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Abstract

Following governments’ policies to tackle global climate change, the development of offshore renewable energy sites is
likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a
key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations
(MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat
are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones
around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a
technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large
areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED
lights and laser scale markers, mounted on a ‘‘flying array’’ that maintains itself above the seabed grounded by a length of
chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects).
The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested
over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the
deep (.50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel
Islands (1.5 ms21 current), the first time remote samples from such a habitat have been achieved. The next stage in the
monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-
deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method
for monitoring mixed-substrate benthic communities beneath MPAs and MREIs pre- and post-device deployment.
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Introduction

Harnessing renewable energy from the sea is of global

importance in the context of both addressing climate change

and delivering, for example, the UK Government’s target of

producing 33 gigawatts of energy from renewable sources by 2020

[1], thus meeting the EU general requirement for 20% of energy

to come from such sources by that date. There is a great energy

potential in the sea around the UK including wave, tidal and

offshore wind – for example, the UK has 40% of Europe’s wind

resource [2,3]. When locating technology that can convert

renewable energy into electricity it is also a requirement to

measure the local and wider environmental impacts that arise

from the construction and operation of these devices, so that these

developments can be best managed in future when the scale of this

industry increases. All of these developments are in contact with

the seabed to some degree, whether through concrete piling (e.g.

offshore wind turbines), metal structures (e.g. tidal stream turbines

such as Strangford Lough, Northern Ireland), or a network of

mooring cables and sub-surface electricity hubs necessary for

securing and operating wave-energy devices (e.g. the planned

Wave Hub development off North Cornwall, SW England).

In the UK, a series of Strategic Environmental Assessments

(SEAs) have been undertaken to quantify these key natural

resources [4] and, in turn, identify where structures to harness the

energy will need to be placed. Often, the seabed habitat at such

sites is variable, e.g. a mix of rocky ledges, boulders and soft

sediment patches, particularly at high energy tidal stream and

wave sites, making standard monitoring methodology difficult to

implement. Traditionally, destructive sampling methods (such as

grabs, dredges and trawls), or else diver-conducted surveys, have

been utilised to determine habitat classification and characterise

the benthic community. Whilst useful for relatively small, discrete

areas, these methods are impractical for monitoring at the scale of

the wind or wave farm because of the prohibitive expense, and/or

the damage caused by this type of sampling, which may be

detrimental to the environmental aims of the development or

inappropriate if conservation considerations need to be taken into

account. It has been recognised that many offshore energy

developments could potentially act as de facto Marine Protected
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Areas (MPAs) [5], so sensitive methods are required to help boost

the environmental credentials of the marine renewable energy

sector. Remote sensing, especially acoustic methods such as

sidescan or swath mapping, can be used to rapidly characterise

large areas of the sea floor [6], and is extremely useful in this

respect, but in order to give information about biological

distributions, this requires verification from detailed in-situ

sampling of components of marine biodiversity [7].

Diver conducted underwater surveys can provide the necessary

detailed information [8]; however, these are extremely costly for

anything but small areas, and the operation is very complex,

particularly in water depths .40 m. The key target areas for wave

Marine Renewable Energy Installations (MREIs) will, in most

cases, preclude the use of divers: the Wave Hub study area, for

instance, covers a footprint in excess of 24 km2 including control

sites, is .50 m deep, and subject to high wave energies and strong

currents. In other industries, (e.g. offshore oil and gas production),

remote operated vehicles (ROVs) are used in place of divers for

many tasks, including biological surveys [9]. Again, ROVs of the

class required to operate in these conditions are expensive, require

significant top-side support, and take time to cover large areas of

seabed. Increasingly, biological surveys are carried out with

relatively inexpensive video sensors mounted on towed sleds [10–

11]; these are particularly effective on low-relief, soft sediments

where large areas can be covered relatively quickly. However,

where substrate type comprises mixed or rocky habitats, sled

mounted sensors are impractical because of the risk of entangle-

ment, leading to equipment damage or loss, and because heavy

sleds are themselves destructive, functioning in a similar manner to

a light dredge or trawl.

