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INTRODUCTION

The harbour porpoise (Phocoena phocoena), the only resident cetacean species in the
Baltic Sea, is sensitive to a wide range of anthropogenic activities. In the western Baltic
Sea, the Belt seas, the Sound and the southern Kattegat the so called “Belt Sea
population” has recently been listed as Endangered (HELCOM 2024; from previous
Vulnerable). A delineation of the Belt Sea (summer) harbour porpoise management unit,
encompassing the core home range area of this population, has been formulated based
on morphological studies (Wiemann et al., 2010; Galatius et al., 2012; Lah et al., 2016),
satellite telemetry and passive acoustic monitoring (Sveegaard et al. 2015). A critical step
towards understanding how sensitive the harbour porpoise is to various threats in
different regions of the Baltic Sea is to predict its distribution and determine which areas
can be characterised as important for the species.

Predictive modelling of marine mammal habitat is a powerful tool in marine science as it
integrates heterogeneity in marine ecosystems and provides important information for
ecological studies, management purposes, mitigation of anthropogenic impacts (e.g.
Forney et al. 2012) and for understanding the processes that influence interannual and
seasonal variability in species distributions (Gilles et al. 2011, 2016, 2025; Becker et al.
2016, 2017, 2018; Pigeault et al. 2024a). Marine mammals exhibit discernible
fluctuations in their distributions. However, the drivers responsible for these variations
remain unclear, in part due to the dynamic and poorly understood ecological
relationships between, for instance, harbour porpoises, their environment and their prey
species. In the absence of a comprehensive understanding of these ecological
relationships, the here applied species distribution modelling can facilitate the
elucidation of these relationships for harbour porpoises in the western Baltic Sea. The
objective of this study is to predict and map the long-term summer distribution of harbour
porpoises by fitting a habitat-based density model to the high-quality visual survey data
collected for harbour porpoises in the “Belt Sea” assessment unit (as defined in
Sveegaard et al. 2015) over the last 20 years.

This spatial modelling approach, described in Gilles et al. (2016), utilises physical and
biological characteristics as proxies for prey abundance. The ecological theory of species
distribution modelling assumes that distribution is at least partly related to
environmental variables, and that the relationship between species occurrence and
environmental parameters can therefore be used to predict the distribution of the
species in question (Austin 2007). Although behavioural factors such as migration,
predator avoidance and social interactions influence the distribution of cetaceans, many
of the distribution patterns are determined by the foraging response of top predatorsin a
dynamic system (Redfern et al. 2006). This is particularly evident in the case of the
harbour porpoise, which exhibits a marked preference for predictable hotspots
characterised by high food availability. In the absence of specific prey density data at the



necessary spatial resolution for habitat prediction modelling, physical and biological
characteristics of the sea are utilised as proxies.

The result of the project can be used for sensitivity mapping of harbour porpoises in the
context of marine spatial planning or in assessing sensitivities towards a broad range of
anthropogenic activities in the Belt Sea.

METHODS

Spatial modelling

The modelling process used in Gilles et al. (2016), applying the workflow described in
Gilles et al. (2025) for the spatial modelling of the SCANS-IV survey data, was reproduced
for this study. Briefly, the modelling framework is based on Generalized Additive Models
(GAMSs) to analyse the survey data, with the objective of establishing the relationship
between the number of observed animals (the response variable) and the environmental
variables (the explanatory variable) (Hastie & Tibshirani 1990, Wood 2017). This
framework allows to model non-linear relationships between cetacean habitat and the
marine environment.

Data preparation and processing

A comprehensive dataset was compiled from multiple dedicated line-transect ship or
mainly aerial surveys, encompassing the currently defined management area of the Belt
Sea population (Sveegaard et al. 2015). The data presented herein were obtained from
two sources: large-scale regional and more frequent national monitoring surveys. The
first dedicated large-scale survey covering the management unit included here was
SCANS-II in 2005 (Hammond et al. 2013), thereafter MiniSCANS in 2012 (Viquerat et al.
2014), SCANS-IIlin 2016 (Hammond et al. 2021), MiniSCANS-I1in 2020 (Unger et al. 2021)
and the SCANS-IV survey, which was recently conducted in 2022 (Gilles et al. 2023). The
national monitoring of the western Baltic Sea waters included visual aerial survey efforts
from Germany (2006-2024) and Denmark (2021-2024).

