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Abstract: The study of the potential impact of wave energy converter (WEC) farms on the surround-
ing wave field at long distances from the WEC farm location (also know as “far field” effects) has
been a topic of great interest in the past decade. Typically, “far-field” effects have been studied using
phase average or phase resolving numerical models using a parametrization of the WEC power
absorption using wave transmission coefficients. Most recent studies have focused on using coupled
models between a wave-structure interaction solver and a wave-propagation model, which offer a
more complex and accurate representation of the WEC hydrodynamics and PTO behaviour. The dif-
ference in the results between the two aforementioned approaches has not been studied yet, nor how
different ways of modelling the PTO system can affect wave propagation in the lee of the WEC farm.
The Coastal Engineering Research Group of Ghent University has developed both a parameterized
model using the sponge layer technique in the mild slope wave propagation model MILDwave and a
coupled model MILDwave-NEMOH (NEMOH is a boundary element method-based wave-structure
interaction solver), for studying the “far-field” effects of WEC farms. The objective of the present
study is to perform a comparison between both numerical approaches in terms of performance for
obtaining the “far-field” effects of two WEC farms. Results are given for a series of regular wave
conditions, demonstrating a better accuracy of the MILDwave-NEMOH coupled model in obtaining
the wave disturbance coefficient (K;) values around the considered WEC farms. Subsequently, the
analysis is extended to study the influence of the PTO system modelling technique on the “far-field”
effects by considering: (i) a linear optimal, (ii) a linear sub-optimal and (iii) a non-linear hydraulic
PTO system. It is shown that modelling a linear optimal PTO system can lead to an unrealistic
overestimation of the WEC motions than can heavily affect the wave height at a large distance in the
lee of the WEC farm. On the contrary, modelling of a sub-optimal PTO system and of a hydraulic
PTO system leads to a similar, yet reduced impact on the “far-field” effects on wave height. The
comparison of the PTO systems’ modelling technique shows that when using coupled models, it is
necessary to carefully model the WEC hydrodynamics and PTO behaviour as they can introduce
substantial inaccuracies into the WECs” motions and the WEC farm “far-field” effects.

Keywords: numerical coupling; MILDwave; NEMOH; WEC farm impacts; WEC farm interactions;
PTO system; linear PTO system; hydraulic PTO system; WEC-sim

1. Introduction

Wave energy has the potential to contribute to the global renewable energy mix.
Nevertheless, in the past few years, the technology readiness level (TRL) of wave energy
converters (WECs) has not achieved the desired status with no commercial WEC farm
projects. As indicated by Reference [1], the main cause of this lack of TRL is the large
number of different WEC technologies under development, which do not seem to reach a
convergence state towards one or a few feasible technologies. Yet, if this were to happen, for
wave energy to be economically viable, a large number of WECs will have to be deployed
in the ocean and arranged in so-called WEC farms [2]. The hydrodynamic interactions
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between a large number of WECs within the WEC farm has the potential to modify the
surrounding wave climate, creating areas of reduced and focused wave energy (areas of
reduced and increased wave height) around the WEC farm. If the WEC farm is located
close to the coastline, the potential coastal impacts of a WEC farm may be either positive
(for example, sheltering existing coastal infrastructures from rough sea conditions) or
negative (enhancing erosion along the coastline). In the literature, the study of the potential
impacts of WEC farms has focused on modelling the WEC-wave interaction hydrodynamic
problem as two separate problems: a diffraction problem and a radiation problem. The
superposition of the two problems results in a perturbed wave field that affects the incident
wave field (normally referred to as the “near-field” effects). The propagation of this
perturbed wave field at large distances away from the WEC farms (normally referred as the
“far-field” effects) is then assessed to understand the possible coastal impacts of WEC farms.

One of the first studies of the “far field effects” of WEC farms was performed by
Reference [3] on the U.K. coast. In that study, a generic WEC farm was modelled as a 4 km
wide absorbing obstacle (which was assigned a specific wave transmission coefficient) using
the phase-averaged wave propagation model SWAN [4]. The study was then extended to
multiple absorbing obstacles spaced at 100 m along a 4 km strip in Reference [5]. Results
showed that using a wave transmission coefficient for the obstacle of 0 or 90% had limited
to no impact (in the range of a few cm of the resulting wave height) on the wave conditions
at 16 km in the lee of the WEC farm, while the wave height reduction at a distance of 2 km
could reach up to 15% in some of the studied cases. A similar study was performed by
Reference [6], who modelled a WEC farm of 15 WECs as 15 absorbing obstacles on the
Portuguese coast again using SWAN. This study focused in assessing how changing the
wave transmission coefficient and the distance of the WEC farm to the coast affects the
wave height reduction in the lee of the WEC farm, obtaining wave height reductions in
the range of 25% to 50%. The authors extended this study to the Mediterranean sea in
Reference [7], modelling different WEC farms of up to 24 WECs. In this study, they found
wave height reductions varying from 2% to 41%, which in some cases were affecting the
wave breaking type. Additionally, they studied the impact of these wave height variations
in the nearshore currents obtaining an overall reduction of the current velocity. In line with
this research, the influence of a generic WEC farm on the nearshore processes was studied
in Reference [8], reporting that WEC farms can provide an efficient protection against wave
action, despite a negligible impact on the longshore currents.

Identically, the coastal impact of two different WEC farm layouts of WaveCats [9]
in the far-field was studied in Reference [10] using SWAN and experimental tests [11] to
predetermine the required transmission coefficients for the model . Based on their results,
it was established that after 5 km, the wave height reduction for both WEC farm layouts
was in the range of 6%. Following this study, the role of the farm-to-coast distance ratio
was studied in Reference [12] also using SWAN. In this investigation, a 20 WaveCat WEC
farm was implemented. It was found that the WEC farm had an impact ranging from an
8% wave energy reduction in summer to a 20% wave energy reduction in winter when the
WEC farm was located at 2 km from the shore, with the wave height reduction decreasing
when moving away from the shoreline. This approach was extended in Reference [13] by
coupling SWAN with the coastal process model XBeach [14] to study the effect of WEC
farms in beach erosion. In this study, a total of 11 WaveCat WECs staggered in two rows
were implemented in SWAN as wave transmitting objects, which resulted in a wave height
reduction of 25% if located 2 km from the coast. The impact was limited to a 9% wave
height reduction if the WEC farm was located 6 km from the coast. It was reported that the
installation of WEC farms can have the positive effect of reducing beach erosion.

