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In May 1992 an experiment was carried out on North Cape Bank in the Barents Sea in order 

to answer the following questions: 

1) Does seismic shooting with air guns affect catch and catch-availability of cod and 

haddock? . 

2) How far away from the seismic shooting area can possible effects be demonstrated? 

3) How long after the conclusion of seismic shooting can possible effects be 

demonstrated? 

This was done by means of fishing trials with trawl and longline and acoustic rnapping of the 

fish distribution before, during and after the seismic shooting. 

The fishing trials were conducted with a trawler and with an autoline vessel within an area 

of 40 x 40 nautical miles before (7 days), during (5 days) and after (5 days) seismic shooting. 

Both vessels used commercial fishing gear. In total, 62, 67 and 60 trawl hauls were made 

respectively before, during and after the seismic shooting. The trawl hauls were distributed 

over four distances from the seismic shooting area: 1) within the shooting area, .- 2) 1-3 nautical 

miles from the shooting area, 3) 7-9 nautical miles from the shooting area, and 4) 16-18 

nautical miles from the shooting area. Longline fleets were placed at four comsponding 

positions in relation to the shooting area. In total 56, 40 and 35 longline fleets were hauled 

respectively before, during and after the seismic shooting. 

Within the same area and time period, the fish distribution was mapped and abundance 

estimated by another trawler. The acoustic mapping was executed by crisscrossing. the 

shooting area along transects out to 20 nautical miles. In addition, detailed mapping within 

the shooting area was carried out before and during the seismic shooting. Sarnples of the 

acoustically registered fish were taken with a standard sampling trawl. 

The seismic air-gun shooting (5 days) was performed within an area of 3 x 10 nautical d e s  

in the center of the area where the fishing trials were performed. The rigging of the air-gun 

array and the practical execution of the shooting was performed in accordance with the same 

guidelines that are followed in an ordinary three-dimensional survey for the oil industry. 



The acoustic mapping and catchhg trials with trawl and longhe on North Cape Bank show 

that the seismic shooting with air guns affects the fish distribution and catch rates for cod and 

haddock, not only locally within the area where the shooting is carried out, but also in 

significant surrounding areas. 

The catches by trawl and longline consisted principally of cod and haddock, with cod as the 

dominant species. The trawl catch rates both for cod and haddock declined over the entire 

investigation area, even to the border, 18 nautical miles from the shooting area. On average 

for the whole area, the catch rate was halved when the shooting began. The reduction was 

greatest in the center, that is, in the seismic shooting area. Here the average catch for both 

species was reduced by about 70% during the shooting. The reduction in the trawl catches 

generally agreed with the acoustic observations, which showed a reduction of about 45% in 

the total quantity of cod and haddock within the investigation area. The reduction in acoustic 

quantity was also greatest in the central area. 

The reduction in catch rates of cod by longline were lower than by trawl. The decrease was 

44% in the seismic shooting area, with a gradually declining infiuence on the catches toward 

the border of the investigation area. For the longline fleets set furthest away from the 

shooting area (16-18 nautical miles), no decline in catch rates for cod-was observed. For 

haddock the weight reduction per longline hau1 was about 50% over the entire investigation 

area. 

In both the trawl and longline catches and in the acoustic abundance estimates a relatively 

greater reduction was found in large (%O cm) than in small (c60 cm) fish. However, the 

number of smaU fish was reduced with a single exception: the quantity of small cod inc~eased 

in the longline catches during the shooting. 

Neither the acoustic mapping nor the trawl trials showed that the quantity of cod and haddock 

increased during the five days after the end of the seisrnic shooting. A change in the length 

distribution of f ~ h  by trawling toward the condition before shooting was observed. 

Longlining showed an increase in cod catches a? the end of the triai period, but not in 

haddock catches. 



l. INTRODUCTION 

Since the early 1960's seismic shooting with air guns has been employed on the Norwegian 

continental shelf in order to map oil and gas resources in the ocean bottom. The extent of 

this activity has been greatly increasing. For example, about 40,000 linear kilometers were 

"shot" in 1974. In 1991 the number reached 329,000 (Anon. 1991). In 1992 the activity was 

expected to equal that in the preceding year. Not only has the effort on the traditional search 

areas in the North Sea increased, but the search area has been considerably expanded 

inasmuch as the areas north of N 62' are now becorning potential areas for oil exploitation. 

As the search areas expand, the searching intensity increases, and more and more of the most 

important fishing grounds are being subjected to seismic shooting, often conflicting with the 

fishery. 

In fishing circles it has been claimed for many years that the catch rate declines when a 

seismic vessel arrives at a fishing ground and begins to shoot, presumably because the noise 

from the air guns scare the fish away. There is, however, little documentation on how 

seismic shooting affects fish behavior and catch-availability. Acoustic mapping and catching 

trials in the North Sea indicated that the fish distribution changes under the influence of 

seismic shooting (Dalen & Raknes 1985). There was, however, an insufficient quantity of 

fish in the investigated area in order to be able to draw completely safe conclusions on the 

scaring effect on fish. Trials off the coast of California showed that the longline catch rate 

for various redfish species was reduced by one-half under the influence of a single air gun 

(Skalski et al. 1992). Investigations of the collected catch data from longliners and trawlers 

before, during and after seismic shooting in Norwegian waters showed that the catches of cod 

by longline and as a secondary catch in shrimp trawls was reduced under seismic shooting 

(Løkkeborg & Soldal 1993). The collected catch data suffered, however, from rather large 

deficiencies. It was among other things difficult to evaluate how far away from a seismic 

vessel a possible scaring effect acts, and how much time it would take for the catches to 

normalize after the shooting was completed. It was therefore concluded that a controlled, 



full-scale field experiment was necessary in order to be able to document the effects of 

seismic shooting in convincing manner. 

In 1990 the Fish Capture Division at the Institute of Marine Research (which at that time was 

part of Fisheries Research Inc.) applied to the Norwegian Fisheries Research Council (NFFR) 

for funding to conduct a field experiment in order to map the effect of noise from air guns 

on the catch availability of fish. The appropriated sum for 1991 (made available to NFFR 

by the National Society for the Oil Industry, Oil and Energy Department, and Oil Directorate) 

was however insufficient to conduct a professionally defensible full-scale field trial. The 

effort in 199 1, therefore, was alternatively placed in collecting catch data from fishing vessels 

that had fished in areas where seismic shooting was undenvay at the same time. The aim was 

to document possible effects on catch rates in ordinary fisheries. Such knowledge would als0 

be valuable for planning a future full-scale trial. 

New funds were appropriated for 1992 by NFFR (made available from the same organizations 

as mentioned above), which covered salary and operating expenses for the planned field 

experiments, as well as hiring a seismic vessel and a vessel for acoustic mapping of fish. 

In addition, the Fisheries Director granted the project a research fishing quota for cod and 

secondary catch which made it possible to hire two cornrnercial fishing vessels for the 

catching trials. The Institute of Marine Research also made a significant contribution of its 

own resources. In May 1992 the field trials were carried out on North Cape Bank off the 

Finnmark coast. 

The field trials were designed to answer the following questions: 

1 )  Does seismic shooting affect catch and catch availability of cod and haddock? 

2 )  How far from the seismic shooting area can possible effects be demonstrated? 

3) How long after seismic shooting can possible effects be demonstrated? 



2. FISH HEARING IN RELATION TO SOUND FROM AIR GUNS 

Fish hear and react to sound and also make use of sound to cornmunicate (Tavolga et al. 

1981). It has been experimentally demonstrated that fish are sensitive both to pressure and 

to particle motion in a sound signal, and that it thereby can sense both sound strength and 

direction (Hawkins 1981). Here an evaluation is performed to determine how well fish can 

sense sound from seisrnic sources and how it rnight react to such sound, based on the 

available literature. This chapter does not include results from the new investigation and can 

therefore be read as an independent section. 

What is critical for a fish to sense a sound signal is primarily signal strength and frequency, 

but also signal duration and natural background noise. Because sound intensity decreases with 

distance because of geometrical spreading and absorption, the distance between sound source 

and fish will have great importance for the sensing of sound. Physical conditions in the sea, 

such as thermocline formation and bottom topography can influence transmission loss, and 

thereby also how far away the sound can be heard. 

