Challenges in Quantifying the Effectiveness of Avoidance and Minimization Measures

Julie Garvin and Tom Snetsinger
Portland, OR
Avoidance and Minimization Measures

- Different reasons to implement
 - Voluntary (environmental due diligence)
 - migratory birds
 - bats
 - Required (reduce take to the maximum extent practicable)
 - threatened and endangered species
 - eagles
 - Rare events

- Need to quantify the reduction of impacts (i.e., success of implementation)
Effectiveness Monitoring

• Definition: A program designed to evaluate whether or not there is a reduction in impacts as a result of implementation of a given avoidance and minimization measure.

• Variation in program objectives
 ▪ Quantify
 – When already demonstrated to be effective
 – E.g., power-pole retrofits
 ▪ Demonstrate and quantify
 – Predicted reduction, but untested
 – E.g., experimental measures
Challenges

• Poor understanding of factors related to risk/impacts
• Difficult to control for confounding variables
• Sample size may be limited at a single site
• Inherent uncertainty in fatality estimation
Metrics of Effectiveness

• Estimated or observed fatality rate
 ▪ Most common
 ▪ Lack of precision
 ▪ May not accurately capture risk

• Alternative metrics
 ▪ Best metrics use attributes that
 – Can be measured with relative accuracy
 – Have good sample sizes
 – Have baseline data available
 – Are well-correlated with risk
Alternative Metrics

• Measurements of use
• Behavioral responses
• Fatality rates of a surrogate species

Whooping Cranes

Sandhill Cranes
Alternative Metric – Example 1

Audible Deterrent for Raptors

- Flight paths or use in the zone of risk can be quantified and are often collected pre-construction (i.e., baseline)
- Correlation with collision is assumed, and collision probabilities are available in the literature
- Response to initiation of the deterrent can be measured
- Averted flight paths can be equated to avoided collision risk

Photo by Russell Reynolds
Hawaiian hoary bat (Endangered)

- Bat use potentially correlated with risk
- Dim UV light deterrent installed at macadamia nut orchard
- Thermal and acoustic detectors to quantify bat use
- Bat use was greatly reduced with UV light treatment

Rare Events

• Unique challenges
 ▪ Often tied to regulatory risk and permit compliance
 ▪ Hard to detect a rare event
 ▪ Greater level of effort to create precise estimates of fatalities
 ▪ Smaller sample size to detect an effect of a measure
Management Implications

• Study design is crucial
• Include effectiveness monitoring at earliest planning stages
• Results of effectiveness monitoring influence
 ▪ Acceptance of experimental avoidance and minimization measures
 ▪ Adaptive management decisions
 ▪ Compensatory mitigation requirements
• If you didn’t measure it, it didn’t happen
For more information or questions:

Julie Garvin
Tetra Tech
Julia.Garvin@tetratech.com
(503) 222-4537

Tom Snetsinger
Tetra Tech
Thomas.Snetsinger@tetratech.com
(503) 721-7219