In line with these studies, different WEC farm layouts composed of a wide range of
WEC types were modelled in Reference [15] by varying the wave transmission coefficient
used in each SWAN simulation. The wave heights and near-bottom orbital velocities
decreased up to 30% at the lee of large WEC types (26 m diameter) in a WEC farm, while for
smaller WEC types (10 m diameter), this reduction was in the range of 15%. Additionally,
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it was stated that the highest wave height reductions are expected to be aligned with the
centre of the WEC farm layout in relation to the incident wave directions. Furthermore,
the influence of refraction was identified as an important parameter that affects the spatial
extent of the wave height reduction caused by a WEC farm. Following a similar approach,
the time-domain mild slope equation model, MILDwave, was used in Reference [16] to
study the “far-field” effects of a WEC farm of Wave Dragons. Each WEC was simplified as
a wave power absorbing obstacle using wave tank test results as a benchmark to define
the required absorption coefficient in the numerical model. For a WEC farm of nine Wave
Dragon WECs, a wave height reduction of up to 40% was obtained 2.5 km in the lee of the
WEC farm.

It can be seen that in the aforementioned studies, the WEC hydrodynamic interactions
were parameterized using wave transmission coefficients that extract a certain amount
of energy from the incident waves. The value for this wave transmission coefficient has
been either selected randomly or by means of wave tank testing of a WEC technology
(such as the WaveCat or the Wave Dragon WECs). The wave transmission coefficient
is only validated for a single WEC; therefore, when implemented for a WEC farm, the
hydrodynamic interactions for the wave diffraction and wave radiation of the different
WECs are neglected [17], not taking into consideration the optimization of the power take-
off (PTO) of each WEC. This inaccuracy may lead to an overestimation or underestimation
of the overall WEC farm power absorption, which can lead to an unrealistic estimation
of the wave height reduction close to the coastal zone. Using the WaveCat WEC as an
example [10,12,13], a high variation in the wave height reduction can be seen when the
number of WECs composing the farm and their geometrical layout are changed. This
variation in the wave height reduction is partially influenced by wave shoaling and wave
refraction at each geographic location and partially by neglecting the WEC hydrodynamic
interactions. However, with limited comparisons between WEC farm experimental data
and WEC farm simulations, it is hard to account for the limitations of the phase average
and phase resolving numerical models. This limitation was clearly shown in Reference [18],
where depending on the wave transmission coefficient used, a wave height reduction
of 45%, 15% or 5% was obtained. An additional limitation of phase average and phase
resolving numerical models underlies the WEC modelling approach where for more
realistic results, comparisons with experimental or numerical data are required. This adds
an extra uncertainty to the obtained numerical results of the aforementioned numerical
models; they not only rely on the numerical simulations” accuracy, but also on those
of the experiments or simulations performed to tune the wave absorption coefficients.
Furthermore, following the study by Reference [19], where the need for reliable and
affordable numerical simulations to increase the technology readiness level (TRL) of the
wave energy sector was pointed out, phase average and phase resolving numerical models
failed to provide the former. Even though they provided computationally efficient solutions,
they lacked the tools to implement proof of concept designs easily and accurately.

More recent studies of the “far-field” effects of WEC farms have been performed using
numerical coupling methodologies. These coupling methodologies aim to combine the
advances in WEC-wave interaction solvers (or the so called wave-structure interaction
solvers) with existing wave propagation models. Research in WEC-wave interactions has
focused on obtaining a better and more complex representation of PTO modelling [20],
WEC farm layout optimization [21,22], WEC hydrodynamic performance [23-28], WEC
behaviour under extreme waves [29,30] or WEC concept design [31-33]. This has led to
different coupled models composed of different layers of complexity: (i) a linear potential
flow wave propagation model coupled with a linear WEC-wave interaction solver based
on the boundary element method (BEM) [34-37], (ii) a non-linear potential flow wave prop-
agation model coupled to a linear WEC-wave interaction solver based on BEM [38], (iii) a
non-linear potential flow wave propagation model coupled to a non-linear WEC-wave in-
teraction solver based on smoothed particle hydrodynamics (SPH) [24] and (iv) a non-linear
potential flow wave propagation model coupled to a non-linear WEC-wave interaction
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solver based on computer fluid dynamics (CFD) [39]. Additionally, a submerged WEC
buoy using a non-hydrostatic wave-flow model was simulated in [40] and has recently
been extended to multiple objects [41]. In this study, the “far-field” effects of 10 submerged
WEC buoys was analyzed and the submerged WEC buoy numerical implementation in
the non-hydrostatic wave-flow model was validated against numerical results from the
solver NEMOH. Nevertheless, this numerical implementation is limited to this specific
type of WEC and would require a different numerical implementation when dealing with
a different shape as that of oscillating surge wave energy converters (OSWECs).

To date, only the research group of Ghent University [35-38,42—44] using the linear
wave propagation model MILDwave coupled with the BEM WEC-wave interaction solver
NEMOH (the MILDwave-NEMOH coupled model) has studied the “far-field” effects of
WEC farms using coupled models. The coastal impact of OSWECs on the coast of Ireland
was studied in Reference [42]. The impact of the WEC separation distance on the overall
WEC farm energy production under long-crested irregular waves using the MILDwave-
NEMOH coupled model was studied in Reference [45,46]. The “far-field” effects of two
types of WEC farms under short-crested irregular waves were compared in Reference [37].
Furthermore, the model was validated against experimental results in Reference [43,47] and
compared to a coupled model between OceanWave3D and NEMOH, where Reference [38]
found relative errors lower than 5%.

The general applicability of different coupled models was studied by Reference [19].
As pointed out in Reference [48], the use of linear models for implementing numerical
coupling between to models can lead to underestimations of the WEC motions and poor
representation of the PTO behaviour, which would make non-linear coupled models a
preferable choice [19]. Despite the fact that there has been an increase in the available
computational power, studies of WEC arrays or farms using non-linear wave-structure
interaction solvers were only reported by Reference [30,49,50] under regular wave condi-
tions. This shows that simulating WEC farms under irregular waves by using a non-linear
wave-structure interaction solver coupled to a wave propagation model is still not compu-
tationally feasible. However, such complex models are not able to account for the physical
processes that influence the “far field” effects such as wave propagation over varying
bathymetries covering large coastal areas and for storms with a duration of several hours.