This paper reports on the successful use of a relatively new

methodological design specifically developed for the needs of

mixed-habitat offshore areas. In this design, High Definition (HD)

camera technology is mounted on a flying array which is towed

behind a boat yet is almost a non-contact method of surveying the

sea bed, so covers a large area with minimal damage. The design is

an enhancement of the method developed for comprehensive

surveys of Moreton Bay, Australia [12–15], based in turn on the

design principles of Barker et al. 1999 [16], but much reduced in

size and complexity. Here we describe the design and use of this

camera set-up to quantify the benthos over a range of

environmental conditions, from shallow water reef habitat types

to extreme tidal currents and deeper water with a high wave

climate, where it has now been actively tested. The limitations of

using a towed array are also discussed and the next stage of this

work is proposed which involves ensuring the compatibility and

comparability of the use of a HD video camera mounted on a

flying array to one mounted on a Remote Operated Vehicle

(ROV). We suggest that this is the ideal methodology to employ

across future offshore developments.

Methods

Survey requirement
This equipment has been developed primarily for the

quantification of the sea bed at two contrasting sites in the

southwest of the UK: Both sites feature mixed habitat seabed: the

Wave Hub site off the north coast (Cornwall), which is extremely

exposed and lies in 50–60 m, and the Lyme Bay site off the south

coast (Devon/Dorset), which is more sheltered and <25 m deep.

The Lyme Bay reefs are being monitored to determine the

effectiveness of the newly designated 206 km2 MPA [17]. Good

quality, high resolution images of the seabed are required in order

to detect changes to the benthic habitats and communities over

time as a result of the Wave Hub construction, whether these are

positive or negative [5]. The survey method needs to be non-

destructive and able to be deployed on mixed substrates, including

moderate relief reef structures, in order to survey high-biodiversity,

sensitive reefs such as Lyme Bay. Subsequently, the equipment has

been commissioned to attempt to survey an extreme tidal stream

area in Guernsey, Channel Islands, (Depth 43–56 m;Current up

to 2.6 ms21, though 1.5 ms21 at ‘‘slack’’ water) to assess the

technique as a method for characterising the seabed in areas of

potential tidal energy generation.

Flying Array
The aluminium frame of the flying array (Figure 1a) is a

modification of the design detailed in Stevens (2003) [12], scaled

up 1.5 times to house the extra bulk of the HD video and CTD

(Conductivity-Temperature-Depth) equipment. To make the

frame neutrally buoyant, ballast tubes of high-strength plastic

were attached to the top of the frame (Figure 1b), and calibrated so

that the frame was just positively buoyant with all equipment

fitted, but without the drag chain (see below). The frame is towed

by a floating bridle attached at the two lower front corners and

centrally on the upper front panel cross member. It was configured

so that the array lifted up slightly as it was towed along.

A short length of chain extending from the base of the array

allows it to ‘‘fly’’ at a predetermined height above the sea bed; this

chain is the only piece of the device making contact with the

seabed (Figure 2). When the chain is partly on the bottom the

array is neutrally buoyant. Changes in bottom topography result

in less or more of the chain off the bottom; the array adjusts its

height until equilibrium is again achieved. The desired height

Figure 1. Details of the flying array equipment and operation
underwater. 1a. The flying array with High-Definition (HD) video
camera attached (labelled ‘‘a’’). Highlighted on the photo are lights (b),
laser pointers (c). The frame dimensions are approximately 16160.5 m
(L6W6H). The buoyancy tubes extend approximately 0.25 m beyond
the frame fore and aft. 1b. The flying array in operation underwater,
illustrating the buoyancy tubes supporting the array attached to the
top of the frame.
doi:10.1371/journal.pone.0014461.g001
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above the bottom can be adjusted by changing the weight of chain

used, or the length of a lightweight rope attaching the chain to the

array. This rope functions as a weak link, breaking if the chain

snags on the sea bed to allow recovery of the array and avoid

damage to the umbilical. The weight of chain used is dependent

on the environmental conditions, especially current and wave

surge. In fair conditions, such as Lyme Bay, 8 mm stainless steel

chain can be used (Length: 3.15 m, Width: 12 mm, Weight 10 kg);

in more extreme, high-wave conditions, a shorter thicker chain is

more suitable, the compromise being the slightly increased impact

that sampling has on the sea bed. This is still, however, minimal

compared with traditional equipment.