All surveys followed the standardised SCANS field protocol and used the same data
collection software (Scheidat et al. 2008; Gilles et al. 2009, 2016, 2023; Hammond et al.
2013, 2021; SAMMOA 2022). Survey effort and sightings data were quality-checked and
several plausibility checks were performed. Data were then aggregated into the common
dataframe.

The line-transect effort data were segmented into continuous portions of effort of
approximate 10 km mean length, conforming with Becker et al. (2020), Gilles et al. (2016,
2025) and Virgili et al. (2019). Harbour porpoise sighting data were assigned to each



segment. The effective area searched was estimated for each segment, based on the
survey-specific effective strip widths (including g(0)). The effective area searched was
subsequently included as an offset in the model structure. This procedure accounts for
both varying segment lengths and the different detection probabilities recorded during
the surveys. The covariates were extracted at a daily resolution within a buffer of 5 km
around the segment centroids (see Table 1 for candidate covariates). A suite of
environmental covariates, i.e. spatial, static and dynamic covariates, were considered.
The selected habitat predictors are assumed to be proxies for the unmeasured underlying
ecological processes driving species distributions rather than direct drivers.

Table 1. Candidate environmental covariates used in the density surface models, shown to be
important in previous modelling exercises (e.g. Gilles et al. 2016, 2025, Lacey et al. 2022; Pigeault
etal. 2024b).

Covariate Description Source Initial .
resolution

X Longitude converted to ETRS89

(EPSG:3035)
v Latitude converted to ETRS89

(EPSG:3035)

EMODnet Digital
Water depth (depth) Mean water depth (m) Bathymetry
(DTM 2020)
Slope of the seabed (°) calculated . 200m
. . Derived from

Slope with R package raster, version bathymetry

3.6-26 (Hijmans 2013).
Mean sea surface Daily temperature (°C) on the
temperature (SST and survey date but also averaged
SST_8d) with the previous 7 days.
Spatial sea surface Spatial deviation in daily
temperature deviation temperature (°C) within the
on aradius of one cell radius of one cell, on the survey
(SST_SDSpace) date. Global Ocean
Temporal sea surface Temporal deviation in daily Physics
temperature deviation temperature (°C) over 8 days, Reanalysis. E.U.

. . 0.083° x
over 8 days calculated with the standard Copernicus 0.083°
(SST_SDTime) deviation. Marine Service )
Difference of Information
temperature between Difference between SST and (CMEMS)
surface and sea floor bottomT (°C).

(ATemperature)

Eddy kinetic energy Eddies calculated as the current

(EKE) velocity (m/s).

Mixed layer thickness Ocean mixed layer thickness

(MLD) defined by sigma theta (m).
Expressed as carbon in sea water | Global Ocean

Net primary productivity | (mg/m®day), calculated on the Biogeochemistry | 0.25° x

(NPPV and NPPV_8d) survey date but also averaged Hindcast 0.25°
with the previous 7 days. (CMEMS)




Data analysis

All data processing was undertaken in software R version 4.4.0 (R Core Team 2024), and
modelling was conducted using R package mgcv, version 1.9-1 (Wood 2017).

Model structure, fitting and selection

A multi-stage modelling approach was implemented with the objective of reducing bias
in the density estimates generated from the habitat-based models. Methods largely
followed the one described in Gilles et al. (2025), using Generalised Additive Models
(GAM) to link environmental covariates to observations and we refer to this source for
detailed information. Briefly, smooth functions were fitted using restricted maximum
likelihood (REML) with automatic term selection (Marra & Wood 2011). Cubic regression
splines were used for all covariates, with a maximum number of knots set to 10. This
model-fitting method helps to avoid overfitting of the smooth functions by including a
penalization (Marra & Wood 2011). The method can reduce the estimated degrees of
freedom of a covariate term towards zero if it does not contribute sufficiently to account
for the variability in the data.

