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INTRODUCTION
The offshore wind (OSW) industry is 
expanding. Using new technologies, it is 
projected to install larger capacity devices 
and arrays in deeper waters and farther 
from shore (Soares-Ramos et  al., 2020). 
Subsea power cables (hereafter cables) 
present many potential environmental 
effects (Taormina et al., 2018). The most 
topical within the fishing community are 
the lack of access to fishing grounds due 
to entanglement risks and the effects of 
electromagnetic fields (EMFs) on target 
species. We focus here on EMF emissions 
in marine environments and their poten-

tial influences on the important life pro-
cesses of resource species (those of com-
mercial or recreational value). 

Natural magnetic, electric, and elec-
tromagnetic fields provide important 
ecological cues to magneto-receptive 
and electro-receptive species. As exam-
ples, many species obtain locational and 
directional cues important for naviga-
tion from Earth’s geomagnetic field and 
associated motionally induced electric 
fields (Gill et  al., 2014), and bioelectric 
fields help predators detect prey (Bedore 
and Kajiura, 2013). As natural fields pro-
vide cues to identifying and locating 

resources, distortions of these fields by 
anthropogenic EMFs may have import-
ant ecological consequences. 

Sources of OSW cable-related anthro-
pogenic EMFs include (1) inter-array 
cables between devices (fixed foundation/
floating) and substations (Figure 1a,b), 
and (2) export cables, in varied config-
urations, transmitting energy to shore 
(Figure 1c). Cables commonly laid in 
or on the seabed with protection emit 
EMFs that can be sensed by benthic spe-
cies, and floating devices with dynamic 
cables located in the water column intro-
duce EMFs into the pelagic zone. To date, 
medium and high voltage alternating cur-
rent (AC) cables are more common for 
OSW developments, but direct current 
(DC) cables have been employed and are 
advantageous because of their increased 
capacity and efficacy in longer transmis-
sion distances to shore (Soares-Ramos 
et  al., 2020). Project-specific properties 
will define the cable types and geograph-
ical routing through multiple ecosys-
tems, but species biology determines how 
they perceive EMFs. The present knowl-
edge base has gaps that present chal-
lenges for managers of OSW develop-
ments and fishery resources; there are no 
policies or regulations related to EMFs. In 
a bid to improve our knowledge base to 
enable better informed management, we 
briefly review progress to date and iden-
tify a path forward.

In this article, we explain the com-
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receptive species and which spatiotemporal scales relate to relevant 

life stages and movement ecology.”
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ponents of EMFs and describe efforts to 
measure them. Then, taking the vantage 
point of the receptive species, we consider 
the layers of information required to 
enable informed management decisions. 
By exploring the present knowledge base, 
we highlight the patchwork of informa-
tion available from relatively few species 
obtained through a variety of methods, 
as well as the need to assess EMF effects 
amid shifting natural baselines. Although 
the effects of EMF on resource species is 
an understudied aspect of OSW environ-
mental impact assessments, we provide a 
brief synthesis of relevant knowledge of a 
broader range of species. We then make 
recommendations on how to address 
knowledge gaps, with considerations for 
management needs. 

UNDERSTANDING EMF, 
A POTENTIAL PRESSURE
By definition, EMFs have both magnetic 
and electric fields. The magnetic field of a 
cable derives from the movement of elec-
trical current within the cable core. The 
voltage applied to the cable produces an 
electric field that is contained within the 
cable shielding if perfectly grounded (Gill 
et al., 2012). The magnetic fields are not 
contained and are emitted into the envi-
ronment (Figure 1), interacting in three 
dimensions with the local geomagnetic 
field (Gill et  al., 2014). Due to the rota-
tional nature of the magnetic field asso-
ciated with AC cables, they also induce 
electric fields (CMACS, 2003). However, 
motionally induced electric fields may 
also arise from an animal or water body 
moving through the magnetic field 
produced by both AC and DC cables 
(Gill et al., 2014). 