Pressure variation in a sound pulse will be registered most easily by the swimbladder, which 

acts as an amplifier, or resonance cavity, for the inner ear. Sound direction can be determined 

by means of the relative movement of the otoliths (Popper & Platt 1983; Saidel & Popper 

1983), because the inertia in these is greater than that of fish flesh otherwise when sound 

propagates through the fish. Fish can als0 determine direction to a sound source by means of 

phase differences at the coordinate otolith pair. 

Sensitivity to single frequencies and bandwidth, or the width of the frequency spectrum, 

varies with fish species, but the optimal region for most species is between infrasound, less 

than 20 Hz (Sand & Karlsen 1986), and 700 Hz (Platt & Popper 1981; Buerkle 1968; 

Chapman & Hawkins 1973; Offut 1974). A few species possess good hearing up to 2000 Hz 

(Hawkins 1981). Fish without a swimbladder, such as mackerel, flatfish and a number of 



bottom-dwelling species, have poorer hearing than species with a well-developed swimbladder 

(Hawkins 198 1). 

Cod and herring have a well-developed swimbladder and good hearing (Hawkins 198 1). It has 

earlier been established that the sensitivity of cod is best in the frequency band 60-310 Hz 

(Chapman & Hawkins 1973), with maximal sensitivity at 160 Hz, where the hearing threshold 

is about 80 dB re 1 p a .  Sand & Karlsen (1986) showed later, however, that cod is also 

sensitive to infrasound. 

In case a sound signal is within the audible range, an increase in sound leve1 will increase the 

chance that the fish will sense the signal, but this is also influenced by the signal duration. 

The shorter the duration, the louder the signal must be in order that the fish be able to hear 

it (Hawkins 1981). For much shorter durations, Hawkins (1981) found that the detection 

threshold is 25 dB higher than for continuous sound. It is however doubtful that the pulse 

duration of an air-gun signal (20-40 ms) is short enough to influence the detection threshold. 

Fish such as cod and haddock cornmunicate with themselves by means of comparable pulse 

durations (20-200 ms) (Hawkins & Rasmussen 1978). 

Fish also react more strongly to pulsed sound than to a continuous sound signal (Blaxter et 

al. 1981), and a sound signal with rapid rise time acts.more alarming than a long rise time 

to the same signal leve1 (Schwarz 1985). Recently it was shown that low-frequency sound 

stimuli (5-10 Hz) are especially alanning to salmon, and that it is difficult for the fish to 

adapt to such low-frequency sound (Knudsen et al. 1992). 

That which ultimately determines how far away a fish can hear a given signal is the 

background noise in the sea. In calm weather the noise leve1 in the audible range of the 

spectrum is between 60 dB re 1 pPa/Hz and 90 dB re 1 pPa/Hz. For a fish to detect other 

sound than background, or ambient, noise, the signal must exceed the ambient noise by about 

20 dB, or be about 100 dB re 1 p P m z  when the threshold is expressed in terms of spectral 

level. 



In the light of this background on fish hearing capacity, it is possible to evaluate roughly how 

fish can sense the sound signal from seisrnic air guns, at what distance it can sense the sound 

over ambient noise, and how it will react. 

Malme et al. (1986) found that single air guns produce a frequency spectrum from 5 to 200 

Hz (-20 dB) and 5-150 Hz for arrays (constructed fields of air guns in fixed positions with 

the same or time-controlled firing times). At a lower level the air guns generate sound up to 

500 Hz. The sound pressure at single frequencies or over bands varies, while the maximum 

leve1 for most air guns is in the range 10-80 Hz. This indicates that with respect to frequency 

there is significant overlap between the sound produced by air guns and the general sensitivity 

range for marine fish hearing. 

In deep, open waters, such as where the investigation took place, the sound from air guns 

initially propagates freely, with approximately spherical spreading. The sound intensity 

decreases rapidly with distance from the sound source. For exarnple, the sound intensity 100 

m from an air gun is reduced to 1/10000 (-40 dB) in relation to the reference intensity, at 1 

m from the air gun. Physically this is described through the sonar equation in its simplest 

form: 

where I, is the received sound intensity at distance R; b is the transmitted intensity on the 

acoustic axis computed at the reference distance, 1 m; a is the absorption coefficient; and 

b($) is the directivity at the angle 8 from the acoustic axis. 

In logarithmic form, 

EL = SL - (20 logR + aR) + 10 logib (e)], 



where EL is the sound echo leve1 at distance r, SL is the source level, (20 logR + a R )  is the 

transmission loss TL over distance R, and 10 log b(8) is the directivity (in decibels). The 

sound level can therefore be estimated as a function of distance when SL, absorption and 

direction is known. 

The sound field from isolated air guns is approximately circular, or omnidirectional, which 

suggests that the sound propagates roughly equally in all directions, and computations show 

that even large arrays have low directivity, typically 60-70 degrees opening angle at the -10 

dB leve1 (Malme et al. 1986). This is determined by the total array dimensions, in both 

directions, in relation to the wavelength, the number and placement of air guns, and the firing 

times of the individual air guns in the array. It is reasonable for the present computations to 

assume that the intensity of horizontally transrnitted sound is about 10 dB lower than on the 

acoustic axis, that is, when 6 is greater than 45', b(8) is equated to 0.1. The next 

simplification is to neglect absorption at these low frequencies (a at 1000 Hz is 0.06 dB/km, 

and less under 1000 Hz). 

The model for computation of the sound leve1 as a function of distance when the source leve1 

is known is greatly simplified: 

In case a more precise estimate of sound leve1 is desired, the model must be expanded to 

include effects of bottom depth, bottom substrate and thermocline formation both vertically 

and horizontally. This has been done in part by Malme et al. (1986), but it is also clear that 

such a model cannot replace direct measurements. 

The source leve1 SL for single air guns and air gun anays has also been investigated and 

tabulated by Malme et al. (1986). They specify 212 dB re 1 pPa at 1 m as a typical value for 

single air guns and 250 dB re 1 pPa at 1 m for arrays. Greene (1985) reports a source leve1 

of 255 dB re 1 @a at 1 m for a 20-air-gun array used in his investigations. In every case here 



reference is made to the effective source level, computed directly from the peak pressure due 

to the source, measured on the acoustic axis: 

where PS is the peak-to-peak pressure referred to l m distance and PR is the reference 

pressure, 1 pPa. If PS is expressed in bars, this must be converted to micropascals (1 bar = 

10" ppa). 

For the present study the air-gun array has a typical source leve1 of about 250-13 dB re 1 pPa 

at 1 m. In terms of spectral level this corresponds to 210 dB re 1 pPa/Hz at 1 m. 

The fish ear integrates sound pressure over its entire frequency range of sensitivity, such that 

the total sound pressure sensed by the fish is roughly the same as the peak pressure in the 

air-gun signal. 

Since most of the material that covers ambient noise and vessel noise is given in terms of 

spectral level, comparisons and distance computations are made directly in terms of the 

maximum values from the various spectra. 

In case the ambient noise within the audible range of fish is 80 dB re 1 pPa/Hz and the 

effective detection threshold for signals from air guns is about 100 dB re 1 pPa/Hz, the fish 

will be able to hear an air-gun array over significant distances (Table 2.1, Fig. 2.1). An 

air-gun array with a source leve1 of 210 dB re 1 pPaJHz at l m will, for example, be heard 

by fish more than 100 km away. Here the directivity loss is included. 

Even if fish can hear sound, in the present context it is more important to estimate the limit 

at which fish will change their behavior because of sound from air guns. This may lie 

significantly over the detection limit. It is known from investigations of fish behavior in 

relation to vessei noise (Olsen et al. 1983; Ona 1988; Ona & God@ 1990; Engås et al. 1991) 



that fish react with avoidance when the source leve1 from machinery and propeller exceeds 

a certain level. Typical radiated noise levels from vessels in the audible range of fish is 

150-160 dB re 1 pPa/Hz at 1 m, and local avoidance of large cod is observed up to 100 m 

from vessels (Ona 1988), or at about 110-120 dB re 1 pPa/Hz. For such noise it appears that 

fish react when the level is increased by about 20 dB over the leve1 defined as the detection 

threshold, It is also known that the reaction threshold can depend on the time of year and fish 

condition. The reaction threshold for vessel noise agrees well with results from experimental 

exposure trials with air guns on redfish, where a behavior change was observed with a peak 

pressure of 150-167 dB re 1 @a (Skalski et al. 1992), corresponding to 1 10-127 dB re 1 pPa 

in spectral level. 