Nevertheless, in none of the presented studies was there an evaluation available of
the applicability range of coupled models in terms of “far-field” effects’ calculation. It
has been shown that much effort has been invested in accurately modelling the linear
and non-linear behaviour of WEC farms in the “near-field” using WEC-wave interaction
solvers, and this by paying special attention to maximizing power output. However, it
has not been assessed how important the simulation accuracy is when propagating the
“near-field” effects into the “far-field” domain; for instance, how a gain of 5% in power
production is effectively translated into a high increase or decrease of the wave height at a
large distance away of the WEC farm and therefore its impact on the neighbouring activities
and on the local coastal processes. The objective of the present study is to contribute to
reducing this knowledge gap by analysing the wave-structure interaction solver fidelity
required for calculating the WEC hydrodynamics and PTO behaviour when studying the
“far-field” effects of a WEC farm using the MILDwave-NEMOH coupled model. For this,
four different numerical approaches of the WEC hydrodynamics and PTO system will be
used: one using only MILDwave in which the WECs are modelled as absorbing obstacles
to represent a benchmark case comparable to the studies performed using only wave
propagation models and three using the MILDwave-NEMOH coupled model in which
WECs are modelled using two different linear PTO system representations and a more
complex hydraulic PTO system implementation.

The structure of the paper is as follows: Section 1 provides a short overview of
the state-of-the-art of WECs and WEC farm “far-field” effects” modelling, as well as the
presentation of the problem statement. Section 2 briefly presents the models used for the
present parametric study, a detailed description of the parametric study and the numerical
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implementation. Results are presented and discussed in Section 3 for two WEC types:
HPA and OSWECs under the effect of regular waves. The influence of the different WEC
hydrodynamic numerical approaches and PTO system on the wave field around the WEC
farm is discussed by assessing the wave height reduction in the lee of the WEC farm and
the WEC farm’s total energy production. Finally, the conclusions of this and future work
are drawn in Section 4.

2. Methodology
2.1. MILDwave-NEMOH Coupled Model

To model the “far-field” effects of WEC farms, the numerical coupled model MILDwave-
NEMOH is used here. This numerical model couples NEMOH with MILDwave, using the
first model to solve the hydrodynamic interactions between the different WECs of the farm
and MILDwave to obtain the propagated wave field over large coastal areas. NEMOH is an
open-source potential flow BEM solver, and the basic equations and assumptions employed
were reported in Reference [51]. NEMOH's outputs include the hydrodynamic coefficients
of the WECs modelled, namely the excitation force, added mass and radiation damping,
together with the complex diffracted and perturbed wave field around them. These
coefficients can be used to estimate the hydrodynamic parameters of a WEC. Furthermore,
a wide variety of WEC shapes can be modelled accurately in NEMOH, as indicated by
Reference [52].

MILDwave [53,54] is a phase-resolving model based on the depth-integrated mild
slope equations of Radder and Dingemans [55]. MILDwave describes the wave transfor-
mations (wave shoaling and wave refraction) of regular, irregular and short-crested waves
with a narrow frequency band propagating above mildly varying bathymetries. The basic
MILDwave equations were reported in [53,54]. Recently, periodic lateral boundaries were
implemented by Reference [56], allowing the model to create homogeneous wave fields of
oblique regular, long-crested and short-crested irregular waves.

In the MILDwave-NEMOH coupled model, a single internal wave generation line
combined with periodic lateral boundaries can be used to simulate different incident angles
over a WEC farm. The basis of the generic coupling methodology used to develop the
coupled numerical model can be found in Reference [44,57], where a coupled MILDwave-
WAMIT model was presented for regular waves. A complete description of the numerical
implementation of the coupled model can be found in Reference [37]. Furthermore, an
experimental validation of the numerical coupled model was included in Reference [47].

2.2. Parametric Study

To assess the importance of the numerical approach used to study the “far-field” ef-
fects of WEC farms and the required level of detail needed when modelling the WEC
hydrodynamic interactions and the PTO systems, different WEC farms and wave condi-
tions were selected. As indicated in Reference [58], there is a vast range of WECs under
development; therefore, for this study, two of the most common WEC types were selected:
a heaving point absorber (HPA) and an oscillating surge wave energy converter (OSWEC).
This selection also allows us to consider two possible deployment scenarios: one offshore
for the HPAs as they would typically be deployed at water depths of around 30 m; and
another deployment scenario in the nearshore, as the OSWECs are likely to be deployed at
water depths of around 10 m. This selection aims to assess the potential coastal impacts
that a WEC farm project can have when deployed close to or far from the coast.

To model the WEC hydrodynamic interactions of the WECs and to maximize the
WEC farm power output, four different approaches are employed: (i) a linear optimal,
(ii) a linear sub-optimal and (iii) a non-linear hydraulic optimization of the PTO system
damping, as well as (iv) a parametrization of the WEC response as a wave energy absorbing
obstacle, also know as the sponge layer technique [54]. In the first three scenarios, the
MILDwave-NEMOH coupled model is used, while in the fourth scenario, MILDwave is
used as an standalone numerical model. A range of realistic sea states representative of
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operational conditions throughout the year was chosen [46]. An incident wave height (Hj)
of 2 m, a wave period (T) varying from 8 s to 10 s to 12 s and the wave direction changing
from 0 = 0° to 15° to 30° were considered.

For this study, only regular waves were considered due to the large number amount
of simulations required (72 test cases). Nevertheless, as indicated in Reference [37], the
highest impact of WEC farms is obtained under the effect of regular waves; therefore, we
believe this is a valid approach to study the impact of different numerical approaches as for
regular waves, the WEC farm effects will be more clear. The comparison between the four
different numerical approaches is performed by studying the K; disturbance coefficient
values in the lee of the WEC farm, as defined in Equation (1), and the total power output
of the WEC farm. Kj; is defined as the ratio between the numerically calculated local
total wave height, H;ot, and the incident wave height, H;, imposed along the linear wave
generation boundary.

Hiot

Ki= " )

2.3. WEC Numerical Implementation

The two types of WECs in this study are modelled employing two numerical ap-
proaches: (1) using the hydrodynamic coefficients obtained from the BEM solver NEMOH
directly into the MILDwave-NEMOH numerical model and (2) by parameterizing the hy-
drodynamic coefficients obtained in NEMOH as wave absorption coefficients in MILDwave.
The two WECs considered in this study are:

1. A cylindrical HPA of a diameter 20 m and a height of 4 m moored to the seabed at a
water depth of 30 m (Figure 1A). The HPA WEC motion is restricted to heave only,
and therefore, only one degree of freedom (DoF) is considered for the simulations.

2. A surface-piercing OSWEC of a width 20 m, a height of 12 m and a length of 1 m
hinged to the seabed at a water depth of 10 m (Figure 1B). The OSWEC motion is
restricted to pitch only, and only one DoF is considered for the simulations.