EMF intensities decay as a func-
tion of distance from the source and 
can be modeled using cable properties 
(core/ shielding materials, configuration, 
amperage, voltage) and the local geomag-
netic field (e.g.,  Hutchison et  al., 2020). 
Ideally, models should be ground truthed 
with empirical measurements, but few 
studies have characterized EMFs in situ 
at biologically relevant scales. In situ 
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FIGURE 1. Subsea cables introduce electromagnetic field (EMF) emissions. (a) Benthic EMFs 
are emitted from export cables and inter-array cables that serve fixed foundation devices, 
either buried in or laid on the seabed with protection. (b) EMFs are emitted into the pelagic 
environment from dynamic cables of floating offshore wind (OSW) projects. (c) Cable route 
configuration options as arrays increase in coastal waters include (i) simple individual exports 
from each array, (ii) multiple cables that may be in corridors, or (iii) offshore collection plat-
forms that employ higher capacity export cables. 
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methods have included surface-towed, 
bottom-towed, and autonomous under-
water vehicles, each either measuring the 
magnetic field or simultaneously mea-
suring magnetic and electric fields in 
three dimensions (Dhanak et  al., 2015; 
Kavet et al., 2016; Sherwood et al., 2016; 
Hutchison et al., 2020). 

It is important to consider the prop-
erties of the cable and the emitted EMF’s 
three-dimensional interaction with the 
local geomagnetic field, as well as the spa-
tial extent and intensity of the cable EMF. 
Regardless of cable capacity, the power 
transmitted varies temporally and influ-
ences the EMF. Furthermore, AC fields 
emitted over several tens of meters have 
been measured associated with DC cables 
(Hutchison et  al., 2020), which are pre-
sumed to be linked to the AC-DC trans-
formation. Such context is important in 
determining the exposure and likely spe-
cies encounter.

An OSW project(s) dictates the num-
ber, size, and location of inter-array and 
export cable(s) to shore. Some European 
OSW projects have multiple export cables 

or multicable corridors (Figure 1) that 
may have interacting EMFs. It is often 
presumed that cable burial or protec-
tions (Figure 1a) reduce EMF effects by 
increasing the distance from the source, 
thereby reducing EMF intensity as a func-
tion of distance. However, a reduction in 
EMF intensity may bring the electric and/
or magnetic fields into ranges more per-
ceivable by receptive species (Formicki 
et al., 2019; Newton et al., 2019).

TAKING THE VANTAGE POINT 
OF THE RECEPTIVE SPECIES
Marine management must draw on the 
best knowledge available from studying 
the receptive species and the characteris-
tics that define the pressure; the receptor 
is central to the scenario (Figure 2a). At 
the core of understanding how a recep-
tive species perceives EMFs is knowledge 
of their ability to detect EMFs and their 
range of sensitivity to them (Figure 2b). 
However, life stage and movement ecol-
ogy must also be considered because 
they inform the likely encounter rate. 
Collating these information layers pro-

vides the fullest picture for management 
to assess effects. The challenge is to under-
stand how EMFs are perceived by recep-
tive species and which spatiotemporal 
scales relate to relevant life stages and 
movement ecology.

Do You Sense That?
Specialized physiology allows receptive 
marine species to detect electromagnetic 
fields. Marine fish electroreception occurs 
through ampullary organs and/or lateral 
lines, both of which have existed through-
out their evolution (Baker et  al., 2013). 
Comparatively, marine magnetoreception 
is less well understood than electrorecep-
tion in marine species, but the most likely 
mechanisms are magnetite-based and 
photochemical systems (Nordmann et al., 
2017). Electroreceptors can detect the 
induced electric fields arising from move-
ment of an animal or water body through 
a magnetic field, making electroreceptive 
organisms indirectly receptive to mag-
netic fields (Kalmijn, 1978). Some spe-
cies may have both electro- and magneto-
receptive sensors (Anderson et al., 2017). 
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FIGURE 2. Vantage point of the receptor species. (a) Management must be informed by characteristics defining the pressure (here, EMF) and 
receptor response. (b) Sensory capabilities and detection thresholds are at the core of receptor species attributes and must be considered 
through the integration of life history ecology. Simultaneously, EMF characteristics must be known so that exposure levels can be determined 
and management can consider the likely encounter rate and potential consequences of exposure. A = Current (amps). V = Voltage (volts). 
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The exact mechanisms of EMF detection 
are complex, but the best understanding 
to date is of the “ampullae of Lorenzini” 
(electroreceptors) in elasmobranchs (car-
tilaginous fishes of a group that com-
prises sharks, rays, and skates) (Tricas and 
Sisneros, 2004), making them good model 
species for advancing our understanding 
of EM-sensitive species. 