Cameras, lights and lasers
A HD video camera, lights, lasers, and a CTD (mini CTD

profiler: Valeport Ltd) were mounted on the array, and could all

be accessed in real time from the surface. Digital video cameras

have been regularly used in recent years to capture larger, less

abundant mobile fauna such as fishes and crustaceans [18], with

separate stills cameras employed to obtain images for quantifica-

tion, e.g. for abundant sessile fauna such as sponges and corals.

Frame grabs from digital video are of limited quality, so that

smaller, or more cryptic, species may not be identified to species

level; larger less common species may be missed entirely if only

stills images, which represent a subsample of the video track, were

relied on to capture them. The decision was therefore made to test

the use of a single HD video camera to achieve both sets of

samples, the device chosen being a Surveyor-HD-J12 colour zoom

titanium camera, 6000 m depth rated, 1080i/720p. This camera

has performed well at a range of depths and conditions, allowing

operators to zoom, change the aperture and select 720p or 1080i.

We have it set at 720p as 1080i would be more prone to blurring.

In 1080i, only half of the lines are displayed in each frame, but

when viewed at normal speed the human eye integrates successive

frames to perceive excellent quality video; however, when viewing

individual frames for data extraction, quality is reduced. In

contrast, in 720p there are fewer lines, but all are present in each

frame and the quality for frame by frame data extraction is

superior. The optical zoom is 10:1 (5.1 mm to 51.0 mm focal

length), with an additional 4x digital zoon that is deactivated as

standard. The angle of view is 61u diagonal in air and 45u diagonal

in water when the camera is set at its optimum elevation angle of

100u; the window is made of sapphire glass. Focus can be

controlled from the front window to infinity. The umbilical was

connected topside to a Bowtech System power supply/control

unit, which allowed control of the camera, focus, zoom and

aperture, and intensity of each light.

HD video requires good illumination to make the best use of the

resolution available. LED lights were selected (Bowtech Products

limited, LED-1600-13, 1600 Lumen underwater LED) as they last

for thousands of hours, are robust and will not burn out if left on.

Incandescent lights require greater power, are prone to breaking,

the bulbs need replacing often and can be dangerous due to quick

over-heating on board a boat if accidentally left on. The camera

produced good quality images when all three lights were used, and

at speeds over the ground of up to 0.25 ms21 where high quality

frame grabs can still be extracted.

Lasers were mounted onto the flying array to standardise the

field of view, a necessary requirement in order to make species

counts quantifiable. The lasers were set a fixed distance apart and

parallel, so that the two points were always 50 cm apart; the width

of benthic habitat captured on a standard image is 60 cm, which

can be increased with height above the sea bed. When sampling in

poor water visibility, to improve the picture quality so that species

identifications could still be made with confidence, it was necessary

to reduce the distance between the lasers to 30 cm and fly the

array closer to the seabed. The apparent distance between the

laser dots on the image is therefore an indication of how far above

the substrate the camera is flying; all frames and videos can

therefore be scaled to allow quantification of densities, and images

Figure 2. Arrangement for deployment of the video array. Stylised diagram illustrating the full arrangement of equipment during deployment
of the video array (not to scale).
doi:10.1371/journal.pone.0014461.g002
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that are outside the required tolerances can be discarded. We

trialled both red and green lasers; while both were adequate, green

lasers (532 nm) were far more prominent on both the video and

still images. The units we used (Beam of light technologies, Inc:

Scuba-1 Underwater dive laser) have a robust housing which was

mounted onto the array using a custom made aluminium bracket

and secured with cable ties. The full weight of the flying array with

equipment attached was 30 kg. Camera, lights, CTD and topside

computer were powered by a portable 2KVA Honda Generator

through a 1000VA UPS (Uninterrupted Power Supply), which

delivered adequate power with more than 30 minutes managed

shutdown in the event of generator failure.