B) OSWEC
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Figure 1. (A) Low-order mesh for the HPA WEC; and (B) low-order mesh for the OSWEC.

2.4. PTO Numerical Implementation
2.4.1. Linear PTO System

The linear optimal and linear sub-optimal PTO systems used in this research are
modelled as a linear spring-damper-mass PTO system with a stiffness coefficient, Kpro,opt,
and a damping coefficient, Bpro opt- Firstly, the linear PTO system is modelled using an
optimal control strategy to maximize wave power capture. According to [59], the optimal
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coupling of the PTO system parameters, Kpro oyt and Bpro,opt, that maximizes the body
motion is:

Kpro,opt = w*(m + M) — Ky ()

and:

Bpr0,0pt = BH, 3)

where w is the angular wave frequency, m is the WEC mass, M 4 is the WEC added mass,
Kp is the WEC hydrostatic spring coefficient and By is the body hydrodynamic damping
coefficient. Nonetheless, optimal control is very difficult to achieve in a real case scenario
as it is very difficult to implement a variable Kpro opt- Consequently, a different derivation,
as indicated in [46], can be done to this formulation where the sub-optimal PTO spring
stiffness coefficient Kpro s, is set to zero, and the sub-optimal damping coefficient Bpro g1,
can be obtained using the following expression:

K
Bpro,sub = \/B%{ + (w(m+ My) — ;H)Z/ 4)

Finally, for a linear PTO system, the average power output, P;, of the WEC is then
expressed by:

1
Pi = 3 Bpro| RAO(w)[*w?, ®)

where |[RAO(w)| is the amplitude of the WEC motion.

2.4.2. Hydraulic PTO System

The hydraulic PTO system used in this research is modelled using the WEC-sim model
of an HPA WEC and an OSWEC used by [46], where a complete description of the model
for the two WEC types was included. Based on this complex representation of the hydraulic
PTO systems for the two WEC types, an optimal hydraulic PTO system coefficient was
derived with the same dimensions as for the linear Bprp term. Following the approach
used by [60], a hydraulic Bpro 4 is defined and checked for the optimal value for the HPA
WEC using the following equation:

s
Bpronya = D*;Bg, (6)

where s is the piston area, D, is the motor displacement and By is the generator damping.
Analogously, the same expression can by derived for an OSWEC:

S
Bpronya = ¢ bim’(iDC )?Bg )
m

where ¢ and b;,; are two coefficients depending on the OSWEC shape. It has to be noted
that Equations (6) and (7) cannot be used to calculate the PTO force by multiplying B PTO,hyd
with the WEC velocity. Nevertheless, it is a coefficient that takes into account the different
parameters of the hydraulic PTO system influencing the performance of the WEC, and
therefore, it can be included in the MILDwave-NEMOH coupled model to calculate the
radiated wave of a WEC farm with a hydraulic PTO. The hydraulic PTO system average
power output, Py, is calculated using the WEC-sim model used by [46] employing
Equations (8) and (9) for the HPA WEC and the OSWEC, respectively:

1 time
Prya = =1 A frro(t) - RAO(t)dt (8

1

time
Pg=—— t) - RAO(t)dt
hyd time/o Tpro(t) - RAO(H) )
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where time is the time frame for the power calculation, ¢ is the instantaneous time, fpro is
the PTO force of the HPA and tpro is the PTO torque of the OSWEC.

3. Results and Discussion

In Section 3.1, the resulting “far-field” effects of a WEC farm are studied in detail for
eighteen test cases using the sponge layer technique in MILDwave and the MILDwave-
NEMOH coupled model. This comparison assesses the accuracy of both numerical ap-
proaches in terms of WEC hydrodynamic interactions. For the comparisons of the present
study, the MILDwave-NEMOH coupled model is used as a benchmark, as it has been fully
validated both numerically and experimentally in previous studies. Based on the results
from Section 3.1, Section 3.2 presents a study of the the “far-field” effects of a WEC farm
using three different PTO systems in the MILDwave-NEMOH coupled model.

3.1. Comparison between the Sponge Layer Technique in MILDwave and the MILDwave-NEMOH
Coupled Model

3.1.1. Single WEC

The accuracy between the two numerical approaches when modelling a single WEC
is assessed by comparing the results from the MILDwave-NEMOH coupled model and
the results from applying the sponge layer technique in MILDwave. A mesh convergence
analysis was performed in NEMOH for the two WEC types. As seen in Figure 2A,B, con-
vergent results for the hydrodynamic damping, Bj,,4, were obtained for 400 and 800 panels
for the HPA WEC and OSWEC, respectively. Then, the total wave field around each single
WEC type in NEMOH using a sub-optimal PTO, Bprp 4,5, in an area of 800 x 800 m was
obtained. This total wave field was used as the representation of the “near-field” effects of
the wave-structure interaction problem for tuning the MILDwave absorption coefficients
for each set of wave conditions. The HPA WEC in MILDwave i represented by a group of
grid cells forming an Ny =5 X Ny =5 grid cell configuration, as indicated in Figure 3A,
while the OSWEC is represented by a group of grid cells forming an Ny =2 x Ny =5 grid
cell configuration as indicated in Figure 3B. A grid cell size of dx = dy = 4.8 m was chosen
for all simulations.

A sensitivity analysis for the wave absorption coefficients of the grid cells representing
the WECs was performed in MILDwave until a convergent solution for the K; results
between MILDwave and the MILDwave-NEMOH coupled model was obtained in the
studied area. Figures 4 and 5 show the K; results through the centre of the numerical
domain at x = 0 m (a plan view of the x-y axis is included in Figure 6) for a single HPA
WEC and a single OSWEC interacting with regular waves with H =2.0mand T = 8.0s,
respectively. It can be seen that the K; difference is quite high close to the WEC; however,
this difference reduces drastically in the lee of the WEC after 100 m and especially after
400 m. Therefore, it is possible to obtain a good representation of the “far-field effects” at
the lee of a single HPA WEC and OSWEC using the sponge layer technique. As indicated
in Table 1, the K, 4;irs% difference after 100 m for all test cases in MILDwave and the
MILDwave-NEMOH coupled model never exceeds 3%. Furthermore, this difference
becomes smaller when the ratio between the effective length of the WECs and the wave
length decreases, as the interaction between the objects and the waves is reduced. Therefore,
the parametrization in MILDwave obtained for a single WEC will be used in the following
section to model a WEC farm using the sponge layer technique. The same wave absorption
coefficient for each of the WECs of the farm will be employed.
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Figure 2. Mesh convergence study for (A) the HPA WEC and (B) the OSWEC for different panel discretizations.
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Figure 3. Detail from the sponge layer technique employed in MILDwave to mimic the behaviour of
the WEC. In Subplot (A), the HPA WEC is represented by an Ny =5 x Ny =5 cell grid configuration.
In Subplot (B), the OSWEC is represented by an Ny =2 x Ny =5 grid cell configuration. Black cells
indicate fully reflective cells, while the red cells are assigned a specific wave absorption coefficient.
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Figure 4. Kd disturbance coefficient results for the MILDwave-NEMOH coupled model and the MILDwave sponge layer
technique along one longitudinal cross-section at the centre of the domain for a single HPA WEC interacting with regular
waves of H=2m and T = 8 s. The coupling region is filled in grey colour and includes the WEC’s cross-section indicated by