EM-sensitive species may be receptive 
to anthropogenic EMFs that fall within 
the range of natural EMFs. The global geo-
magnetic field ranges from approximately 
25 µT to 65 µT, and EM-receptive species 
are likely responsive to polarity, change in 
intensity, inclination and declination, and 
associated induced electric fields (Gill 
et al., 2014; Nordmann et al., 2017). These 
variations in natural EMFs are small scale 
and therefore suggest that marine spe-
cies would be sensitive to very low level 
magnetic fields (nanotesla to microtesla; 
Walker et  al., 2002); however, elasmo-
branchs are also responsive to much stron-
ger magnetic fields (e.g.,  Porsmoguer 
et  al., 2015). Generally, electrosensitive 
species are primarily responsive to both 
DC and AC low intensity electric fields 
between 0.02 μV cm−1 and 100 μV cm−1 
and frequencies of 0–15  Hz (Tricas and 
Sisneros, 2004; Stoddard, 2010). Bedore 
and Kajiura (2013) measured bioelec-
tric fields of marine prey, including fish 
and invertebrates, at the body surface 
in the range of 7–319 µV (approximate 
mean electric potentials) with frequen-
cies of 0.12–10 Hz (though injured spec-
imens may reach 500 Hz). The estimated 
detection distance of these prey fields by 
elasmobranchs was found to be <1 m in 
this study, although the bioelectric fields 
topic was highlighted as poorly under-
stood. Sensitivity ranges for magnetic and 
electric field detection are better under-
stood for some taxa (e.g., elasmobranchs) 
compared to others where informa-
tion is lacking (e.g., teleost fish [the most 
diverse group of fishes], crustaceans). 
Detection thresholds of EMF compo-
nents likely vary among species, preclud-
ing generalizations regarding effects on 
receptive species. 

Lens of Life History Ecology
EMF perception, based on detection and 
sensory ability, likely varies through a spe-
cies’ life history, and movement ecology 
affects likely exposure to EMF based on 
the likely encounter rate. An understand-
ing of population-level effects of EMFs 
requires knowledge of these species’ char-
acteristics. Marine fishes (elasmobranchs, 
teleosts) exhibit three life history types: 
(1) opportunistic species that reproduce 
early and die young (e.g.,  anchovies), 
(2) periodic species that mature and die 
late, producing lots of small offspring 
(e.g., cod, tunas), and (3) equilibrium spe-
cies that reproduce late and die late, pro-
ducing few large offspring (e.g.,  sharks, 
rays) (Winemiller and Rose, 1992; Secor, 
2015). Commercially important inver-
tebrates largely fall into the opportunis-
tic and periodic categories. Both oppor-
tunistic and periodic species are more 
resilient to environmental disturbances, 
particularly those impacting early stages 
(egg, larvae, juvenile): they manage to 
offset the disturbances by high fecun-
dity, early dispersal, and natural mortality 
rates (Gross et al., 2002). Thus, detection 
of EMF effects, particularly in assessment 
of population impacts, is more likely for 
adults of species maturing late and for 
juveniles of equilibrium species, stages 
when local impacts on individuals rep-
resent a larger fraction of the population. 
From this perspective, elasmobranchs, 
adult cod, and lobsters, for example, are 
better model organisms than anchovy 
adults and lobster larvae. 