Configuration and operation
The array was tethered to the vessel by a single umbilical

consisting of a c.17 mm diameter reinforced tow cable rated for

140 kg load, and incorporating 22 cores for power to the camera,

lights and CTD, and to return the video and CTD data signals to

the surface. The array can be deployed from a small vessel in the

arrangement shown in Figure 2. To reduce strain on the cable a

14 mm tow rope was used to take the strain of the flying array and

the drop weight. The umbilical was secured to the tow rope using

cable ties and duct tape between the flying array and the drop

weight. From the drop weight, the tow rope and umbilical were

independent of each other, so that the tow weight could be hauled

using a winch or pot hauler, and the umbilical was manually

hauled. The drop weight was attached to the tow rope

approximately 10 m ahead of the array. This ensures that the

umbilical between the ship and the drop weight remains close to

vertical, keeping the array within about 15 m horizontally of the

vessel, minimising error in GPS derived positional information.

The drop weight also acts to dampen pitching and snatch of the

array from swells at the surface and was attached with a weak link

to prevent losing the array if snagged. Small floats (26850 gram)

were attached to the umbilical between the array and drop weight

to prevent the umbilical contacting the seabed when the strain is

off. Control of the speed of the array over the bottom in critical: it

must be limited to 0.25 ms21 (c. 0.5 knots) or less or the video

imagery is blurred and unusable for quantitative analysis. This

arrangement has been successfully used in a wide range of

substrate types. Tow lengths were nominally 200 m, requiring the

array to be on the bottom for approximately 20 minutes per site.

The HD video stream was recorded with no downscaling using a

3-Dive HD-DVR light recorder, which allowed real-time viewing

of the video footage (essential to control the deployment of the

array) and overlaid date, time and mission number onto the video

stream. GPS derived positional information can also be overlaid.

Video footage was backed up daily onto a 1 terabyte hard drive.

Extracting quantitative data
To use video imagery in a quantitative way, several attributes

are needed [10,19]. The field of view of the camera must be

accurately calibrated and the total area, or distance, of each

transect must be accurately recorded. The locations sampled must

also be accurately known, relative to the scale of the survey, to

allow spatial analysis. Data should be extracted in a numerical

form to allow quantitative statistical analysis.

In this study, the field of view was calibrated by flying the array

over a known grid, and then calculating a scaling factor based on

the position of the laser dots on the video image. The distance of

each transect, and hence the area sampled by a known track width

(the distance between the laser dots), was calculated from GPS

positions taken at the beginning and end of each transect.

Quantitative biological information was extracted in two ways.

Large, obvious elements of the epibenthos were counted by

viewing the video at normal speed, and recording each identifiable

organism as it passed through the ‘‘gate’’ formed by the two laser

dots (Figure 3a,b). This raw count was converted into density

(individuals m22) by dividing by the calculated area sampled. This

allows a rapid derivation of the quantitative information on the

gross elements of the macro-epibenthos. Detailed information on

either density or percent cover of smaller organisms, including

metrics of infaunal density and bioturbation such as burrow

densities, was derived from the high quality still images from

random frame grabs (e.g. Figure 3c). Nominally, 100 frames were

randomly selected from each transect; those that were blurred by

excessive camera movement, or where the bottom was otherwise

obscured, were discarded. The remainder were examined frame-

Figure 3. Example frame grabs from the High Definition video.
Example frame grabs from the HD video used for quantitative
assessment of habitat characteristics or organism assemblage compo-
sition, from Wave Hub site, Cornwall UK, at 60 m. 3a. Two Red Gurnard
(Trigla lucerna) and a lesser octopus (Eledone cirrhosa, centre back). 3b.
A large Ross Coral (Pentapora fascialis, a bryozoan). In both images, the
distance between laser points is 50 cm. 3c. One of 100 random frame
grabs/transect for detailed assemblage composition assessment
illustrating high resolution enabling identification of smaller organisms.
doi:10.1371/journal.pone.0014461.g003
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by-frame and the number of each identifiable organism recorded.

