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INTRODUCTION 

The harbour porpoise (Phocoena phocoena), the only resident cetacean species in the 
Baltic Sea, is sensitive to a wide range of anthropogenic activities. In the western Baltic 
Sea, the Belt seas, the Sound and the southern Kattegat the so called “Belt Sea 
population” has recently been listed as Endangered (HELCOM 2024; from previous 
Vulnerable). A delineation of the Belt Sea (summer) harbour porpoise management unit, 
encompassing the core home range area of this population, has been formulated based 
on morphological studies (Wiemann et al., 2010; Galatius et al., 2012; Lah et al., 2016), 
satellite telemetry and passive acoustic monitoring (Sveegaard et al. 2015). A critical step 
towards understanding how sensitive the harbour porpoise is to various threats in 
different regions of the Baltic Sea is to predict its distribution and determine which areas 
can be characterised as important for the species.  

Predictive modelling of marine mammal habitat is a powerful tool in marine science as it 
integrates heterogeneity in marine ecosystems and provides important information for 
ecological studies, management purposes, mitigation of anthropogenic impacts (e.g. 
Forney et al. 2012) and for understanding the processes that influence interannual and 
seasonal variability in species distributions (Gilles et al. 2011, 2016, 2025; Becker et al. 
2016, 2017, 2018; Pigeault et al. 2024a). Marine mammals exhibit discernible 
fluctuations in their distributions. However, the drivers responsible for these variations 
remain unclear, in part due to the dynamic and poorly understood ecological 
relationships between, for instance, harbour porpoises, their environment and their prey 
species. In the absence of a comprehensive understanding of these ecological 
relationships, the here applied species distribution modelling can facilitate the 
elucidation of these relationships for harbour porpoises in the western Baltic Sea. The 
objective of this study is to predict and map the long-term summer distribution of harbour 
porpoises by fitting a habitat-based density model to the high-quality visual survey data 
collected for harbour porpoises in the “Belt Sea” assessment unit (as defined in 
Sveegaard et al. 2015) over the last 20 years.  

This spatial modelling approach, described in Gilles et al. (2016), utilises physical and 
biological characteristics as proxies for prey abundance. The ecological theory of species 
distribution modelling assumes that distribution is at least partly related to 
environmental variables, and that the relationship between species occurrence and 
environmental parameters can therefore be used to predict the distribution of the 
species in question (Austin 2007). Although behavioural factors such as migration, 
predator avoidance and social interactions influence the distribution of cetaceans, many 
of the distribution patterns are determined by the foraging response of top predators in a 
dynamic system (Redfern et al. 2006). This is particularly evident in the case of the 
harbour porpoise, which exhibits a marked preference for predictable hotspots 
characterised by high food availability. In the absence of specific prey density data at the 
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necessary spatial resolution for habitat prediction modelling, physical and biological 
characteristics of the sea are utilised as proxies. 

The result of the project can be used for sensitivity mapping of harbour porpoises in the 
context of marine spatial planning or in assessing sensitivities towards a broad range of 
anthropogenic activities in the Belt Sea. 

METHODS 

Spatial modelling 

The modelling process used in Gilles et al. (2016), applying the workflow described in 
Gilles et al. (2025) for the spatial modelling of the SCANS-IV survey data, was reproduced 
for this study. Briefly, the modelling framework is based on Generalized Additive Models 
(GAMs) to analyse the survey data, with the objective of establishing the relationship 
between the number of observed animals (the response variable) and the environmental 
variables (the explanatory variable) (Hastie & Tibshirani 1990, Wood 2017). This 
framework allows to model non-linear relationships between cetacean habitat and the 
marine environment. 

Data preparation and processing 

A comprehensive dataset was compiled from multiple dedicated line-transect ship or 
mainly aerial surveys, encompassing the currently defined management area of the Belt 
Sea population (Sveegaard et al. 2015). The data presented herein were obtained from 
two sources: large-scale regional and more frequent national monitoring surveys. The 
first dedicated large-scale survey covering the management unit included here was 
SCANS-II in 2005 (Hammond et al. 2013), thereafter MiniSCANS in 2012 (Viquerat et al. 
2014), SCANS-III in 2016 (Hammond et al. 2021), MiniSCANS-II in 2020 (Unger et al. 2021) 
and the SCANS-IV survey, which was recently conducted in 2022 (Gilles et al. 2023). The 
national monitoring of the western Baltic Sea waters included visual aerial survey efforts 
from Germany (2006-2024) and Denmark (2021-2024).  