Movement ecology frames EMF expo-
sure dynamics. Understanding individ-
ual path variations, typically on the scale 
of hours to months (Nathan, 2008; Secor, 
2015), informs whether exposure to EMF 
is likely. Benthic species are presumed 
to have a greater likelihood than pelagic 
species of encountering buried cables 
while pelagic species are more likely to 
encounter dynamic cables. Here, move-
ment ecology challenges the traditional 
dichotomy of benthic (or demersal) ver-
sus pelagic species—which has tradition-
ally been important for generalizing EMF 

exposure. Vertical movements occur fre-
quently in both demersal and pelagic spe-
cies; demersal species (e.g.,  skates, cod, 
halibut) can regularly move in the water 
column (Nichol and Somerton, 2002; 
Hobson et al., 2007), and pelagic species 
(e.g.,  tunas, herring) sometimes depend 
on benthic habitats for foraging and 
reproduction (Chase, 2002; Overholtz 
and Friedland, 2002). Therefore, a pelagic 
species may still encounter the EMF of 
a buried cable if it is placed within an 
important benthic habitat. Likewise, 
a demersal species may encounter a 
dynamic cable. Thus, studies of expo-
sure to cable EMFs must consider species 
movement ecology, which is often flexible 
and not exclusively demersal or pelagic. 
Movement ecology further emphasizes 
key habitat dependencies, including for-
aging, reproduction, predator evasion, 
and transit that are key considerations in 
sustainable fisheries (Fluharty, 2000). 

THE PRESENT 
KNOWLEDGE BASE
A Brief Synthesis
The perception, biological relevance, and 
effects of EMFs vary throughout species’ 
lifetimes. For example, in benthic elas-
mobranchs (skates/rays), sensitivity and 
relevance changes throughout the life 
cycle, from predator detection in early 
development to communication and 
finding mates in adults (Sisneros et  al., 
1998). Similarly, in some species, young 
and/or adults use cues from the geomag-
netic field during long distance migra-
tions or in homing behaviors (Klimley, 
1993; Putman et  al., 2013; Cresci et  al., 
2017). A magnetic map sense and/or a 
magnetic compass sense facilitates navi-
gation, allowing an animal to determine 
its position and direction in relation 
to a goal (Boles and Lohmann, 2003). 
Electroreceptive bentho-pelagic species 
also use navigational cues from geomag-
netic fields (Kalmijn, 1978; Anderson 
et  al., 2017); however, studies have pre-
dominantly focused on perceptions of 
prey-related electric fields. Moving from 
benthic to bentho-pelagic and migratory 



Oceanography  |  December 2020 101

species, we explore these concepts in rela-
tion to effects of cable EMFs and inde-
pendent electric or magnetic fields. 

Focusing first on benthic invertebrates, 
the spiny lobster Panulirus argus pro-
vides the best example of true naviga-
tion, demonstrated in their annual migra-
tions and homing behaviors (Lohmann 
et  al., 1995). After geographical dis-
placement and sensory limitation, lob-
sters were able to orient in the direction 
of their capture site, deriving their posi-
tions and directions from the geomag-
netic field (Boles and Lohmann, 2003). 
It was thought that other crustaceans 
might share magnetoreceptive naviga-
tional senses, therefore lobsters and crabs 
became focal species for EMF studies. The 
American lobster (Homarus americanus) 
exhibited an exploratory response when 
exposed to a high voltage DC (HVDC) 
cable EMF compared to the local geomag-
netic field (Hutchison et al., 2020). Later, 
in aquarium studies, juvenile European 
lobsters (H. gammarus) appeared to show 
no behavioral responses to magnetic field 
gradients (Taormina et  al., 2020a). This 

discrepancy may be explained by spe-
cies or life stage specific responses, or 
different exposure properties—aspects 
also relevant to contrasting crab stud-
ies. In situ choice chambers allowing 
crabs (Metacarcinus anthonyu, Cancer 
productus) to get closer to or farther away 
from an energized or unenergized cable 
revealed no preferences relating to EMFs 
(Love et  al., 2015). Studies of the same 
species showed crabs crossing cable EMFs 
to enter baited traps (Love et  al., 2017). 
However, aquarium studies showed that 

