shown across thresholds 3–6.
Fig. 5. Variation in detector performance across time with a fixed threshold. Points represent false positives per hour vs. recall values calculated for fifty 30-m recordings sampled 
intermittently between 2015 and 2017 from the Gulf of St. Lawrence (B* dataset). Contours represent four equipotential lines on the kernel density approximation for each detector. 
Data is shown for three different detectors operating with a fixed threshold tuned to 5 FP/H, two of which are capable of running in real-time on a microprocessor. Results for 
20 FP/H can be found in Supplemental Info Section S5.
Table 3
Generalized performance in the NARW migratory corridor with a fixed 5 FP/H threshold. Recall and false positive rate when operating at a fixed 5 FP/H threshold using eight 
days of manually labeled continuous recordings throughout the Western North Atlantic Ocean from the NOAA NEFSC NARW Annotations. Corresponding results for 20 FP/H can 
be found in Supplemental Info Section S6.
 Model Recall/False positives per hour
 Georgia N. Carolina NE-Offshore Georges Bank MA-RI SBNMS  
 N = 88 N = 94 N = 21 N = 96 N = 218 N = 129  
 NARWnet 0.98/5.42 0.99/2.08 1.00/0.12 0.83/0.04 0.92/11.50 0.78/0.38 
 NARWnet-Lite 0.97/4.38 0.98/2.29 1.00/0.25 0.83/0.03 0.93/13.50 0.87/1.08 
 Baseline 0.69/3.63 0.92/1.88 1.00/0.53 0.69/0.03 0.87/10.08 0.64/0.08  Shiu et al. (2020)  
 RWED 0.60/46.88 0.67/0.67 0.81/1.72 0.20/0.92 0.28/4.79 0.28/0.71  Gillespie (2004)  
detection range of a given system. We estimate that the NARWnet-
Lite model should be able to detect upcalls at about 5 km on average, 
with ranges extending up to 25 km in low-noise conditions. Our model 
demonstrates a modest improvement over the neural network baseline 
which also significantly outperforms the RWED across SNRs. In periods 
of high noise, the active space of all networks is significantly reduced 
to less than 1 km. These values reflect a limitation of acoustic detection 
in general, especially in the presence of vessels. See Supplemental Info 
Section S7 for results with the precomputed clips released in Kirsebom 
et al. (2020).
7 
4. Discussion

We describe the first neural network for NARW upcall detection 
capable of running on a microprocessor, combining the flexibility and 
high performance of deep neural networks with the conservation bene-
fits of real-time acoustic detection systems. By minimizing the hardware 
requirements and audio processing time for a device, we open the door 
to more accurate large scale population monitoring of an endangered 
species. In contrast to existing approaches for real-time detection and 
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Fig. 6. Detection performance throughout the NARW migratory range. Left: Precision vs. Recall and Right: FP/H vs. Recall curves on eight days of NEFSC data from the Western 
North Atlantic Ocean. Curves represent NARWnet and NARWnet-Lite configurations of our model running at 0.1 and 0.5 s step size respectively compared with the baseline model 
running at 0.1 s step size. Points correspond to model performance at fixed 5 and 20 FP/H thresholds. For the recordings from Georgia, the fixed results for the RWED surpass 
the 40 FP/H limit of the figure; corresponding values can be found in Table  3 and Supplemental Info Section S6.
Fig. 7.  Theoretical performance across SNR levels. Proportion of augmented upcalls recovered by various detectors across SNR while operating at a fixed 20 FP/H configuration. 
(a) Theoretical performance using 30-s augmented clips extracted from periods of noise in the continuous B* dataset between −20 and 20 dB. (b) Estimated detection range at 
50% recall across noise levels with a fixed source level of 155 dB for the compressed NARWnet-Lite model running at 20 FP/H compared with the baseline neural network (Shiu 
et al., 2020) and RWED (Gillespie, 2004). Arrows show 10th, 50th, and 90th percentile noise levels from 12 long-term listening stations recording in and around the Maryland 
wind energy area (Bailey et al., 2018).
localization which utilize feature-based methods for signal process-
ing (Baumgartner and Mussoline, 2011; Gillespie, 2004), our approach 
can be configured to operate at a lower false detection rate while 
still achieving significantly higher recall rates with less reliance on 
a secondary classification step or human-in-the-loop validation. This 
8 
directly reduces the operating costs while simultaneously expanding 
the detection range of such systems. Additionally, our solution al-
lows for further downstream classification improvements by utilizing 
the temporal pattern of detections which has been shown to further 
reduce false detections for NARW and other species (Madhusudhana 
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et al., 2021). Furthermore, current regulations require manual verifi-
cation of automated acoustic detections to implement temporary slow 
zones. We perform a robust and transparent performance evaluation 
of our network operating in realistic deployment conditions using 
openly available datasets. We hope such transparency will help instill
confidence in the capabilities of real-time detection systems to au-
tomatically implement time-sensitive conservation actions like slow 
zones.