In case we use 120 dB re 1 @a/Hz as the expected reaction threshold, the reaction distance 

can be roughly estimated as a function of source leve1 (Table 2.1, Fig. 2.1). 

Table 2.1. Example of expected detection and reaction distance of fish as a function of the 
air-gun-array source level. Assumed transmission loss: 20 log R. 

Source leve1 Directivity 
(dB re 1 pPalHz at 1 m) (dB) 

Detection distance Reaction distance 
(100 dB re 1 pPa/Hz) (1 20dB re 1 pPa/Hz) 

(km) (km) 

It is stressed that the estimates are based on the available literature on fish hearing together 

with a simple propagation model, and that the numbers should not be confused with the 

expected effect on catch. What emerges clearly from the table and figure is that (1) fish can 

hear air-gun sound at considerable distances, 30-300 km, and (2) fish are expected to react, 

with behavior change, over large distances, roughly 3-30 km, both limits dependent on the 

source leve1 of the air gun and the fish reaction threshold. The size of the investigation area, 

40 x 40 nautical miles, is chosen based on these expectations, as weli as experiences from 

earlier investigations (Dalen & Raknes 1985; LØkkeborg 1991; L~kkeborg & Soldal 1993). 
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Figure 2.1. Sound leve1 as a function of horizontal distance from an air gun array, with the 
approximate fish detection and reaction thresholds for such sound as indicated. The source level, 
ambienr noise, and detection and reaction thresholds are given in terms of spectral level. 



3. MATERIALS AND METHODS 

3.1 Trial area 

In order that the trials be as realistic as possible, the seisrnic shooting was conducted as it 

usually is in a three-dimensionai investigation, or survey. On the basis of information from 

Geco-Praida, Stavanger, conceming ordinaq survey operation, it was estimated that an area 

of 3 x 10 nautical miles (5.5 x 18.5 km) could be covered by the seismic vessel in a five-day 

period. 

Based on considerations of the expected source leve1 from the air gun array, absorption of 

sound in water and knowledge of fish hearing and reaction thresholds (Chapter 2), it was 

determined to perform trawling 18-20 nautical miles (33-37 km) to each side of the seismic 

shooting area. The trial area was thus roughly 40 x 40 nautical miles (74 x 74 km), with the 

shooting area in the center (Fig. 3.1.1). The center of the trial area was set at N 72'20', E 

Figure 3.1.1. Triai area (shaded) on North Cape Bank, showing also the centrally located shooting 
area. 



Nysleppen, in the Barents Sea, was originally chosen as the particular area for executing the 

trials. Preliminary trial fishing showed, however, that there was insufficient fish in the area 

to perfonn the planned program. Thus, North Cape Bank was chosen, because the area 

satisfied the prerequisites for catch conditions, fish distribution and homogeneity, established 

in advance for the triai area. Fishing vessels that had fished in the area just prior to the start 

of the triai could report consistently good catches of cod and haddock with a wide spread in 

the size distribution of caught fish. The area aiso has good operating conditions for both trawl 

and longline, and the bottom depth is relatively even (250-280 m). The trids were conducted 

in the period 30 April-18 May 1992. The weather conditions during the trial period were 

good. 

3.2 Acoustic mapping 

Vessel 

The fresh-fish trawler "STALLO" (F-84-H, 299 Brt, 1200 BHk) was hired for a total period 

of 20 days, from 30 April to 19 May 1992, to perfonn mapping of the fish distxibution in a 

specified area within and about the seisrnic shooting area. It was equipped with a SIMRAD 

ES400 echo sounder and SCANMAR trawl instrumentation, together with a RAYSTAR 2000 

GPS satellite navigator. 

Acoustic instruments and calibration 

The research echo sounding system SIMRAD EK500 was mounted on the bridge and 

connected to the vessels own split-beam transducer (ES38-29), GPS navigator, echogram 

printer, portable PC (Toshiba 3100) over a serial line, and SUN Sparc 2 workstation over 

Ethemet for logging of raw data on the workstation (Bergen Echo Integrator (BEI)). For the 

echo sounder frequency of 38 kHz, this corresponds to the instrumentation that is currently 



in use on the research vessels of the Institute of Marine Research (Knudsen 1990). The 

instruments were tested for functionality on 30 April 1992 and calibrated under good 

conditions in Olderfjord, Finnmark, 1 May 1992, by means of a calibration target with known 

target strength (60-mm-diameter copper sphere, TS=-33.6 dB), in accordance with the 

calibration routine described by Nes (1991) and Foote et al. (1987). Calibration data and 

settings of echo sounder and echo integrator are given in Appendix A, Table 1. Radiated 

noise measurements for "STALLO" as a function of vessel speed showed a low noise leve1 

on the echograrn when the speed was less than about 10 knots. A typical example of 

registration of cod and haddock from "STALLO" is shown in Figure 3.2.1. 

Sampling 

"STALLO" was rigged for bottom trawling with a Campelen 1800 sampling trawl (Appendix 

B, Fig. l), with rockhopper trawl gear, 40 m sweep and V-doors. The trawl is used as a 

standard sampling trawl at the Institute of Marine Research (Engås & GodØ1989). Trawling 

by "STALLO", which should mainly support the acoustic measurements, was performed at 

random positions along the vessel path within each subarea. All together 94 trawl hauls were 

taken (Fig. 3.3.1). The door spread for the sampling trawl was about 54 m, with an average 

trawl height of about 3.8 m. 

Survey plan and transects 

To achieve the aim of the acoustic part of the investigation most effectively, it was decided 

to cross the shooting area systematically out to a radius of 20 nautical miles from the center, 

where the central crossing point was varied from transect to transect. In addition, the inner 

area was mapped more densely by means of shorter north-south transects before and after the 

shooting. The actual survey grid for the several periods is shown in Figure 3.2.2. Except for 

two-short breaksbecause of bad weather and a stop from 6 May 0240 hours (GMT) until 7 

May 0840 hours (GMT), for a meeting with the seisrnic vessel in Hammerfest, the acoustic 

data were continuously collected. 



FEgure 3.2.1. Aco~isric registrnrion over rhe log inte~jal 6381-6382. 9 May 1992, 1533 hours. 
position f1'72*18.46', E26O56.26'. The echograrn shows the deptiz runge 0-500 nz, wirh the 10 m 
imrnedintel\ oxier rfze hortonz shown it1 repeased, expontied formut. Corresponding tables with 
farget srrerzzrh and echo irztegraror vaiues are shown on rhe right side. In the upper 60 m, a rilirz 
aggregeitiorz of lapvne appears. buz zhe renzuitzder is cod and haddock. The color codirzg is Oased 
orz the echo strength, bur is suggestive of$sh ske. 



Figure 3.2.2. Slrrvey grid for the acoustic 
irivesligations with MRr 'YTALLO" bejore ( A ) ,  

riuring ( B }  crrirl qfier ( C )  shooting. The 
coordinates al-6. given in ciecirnal degrees. 

Treatment of the acoustic data and 

abundance computations 

Based on the trawl catches and echograms, the 

acoustic registration was "interpreted", or 

divided among the following categories: 

codlhaddock, capelin, herring, plankton and 

O-group fish, and the results stored with 

l-nautical-mile horizontal resolution and 50-m 

vertical resolution. In the bottom channel (the 

lowest 10 m) the resolution in the database is 

2 m. The interpretation was performed daily 

during the cruise. The species category codl 

haddock was later divided by using the catches 

in the sampling trawl in accordance with the 

size distribution, that is, the relative acoustic 

contributions (Appendix A). 

During further treatment of the data, the 

integrator channels for cod and haddock were 

combined to form a pelagic part and a bottom 

part, which were then presented on distribution 

maps. The quantity of other species was quite 

small in relation to the total, and is therefore 

not further analyzed. 

The investigation area has been divided up into 

five parts (Fig. 3.2.3): an inner (shooting) area 

of size 3 x 10 nautical miles, and further in 

circular belts, or annuli, each with 5-nautical- 

mile width (B, C, D, E).  The average acoustic 



Figure 3.2.3. Subdivision of the survey region for computations of acoustic abundance. 

density for the pelagic part, bottom part and total is computed for all areas and for each time 

period: before, during and after the seismic shooting. The average acoustic density for the 

whole area (F) inside a circle of radius 20 nautical miles as measured from the shooting area 

is als0 computed. 