a black vertical area. Incident waves are generated from the left to the right.
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Figure 5. Kd disturbance coefficient results for the MILDwave-NEMOH coupled model and the MILDwave sponge layer

technique along one longitudinal cross-section at the centre of the domain for a single OSWEC interacting with regular

waves of H=2m and T = 8 s. The coupling region is filled in grey colour and includes the WEC’s cross-section indicated by

a black vertical area. Incident waves are generated from the left to the right.

Table 1. K 4if¢ (%) at x = 0 m for three different distances in the lee of the WEC (y = 100, 200 and 400

m).
K airs

T(s) 8.0 10.0 12.0
1 HPA WEC
x =100 m 1.96 1.02 —0.10
x =200 m 1.79 0.88 —0.09
x =400 m 1.52 0.77 —0.05
1 OSWEC
x =100 m 2.58 1.08 1.30
x =200 m 1.93 1.02 0.92
x =400 m 1.33 0.92 0.62

3.1.2. WEC Farm

The “far-field” effects of two different WEC farms of 21 HPA WECs and OSWECs
respectively are studied in this section using the MILDwave-NEMOH coupled model and
the sponge layer technique in MILDwave. Figure 6A shows the K; for the MILDwave-
NEMOH coupled model for a WEC farm of 21 HPA interacting with a regular wave with
H=20m,T =8.0sand 6 =0 °. It can be seen that the wave height is reduced in the
direct lee of the WEC farm by up to 20% at a distance of 1000 m (location of S1). At 3000 m
from the WEC farm (at S2), the wave field is still affected with a significant wave height
reduction of 18%. Nevertheless, after 5000 m (at S3), this wave height reduction is limited
to 5% due to the effect of wave diffraction around the WECs and the damping of radiation.
Results from the same wave, but with two different wave directions, 6 = 15° and 6 = 30°,
are shown in Figure 6B,C, respectively. It can be observed that the wave height reduction in
the lee of the HPA WEC farm is quantitatively similar for the three cases, with a variation
of the “far field” effects’ alignment matching the incident wave direction.

Figure 7 shows Kj; results at three transversal cross-sections (indicated in Figure 6) at
y = 1000 m (S1), at y = 3000 m (S2) and at y = 5000 m (S3), for the MILDwave-NEMOH
coupled model and the sponge layer technique, respectively, for a WEC farm of 21 HPA
interacting with a regular wave with H = 2.0 m and T = 8.0 s. It can be noticed that both
modelling approaches have the same behaviour in terms of wave height reduction in the
direct lee of the WEC farm and with regard to the wave attenuation with the separating
distance of the WECs in the WEC farm. Nevertheless, the order of the magnitude of this
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wave height reduction is higher when the sponge layer technique is applied. At a distance
of 1000 m in the lee of the WEC farm, the wave height reduction reaches 30%. This wave
height reduction goes down faster than in the MILDwave-NEMOH coupled model at a
distance of 3000 m, reaching a 22% reduction of the wave height. However, at a distance of
5000 m, this reduction still remains at 17%.
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Figure 6. K; disturbance coefficient results for a 21 HPA WEC farm interacting with regular wavesof H =2.0m, T = 8s
and (A) 6 = 0°, (B) 15° and (C) 30° in the MILDwave-NEMOH coupled model. S1, S2 and S3 indicate the locations of the
cross-sections. Contour levels are set at an interval of 0.05 for the K; value. The water depth is 30 m. Waves are generated
along the bottom boundary.
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Figure 7. K; disturbance coefficient results along three transversal cross-sections S1, S2 and S3 as indicated in Figures 6, for
a 21 HPA farm interacting with regular waves of H =2.0mand T = 8sand 6 = 0°, 15° and 30°, respectively.

The results of the eighteen test cases are summarized in Table 2. It can be observed
that for all the test cases corresponding to the 21 HPA WEC farm, there is on average a
15% difference in K; at a distance of y = 5000 m in the lee of the WEC farm; while for
the 21 OSWEC farm, this average difference in K is reduced to 7%. This shows that the
sponge layer technique is overestimating the “wake-effects” in the lee of the WEC farm.
The sponge layer technique is based on absorbing energy from the incident waves over
the entire water column, neglecting radiation effects. For the case of a single WEC, it is
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able to mimic the K in the lee of the WEC as few absorbing cells are used to model a WEC.
When increasing the number of WECs, radiation effects reduce exponentially with the
distance to the WEC location and are almost not noticeable after 5000 m, as can be seen in
the MILDwave-NEMOH coupled model. However, the effect of the absorbing cells in the
MILDwave model is more persistent over distance when a high number of cells are used in
a closely spaced manner to replicate a WEC farm.

Table 2. Ky 4if (7o) at x = 0 m for three different transversal cross-sections S1, 52 and S3 as indicated in Figure 6 for a 21
HPA WEC farm and a 21 OSWEC farm interacting with regular waves of H = 2.0 m.