All surveys followed the standardised SCANS field protocol and used the same data 
collection software (Scheidat et al. 2008; Gilles et al. 2009, 2016, 2023; Hammond et al. 
2013, 2021; SAMMOA 2022). Survey effort and sightings data were quality-checked and 
several plausibility checks were performed. Data were then aggregated into the common 
dataframe. 

The line-transect effort data were segmented into continuous portions of effort of 
approximate 10 km mean length, conforming with Becker et al. (2020), Gilles et al. (2016, 
2025) and Virgili et al. (2019). Harbour porpoise sighting data were assigned to each 
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segment. The effective area searched was estimated for each segment, based on the 
survey-specific effective strip widths (including g(0)). The effective area searched was 
subsequently included as an offset in the model structure. This procedure accounts for 
both varying segment lengths and the different detection probabilities recorded during 
the surveys. The covariates were extracted at a daily resolution within a buffer of 5  km 
around the segment centroids (see Table 1 for candidate covariates). A suite of 
environmental covariates, i.e. spatial, static and dynamic covariates, were considered. 
The selected habitat predictors are assumed to be proxies for the unmeasured underlying 
ecological processes driving species distributions rather than direct drivers.  

 

Table 1. Candidate environmental covariates used in the density surface models, shown to be 
important in previous modelling exercises (e.g. Gilles et al. 2016, 2025; Lacey et al. 2022; Pigeault 
et al. 2024b). 

Covariate Description Source 
Initial 
resolution 

X 
Longitude converted to ETRS89 
(EPSG:3035) 

  

Y 
Latitude converted to ETRS89 
(EPSG:3035) 

  

Water depth (depth) 
Mean water depth (m) 
 

EMODnet Digital 
Bathymetry 
(DTM 2020) 

200 m 

Slope 
Slope of the seabed (°) calculated 
with R package raster, version 
3.6-26 (Hijmans 2013). 

Derived from 
bathymetry 

Mean sea surface 
temperature (SST and 
SST_8d) 

Daily temperature (°C) on the 
survey date but also averaged 
with the previous 7 days. 

Global Ocean 
Physics 
Reanalysis. E.U. 
Copernicus 
Marine Service 
Information 
(CMEMS) 

0.083° × 
0.083° 

Spatial sea surface 
temperature deviation 
on a radius of one cell 
(SST_SDSpace) 

Spatial deviation in daily 
temperature (°C) within the 
radius of one cell, on the survey 
date. 

Temporal sea surface 
temperature deviation 
over 8 days 
(SST_SDTime) 

Temporal deviation in daily 
temperature (°C) over 8 days, 
calculated with the standard 
deviation. 

Difference of 
temperature between 
surface and sea floor 
(∆Temperature) 

Difference between SST and 
bottomT (°C). 

Eddy kinetic energy 
(EKE) 

Eddies calculated as the current 
velocity (m/s). 

Mixed layer thickness 
(MLD) 

Ocean mixed layer thickness 
defined by sigma theta (m). 

Net primary productivity 
(NPPV and NPPV_8d) 

Expressed as carbon in sea water 
(mg/m3/day), calculated on the 
survey date but also averaged 
with the previous 7 days. 

Global Ocean 
Biogeochemistry 
Hindcast 
(CMEMS) 

0.25° × 
0.25° 
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Data analysis 

All data processing was undertaken in software R version 4.4.0 (R Core Team 2024), and 
modelling was conducted using R package mgcv, version 1.9-1 (Wood 2017). 

Model structure, fitting and selection 

A multi-stage modelling approach was implemented with the objective of reducing bias 
in the density estimates generated from the habitat-based models. Methods largely 
followed the one described in Gilles et al. (2025), using Generalised Additive Models 
(GAM) to link environmental covariates to observations and we refer to this source for 
detailed information. Briefly, smooth functions were fitted using restricted maximum 
likelihood (REML) with automatic term selection (Marra & Wood 2011). Cubic regression 
splines were used for all covariates, with a maximum number of knots set to 10. This 
model-fitting method helps to avoid overfitting of the smooth functions by including a 
penalization (Marra & Wood 2011). The method can reduce the estimated degrees of 
freedom of a covariate term towards zero if it does not contribute sufficiently to account 
for the variability in the data. 