crabs did respond to magnetic fields. The 
Dungeness crab (M. magister) spent less 
time buried and, although the response 
was variable, exhibited more frequent 
changes in activity in the first two days 
of EMF exposure (Woodruff et al., 2012). 
In contrast, an attraction to exposed shel-
ters was observed in the crab C. pagurus, 
coupled with reduced roaming and dis-
rupted cycles of metabolic markers (Scott 
et al., 2018). Smaller crustaceans and mol-
lusks have received less attention, but cel-
lular responses have been recorded in 
some bivalves (Bochert and Zettler, 2004; 
Malagoli et al., 2004; Stankevičiūtė et al., 
2019). Although benthic invertebrates 
have been given some attention, the meth-
ods, exposures, and results have been 
variable and, in some cases, contradictory.

Bentho-pelagic electroreceptive for-
aging species are perhaps the most well 
studied. Electroreception permits detec-
tion of cryptic prey and is the domi-
nant elasmobranch sense when close to 
prey (Kalmijn, 1971). In the laboratory 
it has been shown that benthic predatory 
catsharks (Scyliorhinus canicula) can dif-

ferentiate between types of electric fields 
and may be able to learn from experiences 
but only in the short term (Kimber et al., 
2011, 2014). The observed preferences for 
higher DC EMFs suggest they may seek 
larger or injured prey, and preferences 
for AC over DC may reflect a choice of 
fish over invertebrates. However, no dif-
ferentiation between natural and dipole 
DC fields occurred, suggesting that they 
may not distinguish between prey bio-
electric fields and anthropogenic EMFs. 
Subsequent elasmobranch field studies 

support this hypothesis, showing forag-
ing behavior in response to cable EMFs. 
A higher number of S. canicula were 
found in EMF zones of an AC cable and 
moved less, suggesting foraging behavior 
(Gill et al., 2009). In little skate (Leucoraja 
erinacea), a striking behavioral response 
was observed when exposed to an HVDC 
cable EMF compared to the control 
(Hutchison et al., 2020). The skates trav-
eled much longer distances slowly, with 
more large turns, and they swam closer 
to the seabed. They also spent more time 
associated with areas of stronger EMF 
within the enclosure. 

Turning our attention to prey, some 
initiate a “freeze response” to electric 
fields, mimicking predators. Prey within 
egg capsules (e.g.,  rays, sharks) briefly 
stopped ventilatory behaviors, including 
tail beating and gill movement, thus con-
cealing their bioelectric field from pred-
ators (Sisneros et  al., 1998; Kempster 
et  al., 2013; Ball et  al., 2016). There is, 
however, no knowledge as to whether 
predator detection may be masked by 
anthropogenic EMFs. 

Formicki et  al. (2019) documented 
other early stage effects of magnetic fields 
in some fish (gametes, sperm mobility, 
fertilization rate, embryonic develop-
ment). Furthermore, Putman et al. (2014) 
show that the EM environment of early 
life stages may influence EM perception 
in later life stages. Cable EMFs associ-
ated with OSW may seem relevant only 
to species found offshore, but cable routes 
may pass through multiple ecosystems. 
Thus, cable EMFs are relevant to species 
in freshwater and estuarine environments 

“Detection thresholds of EMF components likely vary among species, precluding 
generalizations regarding effects on receptive species.”
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as well, and these settings may harbor 
early life stages of species that spend later 
life stages offshore.