In addition to the spatial-autocorrelation smooth te(X, Y) of locational covariates, a
deviation by year from this main spatial-autocorrelation smooth was tested in the model,
using the factor smooth bs = ‘fs’ (Pedersen et al. 2019). This enables the spatial
autocorrelation to reflect yearly survey observations when available, while otherwise
conforming to the main spatial-autocorrelation smooth, te(X, Y). In doing so, it avoids
extrapolating into spatio-temporal frames without survey coverage. However, from visual
inspection, predictions of harbour porpoise density better matched the observations
without the yearly deviation in the spatial-autocorrelation smooth, and including this
term reduced model parsimony; therefore, the term was removed during model
selection.

Models were fitted for each possible combination of two to five uncorrelated covariates
(that is covariates with a Pearson’s pairwise correlation coefficient < 0.50). The five
models with the best goodness of fit, based on leave-one-out cross-validation, were
selected and their respective predictions were stacked (Yao et al. 2017) for further
investigation, with their respective contribution to the final prediction estimated with the
loo R-package (version 2.8.0, Vehtari et al. 2017).

For accurate uncertainty quantification, a pseudo-posterior approach was taken (e.g.
King et al. 2000). The pseudo-posterior approach allows for seamless quantification of
uncertainty for any derived quantities (e.g. abundance, CV, 95% confidence interval) from
model parameters. Maximum likelihood estimates of parameters and their associated
covariance matrix were extracted from fitted models (using the function rmvnorm from
package mvtnorm, version 1.3-3, Genz & Brentz 2009) and used to generate a sample of
1,000 values from a pseudo-posterior, assuming a multivariate normaldistribution for the

7



parameters (King et al. 2000). This sample was used to carry out predictions at a daily
level over the survey period. As the variability of some smooth functions was high and the
upper values could reach extreme densities that are ecologically unrealistic due to the
over-dispersion parameter, a threshold in densities was set to the 99.9% quantile of the
initial predicted density (i.e. by sample, cell and day). Densities above this limit were
removed from the samples as they could not be considered as ecologically realistic.
Finally, the predicted densities were averaged over the survey period for each cell and
sample, providing a pseudo-posterior distribution per cell.

For SCANS-1V, a prediction grid of 10x10 km was used to account for the extensive area
over which the density was predicted (Gilles et al. 2025). Here, the spatial extent of the
prediction grid was limited to the Belt Sea management unit (Sveegaard et al. 2015).
Therefore, to facilitate a more nuanced prediction, a 5x5 km prediction grid was
developed, one which would prove more useful in the context of a sensitivity analysis. On
the temporal extent, daily prediction grids of 5x5 km were created from the firstto the last
summer survey date, specific for each survey year, with each grid populated using daily
covariate mean values. This approach entailed predicting at a finer resolution than that
of the training data. However, given the size of the study area and previous evidence that
predictions at this resolution yield realistic results (see Gilles et al. 2016), this was
deemed to be appropriate. The same evidence was drawn in the context of species
distribution modelling for fish species (Nufiez-Riboni et al. 2021).

Model evaluation

The performance of the model was evaluated using several established metrics. These
included the percentage of explained deviance, deviance residuals, information criteria
and visual inspection of predicted and observed distributions.

QQ plots, degrees of freedom, fitted relationships, predicted species distributions and
abundances were inspected for this selection of models. Goodness-of-fit and model
performance diagnostics were overall consistent among selected models, and the model
contributing the most to the final prediction was finally selected.



RESULTS AND DISCUSSION

Spatial modelling

Searching effort and sightings

Survey data collected in the summer months (June-August) constituted the largest
proportion of available data and, accordingly, predictions are valid for the summer. The
total number of effort segments, groups and individuals sighted per segment is reported
in Table 2 for each year. The maps of spatial distribution of realised line-transect effort
and sightings for the years 2005 to 2024 are presented in Figure 1.