Ka,max,aiff(%)
Wave Period T =8s Wave Period T=10s Wave Period T=12s

21HPAWECfarm 6 =0° 6=15° 6=30° 60=0° 0 =15° 0=30° 6=0° 6=15° 6=30°

S1 20.62 18.85 22.87 18.95 17.50 20.63 18.05 16.22 20.20

S2 9.85 9.74 11.15 9.05 8.79 10.33 8.73 8.75 9.74

S3 14.60 14.73 16.53 13.36 13.36 15.15 12.55 12.88 14.31
21 OSWEC farm 6 =0° 6=15° 6=30° 6=0° 0 =15° 0=30° 6=0° 6=15° 6=30°

S1 36.02 34.63 9.57 12.67 14.18 10.93 6.84 6.97 6.15

S2 15.87 16.03 9.36 9.52 13.65 8.83 6.11 7.32 8.16

S3 7.36 4.60 5.55 11.27 6.91 6.93 8.78 8.67 7.06

3.2. PTO Modelling Techniques in the MILDwave-NEMOH Coupled Model
3.2.1. Power Production

As an intermediate step to study the “far-field” effects of the 21 HPA and 21 OSWEC
farms, it is necessary to study the average power output of the two farms considered. The
total power output is directly connected with the motions of the WEC’s floating bodies
and therefore with the radiated and diffracted wave fields propagated in the lee of the
WEC farm. The average power output for a single WEC, P;,¢/, of each type using a linear
PTO, was obtained using Equation (5), while for the hydraulic PTO, Equations (8) and (9)
were used. The results for the average power output using the three PTO systems and the
test cases indicated in Section 2 for a single WEC, the 21 WEC farm and the g factor are
included in Tables 3 and 4 for the HPA and OSWEC, respectively. The g factor is defined as
the ratio of the power of the N-WEC farm, Py, to the power produced by the sum of N
WECs as if they were operating in isolation:

P farm

I N - Psingle (10)

For a single WEC, it can be seen that there is a notable difference in the power
output of the linear optimal PTO system compared to the sub-optimal and hydraulic PTOs,
especially when the wave period is increased. In the optimal PTO system, the phase of the
excitation force matches the velocity of the body, resulting in a much higher power output
than the other two PTO systems. As can be seen in Figure 8, for an incident wave angle
perpendicular to the WEC farm (6 = 0°), the linear optimal PTO shows on average more
than a 50% improvement in the power performance. Nonetheless, it has to be noted that
for such a simplified linear optimal PTO system with no external elements damping the
motion of the body, the methodology used may be making unrealistic assumptions about
the motion of the body, resulting in an increased average power output, which can have a
direct impact on the wave field simulations. Figure 8 also shows an average power output
increase of 10% for the hydraulic PTO with respect to the sub-optimal PTO. As indicated
by [46], the hydraulic PTO system damps the motion of the WEC, matching the phase of
the incoming waves, resulting in a higher power output than the sub-optimal linear WEC.



Water 2021, 13, 429

13 of 20

Additionally, it can be observed that for most of the cases, the OSWEC is more efficient
in absorbing the wave power than the HPA WEC, giving a higher power absorption for a
single WEC.

Table 3. Average power output for a farm of 21 HPA WECs for a linear optimal, a linear sub-optimal and a hydraulic

PTO system.
Wave Di- Wave Optimal PTO Sub-Optimal PTO Hydraulic PTO
rection 0 Height H Wave Period T (s) Wave Period T (s) Wave Period T (s)
©) (m) 8 10 12 8 10 12 8 10 12
FARM 2.0 812.60 1151.6 1669.74 300.46 268.49 280.66 364.0 42630 402.40
0 Single 2.0 559.26 1068.35 1645.31 253.51 277.72 27959 311.36 364.59 344.15
q 2.0 1.45 1.07 1.01 1.18 0.96 1.0 1.16 0.96 1.00
FARM 2.0 738.94 1126.8 1679.82 282.80 266.67 281.52 343.77 40254 379.98
15 Single 2.0 559.26 1068.35 1645.31 254.35 277.72 279.59 311.36 36459 344.15
q 2.0 1.32 1.05 1.02 1.11 0.96 1.00 1.10 0.96 1.0
FARM 2.0 430.17 1090.1 1732.09 200.30 265.38 284.31 248.03 290.43 274.15
30 Single 2.0 559.26 1068.3 1645.31 254.35 277.72 27959 31136 364.59 344.15
q 2.0 0.76 1.02 1.05 0.78 0.95 1.01 0.79 0.95 1.01

Table 4. Average power output for a farm of 21 OSWECs for a linear optimal, a linear sub-optimal and a hydraulic

PTO systems.
Wave Di- Wave Optimal PTO Sub-Optimal PTO Hydraulic PTO
rection 0 Height H Wave Period T (s) Wave Period T (s) Wave Period T (s)
) (m) 8 10 12 8 10 12 8 10 12
FARM 2.0 91096 1083.01 1287.63 518.28 387.87 32541 584.65 57821 559.60
0 Single 2.0 854.38 1222.89 1583.03 506.08 47238 42442 571.70 565.40 547.20
q 2.0 1.06 1.26 1.50 1.020 0.82 0.76 1.02 1.03 1.02
FARM 2.0 900.11 988.85 1264.41 460.84 35440 311.50 459.56 354.40 311.68
15 Single 2.0 786.02 113149 1468.8 46559 437.08 393.79 465.04 437.08 389.29
q 2.0 1.14 1.25 1.6 0.98 0.81 0.79 0.98 0.81 0.8
FARM 2.0 50245 862.12 1181.14 34297 283.37 275.02 343.10 288.57 272.74
30 Single 2.0 607.91 88898 1162.84 360.09 34340 311.76 359.66 344.7 308.20
q 2.0 0.82 141 1.94 0.95 0.82 0.88 0.95 0.83 0.88

For the WEC farm case, an increased power production is observed for the OSWEC
farm except for the linear optimal PTO of the HPA WEC farms with wave periods T = 8 s
and T = 12 s. The HPA and OSWEC farms produce less power with an increasing wave
period. This is directly shown in the decreasing g values of the HPA WEC and OSWEC
farms, which indicate that this specific configuration of the WEC farms is disadvantageous,
even though the total power average for the OSWEC farm is increased with respect to the
HPA WEC farm. Finally, it can be seen from the g factor that the incident wave angle, 6, has
a direct impact on decreasing the performance of both WEC farms with reduced g values
for all the PTO systems studied and consequently a reduced average power output. This
reduction is more significant for the OSWECs, where the incident angle has a higher impact
on reducing the motion of the body. Additionally, the OSWEC is placed in shallow water
and occupies the entire water column, creating a shadowing effect due to wave diffraction
and wave reflection in the WEC farm that are more significant than the shadowing effect
created by the HPAs WEC farm.
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Figure 8. Bar charts showing the average power output for (A) a 21 HPA WEC farm (left) and (B) a 21 OSWEC farm (right)
with a linear optimal PTO (blue, first bar), a linear sub-optimal PTO (red, second) and a hydraulic PTO (green, third bar).

The percentage difference between the linear optimal PTO and the linear sub-optimal and hydraulic PTOs, respectively, is

shown at the top of the bars.