The acoustic measures of area density for cod and haddock are converted to biological 

quantity, narnely number and weight, in 5-cm groups by computing the average target strength 

TS from the trawl catches in accordance with the target strength relationship used for these 

species in the Barents Sea (Appendix A). Since the acoustic density measures describe the 

relative distribution of fish quantity over time and space, the conversion to number and weight 

is made only for the total area, and by combining the trawl catches for each time period. 

The average weight for each length group is computed from individual length-weight data for 

cod and haddock from the entire 1992 season in the southwestern part of the Barents Sea 

(Appendix C, Figs. 3 and 4). Different length-weight relations were used to convert the 



length data from the trawl catches by "STALLO" and longline catches by "LORAN". For the 

longline data the relation was derived from measurements made by "ANNY KRÆMER" 

during the trial (Appendix C, Figs. 1 and 2). Because of mesh selection effects in trawling, 

the catch mainly contained fish over 30-40 cm. Consequently, these measurements could not 

give information on the relationship between length and weight for smaller fish. In the 

catches with the sampling trawl on "STALLO", fish under about 40 cm constituted the major 

part of the catches, and it was decided to use length-weight relationships from the Barents Sea 

stock-monitoring program of the Institute of Marine Research. 

Acoustic data are gathered continuously along transects, and nearby measurements are often 

autocorrelated. At present there is no recornmended, exact method for computing the variance 

associated with the mean value of density within a given area of such a survey (Simrnonds 

et al. 1991). In the tables of results two measures of variance are used, in both cases 

expressed as a percentage of the rnean value: 

Var. A: This is a straightforward computation of the classical variance for normally 

distributed data, where it is assumed that each measurement within a given area is 

independent and random. This will usually underestimate the true variance, because possible 

autocorrelations in the data have not been treated. The variance is computed thus: 

S Var. A = - , 
2 6  

where s is the standard deviation, z is the average value, and n is the number of observations. 

The variance is here expressed as a fraction of the average value. 



Var. B: A new method, which has not yet begun to be used as a standard to01 for variance 

estimation in stock measurement, derives from geostatistics. The method is described by 

Petitgas & Poulard (1989) and Petitgas (1990) and is compared with other methods for 

computing variance by Sirnrnonds et al. (1991). The method has been shown to give realistic 

estimates of variance compared with data from repeated surveys in a closed fjord, and 

removes the effect of autocorrelation in the data. It is here expressed through the estimation 

variance (oE2) and given as a fraction of the average value: 

OE Var. B = - - 

3.3 Catch trials 

The trawler "ANNY KRÆMER" (T-35-T, 477 Brt, 2400 BHk) and the autolongliner 

"LORAN" (M-19-G, 144 Brt, 865 BHk) were hired to execute the fishing trials according to 

plan, that is, according to the experimental design. The vessels used the same gear as under 

ordinary fishing operations. 

Trawl trials 

The trawl that was used was a standard fishing trawl, Alfredo no. 3 (Appendix B, Fig. 2). 

It was rigged with 145-m sweeps and V-doors (7.8 m2, 2200 kg). The mesh size in the 

codend (twin bags) was measured with an ICES mesh-size meter (5 kg loading) to be 146-147 

mm. Because of a machine failure "ANNY KRÆMER" had to intenupt its work, for repair 

in harbor, for two days in the period before the seismic vessel arrived. The trawl trials 

stopped, therefore, for the period from 3 May 1700 hours (GMT) to 5 May 2100 hours 

(GMT). 



Each trawl hau1 lasted one-half hour and the towing speed was 3.5 knots (1.8 rnls). The trawl 

geometry was measured with a SCANMAR distance sensor on the doors and a height sensor 

placed in the middle of the headline. The door spread was measured as about 150 m, and the 

vertical opening of the trawl was about 4.2 m. The sweep area for each trawl haul, that is, 

the distance between the trawl doors multiplied by the towed distance, was 0.142 square 

nautical miles. 

The trial was divided up into three time periods: before (7 days), during (5 days) and after 

(5 days) shooting. The total number of trawl hauls was, respectively, 62, 67 and 60 for the 

periods before, during and after the seismic shooting (Fig. 3.3.1). Of these, four hauls were 

taken outside of the investigation area (about 28 nautical miles (50.4 km) from the shooting 

area), two before and two during the shooting. The other trawl hauls were distributed at four 

distances from the seisrnic shooting area: 0) within the shooting area, 1) 1-3 nautical miles 

(1.8-3.5 km) from the shooting area, 7) 7-9 nautical miles (13-16.7 km), 16) 16-18 nautical 

miles (29.6-33.3 km). The degree of coverage (totai sweep area in relation to the total 

shooting area (3 x l 0  nautical Ales)) of the trawl hauls that were taken within the shooting 

area was 5.7, 6.6 and 5.2%, respectively before, during and after the shooting. 

An attempt was made to disiribute the trawl hauls such that the error arising from possible 

geographical differences in fish density within the trial area would be as small as possible, 

and such that it would be possible to computationally relate the changes in catch and distance 

from the shooting area. Care was taken to ensure that the sequence of the trawl hauls would 

not influence the results. For example, catch rates often vary between day and night. 

Therefore the transects were designed such that the proportion of day trawls was 

approximately equal for every time-distance combination. h order to smooth the effect of 

geographical and time-based variations, a transect was followed from the central area towards 

the border of the area. The direction of the transect was randomly varied each day. 



Before shooting 
Trawl stations "Anny Kremer' 

0 Trawl stations 'Stallo" 

During shooting 
Trawl stations "Anny Kremer" 

0 Trawl stations 'Stallo' 

After shooting 
Trawl stations "Anny Kremer" 

0 Trawl stations 'Stallo' 

Figure 3.3.1. Distribution of trawl k u l s  t a k n  in the sutvey area before, during Md afier 
shooting. The starting point for each trawl is indicated. "ANNY KRÆMER" fished with a 
standard cod trawl (Alfredo no. 3 )  and "STALLO" with an Institute of Marine Research sampling 
trawl (Campelen 1800). 



Longline trials 

The longliner used Mustad Quick Snap line (7 mm), rigged with double-twisted gangions 

supply no. 14 with EZ-hook (quality 39975, no. 1210). Each longline fleet consisted of 3000 

hooks, where the distance between each hook was 1.3 m (longline length 3900 m). The 

longline was baited with 50% mackerel and 50% squid. The bait width was about 30 mm. 

Eight longline fleets were hauled each day. As with the trawl hauls, the longline fleets were 

set at four different distances in relation to the shooting area (Fig. 3.3.2), that is, two longline 

fleets were set at each distance every day. In the figure captions the four positions are called 

1000 (within the shooting area), 2000 (1-3 nautical miles from the shooting area), 3000 (7-9 

nautical miles), and 4000 (16-18 nautical miles). Since the two longline fleets that were set 

each day at the same distance from the shooting area were relatively close (0.5 nautical miles 

(0.9 km) east-west distance), these two were viewed as one under the analysis of variance. 

For longline there is therefore only a single observation at each distance per day. As with 

trawling, the innermost longline fleet was placed inside the shooting area. The others were 

placed along a transect radiating from the the central area. In contrast to trawling, these 

transects ran oniy straight north or straight south from the center. This was done throughout 

the trial to smooth out the effect of the current direction. In total 56,40 and 35 longline fleets 

were hauled respectively before, during and after the seismic shooting. The longline fleets 

were placed between 0200 and 0800 hours (GMT) every day. The soak time of the longline 

fleets varied from 6 to 18 hours. To avoid influence of the soak time on the results, this time 

was varied in the same manner before, during and after the seismic shooting. 