In addition to the spatial-autocorrelation smooth te(X, Y) of locational covariates, a 
deviation by year from this main spatial-autocorrelation smooth was tested in the model, 
using the factor smooth bs = ‘fs’ (Pedersen et al. 2019). This enables the spatial 
autocorrelation to reflect yearly survey observations when available, while otherwise 
conforming to the main spatial-autocorrelation smooth, te(X, Y). In doing so, it avoids 
extrapolating into spatio-temporal frames without survey coverage. However, from visual 
inspection, predictions of harbour porpoise density better matched the observations 
without the yearly deviation in the spatial-autocorrelation smooth, and including this 
term reduced model parsimony; therefore, the term was removed during model 
selection. 

Models were fitted for each possible combination of two to five uncorrelated covariates 
(that is covariates with a Pearson’s pairwise correlation coefficient < 0.50). The five 
models with the best goodness of fit, based on leave-one-out cross-validation, were 
selected and their respective predictions were stacked (Yao et al. 2017) for further 
investigation, with their respective contribution to the final prediction estimated with the 
loo R-package (version 2.8.0, Vehtari et al. 2017).  

For accurate uncertainty quantification, a pseudo-posterior approach was taken (e.g. 
King et al. 2000). The pseudo-posterior approach allows for seamless quantification of 
uncertainty for any derived quantities (e.g. abundance, CV, 95% confidence interval) from 
model parameters. Maximum likelihood estimates of parameters and their associated 
covariance matrix were extracted from fitted models (using the function rmvnorm from 
package mvtnorm, version 1.3-3, Genz & Brentz 2009) and used to generate a sample of 
1,000 values from a pseudo-posterior, assuming a multivariate normal distribution for the 
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parameters (King et al. 2000). This sample was used to carry out predictions at a daily 
level over the survey period. As the variability of some smooth functions was high and the 
upper values could reach extreme densities that are ecologically unrealistic due to the 
over-dispersion parameter, a threshold in densities was set to the 99.9% quantile of the 
initial predicted density (i.e. by sample, cell and day). Densities above this limit were 
removed from the samples as they could not be considered as ecologically realistic. 
Finally, the predicted densities were averaged over the survey period for each cell and 
sample, providing a pseudo-posterior distribution per cell. 

For SCANS-IV, a prediction grid of 10x10 km was used to account for the extensive area 
over which the density was predicted (Gilles et al. 2025). Here, the spatial extent of the 
prediction grid was limited to the Belt Sea management unit (Sveegaard et al. 2015). 
Therefore, to facilitate a more nuanced prediction, a 5x5 km prediction grid was 
developed, one which would prove more useful in the context of a sensitivity analysis. On 
the temporal extent, daily prediction grids of 5x5 km were created from the first to the last 
summer survey date, specific for each survey year, with each grid populated using daily 
covariate mean values. This approach entailed predicting at a finer resolution than that 
of the training data. However, given the size of the study area and previous evidence that 
predictions at this resolution yield realistic results (see Gilles et al. 2016), this was 
deemed to be appropriate. The same evidence was drawn in the context of species 
distribution modelling for fish species (Núñez‐Riboni et al. 2021). 

Model evaluation 

The performance of the model was evaluated using several established metrics. These 
included the percentage of explained deviance, deviance residuals, information criteria 
and visual inspection of predicted and observed distributions.   

QQ plots, degrees of freedom, fitted relationships, predicted species distributions and 
abundances were inspected for this selection of models. Goodness-of-fit and model 
performance diagnostics were overall consistent among selected models, and the model 
contributing the most to the final prediction was finally selected. 
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RESULTS AND DISCUSSION 

Spatial modelling 

Searching effort and sightings 

Survey data collected in the summer months (June-August) constituted the largest 
proportion of available data and, accordingly, predictions are valid for the summer. The 
total number of effort segments, groups and individuals sighted per segment is reported 
in Table 2 for each year. The maps of spatial distribution of realised line-transect effort 
and sightings for the years 2005 to 2024 are presented in Figure 1.  