The results of this biological survey will be reported elsewhere, but

the method employed allowed a rich quantitative dataset to be

collected cost-effectively, in conditions that precluded the use of

other methods. Further work has been carried out to develop

methods of accurately measuring the size of organisms from the

video imagery with reference to the laser dots, and will be

published subsequently (Coram et al, in prep).

Results

Equipment deployment and modifications to operation
The initial set up of the equipment was first tested over several

weeks within Lyme Bay during September and October of 2008,

where it performed exceptionally well over mixed and rocky ground

at depths of around 25 m. This allowed us to move to deploying the

flying array at the much more extreme conditions at the Wave Hub

site (.50 m depth, 16 km offshore) during June 2009 and 2010 in

order to obtain two years’ background data prior to construction of

the wave energy device testing facility. The planned location of each

transect was based on existing data sets, e.g. bathymetry, habitat

type, fishing effort, depending on what was important. Transects

can be georeferenced using the boats’ GPS, hand held devices or

using devices which are logged as part of the onscreen overlay, so

that they can be resurveyed for the purpose of monitoring within the

summed error of the GPS accuracy and the length of the tow.

Twenty replicate transects were successfully sampled within the

Wave Hub site (Figure 4), together with an equal number of

samples obtained from two adjacent control areas, allowing a clear

framework for assessing impacts within the Wave Hub 8 km2

planned safety zone. A total of 60 sites were sampled at an average

of 8 transects per day, resulting in high quality video transects and

frame grabs suitable for quantitative analysis (Figure 3). The

survey vessels were a 12 m fishing trawler and a 10 m Gemini

catamaran. The array was deployed over the stern of the boat

(taking care to ensure that the cable was kept away from the

propeller), and retrieved the same way using a hydraulic pot-

hauler or winch.

Throughout the field program the gear performed well in, at

times, challenging conditions, demonstrating its adaptability for

use in varying situations, with a few modifications required to

allow successful operation in the exposed, deep conditions at Wave

Hub. During periods of low visibility, image improvement was

achieved by reducing lights to minimise back scatter; the lights

could also be re-positioned to reduce light reflecting off plankton in

the water column. In poor visibility, image quality can be

improved by configuring the array so that the camera is closer

to the sea bed (by reducing the length of the rope leader); in this

case the speed over the ground must also be reduced to avoid

blurring. At the Wave Hub site, the typical current on a neap tide

was 0.25 ms21 (c. 0.5 knots), which provided an ideal speed to

drift with the current. As the current increased, engine inputs were

Figure 4. Sampling design at the Wave Hub site, Cornwall, UK. Sampling design at the Wave Hub site, Cornwall, UK, for the High Definition
video survey, indicating replicate sample points within the Wave Hub safety zone, plus two control areas. The mixed-nature of the seabed is also
highlighted, meaning such sites are impossible to adequately sample using most standard methodology.
doi:10.1371/journal.pone.0014461.g004
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required to slow the rate of drift. At the maximum current speed

that was encountered, 1 ms21 (c. 2 knots), the 23 kg drop weight

was replaced with a 31 kg weight to hold the umbilical close to

vertical. In rougher conditions, performance was improved by the

use of a heavier drag chain (9 kg: 4 m635 mm) to decrease the

buoyancy compensation response time. These modifications

allowed the array to perform as well as in shallow calmer water.

Following the success of the array at the Wave Hub site,

methods of deployment were further developed to characterise the

seabed in stronger tidal stream conditions, east of Guernsey

(Channel Islands) between the islands of Herm and Sark. The site,

known as ‘The Big Russell’ (49u 279 N, 2u 25 W) has been

identified as a suitable location for a tidal MREIs, with tidal

currents of up to 2.6 ms21. The channel is approximately 50 m

deep and has a seabed with mixed habitat types comprised of

patches of shells, gravel, slate slabs, boulders, and steep rocky reefs.