Migratory homing species navigate 
multiple ecosystems to get to important 
feeding or spawning grounds. Salmonids 
and anguillid eels are better studied 
than other such migrators. Directional 
changes in salmon fry, smolts, and 
adults (Onchorhynchus spp.) indicate a 

magnetic compass sense, and geomag-
netic imprinting was revealed to facil-
itate Pacific salmon in navigating their 
way home to reproduce (Putman et  al., 
2013; Formicki et  al., 2019). The mag-
netic compass in displaced adult eels 
was demonstrated, and in glass eels it 
was linked to the tidal cycle, suggest-
ing endogenous regulation (Durif et al., 
2013; Cresci et  al., 2017). However, few 
studies assess interactions of migra-
tory species with cable EMFs. Eels that 
encountered an AC cable on their out-
ward migration slowed down but passed 
over the cable (Westerberg and Lagenfelt, 
2008). In contrast, a study of salmon 
smolts swimming parallel to an HVDC 
cable moved faster, and while there 
appeared to be no barrier to movement, 
misdirection increased their journey to 
the sea (Wyman et  al., 2018). Although 
cable EMFs potentially influence hom-
ing and associated reproduction in spe-
cies such as Atlantic herring (Clupea 
harengus), which show natal homing 
to the same seabeds annually (Corten, 
2002), they have not been studied.

Multi-species migration corridors or 
flyways may co-occur with OSW develop-

ments (Rothermel et al., 2020). Seasonal 
migrations of EM-receptive species 
(e.g.,  salmons, cod, tunas) may encoun-
ter multiple OSW cables. One expecta-
tion is increased stopovers by migratory 
fish that are attracted to OSW structures 
(foundations, scour/cable protection; the 
“reef effect”; see Degraer et  al., 2020, in 
this issue). Increased dwell time (Gauldie 
and Sharp, 1996) may increase expo-

sure to cable EMFs, with unknown ori-
entation and navigational consequences. 
Furthermore, dynamic cabling (Figure 1) 
may present greater exposure to EMFs by 
pelagic species (sharks, tunas, cetaceans) 
and highly migratory species using fly-
ways (Walli et al., 2009). 

A Patchwork of Knowledge from 
a Variety of Methods
Field studies are advantageous in that 
they can assess cable EMF effects at true 
scales of influence and responses directly 
related to ecology. However, they can 
be disadvantaged by effect size (Type II 
error) (Franco et al., 2015) and confound-
ing variables (e.g., reef effects, environ-
mental forcing) (Taormina et al., 2018; 
Wyman et al., 2018). To overcome these 
issues, natural experiments and meso-
cosm trials have been adopted. 

Natural experiments allow organ-
isms to be observed interacting with 
cable EMFs. Examples include telemetry 
before/after studies of migrating species 
in systems with new cables (Wyman et al., 
2018), studies of EMF-gradient influ-
ences on swimming speeds (Westerberg 
and Lagenfelt, 2008), and direct observa-

tions of fishes under varying cable EMF 
emissions (Kilfoyle et  al., 2017). Effect 
size remains an issue but is diminished 
by targeted observing systems and care-
ful experimental design. An important 
design component is selecting a sensitive 
model species (lobsters, elasmobranchs, 
sturgeons, cod) where key movement 
behaviors (small home range, homing, 
seasonal migrations) are well known 

(Boles and Lohmann, 2003; Dean et  al., 
2014). For instance, US Mid-Atlantic 
OSW development will expose import-
ant seasonally migrating (north–south, 
inshore–offshore) finfish and elasmo-
branchs to EMFs, as their movements 
will periodically cross cables (Rothermel 
et al., 2020). Careful baseline studies are 
key in evaluating EMFs at various scales 
of potential impact, including cumulative 
impacts on migration behaviors. Still, dis-
tinguishing cable EMF effects from struc-
ture attraction or nearby fishing activ-
ity will be impossible without additional 
controls on the experimental setting. 

Mesocosm studies can provide addi-
tional control. They allow in situ expo-
sure of test animals to control and EMF 
treatments and facilitate focusing on EMF 
variables and responses of interest while 
increasing sensitivity (reduced Type II 
error) through replication and other 
design elements. Coupled with fine-scale 
telemetry, mesocosms permit careful 
assessment of a wide array of movement 
behaviors and associated functions (Gill 
et al., 2009; Hutchison et al., 2020). Other 
study enhancements include testing hom-
ing or feeding behaviors by exposing the 

“Importantly, the context of effects must be related to the likely 
encounter rate, which must consider species ecology as well as cable 
properties. Accomplishing this is complex.” 
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same test system to different conditions 
(cable, seabed) or performance of choice 
experiments (Love et  al., 2017). The dis-
advantages of mesocosm experiments 
are that movements are necessarily con-
strained, mesocosm replication is expen-
sive, and such studies are depth limited. 