We aggregated 34,346 km of on-effort survey data with 1,653 sightings of harbour
porpoise groups. From this, a total of 3,560 effort segments, with a final segment mean

length of 9.6 km (SD = 2.0 km), were included in the modelling.

Table 2. Summary of 2005-2024 survey data from visual surveys, showing number of effort
segments, number of harbour porpoise groups and individuals sighted in the summer of each

year, as used for model fitting.

Total no. of | No. of effort % effort
Year effort segments with |[segments with Number of .Nurn.ber of
segments groups groups groups individuals

2005 316 68 21.5 131 162
2006 135 26 19.3 37 40
2008 138 39 28.3 57 81
2010 149 42 28.2 61 74
2011 154 26 16.9 33 38
2012 72 38 52.8 104 141
2013 149 39 26.1 55 78
2015 242 53 21.9 73 82
2016 301 91 30.2 349 462
2018 125 7 5.6 9 10
2019 249 55 221 79 102
2020 524 433 25.4 210 259
2021 202 70 34.7 144 211
2022 453 123 27.2 178 252
2023 188 49 26.1 65 74
2024 163 48 29.5 68 79
Total 3560 907 25.5 1653 2145
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Figure 1. Data used for model fitting: this represents ship or aerial survey effort transects (black)
and sightings of harbour porpoise groups (coloured dots) for the survey years 2005-2024. To
ensure data quality and representativeness of local porpoise occurrence, data collected under
poor sighting conditions were discarded (see definition in Gilles et al. 2025).
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Model results and predicted density surfaces

The best model explained 24.9% of the deviance using a negative binomial error
distribution and a two-dimensional tensor product smooth of location, and further
covariates as seen in Table 3.

Table 3. Model description and diagnostics for the final selected model of harbour porpoise
individuals. Covariates in the models are described in Table 1.

. i Estimated degrees |Model degrees| % Deviance
Distribution | Model covariates .
of freedom of freedom explained
X,Y 12.9
Slope 3.1
Negative
) . ATemperature 1.8
Binomial EKE X 25.1 24.9
(0.424) ’
MLD 1.3
SST_8d 3.9

The best model also included several dynamic covariables such as sea surface
temperature (SST_8d) as well as Eddy kinetic energy (EKE), difference of temperature
between surface and sea floor (ATemperature) and Mixed layer thickness (MLD). Although
the locational covariates (x,y) still explained most of the model’s deviance, the model
thereby also captured distinct species-environment relationships involving dynamic
variables, also from the water column (3-D), that are consistent with harbour porpoise
ecology and habitat use. These relationships suggest useful proxies that can effectively
describe secondary production and prey aggregations.

The visualisation of the prediction generated from the GAM clearly delineates regions
where the predicted porpoise density is greatest and where it levels off (towards the east).
The maps showing surfaces of predicted density and associated estimated coefficient of
variation (CV) are shown in Figure 2. The patterns of predicted density are influenced by
the covariates retained in the models (see Table 3), the fitted smooth functions (see
Figure 3), and spatial variation in the covariates’ values in the prediction grid.

The maps of CVs provide a measure of the confidence in predicted density across the
survey area. Lower CVs are generally associated with areas of higher density when
predictions are interpolations sensu Pigeault et al. (2024b). On the other hand, high CV
values may betray either extrapolations, a high between-day variance in predictions, or
be associated with areas of very low density. CVs for predicted harbour porpoise density
(Figure 2) are relatively low across most of the survey area, whereas the confidence inthe
predictions in areas of low density is generally poorer. The magnitude of the CV is
influenced by the number of sightings as well as by how well the models fit the data.
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Figure 2. Predicted surface of estimated summer density [left] and associated coefficient of
variation (CV) [right] for harbour porpoise, fitting the model to survey data collected between
2005-2024 in the management unit of the Belt Sea harbour porpoise population.