A 14 m fishing trawler was the research platform and the

equipment was deployed from an over-head winch. The

configuration of the drop-weight and chain was adjusted to

current velocities of up to 1.4 ms21. A heavier drop weight (52 kg)

was deployed and a heavier, larger chain was attached to the array

(13.5 kg: 4 m640 mm). The added chain does add impact to the

seabed, but was unavoidable in the conditions. Also, the

arrangement of the boat and array was modified. The current

and prevailing wind typically moved the boat faster than the array

needed to be towed, as with the Wave Hub example, and so the

boat was driven into the current. The boat can also be driven

astern (in reverse) but that becomes risky as the array will fly under

the boat and the umbilical could get caught in the boat’s

propellers. Better results were achieved when the boat was driven

at approximately a 45u angle into/across the prevailing conditions,

so that the boat still moved backwards but at the desired speed.

It was often not possible to work throughout the tidal cycle at

the Guernsey site, and so survey effort was focused around the 2

periods of slack water per day (1.5 ms21). In 10 working days, it

was still possible to achieve 76 useable 200 m tows across the full

range of habitat types previously discussed, dispersed between sites

identified as possible sites to be developed and sites which would

be suitable controls.

Sample quality and data analysis
At all three survey sites, the methodology has obtained robust,

replicate samples (200 m video transects; Figure 3a,b) which can

be analysed to characterise the habitat and provide quantitative

data on large organism distribution. Where different treatments

exist, these data can be analysed statistically (e.g. ANOVA,

PERMANOVA) to determine significance of differences between

treatments (e.g. MPA areas vs controls, Figure 5a,b). From each

transect, random frame grabs (Figure 3c) provide samples for more

detailed analysis of benthic assemblages and smaller organisms,

Figure 5. Example data analysis from HD video transects and frame grabs. Analysis of example data for four taxa from the Lyme Bay MPA
study highlighting the potential for the video methodology to provide robust data for testing hypotheses. Here treatments are: existing voluntary
closures to fishing (CC), new enforced closures (NC) and near or far controls where fishing continues (NOC, FOC). Data represent baseline conditions
in September 2008. 5a, b: data from analysing whole replicate transects; 5c,d: data from detailed random frame grabs (n = 30/transect).
doi:10.1371/journal.pone.0014461.g005
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allowing additional analysis to support testable hypotheses

(Figure 5c,d).

Discussion

Outcomes of this study
The methodology described here is ideal for characterising and

sampling large areas comparatively quickly and thus cost-

effectively, yet without damaging the environment. The full survey

to provide background information at Wave Hub obtained

samples each year to be representative of a total area of 24 km2,

yet the actual physical sampling only took 8 days, excluding days

lost to bad weather. During this time, 606200 m long transects

were sampled over mixed ground at depths .50 m, from which

robust data can be extracted at the species level where required. It

is unlikely that any other method could have so adequately

characterised the mixed substratum seabed at this site with similar

effort. During the time at sea, the flying array was used also to take

regular samples along the full length of the cable route from the

coast to the Wave Hub site (6 transects along 22 km) in order to

assess any change following the laying of the cable. It is therefore

feasible that the camera equipment can also be used to visualise

cables once laid in order to assess their condition and integrity.

The site off Guernsey was even more demanding, not only being

deep (up to 56 m) but also with extremely strong tidal stream currents

(up to 2.6 ms21) that make this area so suitable for energy generation,

yet so difficult to sample, particularly as the current speed tends to

result in hard, or at least mixed, substrata. However, if habitat

characterisation and impact assessments are to be undertaken to

support renewable energy development in tidal races, quantitative

and repeatable sampling is essential. To deal with this environment

the gear needed some modification coupled with skilled boat handling

to enable the array to fly at a suitable speed to record quality video

suitable for analysis. Despite the restrictions due to sampling over

slack water, over 70 complete 200 m transects were obtained with

enough replication and detail to characterise the seabed and act as a

baseline for future development. As far as we are aware, this is the first

time quantitative remote samples have been successfully obtained

from such a tidal stream site, highlighting the potential of this

methodology as a solution for monitoring in such environments.