Biological samples 

Fish caught by trawl and longline were classified by species and length-measured (rounded 

down to the nearest whole centimeter) with the exception of a few large trawl hauls (over 

about 1000 kg) where a partial sample was measured. On board "ANNY KRÆMER" the 

total weight of each species was registered, and the length and weight (round weight) of 

individual cod and haddock were measured. The length-weight relationship was computed 



Before shooting 
I Longlines 

During shooting 

I After shooting 

Figure 3.3.2. Piacement of longline jleets in the trial area before, during and after shooting. 



for both species in order to be able to compute the weight of the longline catches on the basis 

of length data, since the longliner did not have an electronic scale on board. The 

length-weight relationships for cod and haddock that were computed during the cruise are 

given in Appendix C, Figs. 1 and 2. 

Stomach sarnples from cod were taken daily at randomly selected trawl and longline stations. 

The longliner also took stomach sarnples from haddock. The stomachs were frozen and 

analyzed at a later time. 

3.4 Data analyses 

Trawl 

In order to investigate whether seismic shooting has an effect on the catch rates for fish by 

trawl, the following model was used for cod and haddock: 

where y is the catch in kilograms per trawl hau1 (logarithrnically transformed), p is the 

expected catch, ai is the distance effect, P, is the effect of time in relation to the seisrnic 

shooting, (ap).. is the interaction between time and distance, and represent the random 
'J 

variation. The reason that a logarithmic scale is used rather than a linear scale is that the 

variance is often proportional to the square of the mean for marine catch data (Pennington 

1983; Pennington & V~lstad 1991) and that a logarithmic transformation will consequently 

stabilize the variance (see, for example, Snedecor & Cochran 1980). Furthermore it rnight 

be expected that a possible effect of seismic activity will be proportional to density, hence 

linear in relation to the logarithmic scale. 



The experimental design was roughly balanced (Table 3.4.1) and the model ( l)  adapted to 

application of type I11 sum-of-squares with multi-factor analysis of variance (Statgraphics 

STSC, Inc. 1991). The approximate balance in the experimental design rendered the 

interpretation of factors in the analysis relatively uncomplicated. 

Table 3.4.1. Number of combinations of time Table 3.4.2. Number of combinations of time 
and distance in the trawl trial. and distance in the longline trial. 

Distance Distance 
Time Time 

O 1 7 16 1000 2000 3000 4000 

Before 12 16 16 16 Before 7 7 7 7 

During 15 16 17 17 During 5 5 5 5 

After 12 16 16 16 After 5 5 4 5 

Longline 

In order to analyze possible effects of seisrnic shooting on longline catches, the same 

statistical model was used as for the trawl catches. For the model (l), y is the average catch 

in kilograms (after logarithmic transformation) for the two longline fleets that were taken at 

the same distance on the same day. Again, p is the expected catch, ai is the distance effect, 

pj is thi effect of time in relation to seismic shooting, ( a p )  is the interaction effect, and eijk 
'J 

is the random variation. It is to be emphasized that the trial area for longline is a subset of 

that for the trawl trials (Figs. 3.3.1 and 3.3.2). The experimental design for longline is 

approximately balanced (Table 3.4.2). 



3.5 Seismic shooting 

The seismic shooting was conducted from 8 May 1992 0009 hours (GMT) to 12 May 1758 

hours (GMT). The assignment was carried out by the business firm Geco-Prakla, Stavanger, 

with the seismic vessel R N  "ACADEMIC SKATSKIY". The rigging of the air-gun array 

is shown in Figure 3.5.1. The air guns were towed at 6 m depth. Rigging of the air-gun 

array and practicai execution of the shooting assignment was performed according to the same 

guidelines that are used for ordinary three-dimensional surveys for the oil industry. Listening 

cables were not used, because this was not of interest to the trial. At the same time this 

simplified the turning operation at the end of one transect and start of the next. 

Figure 3.5.1. Rigging of the air gun array on "ACtWEMIC SHATSKIY". 

The seismic shooting area (3 x 10 nautical miles (5.5 x 18.5 km), Fig. 3.1.1) was positioned 

in the center of the trial area. It was planned to shoot a total of 45 transects, each 10 nautical 

miles long, with a distance of 125 m between adjacent transects. Ln fact, 36 of the planned 



transects were shot, while nine were ornitted because of expiration of the contract time 

(Appendix D). The shooting was executed at a speed of 4.8 knots, and a shot fired every 10 

seconds, that is, every 25 m. 

3.6 Auxiliary measurements 

Radiated noise measurements 

During firing of the air-gun array sound measurements were made in order to be able to relate 

possible scaring effects on fish to the sound leve1 and frequency spectrum from the air-gun 

array. The measurements were made from "STALLO" while anchored in the shooting area 

with engine tumed off. A hydrophone (BMel and Kjær, type 8104) was suspended at 80 m 

depth and the signals from this logged on a digital tape recorder (Sony Dat Pro 11) for later 

analysis. The distance from "STALLO" to "ACADEMIC SHATSKIY" was measured with 

radar and visually judged within the shortest radar distance, 50 m. The equipment was 

calibrated (BMel and Kjær calibrator, type 4229) before and after the measurements. 

In addition, the four vessels were measured in two different situations: 

"ACADEMIC SHATSKIY": During cruising (about 12 knots) and at the same speed that is 

used with the air-gun array (4.8 knots). 

"ANNY KRÆMER": During cruising (about 10 knots) and during trawling (about 

3.5 knots). 

"LORAN": During cruising (about 10 knots) and with the same speed as 

under hauling of longline (about 2 knots). 

"STALLO": During cruising (about 10 knots) and during trawling (3 knots). 

The first two vessels were measured on North Cape Bank, while the other two vessels were 

measured in the SørØy Sound in the vicinity of Hammerfest. "ANNY KRÆMER" and 



"ACADEMIC SHATSKIY" were measured according to the same process as mentioned 

above. During measurement of "STALLO" and "LORAN" a motorboat was used as a 

measurement platform. The measurement procedure was othenvise the same as for the other 

vessels. Before and after each measurement series the ambient noise leve1 was registered. 

The sound spectra from the vessels were analyzed in 1M-octave bands with a Briiel and Kjær 

real-time analyzer, type 2143, while the recordings made during detonation of the air-gun 

array were analyzed with a Bruel and Kjær frequency analyzer, type 2143 FFT, and a Philips 

s torage oscilloscope. 

Current measurements 

It is known that the catch rates with longline are greatly reduced in the presence of strong 

currents. In order to be able to account for such a factor, current measurements were made 

in the period 4 May - 17 May. A current meter (SD2000) was secured 10 m over the bottom 

in the center of the seismic shooting area. 

The propagation of sound from the seismic source can be affected by the vertical sound speed 

profile in the water masses, particularly in the refraction of horizontally directed energy from 

the air-gun array upwards toward the surface or downwards toward the bottom. In order to 

be able to assess this, M/Tr "STALLO" took 11 STD-stations within the survey area. A 

portable mini-STD (Gytre 1991), which measures salinity (conductivity), temperature and 

pressure, was lowered at the recommended speed ( l  d s )  to about 10 m over the bottom. 



4. RESULTS 

4.1 Acoustic abundance estimates 

The conditions for acoustic abundance estimation of cod and haddock on North Cape Bank were 

nearly ideal during the investigation period. Figure 4.1. lc shows the combined distribution of 

cod and haddock, expressed in acoustic units of area density, with contant-density contours 

indicated. The distribution of the total quantity is reasonably even throughout the entire area, 

with the highest density in the northwest and southeast parts of the area and lower densities in 

the north and northeast. 

In Figures 4.1. l a  and 4. l .  l b the total quantity is separated into pelagic and near-bottom parts. 

These show that the pelagic part constituted the major part, and that the near-bottom part had 

a slightly different horizontal distribution than that presented by the total quantity. Where the 

density was lowest in the pelagic part, for example, in the east, the density was highest near the 

bottom. The major part of the fish were found in the lowest 50 m of the water column, with 

about 30% of the total quantity in the bottom channel. The distribution map for the total quantity 

gives the best picture of the actual distribution pattern of cod and haddock before shooting. 

The density distribution Iacked O-values anywhere in the investigation area, and the acoustic 

average values had a small variance (Tables 4.1.1-4.1.3). As an example, the acoustic density 

estimate for cod and haddock over the entire investigation area, that is, in the circular area with 

radius of ?O nautical miles, has an average value <sA>=1?9.8 m2/nm2 and a variance of k5 .46 .  

The low variance is a result of the evenness of the fish distribution, but also a result of the high 

degree of coverage, which revealed the structure in the density distribution. 