In contrast to in situ studies of inter-
actions with cable EMFs, laboratory 
studies have focused on independent 
magnetic or electric fields. An advan-
tage of laboratory studies is that the type 
(AC/DC) and intensity of the field can 
be controlled. Simple electrical dipole 
fields can replicate prey-type electric 
fields that are similar in intensity and 
frequency to the electric field compo-
nent of cable EMFs (Kimber et al., 2011). 
Likewise, static (DC) and time-varying 
(AC) magnetic fields can be produced by 
Helmholtz coils at intensities similar to 
those emitted by cables (Taormina et al., 
2020a) and the geomagnetic field. A uni-
form field or gradient can be achieved 
in two or three dimensions by varying 
the number and configurations of coils 
(Kirschvink, 1992). Resulting complex-
ities must be appropriately considered 
along with the ambient magnetic field 
to avoid becoming confounding factors. 
Although knowledge of species’ sensory 
abilities is patchy, an advantage of labo-
ratory studies is that they can be used to 
decipher biochemical/physiological (cel-
lular, genetic, developmental) and behav-
ioral responses to individual field compo-
nents (Scott et  al., 2018; Formicki et  al., 
2019; Newton et al., 2019). However, lab-
oratory results are sometimes ambiguous, 
leading to inferring/dismissing receptive 
abilities that may or may not be present. 
Furthermore, selection of suitable field 
intensities and endpoints is very import-
ant, but difficult to get right. 

As highlighted by the present patch-
work of knowledge available regarding 
sensory abilities and responses for numer-
ous species at variable levels of expo-
sure, there is much still to learn. Context-
relevant studies that assess responses to 
anthropogenic EMFs are presently lack-
ing (Newton et  al., 2019; Nyqvist et  al., 

2020). A key future requirement is to 
demonstrate whether laboratory studies 
of individual component fields are rep-
resentative in terms of their characteris-
tics, geometries, and ranges of intensity 
in comparison to cable EMFs and their 
interactions with ambient electromag-
netic environments. Such an evaluation 
will allow better analysis and interpre-
tation of the context in which receptive 
organisms encounter EMFs. 

EMF Effect Size Amidst 
Shifting Baselines
In temperate marine shelf ecosystems, 
natural and anthropogenic disturbances 
and altered environments (Mapstone, 
1995) that are due, for example, to cli-
mate change and storms may overshadow 
effect sizes. Storms are key natural dis-
turbances that can rapidly alter condi-
tions and influence fish behavior in OSW 
areas (Secor et  al., 2019). Thus, to eval-
uate EMF impacts on receptive species 
requires baseline studies that account for 
the effects of storms and climate change. 
Furthermore, OSW structures (cable/
scour protection, foundations) may elicit 
responses and influence the likely EMF 
encounter rate. Understanding the rela-
tive EMF effect size requires careful field 
experimentation to guide management 
(Mapstone, 1995; Wilding et al., 2017). 

MARINE MANAGEMENT 
AND MOVING FORWARD
Environmental impact assessments iden-
tify problems that are likely to affect 
resource species and ways to mitigate any 
effects. These assessments are reviewed 
in light of available knowledge of both 
the pressure and the receptor. While the 
knowledge base of how species inter-
act with EMFs has grown, the evidence 
base informing assessments and manage-
ment is still lacking. Furthermore, unlike 
on land, there are no relevant regulations 
or policies concerning EMFs for marine 
environments (e.g., human health; WHO, 
2020). Indirectly, however, legislative 
frameworks or regulations do prevent 
energy emissions (including EMFs) from 

adversely affecting marine biodiversity 
status (EU Marine Strategy Framework 
Directive) or designated species of con-
servation (EU Habitats Directive). 