The relative performance of remote video versus diver census in

surveying mixed seabed habitats was not investigated in this study,

since video was clearly the only method that would permit the

study to proceed on the scale desired at depths .50 m at Wave

Hub and Guernsey (particularly when coupled with high tidal

stream). Cailliet et al. [20], however, compared quantitative

sampling from trawl, video sled and ROV and concluded that

the video sled was less subject to gear avoidance and provided

more accurate estimates of density. The flying arrays used in this

study and others [21] have the additional advantage of being

useable on almost any substrate, with very low impact (unlike sleds

and trawls). During operation in Lyme Bay, divers were deployed

to observe the movement of the array across the bottom and the

impact of the chain, the only point of contact with the seabed.

Overall the chain has minimal effect, dragging across objects. On

rare occasions, at a particular angle of impact, the chain can bend

tall flexible structures, but no permanent damage was observed

and impact is minimal compared with a full benthic camera sled

on the sea bed. The chain does leave a trail in soft sediment, but

that seems to be the only notable impact. Stevens and Connolly

[15] commented on the cost-effectiveness of the flying array video

method (the precursor of the design described here) and concluded

that it offered an order of magnitude cost-saving over conventional

methods, as a result of the larger area covered per fieldwork day,

lower crewing requirements, and the smaller survey vessel

required. In this study, for the same reasons, we suggest that no

other method would allow a comparable survey for less than 3 to 5

times the cost. We acknowledge, as have others [11,22], that there

is a clear trade-off in using video as the primary data-collecting

source, in that taxonomic resolution can be lower (depending on

target organisms) because specimens are not retrieved to verify

identification, and especially in the case of smaller taxa,

identification may be limited to higher taxonomic levels.

Nonetheless, the method allows repeatable, quantitative surveys

over sufficiently large areas to meet the needs of long term

monitoring and the continued development of HD technology is

making detailed identification from video frame grabs more

accurate.

Problems and limitations
The equipment has successfully sampled shallow rocky and

mixed habitats with high conservation status in Lyme Bay, a deep,

high-energy site 16 km offshore and a deep, high-current coastal

site. A key to the success of the method is effective control of speed

over the ground (#0.5 knots, 0.25 m/sec) in order to take HD

video for clear frame grabs. Problems potentially arise, therefore,

where high tidal streams exist if it is not possible to control the

speed of the array; useful video is possible at speed, but not

satisfactorily clear frame grabs for quantitative species analysis at

this level. At the Wave Hub site, currents were reaching 1 ms21 (2

knots) at maximum tidal flow, yet successful samples at lower

speed were possible by using the engine to slow the rate of drift.

Furthermore, by experimenting with the alignment of the vessel to

the current at the tidal stream site in Guernsey, it was possible to

achieve sampling at currents up to 1.5 ms-1, this time by steaming

into the current at an appropriate angle, allowing the vessel to

drift. The extra weight of chain used held back the array in the

current and so, in this instance, everything moved backwards at a

suitable slow speed (boat, drop weight and array). Appropriate

ship-handling to manage speed over the ground will be particular

to each vessel used; more sophisticated technology (e.g. variable

pitch propellers) may aid in this.

A further problem faced by traditional survey methods is that

sampling will be difficult when, for example, wave farms are fully

operational and devices are deployed over the sea surface with a

set of subsea moorings and cables. Once safety zones are in place

around such sites (e.g. Wave Hub), sampling under devices will not

be possible using traditional environmental survey methods.

Similarly, the towed camera device will also not be suitable for

surveying the seabed close to large, moving wave energy

converters, but the data gathering method through HD video

means that the same equipment can be fitted to a suitably large

and powerful Remotely Operated Vehicle (ROV) which can then

be used for small-scale sampling in the vicinity of such MREIs to

re-survey areas previously sampled using the towed array.

Programmes of device comparison are currently underway (using

a Saab SeaEye Falcon ROV) to make sure samples taken using the

flying array and ROVs are standardised and comparable, giving

the complete monitoring package pre- and post-device deploy-

ment. Whilst the use of an ROV will be essential when sampling

close to, or under, devices, the flying array method can continue to

monitor control areas cost-effectively and relatively quickly (e.g.

the two control areas either side of Wave Hub in Figure 4).
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