Our NARWnet-Lite network demonstrates equal or superior per-
formance when running in a real-time configuration compared to the 
baseline CNN in all scenarios. In contrast to the NARWnet configuration 
and the baseline CNN, the NARWnet-Lite configuration operates on 5x 
fewer frames and is limited to Int-8 precision, enabling lightweight 
real-time operation on an ESP microcontroller without a significant 
drop in accuracy, an ability that has previously been unattainable. The 
performance improvement is most pronounced in novel contexts like 
the Gulf of St. Lawrence and Georgia, whereas the baseline model is 
more competitive at sites like NE-Offshore and SBNMS that were closer 
in proximity to the original training data, indicating that the effect of 
our data augmentation strategy is most pronounced in new contexts. 
Furthermore, our model recovers more known upcalls, detecting 17% 
more upcalls at 5 FP/H in the Gulf of St. Lawrence. Additionally, Fig. 
7(a) indicates the model is more accurate above −5 dB SNR.

When training a model with generalization in mind, the composition 
of training data is paramount to achieve good performance. As shown 
in Supplemental Info Section S4, it is possible to achieve very good per-
formance using data from a single deployment with limited variation in 
background noise when evaluating data recorded at the same location. 
However, performance decreases on data from a different location (Gulf 
of St. Lawrence). While the baseline still outperforms feature-based 
methods in novel environments (Shiu et al., 2020), generalized results 
suggest our approach, which combines real DCLDE data with synthetic 
data from a variety of contexts, significantly improves performance 
when extrapolating to novel acoustic environments. The DCLDE data 
includes consistent system noise, so models trained with only DCLDE 
data are likely specialized to detect upcalls when this background noise 
is present. Consequently, models trained using only semi-synthetic data 
based on our data augmentation framework maintain high performance 
on the Kirsebom dataset from the Gulf of St. Lawrence, but show 
slightly lower DCLDE performance (Supplemental Info Section S4).

Understanding performance as a function of masking noise is impor-
tant for determining thresholds for successful detection, and ultimately 
estimating the active space, or detection range, for real-time detection 
buoys deployed for mitigating human impacts. Using synthetic data 
with known signal level and known noise level within the frequency 
band of interest, we infer that our real-time configuration can effec-
tively double the detection range of an existing system running the 
RWED. Our algorithm not only improves the accuracy of a system, 
thereby reducing the time and effort required to verify real-time detec-
tions, it can directly increase the active space of an existing listening 
system, decreasing the chance of missed whales. While these values 
represent simulated detection ranges, it is clear that an improved real-
time network will lead to more successful and efficient management 
interventions. However, these values do not originate from a Medusa 
smart buoy and represent a theoretical active space. All of the record-
ings used in this work were collected with bottom-moored recorders 
which offer significantly reduced background noise levels compared to 
drifting recorders. While our analysis offers a fair comparison between 
detection algorithms, a full characterization of in-situ performance and 
detection range of a drifting recorder is under development.

Our network is configured to run in real-time by leveraging infor-
mation from a single three-second frame to make a prediction. This 
results in an efficient implementation that can be easily compressed and 
incorporated into a larger detection framework. Consequently, our ap-
proach misses out on key contextual information that can help discern 
between a right whale upcall and upcalls present in the vocalizations of 
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other baleen species. All the examined models here show an increased 
false detection rate in MA-RI and Georgia that seems to be a result of 
acoustically flexible humpback whales that also use upcalls in the same 
frequency range (Fig.  6 and Table  3). Other systems like the LFDCS use 
engineered features which extract contextual information from a longer 
window and can distinguish NARW upcalls from humpback whale 
song (Baumgartner and Mussoline, 2011). Furthermore, the LFDCS 
algorithm transmits pitch tracks of detections for an analyst to verify, 
thus improving the detection accuracy. However, every vocalization 
matters when listening for critically endangered right whales; deep 
learning approaches demonstrate a significant recall boost even with 
a human-in-the-loop. This work focuses primarily on refining existing 
deep learning approaches for detecting right whale upcalls to run in 
real-time on a microprocessor. As such, we do not investigate signifi-
cant architectural changes like multi-class or multi-species detection, 
or the use of more recent deep learning models. While it would be 
possible to modify our current approach to handle additional biological 
classes like right whale gunshots without significantly increasing power 
and processing requirements, the absence of high quality benchmark 
datasets precludes a similarly robust performance evaluation. More-
over, alternative network architectures like transformers can handle 
much longer context windows and may be better suited for differen-
tiating between baleen species (Vaswani et al., 2017). Transformers 
typically require more training data and have less support for compres-
sion due to architectural and memory constraints, but are a promising 
option for future generalized baleen whale detectors.

5. Conclusions

Viable solutions to the impending biodiversity crisis must be simple, 
low-cost, and extensible. This study leverages openly available data 
sources and code bases to further existing methods for detecting vo-
calizations from critically endangered NARW using passive listening 
devices in real-time. Our approach exemplifies the efficacy of com-
pressed, lightweight deep neural networks for remote sensing and 
furthers the notion that robust data augmentation techniques can im-
prove performance in novel environments. By conducting a theoretical 
detection range approximation, we demonstrate that our real-time 
algorithm can effectively double the active space of an existing system 
running an automated upcall detector, resulting in clear conservation 
benefits. Additionally, our data augmentation approach offers a po-
tential solution to generating suitable training datasets for developing 
models to detect other endangered species. By performing an extensive 
model evaluation, we demonstrate robust performance throughout the 
NARW migratory range, but also highlight the need for user validation 
in the presence of vocally complex baleen species that are known to 
incorporate similar upcalls in their acoustic repertoire. We hope that 
these improved real-time detection systems can contribute to future 
conservation and ensure sustainable management actions for critically 
endangered species.
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