We aggregated 34,346 km of on-effort survey data with 1,653 sightings of harbour 
porpoise groups. From this, a total of 3,560 effort segments, with a final segment mean 
length of 9.6 km (SD = 2.0 km), were included in the modelling.  

Table 2. Summary of 2005-2024 survey data from visual surveys, showing number of effort 
segments, number of harbour porpoise groups and individuals sighted in the summer of each 
year, as used for model fitting. 

Year 
Total no. of 

effort 
segments 

No. of effort 
segments with 

groups 

% effort 
segments with 

groups 

Number of 
groups 

Number of 
individuals 

2005 316 68 21.5 131 162 
2006 135 26 19.3 37 40 
2008 138 39 28.3 57 81 
2010 149 42 28.2 61 74 
2011 154 26 16.9 33 38 
2012 72 38 52.8 104 141 
2013 149 39 26.1 55 78 
2015 242 53 21.9 73 82 
2016 301 91 30.2 349 462 
2018 125 7 5.6 9 10 
2019 249 55 22.1 79 102 
2020 524 433 25.4 210 259 
2021 202 70 34.7 144 211 
2022 453 123 27.2 178 252 
2023 188 49 26.1 65 74 
2024 163 48 29.5 68 79 
Total 3560 907 25.5 1653 2145 
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Figure 1. Data used for model fitting: this represents ship or aerial survey effort transects (black) 
and sightings of harbour porpoise groups (coloured dots) for the survey years 2005-2024. To 
ensure data quality and representativeness of local porpoise occurrence, data collected under 
poor sighting conditions were discarded (see definition in Gilles et al. 2025). 
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Model results and predicted density surfaces 

The best model explained 24.9% of the deviance using a negative binomial error 
distribution and a two-dimensional tensor product smooth of location, and further 
covariates as seen in Table 3. 

Table 3. Model description and diagnostics for the final selected model of harbour porpoise 
individuals. Covariates in the models are described in Table 1. 

Distribution Model covariates 
Estimated degrees 

of freedom 
Model degrees 

of freedom 
% Deviance 
explained 

Negative 
Binomial 

(0.424) 

X,Y 12.9 

25.1 24.9 

Slope 3.1 
ΔTemperature 1.8 

EKE 2.1 
MLD 1.3 

SST_8d 3.9 

The best model also included several dynamic covariables such as sea surface 
temperature (SST_8d) as well as Eddy kinetic energy (EKE), difference of temperature 
between surface and sea floor (∆Temperature) and Mixed layer thickness (MLD). Although 
the locational covariates (x,y) still explained most of the model’s deviance, the model 
thereby also captured distinct species-environment relationships involving dynamic 
variables, also from the water column (3-D), that are consistent with harbour porpoise 
ecology and habitat use. These relationships suggest useful proxies that can effectively 
describe secondary production and prey aggregations. 

The visualisation of the prediction generated from the GAM clearly delineates regions 
where the predicted porpoise density is greatest and where it levels off (towards the east). 
The maps showing surfaces of predicted density and associated estimated coefficient of 
variation (CV) are shown in Figure 2. The patterns of predicted density are influenced by 
the covariates retained in the models (see Table 3), the fitted smooth functions (see 
Figure 3), and spatial variation in the covariates’ values in the prediction grid.  

The maps of CVs provide a measure of the confidence in predicted density across the 
survey area. Lower CVs are generally associated with areas of higher density when 
predictions are interpolations sensu Pigeault et al. (2024b). On the other hand, high CV 
values may betray either extrapolations, a high between-day variance in predictions, or 
be associated with areas of very low density. CVs for predicted harbour porpoise density 
(Figure 2) are relatively low across most of the survey area, whereas the confidence in the 
predictions in areas of low density is generally poorer. The magnitude of the CV is 
influenced by the number of sightings as well as by how well the models fit the data. 
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Figure 2. Predicted surface of estimated summer density [left] and associated coefficient of 
variation (CV) [right] for harbour porpoise, fitting the model to survey data collected between 
2005-2024 in the management unit of the Belt Sea harbour porpoise population. 