Making informed decisions requires 
an improved knowledge base for both the 
pressure and receptor. Figures 3 and 4 
highlight the desired knowledge bases and 
steps needed to reach them. Focusing first 
on the pressure (Figure 3), a better under-
standing of the factors that influence 
EMFs is needed, including cable proper-
ties and power transmission variations. 
Measuring cable EMFs at scales relevant 
to receptive species requires the develop-
ment of affordable, validated methods. 
Characterization of the cable EMF should 
also consider the local environmen-
tal characteristics, namely the local geo-
magnetic field, its geometry, as well as the 
interactions with anthropogenic EMFs 
(i.e., cables and other sources). Such 
measurements should inform appropri-
ate modeling of future OSW scenarios. 
Standards for appropriate measurement 
and reporting of EMF environments, as 
relevant to receptive species, would be 
beneficial, and encouraging and facili-
tating data sharing would assist in more 
readily advancing understanding. 

For receptor species, it is difficult 
to translate the patchwork of knowl-
edge about individual-level EMF effects 
into assessments of biologically or eco-
logically significant impacts on popula-
tions (Boehlert and Gill, 2010). Presently, 
improving the “effects” knowledge base 
using model species would be most bene-
ficial. In some cases, specific resource spe-
cies may need to be considered. Overall, 
efforts to improve the effects knowledge 
base should be aimed at understanding 
population-level impacts, incorporat-
ing aspects of life history and movement 
ecology (Figure 4). Importantly, the con-
text of effects must be related to the likely 
encounter rate, which must consider spe-
cies ecology as well as cable properties. 
Accomplishing this is complex. Presently, 
because more OSW developments use 
more AC cables than DC cables (Soares-
Ramos et  al., 2020), marine animals are 
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more likely to encounter AC cables. 
Models show that DC cables emit EMFs 
at higher intensity and over a greater 
spatial extent than AC cables (Gill 
et  al., 2014), suggesting a lower likeli-
hood of EMF encounter for AC cables 
(i.e., lower spatial reach, lower intensity). 
However, this interpretation presumes 
that higher intensity EMFs elicit greater 
effects (e.g.,  avoidance behavior), but 

low- intensity EMF may be more biologi-
cally relevant (e.g., mimic prey bioelectric 
fields with no food to be gained) and may 
be more frequently encountered, which 
could be deemed more of an issue. 

Finally, cumulative effects are both 
physical and biological. Physically, more 
numerous cables, their orientation, and 
cable type may influence EMFs encoun-
tered by marine fauna. Biologically, 

behavioral and physiological effects may 
interact, early life history experiences 
may influence later life stages, and a single 
encounter may inform the next exposure, 
or not. Further, EMFs may need to be 
considered along with OSW-associated 
infrastructure risks such as entanglement 
or reef effects (Degraer et al., 2020, in this 
issue; Taormina et al., 2018, 2020b). 

Marine managers clearly have a chal-

FIGURE 3. Pressure related present and desired knowledge base. The present knowledge base is summarized (left) bridged to 
the desired knowledge base (right) by methods addressing knowledge gaps (center). 
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FIGURE 4. Receptor related present and desired knowledge base. The present knowledge base is summarized (left) and is bridged to the desired 
knowledge base (right) by methods addressing knowledge gaps (center). Sensory, life history, and movement ecology are integrated. Field and labora-
tory methods require careful consideration of species and experimental endpoints. 

lenging task concerning the assessment of 
potential impacts of EMF on marine ani-
mals due to the lack of knowledge. Taking 
the vantage point of the receptive species 
highlights that it is both their percep-
tion of EMFs and their exposure to them 
that is relevant in assessments of effects 
and potential impacts. Knowledge of the 
characteristics of both the EMF environ-
ment and receptive species must be inte-

grated into these assessments (Figure 2). 
With future plans for more expansive 
OSW arrays that are located at greater 
distances offshore and use larger capac-
ity power cables, a higher encounter rate 
is certain. While obtaining the desired 
knowledge base will be challenging, it 
will either help reduce the risk of EMFs 
to important resource species or retire the 
risk with more confidence. 
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