The density and distribution of cod and haddock during the seismic shooting is shown in Fig. 

4.1.2 and during the period after the shooting in Fig. 4.1.3. Clearly there is a significant density 

reduction throughout the entire area, especially in the central area, within about 5 



Figure 4.1.1. Distribution of c d  and 
ha&hck in absolute units of acoustic 
densig (m2/&) before the seismic 
shooting. Pelagic (A), bottom (B) and 
totol (C). The bomm channel thichss is 
JO m. The dispiayed region has a 
dimneter of 40 nautical miles, with center 
at N72020 '. E26O00 '. 



Figsue 4.1.2. Distribution of cod and 
h d h c k  in absolute units of awusiic 
density (&hm2) diring the seismk 
shooting. Peiagic (A), bottom (B) and total 
(C). The bomm channel thickress is 10 m. 
The disphyd region has a diameier of40 
Mutical miks, with center at N7202OD, 
E26000'. 

ACUSTK: DENSTTY 

Jp m 254- 520 
ML- 254 m 1w- MP 
i n -  iaa 
im- in 
m- 101 m 64- m 
50- 64 
a- 50 m 52- Y) 

25- a 
20- 25 
is- 20 
13- 16 
10- 13 

m BELOW 10 



Figure 4.1.3. Distribiaion of cod arid 
hoddock in absolute wUts of acoustic 
&mity (m2/&) afier the seisrnic 
shooting. Pelagic (A), bottom (B) and 
total (C). The bomm channel thickness is 
10 m. The dispkbyed region has a 
dimneter of 40 nauticd miles, with center 
at r n 2 0 ' ,  E26000'. 
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Table 4.1.1. Acoustic measurements of average fish density of cod and haddock before the shooting started, computed for each region in Fig. 3.2.3 and 
for the total region (F), expressed in tenns of the average area backscattering coefficient <sA>, with the variance computed using ordinary statistics and 
geostatistics, respectively, expressed as a percentage of the average. The number of mile-intervals used in each area (N), area, and degree of coverage 
(DG) are given. The degree of coverage is computed according to Aglen (1983). 

Area 

Quantity 

Area A Area B Area C Area D Area E Area 1 
3x10 nrn < 5 nm 5-10 nm 10-15 nrn 15-20 nm < 20 nni  

<sA> VarA VarB <sA> VarA VarB <sA> VarA VarB <sA> VarA VarB <sA> VarA BarB <SA> VarA VarB 

Units (rn2/nm2) % % (m2/nrn2) % % (m2/nm2) % % (m2/nm2) % % (m2/nrn2) % % (m2/nm2) % % 

Totalbeforeshooting 116.3 8.7 8.5 130.5 5.8 6.7 127.8 7.4 9.8 127.8 4.5 5.5 132.5 4.3 4.7 129.8 2.8 5.4 u 
ul 

Pelagic before shooting 79.0 11.1 10.6 90.3 7.3 8.6 90.1 9.7 13.5 87.2 5.3 6.7 95.0 5.3 5.8 90.9 3.5 7.6 

Bottom before shooting 37.3 6.7 5.4 40.2 4.7 4.2 37.7 6.4 7.2 40.6 8.4 8.4 37.4 6.1 6.1 38.9 3.2 10.0 

Areal nrn2 30 78.5 235.6 392.7 549.8 1256.6 



Table 4.1.2. Acoustic measurements of average fish density of cod and haddock during the shooting, computed for each region in Fig. 3.2.3 and for the 
total region (F), expressed in terms of the average area backscattenng coefficient esA>, with the variance computed using ordinary statistics and 
geostatistics, respectively, expressed as a percentage of the average. The number of mile-intervals used in each area (N), area, and degree of coverage 
(DG) are given. The degree of coverage is computed according to Aglen (1983). 

Area 

Quantity 

Area A Area B Area C Area D Area E .Area F 
3x10 nm < 5 nm 5-10 nm 10-15 nm 15-20 nm < 20 nm 

<sA> VarA VarB <sA> VarA VarB <sA> VarA VarB <sA> VarA VarB <sA> VarA BarB <sA> VarA VarB 

Units (m2/nm2) % % (m2/nm2) % % (m2/nm2) % % (m2/nm2) % % (m2nm2) % % (m2/nm2) % % 

Total during shooting 65.4 5.5 4.9 62.8 3.9 5.0 72.2 3.4 3.4 82.6 4.1 4.9 78.6 4.3 4.7 72.0 2.1 8.0 
W 

Pelagic during shooting 39.4 6.1 5.1 40.0 4.1 5.9 49.5 3.9 4.0 56.8 5.1 6.6 54.3 5.1 6.9 48.4 2.3 10.9 
a\ 

Bottom during shooting 26.1 8.2 8.2 22.8 6.0 6.0 22.7 4.0 4.0 25.8 5.1 5.1 24.4 6.5 6.5 23.7 2.9 2.9 



Table 4.1.3. Acoustic measurements of average fish density of cod and haddock after the shooting ended, computed for each region in Fig. 3.2.3 and for 
the total region (F), expressed in terms of the average area backscattering coefficient <sA>, with the variance computed using ordinary statistics and 
geostatistics, respectively, expressed as a percentage of the average. The number of mile-intervals used in each area (N), area, and degree of coverage 
(DG) are given. The degree of coverage is computed according to Aglen (1983). 

Area A Area B Area C Area D Area E Are;] I 
Area 3x10 nm < 5 nm 5-10 nm 10-15 nm 15-20 nm < 20 n i i ~  

Quantity <sA> VarA VarB <sA> VarA VarB <sA> VarA VarB <sA> VarA VarB <sA> VarA BarB <sA> VarA VarB 

Units (m2/nm2) % % (m2/nm2) % % (m2/nrn2) % % (rn2/nm2) % % (rn2/nm2) % % (m2/nm2) % % 

Total after shooting 48.4 4.9 4.8 46.9 3.3 3.4 45.9 4.3 4.2 46.3 4.2 4.4 46.1 2.9 4.7 46.2 1.8 3.7 
W 
4 

Pelagic after shootinng 26.6 6.5 6.6 26.4 4.4 4.2 26.7 4.3 4.0 28.0 4.4 4.3 28.4 3.3 5.1 27.6 2.0 3.0 

Bottom after shooting 21.7 5.5 5.8 20.6 4.3 4.7 19.1 7.0 7.2 18.2 6.6 7.2 17.7 4.0 5.8 18.6 2.6 4.7 

N 56 1 O5 95 94 232 526 

DG 10.2 11.8 6.1 4.7 9.9 14.8 



nautical miles from the center of the shooting area and in the northwest. A reasonably good 

picture of the distribution pattern during the shooting is given by a transect running through 

the shooting area in an east-west direction on 9 May (Fig. 4.1.4), with the lowest density 

within the actual shooting area, or 5 nautical miles to each side from the center, with 

gradually increasing density to each side. In the period after the shooting (Fig. 4.1.3), a 

further reduction in the total quantity occurred, but also accompanied by a gradual smoothing 

of the horizontal distribution. 

6380 

Vessel log (nm) 
Shooting area 

Figure 4.1.4. Total echo integrator values for cod and haddock, with I-naurical-mile resolurion, 
measured along a straight transect running through the center of the nr-ea in an east-west direction 
during the shooting on 9 May. The vessel log is shown on the x-axis. 

A better picture of the actual effect on the total acoustic quantity of cod and haddock can be 

obtained by splitting the data up radially, without considering horizontal differences in 

density. This is done in Fig. 4.1.5 for the total area and in Fig. 4.1.6 for circular belts, or 

annuli (see also Tables 4.1.1-4.1.3 where the acoustic data are summed up by area and time). 

The total acoustic density for the entire area was reduced from an average of 129.8 to 72.0 

during the shooting, or by 45%. During the period after the shooting the average value was 

46.2, which corresponds to a reduction from the initial situation by 64%. A distinct distance 

effect was present during the shooting, with lower density than the average within 5 nautical 



miles 0 1  ille center and withi~i itle shooting area itself, and with highcr density beyond 10 

nautical miles from the center (Fig. 4.1.6). This effect disappeared after the shooting, when 

the density was roughly constant at all distances. 

Before During After 

Figidre 4.1.5. Total aroustic der1sit.y within the entire survey region before, during and aper 
shooiing. 