3.2.2. “Far-Field” Effects

In this section, the “far-field” effects for a farm of 21 HPAs WECs and a farm of
21 OSWECs with different ways of simulating the PTO system are quantified using the
disturbance coefficient, K;, and the average power production of the WEC farm discussed
in Section 3.2.1. Using the MILDwave-NEMOH coupled model for the test cases indi-
cated in Section 2, the total wave field around the two different WEC farms is obtained.
The minimum K; values (indicating the maximum wave height reduction) at a distance
of y =1000 m (S1), y = 3000 m (S2) and y = 5000 m (S3) in the lee of the WEC farm is
quantified and summarized in Tables 5 and 6, for the HPA WEC farm and the OSWEC
farm, respectively.

Looking at the two WEC farms studied, it can be determined that the “far-field” effects
are much stronger for the 21 OSWEC farm case than for the 21 HPA WEC farm case.
In comparing Tables 5 and 6, it can be seen that the K; values are much lower for the
OSWEC farm, especially at a distance of y = 1000 m (S1) in the lee of the WEC farm. The
difference in the K; magnitude so close to the WEC farm is due to the difference in the
behaviour of the two WEC types and their impact on the “near-field”. As previously
mentioned in Section 3.2.1, the OSWEC is operating in shallow water and occupies the
entire water column, presenting a bigger obstacle to the incoming waves, resulting in a
higher diffraction than the HPAs. Additionally, the OSWEC generates a significant radiated
field. The influence of both phenomena on the “near-field” was studied by [46], indicating
that for the OSWEC, the areas of increased and reduced wave height close to the OSWECs
can be up to 50% larger than those of the HPA WECs, and at a distance of y = 1000 m (S1)
from the WEC farms, this effect is still persistent. When moving further down wave in the
lee of the WEC farm at distances of y = 3000 m (S2) and y = 5000 m (S3), a difference in the
K, values also exists, but they are significantly reduced in most of the test cases. The K,
values for both WEC types are over 0.9 in magnitude, indicating less than a 10% reduction
in wave height. When the distance to the WEC farm starts to be significant, the wave
radiation effects due to the WEC are significantly diminished. This factor in combination
with the constructive effect of wave diffraction contributes to the observation that in the
“far-field”, both types of WEC farms have a similar impact on the wave height reduction.
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Table 5. K; disturbance coefficient for a farm of 21 HPA WEC:s for a linear optimal, a linear sub-optimal and a hydraulic
PTO systems, at a distance of y = 1000 m (S1), y = 3000 m (S2) and y = 5000 m (S3) in the lee of the WEC farm, respectively.

Optimal PTO Sub-Optimal PTO  Hydraulic PTO
Wave Direction Distance from Wave Height H - - -
0 (°) the WEC Farm  (m) Wave Period T (s) Wave Period T (s) Wave Period T (s)
8 10 12 8 10 12 8 10 12
y = 1000 m 2.0 0.17 032 025 082 085 08 08 084 086
0 y =2000 m 2.0 051 051 037 081 08 091 082 0.88 091
y = 5000 m 2.0 084 05 047 094 092 093 095 091 093
y = 1000 m 2.0 021 021 024 079 08 087 079 0.84 0.87
15 y = 3000 m 2.0 053 045 037 081 089 091 082 0.88 091
y = 5000 m 2.0 086 053 047 095 092 093 096 091 093
y = 1000 m 2.0 039 010 0.11 082 08 08 082 0.84 0.87
30 y = 3000 m 2.0 063 042 034 08 09 091 086 0.89 092
y = 5000 m 2.0 094 053 045 099 092 093 099 092 094

Table 6. K; disturbance coefficient for a farm of 21 OSWECs for a linear optimal, a linear sub-optimal and a hydraulic PTO
systems, at a distance of y = 1000 m (S1), y = 3000 m (S2) and y = 5000 m (S3) in the lee of the WEC farm, respectively.

Optimal PTO Sub-Optimal PTO  Hydraulic PTO
Wave Direction Distance from Wave Height H - - -
0 (°) the WEC Farm  (m) Wave Period T (s) Wave Period T (s) Wave Period T (s)
8 10 12 8 10 12 8 10 12
y = 1000 m 2.0 022 020 024 068 078 08 069 0.78 0.85
0 y =2000 m 2.0 028 035 025 080 089 091 080 0.89 091
y = 5000 m 2.0 074 044 037 090 088 091 090 0.89 091
y = 1000 m 2.0 042 048 011 065 086 086 066 0.81 0.86
15 y = 3000 m 2.0 036 057 025 079 087 091 079 090 091
y = 5000 m 2.0 078 084 037 091 09 091 091 090 091
y =1000 m 2.0 039 016 005 074 079 09 074 0.79 0.89
30 y = 3000 m 2.0 0.63 035 030 086 087 091 086 0.88 091
y = 5000 m 2.0 091 063 045 096 091 091 096 091 0.92

To closely examine the effect of the PTO system in the “far-field”, two bar charts are
presented (Figures 9 and 10) showing the K; values for the three modelled PTO systems,
for H=2.0m, T =8.0s,0 = 0°,15°,30° at three different locations in the lee of the WEC
farms (y = 1000 m, y = 3000 m and y = 5000 m). It can be observed that the optimal linear
PTO gives consistently a much lower K; for both the OSWEC farm and HPA WEC farm
than that given by the sub-optimal and hydraulic PTOs. The Kd values for all PTO systems
are increased when the incident wave angle, 0 increases from 0° to 30°. However, when
increasing the wave period, T, a different trend can be observed in Tables 5 and 6. For the
sub-optimal and hydraulic PTO system, the K; values increase by increasing the wave
period, while for the optimal PTO system, there is a reduction. This anomaly in the K
results for the optimal PTO representation with T = 10 s and T = 12 s can be explained in
conjunction with the power output obtained in Section 3.2.1. Due to the approach used to
obtain the motions of the WECs for the optimal PTO system, the average power output
obtained in Section 3.2.1 indicates an overestimation of the WEC motions for both the HPA
WEC and the OSWEC, especially for the higher periods. Consequently, this has an impact
on the wave field transferred to the MILDwave-NEMOH coupled model with K; values
at y = 1000 m in the lee of the WEC farms lower than 0.1 in magnitude. Despite a low K,
magnitude close to the WEC farm, the K; at a distance of y = 5000 m (S3) has an overall
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increase of 0.4 K; in magnitude for the optimal PTO system. This result indicates that in

the “far-field”, the damping of the wave radiation effect is playing a major role.
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Figure 9. Bar chart showing the minimum K disturbance coefficient for a 21 HPA farm with a linear optimal PTO (blue,
first bar), a linear sub-optimal PTO (red, second bar) and a hydraulic PTO (green, third bar), interacting with regular waves
of H=20m,T =80wand 0 =0° 15° and 30°, respectively. The minimum Kj; is obtained along the three transversal
cross-sections S1 (y = 1000 m), S2 (y = 3000 m) and S3 (y = 5000 m), as indicated in Figure 6.
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Figure 10. Bar chart showing the minimum Kj; disturbance coefficient for a 21 OSWEC farm with a linear optimal PTO
(blue, first bar), a linear sub-optimal PTO (red, second bar) and a hydraulic PTO (green, third bar), interacting with regular
waves of H=2.0m, T = 8.0sand 0 =0°, 15° and 30°, respectively. The minimum K} is obtained along the three transversal
cross-sections S1 (y = 1000 m), S2 (y = 3000 m) and S3 (y = 5000 m), as indicated in Figure 6.