Model diagnostic 

The fitted smooth relationships between relative density and the spatial-autocorrelation 
smooths (main smooth and deviation by year), as well as each covariate selected in the 
final best model, are shown in Figure 3. The spatial autocorrelation te(X, Y) explained 
most of the variance in this final model, while other covariates contributed an equivalent 
magnitude to the model. Slope and SST_8d (i.e., a proxy for thermal fronts) also 
contributed to a higher magnitude, as shown by the larger amplitude of their respective 
partial effects on the y-axis. 

The Q-Q plot (Figure A.1.) shows that the deviance residuals follow the theoretical 
quantiles of the distribution family used (negative binomial). This suggests that the 
chosen distribution is appropriate for the fitted model. 
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Figure 3. Functional plots of environmental variables relative to harbour porpoise density as 
indicated by the estimated smooth functions for the selected covariates in the best model (see 
Table 3 for explanation on covariates). Y-axes represent the contribution of the term (linear or 
spline, on the log-scale) to predict the response variable. Zero on the y-axes corresponds to no 
effect of the predictor variable on the estimated response variable. Scaling of y-axis varies among 
predictor variables to emphasize model fit. The shading reflects 2× standard error bands (i.e., 95% 
confidence interval); tick marks (“rug plot”) above the X-axis show data values. 
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In conclusion, our modelling exercise yielded a prediction of a multi-year average density 
surface (see Figure 2), driven by a substantial number of dedicated visual surveys and, 
consequently, data points, resulting in a powerful dataset for predicting harbour porpoise 
summer density distribution in the management area of the Belt Sea population. 
Consequently, the predicted density surface now reflects habitats that are important 
over time (also in earlier years) for the harbour porpoise and highlights the areas that are 
sensitive to anthropogenic impacts. 

In order to facilitate management and risk scenarios related to the most recent time, 
another model was fitted but only including surveys from 2020 to 2024 (i.e., miniSCANS-
II and SCANS-IV as well as national monitoring surveys in Denmark and Germany). The 
results of this model are presented in the Appendix (Table A. 1; . ). The selected best 
model has a good fit to the data and explained 16.7% of deviance, yet overall fewer 
dynamic co-variates were selected. The predicted surface shows that harbour porpoise 
density, especially in the region of the Great Belt, was reduced in the most recent period. 
This was previously demonstrated in the modelling report for SCANS-IV (Gilles et al. 
2025), however, using data exclusively from the 2022 SCANS-IV survey and predicting on 
a larger grid (10x10 km).  
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APPENDIX 

Model diagnostic (all data) 

Figure A. 1. Q-Q plot for the selected final best model fitted with a negative binomial distribution 
(data period 2005-2024).
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Model fitted to most recent data period (2020-2024) 

Table A. 1. Model description and diagnostics for the final selected model of harbour porpoise 
individuals for the period 2020-2024. Covariates in the models are described in Table 1. 

Distribution Model covariates 
Estimated degrees 

of freedom 
Model degrees 

of freedom 
% Deviance 
explained 

Negative 
Binomial 

(0.527) 

X,Y 14.7 

18.5 16.7 
Slope 1.2 
MLD 2.3 

EKE 0.2 
SST 0.1 

 

  

Figure A. 2. Predicted surface of estimated summer density [left] and associated coefficient of 
variation (CV) [right] for the harbour porpoise, fitting the model to survey data collected between 
2020-2024 in the management unit of the Belt Sea harbour porpoise population. 

 

 

 



 21 

 

Figure A. 3. Functional plots of environmental variables relative to harbour porpoise density as 
indicated by the estimated smooth functions for the selected covariates in the best model for the 
period 2020-2024 (see Table A. 1). Y-axes represent the contribution of the term (linear or spline, 
on the log-scale) to predict the response variable. Zero on the y-axes corresponds to no effect of 
the predictor variable on the estimated response variable. Scaling of y-axis varies among 
predictor variables to emphasize model fit. The shading reflects 2× standard error bands (i.e., 95% 
confidence interval); tick marks (“rug plot”) above the X-axis show data values. 
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Figure A. 4. Q-Q plot for the selected final best model fitted with a negative binomial distribution 
for the period 2020-2024. 
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