Before 
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Center < 5 nm 5-1 O 10-15 1 5-20 
nm nm nm 

DISTANCE 

Figur-e 4.1.6. Ikt~zl clcoustic densiry rlistributed hy distance from the skooting region before, 
during lind (vier shootirig. 



Vertically, the reduction was greater in the pelagic part of the water column than in the 

bottom channel, respectively 47 and 39% (Fig. 4.1.7). This can signify that part of the fish, 

which before the shooting was found immediately over the bottom channel, was pressed down 

into this during the shooting. The main tendency, nonetheiess, was a horizontal transport of 

fish out of the area, with a substantial reduction of the total density. 

m Pelagic 

Near-bottom 

Before During After 

Figure 4. l .  7. Acoustic density values separated into pelagic and nenr-bortom parts. 

The acoustic measure for density cannot be directly converted to a quantity in tons or to a 

number, since large fish make a relatively larger contribution to this measure than do small 

fish. Here, information on both length and species distributions of the cod and haddock in 

the sampling trawl is employed to convert the acoustic measure to absolute number 

distributions, and further to weight for both species. This process is described in more detail 

in Appendix A. 

The abundance computations showed that initially there were about 33000 tons of cod and 

6000 tons of haddock distributed over the entire investigation area of 1257 square nautical 



mile\. oi 3 1 tons of fish per \ilirar-e nautical mile. Aportionment of the total weight by area 

was performed in proportion to the acoustic density measurements for the same area and 

period, such that within the shooting area of 3 x 10 square nautical miles, there were 834 tons 

of cod and haddock (before shooting), of which 85% were cod. Expressed in terms of weight 

for the entire area, the quantity of cod was reduced from 33000 tons before shooting to 16500 

tons during shooting, and further to 9700 tons after shooting (Fig. 4.1.8). The quantity of 

haddock for the same area was reduced from 6000 tons to 3200 tons during the shooting and 

to 3 100 tons after the shooting. 

Haddock 

m Cod 

Before During After 

Figure 4.1.8. Total quantity of cod and haddock by weighr before, during and after shooting. 

The number distribution for both species in all three periods (Fig. 4.1.9) shows a weaker 

reduction than does the weight distribution, which is clearly reflected in the length 

distributions from the catches (Figs. 4.1.10 and 4.1.11). It is evident that cod larger than 60 

cm contributed more to the weight reduction than did smaller fish (Fig. 4.1.12). The same 

was the case for haddock larger than 30 cm. 
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Figure 4.1.9. Total number of cod and haddock before, during and after shooting. 

NUMBER OF COD 

LENGTH (CM) 

BEFORE 
O DURING 

AFTER 

Figure 4.1.10. Length distribution of cod frorn the surnpling tnrwi bclfure, I I~ l t - ing  uncl ciflcr 

shooting. The following stations are combined: Before: nos. 1-14, During: nos. 15-60, Ajter: nos. 
62-94. 
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Figidre 4.1. I I. Length distributiotz of haddock from the samplitzg trawl before, during and after 
shootitzg. The following stations are combined: Before: nos. 1-14, During: nos. 15-60, After: nos. 
62-94. 
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Fi~irre 4. i. 12. Relative, weight-hasecl proportioti of c.00 lnrger rhat~ 60 cm clcught in the sampling 
t m w l  h~fot-e, ciilri~ig rrnrl qper shooting. 



A finer time resolution for the whole period (Fig. 4.1.13), where the average value for 

acoustic density is computed for each day, shows that the fish quantity in the area was stable 

and high, without any tendency toward change in the period before shooting, with a maximum 

value on the day before the shooting, 7 May. The effect of the seisrnic shooting was 

immediate, and so rapid that the decline itself could just be registered by acoustics. During 

the actual shooting there was a clear trend in the data toward lower density values, with a 

leveling in the distribution during the period after the shooting. 

BEFORE I DURING 1 AFTER 

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 

DATE 

Figure 4.1.13. Average daily acoustic quantity, independent of position, throughout the whole 
period, 1-17 May 1992. The gap in the record on 6 May is due to a meeting with the seismic 
vessel in Hammerfest. 



4.2 Trawl catches 

Catch size 

Cod constituted the major part of the catches both by trawl and by longline. On the trawler 

"ANNY KRÆMER" more than 90% of the average catch was cod. The next most important 

species was haddock. In addition, specimens of saithe, redfish, spotted catfish, blue catfish, 

lumpsucker, Greenland halibut, Iong rough dab and skate were occasionalIy caught. 

Figure 4.2.1 and Table 1 in Appendix E show the average weight of cod per hau1 on board 

"ANNY KRÆMER" before, during and after the shooting, combined according to distance 

from the shooting area. The results from the statistical analyses are shown in Appendix F. 

The catches were significantly higher before the shooting began than during or after the 

shooting at all distances from the shooting area (Appendix F, Table 1) .  The reduction was 

largest within the shooting area, where the average catch of cod decreased from 556 (156) 

kg before shooting to 173 (219) kg during and 202 (114) kg after shooting. The catch rate 

for cod during the shooting was accordingly reduced by 7 1% from the level before shooting. 

Also in the hauls that were taken 1-3, 7-9 and 16-18 nautical miles from the central area, the 

reduction in catch was significant. Here the reduction was 45-50% relative to that before 

shooting. It is further evident from the figure that there was no increase in the catch rates 

of cod after the shooting ceased. 

The catches of haddock constituted less than 10% of the total catch quantity. Still, the 

catches of haddock were significantly less during and after the shooting than before the 

shooting began (Appendix F, Table 2). Within the shooting area the catches during the 

shooting were reduced by 68% relative to those before the shooting (Fig. 4.2.2 and Appendix 

E,Table 2). In addition, the catches at other distances were significantly less during and after 

shooting. Here the reduction during shooting relative to that before shooting was respectively 

56%, 56% and 70% at 1-3, 7-9 and 16-18 nautical miles. Similarly for haddock, there was 

no-increase in catch rates after the shooting ended. 
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Figure 4.2.1. Average trawl-catch rate for cod before, during and after shooting, arranged by 
distance from the shooting area. 
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Figure 4.2.2. Average trawl-catch rate for haddock before, during and after shooting, arranged by 
distance from the shooting area. 



Figure\ 4.2.3 and 4.2.4 show [tie time series of catch rates for cod and haddock by trawl, 

where the catches are shown as a deviation from the grand avcrage for the entire trial period. 

The trawl hauk are drawn in chronological order without regard to distance from the shooting 

area. The figures show that there was a significant variation in catch quantity from hau1 to 

hau1 throughout the entire trial period, but i t  is nevertheless clear that the catch rate fell 

imrnediately after the start of shooting. The low level was maintained throughout the whole 

shooting period (hauls 63-130) and als0 in the days after the seismic shooting had ceased. 

The time pattern was quite similar for cod and haddock, notwithstanding the lower catch rates 

for haddock. The sudden reduction in catch, which is apparent from the time series, 

coincided with the start of shooting for both species. 

Figure 4.2.3. Trawl-catch rates for cod with "ANNY KREMER", arranged in chronolgical order. 
The cutches are shown relative to the average (horizonraf line) over the entire rrial period. 



HAUL NUMBER 

Figure 4.2.4. Trawl-catch rates for huddock with ''ANNY KREMER", arranged in chronological 
order. The-catches are shown relative to the average (horizontal line) over the entire trial period. 

Length distribution and number of fish in the catch 

The number reduction in the catches was considerably less than the weight reduction (Figs. 

4.2.5 and 4.2.6). While the weight reduction for cod within the shooting area was 71%, and 

about 50% out to 18 nautical miles from the shooting area, the reduction in number was 46% 



in the center and 35-50% in the surrounding areas. For haddock there was a persistent 5% 

greater reduction in weight than in number over the entire trial area. 

During 

After 

Center 1-3 nm 7-9 nm 16-18 nm 

DISTANCE 
Figure 4.2.5. Average number of cod in the trawl hauls before, during and after shooting, 
arranged by distance from the shooting area. 
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Figurr 4.2.6. Avrr~cgt. numher of hdrfock in the trawl hauls before, during and ajter shooting, 
czrrnrzged by distante from the shooting area. 