3.2.3. Effect of the PTO System in the “Far-Field”

In this section, the interplay between the three PTO systems, the average power
output and the “far-field” effects of the WEC farms is studied. Primarily, the linear optimal
PTO system impact at a distance of y = 1000 m (S1) in the lee of the WEC farm is much
higher than for the linear sub-optimal and hydraulic PTOs. This is aligned with a higher
average power output, as seen in Figure 8, especially for the cases of T = 10sand T = 12s.
Contrary to the optimal PTO system, the sub-optimal and hydraulic PTO systems have very
similar K; values at y = 1000 m (S1) for all the test cases, with a very different behaviour in
the power output. For both PTO system:s, it can be observed that K is increased with an
increase of both the wave period and the incident wave angle. This matches a reduction of
the average power output of the WEC farms, as seen in Tables 3 and 4. Yet, the K; values
for both the sub-optimal and hydraulic PTO are very similar. As shown in Figure 8, the
hydraulic PTO system consistently gives on average a 10% greater power output than the
sub-optimal PTO system for both the HPA and OSWEC farms. At larger distances from
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the WEC farms (y = 3000 (S2) and y = 5000 m (S3)), the K; values are almost close to one,
indicating that for these two PTO systems, the WEC farm performance due to a change
in the PTO has no impact on the “far-field”. However, for the optimal PTO system, there
is a meaningful impact on the “far-field” with a K; magnitude around 0.4. Nevertheless,
this magnitude is increasing rapidly with the distance to the WEC farm, indicating that the
larger the distance to the WEC farm, the lower the WEC farm impact on the wave field is.

It is clear that there is a contrasting behaviour between the three PTO systems in
terms of wave energy production that is not evenly represented in the “far-field”. Such a
different behaviour is due to the hydrodynamics of the two WECs under the different PTO
systems. In the case of the optimal and sub-optimal PTO system, the PTO external damping
is included in the equation of motion. The optimal PTO system drastically increases the
body motion, changing the phase of the WEC and forcing it to resonate. With regard to the
hydraulic PTO as indicated by [46], the primary driver in the increase of the PTO average
power output is the increase in the PTO system force, which also has an impact on the WEC
motion. It has to be stressed that in the present study, a linear hydrodynamic model is used
for simulating the WEC farms under the action of regular waves. It has been shown in
previous research from the authors that this assumption tends to overestimate the “far-field”
effects, motions and power output of the WEC farm. The motions of the WECs under an
irregular waves scenario will be reduced considerably, as well as the effectiveness of the
PTO system. Therefore, the differences in the “far-field” effects for different PTO systems
will be even smaller. This indicates that, for calculating the average power output of a
WEC farm, it is important to correctly model the PTO system. Due to the small differences
in WEC motions and the rapid decrease of the wave radiation effect with the distance
to the WEC farm, a less complex PTO approach can be considered when calculating the
“far-field” effects.

4. Conclusions

In this research, the difference in accuracy when calculating the “far-field” effects of
different WEC farms under regular waves for a parameterized model and a numerically
coupled model was studied. The MILDwave sponge layer technique and the MILDwave-
NEMOH coupled model were compared in terms of wave height reduction in the lee of the
WEC array. Based on this comparison, the effect of the PTO system in the “far-field” was
demonstrated for three types of PTO systems, namely a linear optimal, a linear sub-optimal
and a hydraulic PTO; calculating both the average power production of the farm and the
K, in the “far-field”.

Firstly, when comparing the sponge layer technique and the MILDwave-NEMOH
coupled model, it was shown that the sponge layer technique gives reduced values of
K, for all test cases compared to those resulting from the coupled model. At a large
distance to the WEC farm (y = 5000 m (S3)), the difference in K; remains 15% for the HPA
farm and is reduced to 7% for the OSWEC farm. The sponge layer technique performs
better when mimicking the behaviour of an OSWEC, as OSWECs occupy the whole water
column; however, it considerably overestimates the wave height reduction in the lee of
the WEC farm. Therefore, the use of a coupled model where the body hydrodynamics are
simulated is preferred. Secondly, it was demonstrated that when using a coupled model,
it is necessary to carefully model the motions of the WEC to not overestimate the “far-
field” effects. It is observed that for an optimal linear PTO system, where unrealistic WEC
motions are present, K is highly reduced at a large distance to the WEC farm (y = 5000 m
(53)). However, for the sub-optimal and hydraulic PTO, where the motions of the WEC
are still within the assumptions of small amplitude WEC motions of the linear numerical
models used, K at a distance of y = 5000 m (S3) is close to one and remains in the same
order of magnitude for both PTO systems in all the test cases. Thirdly, it is shown that an
increase in the average power output moving from a linear sub-optimal PTO to a hydraulic
PTO does not have an impact on the “far-field”. Consequently, if optimizing the power
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output is not the main target of an WEC farm study, modelling the PTO effect by using a
linear sub-optimal PTO system is sufficient to study WEC farm “far-field” effects.

It can be concluded that in order to avoid overestimating the “far-field” effects of WEC
farms, it is more accurate to use a coupled model numerical approach. This is because
the difference in the assessed impact on the surrounding wave field can be substantial,
especially for a WEC farm with a large number of WECs. Nonetheless, when using coupled
models, it is necessary to carefully model the hydrodynamics of the WEC. As demonstrated
in this research, an incorrect modelling of the PTO system can, e.g., result in overestimating
the WECs’ motion within the farm, which can introduce substantial inaccuracies into the
wave field calculation.
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Abbreviations

The following abbreviations are used in this manuscript:

TRL technology readiness level

WEC wave energy converter

SPH smoothed particle hydrodynamics
BEM boundary element method

CFD computer fluid dynamics

DoF degree of freedom

PTO power take-off

RAO response amplitude operator
HPA heaving point absorber

OSWEC  oscillating wave surge wave energy converter
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