Model diagnostic

The fitted smooth relationships between relative density and the spatial-autocorrelation
smooths (main smooth and deviation by year), as well as each covariate selected in the
final best model, are shown in Figure 3. The spatial autocorrelation te(X, Y) explained
most of the variance in this final model, while other covariates contributed an equivalent
magnitude to the model. Slope and SST_8d (i.e.,
contributed to a higher magnitude, as shown by the larger amplitude of their respective
partial effects on the y-axis.

a proxy for thermal fronts) also

The Q-Q plot (Figure A.1.) shows that the deviance residuals follow the theoretical
quantiles of the distribution family used (negative binomial). This suggests that the
chosen distribution is appropriate for the fitted model.
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Figure 3. Functional plots of environmental variables relative to harbour porpoise density as
indicated by the estimated smooth functions for the selected covariates in the best model (see
Table 3 for explanation on covariates). Y-axes represent the contribution of the term (linear or
spline, on the log-scale) to predict the response variable. Zero on the y-axes corresponds to no
effect of the predictor variable on the estimated response variable. Scaling of y-axis varies among
predictor variables to emphasize modelfit. The shading reflects 2x standard error bands (i.e., 95%
confidence interval); tick marks (“rug plot”) above the X-axis show data values.
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In conclusion, our modelling exercise yielded a prediction of a multi-year average density
surface (see Figure 2), driven by a substantial number of dedicated visual surveys and,
consequently, data points, resulting in a powerful dataset for predicting harbour porpoise
summer density distribution in the management area of the Belt Sea population.
Consequently, the predicted density surface now reflects habitats that are important
over time (also in earlier years) for the harbour porpoise and highlights the areas that are
sensitive to anthropogenic impacts.

In order to facilitate management and risk scenarios related to the most recent time,
another model was fitted but only including surveys from 2020 to 2024 (i.e., miniSCANS-
Il and SCANS-IV as well as national monitoring surveys in Denmark and Germany). The
results of this model are presented in the Appendix (Table A. 1; . ). The selected best
model has a good fit to the data and explained 16.7% of deviance, yet overall fewer
dynamic co-variates were selected. The predicted surface shows that harbour porpoise
density, especially in the region of the Great Belt, was reduced in the most recent period.
This was previously demonstrated in the modelling report for SCANS-IV (Gilles et al.
2025), however, using data exclusively from the 2022 SCANS-IV survey and predicting on
a larger grid (10x10 km).
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APPENDIX

Model diagnostic (all data)

deviance residuals
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theoretical quantiles

Figure A. 1. Q-Q plot for the selected final best model fitted with a negative binomial distribution
(data period 2005-2024).
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Model fitted to most recent data period (2020-2024)

Table A. 1. Model description and diagnostics for the final selected model of harbour porpoise
individuals for the period 2020-2024. Covariates in the models are described in Table 1.

. . Estimated degrees |Model degrees| % Deviance
Distribution | Model covariates ]
of freedom of freedom explained
XY 14.7
Negative Slope 1.2
Binomial MLD 2.3 18.5 16.7
(0.527) EKE 0.2
SST 0.1
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Figure A. 2. Predicted surface of estimated summer density [left] and associated coefficient of
variation (CV) [right] for the harbour porpoise, fitting the model to survey data collected between
2020-2024 in the management unit of the Belt Sea harbour porpoise population.
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Figure A. 3. Functional plots of environmental variables relative to harbour porpoise density as
indicated by the estimated smooth functions for the selected covariates in the best model for the
period 2020-2024 (see Table A. 1). Y-axes represent the contribution of the term (linear or spline,
on the log-scale) to predict the response variable. Zero on the y-axes corresponds to no effect of
the predictor variable on the estimated response variable. Scaling of y-axis varies among
predictor variables to emphasize modelfit. The shading reflects 2x standard error bands (i.e., 95%
confidence interval); tick marks (“rug plot”) above the X-axis show data values.
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Figure A. 4. Q-Q plot for the selected final best model fitted with a negative binomial distribution
for the period 2020-2024.
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