Figures 4.2.7 and 4.2.8 show length distributions of cod and haddock. The greatest part of 

cod that was caught with commercial trawl was between 40 and 100 cm in length. The 

length distribution of cod before shooting was distinctly bimodal (with two peaks), with a 

maximum at about 50 cm and another peak at roughly 80 cm. The length spectrum for 

haddock was less, with the main part between 35 and 70 cm. The length distribution graph 

for haddock also shows a tendency toward bimodality, if less distinct than for cod, with peaks 

at roughly 50 and 60 cm. The length distributions of both cod and haddock changed 

throughout the trial period. The changes were greatest within the shooting area, with a 

gradual reduction toward the border of the trial area. The sharpest change for cod occurred 

at the upper peak (from about 60 cm and longer), which nearly disappeared. The changes for 

fish under 60 cm were less. For haddock the reduction in all size groups was more even 

(Figs. 4.2.8a-d). 

The observed changes in length distribution when the seismic shooting began explain why the 

weight reduction in the catches was greater than the number reduction. In Figures 4.2.9 a and 

b and 4.2.10 a and b (also Appendix E, Tables 3 and 4) the catch of cod and haddock is 

divided into two length groups, small (<60 cm) and large (260 cm), in accordance with the 

two-peaked length distribution for cod. The number of small cod was moderately reduced 

under the influence of the air guns. For large fish, however, which affect the weight of the 

catches to the largest degree, there was a large reduction in the number when the shooting 

began. Within the shooting area the number of large cod per trawl hau1 was on average 110 

+ 11.4 before the shooting. After the onset of shooting, the number fell to 27 re 3.2. In 

addition, for the hauls that were taken at different distances outside of the shooting area, there 

was a significant reduction in the number of large cod. For haddock the reduction was 

distributed over the entire length spectrum (Appendix E, Table 4) at all distances from the 

shooting area, but also here the reduction was somewhat larger for large fish. 

That large and small fish react differently to seismic shooting also causes changes in the 

average individual weight of fish in trawl catches throughout the trial period. The average 

weight of cod and haddock is shown in Figs. 4.2.11 and 4.2.12 (also Appendix F, Tables 5 

and 6). Before the shooting began, the size of cod was relatively uniform over the entire 
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Figure. 4.2.9. Nunrber of ( a )  sniall (<60 cm) and (b )  large (260 cm) cod in trawl hauls before, 
riirring and after shootirig. 
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Figure 4.2.10. Number of (a )  small ( c 6 0  cm) and (b)  large (260 cm) haddock in trawl hauls 
before, during and afrer shooting. 



Figure 4.2.11. Average individual weighr of cod in trawl hauls before, during and after shooting, 
arrangeri by distancc from the shooting area. 

Figur<, 4.2.12. Averrige itidiiii(f~ra1 weight of haddock in trawl hauls hefore, during and after 
shoori~zg, rrrr~rngeci h\. rlistcrnc-e frotn the shooting rrrea. 



investigation area. After the shooting began, the weight was significantly reduced in the 

shontiny area and in the neqby surrounding areas. The changes in the average weight 

gradually decreased with decreasing distance to the border of the trial area, and at the furthest 

position there was no significant change. Both the changes in time and differences with 

increasing distance from the shooting area were significant. After the shooting ceased this 

weight gradient from the center toward the border was lessened somewhat, which most likely 

signifies a return of the fish distribution to conditions before the shooting began. 

The individual weight of haddock was also reduced under influence of the shoating, but 

throughout the entire trial area. No tendency to normalizing after cessation of the shooting 

was observed. 

Catch in the first hauls after the start of shooting 

Figures 4.2.13-4.2.16 show the catch rates for cod on "ANNY KRÆMER" the last two days 

before and the first two days after the start of shooting at different distances from the 

shooting area. The first trawl hau1 that was taken under influence of the seismic shooting was 

taken just one hour after "ACADEMIC SHATSKIY" had fired the first shot. The catch rate 

for this hau1 (hau1 no. 67, Fig. 4.2.13) was under one-half of the average of the period before 

the shooting. Within the shooting area the catches fell instantly when the shooting began and 

remained low for the duration of the trial period. 

At the distance 1-3 nautical miles from the shooting area the effect on the catch rate was not 

as immediate as within the shooting area. The catches in the first two hauls taken after the 

shooting began (hau1 nos. 69 and 74 taken respectively 3 and 10 hours after the start of 

shooting) were indistinguishabie from those taken in the pre-shooting period. Hau1 no. 74 

even exceeded the pre-shooting average. Following this hau1 the catch rate rapidly declined. 

At the two furthest stations the reduction in catch was more gradual over the entire trial 

period. 



Figure 4.2.13. Catch rate for cod crt distance O (within the shooting area) the last tn~o  d q s  before 
and first two days ofrer the start of shooting. The average and confidence interval for the catch 
rates before shooting are shown. 
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Figure 4.2.14. C~ztch rate for cod or distance l (1-3 nnutical miles) the last two days hefore arid 
flrsr two  LIVS ($er rh~,  .starr oj'.shooring. The average catch rarr atid associated conficience 
intc,rvnl jbr the pcrioci beforr shootitrg are shotzvr. 
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Figure 4.2.15. Catch rate for cod at distance 7 (7-9 nautical miles) the last two days before and 
first two days after the start of shooting. The average catch rate and associated confidence 
intervals for the period before shooting are shown. 

KILOGRAMS OF COD 

Figure 4.2.16. Catch rate for cod at distance 16 (16-18 nautical miles) the last two days before 
and first h 1 0  days after the start of shooting. The average catch rare and associated cor~fidence 
interval for the period before shooting are shown. 



Other species 

With the exception of long rough dab, no conelation was found between seismic shooting and 

the catch quantity for other species than cod and haddock. However, the catches were so 

small and variable that they did not provide sufficient material for a statistical analysis. The 

catch of long rough dab seemed to be reduced during shooting (Fig. 4.2.17). The number was 

approximately halved when the shooting began, but continued to decline after conclusion of 

the shooting. 
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Figure 4.2.1 7. Average catch of long rough dab before, during and after shooting. 

Long rough dab has no commercial significance for Norwegian fisheries, hence there is no 

immediate interest for studying how this species reacts to seismic shooting. However, long 

rough dab can be viewed as a representative for flatfish in general, which are distinguished 

from cod fishes, among other reasons, by lacking a swimbladder. 



4.3 Longline catches 

Catch size 

The fish caught by the longliner "LORAN" were only length-measured, not weighed. The 

weight was derived from the length measurements by means of the length-weight relationship 

empirically established on board the trawler "ANNY KRÆMER" (Appendix C, Figs. 1 and 

2). The most important species in the catch was cod, but the contribution of haddock was 

greater in the longline catches than in the trawl catches, especially early in the trial period 

(about 25% by weight). 

Figure 4.3.1 (also Appendix E, Table 5) shows the quantity of cod caught by longlining 

before, during and after the seismic shooting, subdivided in groups according to distance from 

the shooting area. Statistical analyses of the catch data from "LORAN" are shown in 

Appendix F, Tables 3 and 4. In the central trial area the catch of cod declined by 44% when 

the shooting began, but the reduction was less outside of this area (respectively 16 and 25% 

at 1-3 and 7-9 nautical miles). At the furthest position (16-18 nautical miles) there was no 

significant reduction in cod weight. In contrast to the trawl catches, there was a tendency for 

the longline catches of cod to increase after conclusion of the shooting. At the three most 

central positions the increase was, on average, 33, 24 and 23%, respectvely. The reduction 

at the furthest position was 23%. 

For haddock the catches declined significantly during shooting (Appendix F, Table 4). The 

reduction was about 50% in the mean over the entire area. There was a reduction in catch 

out to the edge of the area, but the decrease was greatest in the central area (Fig. 4.3.2 and 

Appendix E, Table 6). In contrast to the results for cod, there was no sign of an increase in 

catch after the shooting had ceased. 
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Figure 4.3.1. Average longline-catch rate for cod before, during and after shooting, arranged by 
distance from the shooting area. 
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Figure 4.3.2. Average longline-catch rate for haddock by before, during and after shooting, 
arranged by distance from the shooting area. 



Figures 4.3.3 and 4.3.4 show the time series for catches of cod and haddock by longline. The 

catches are arranged in chronological order according to the time of hauling, and are shown 

as a deviation from the grand average over the entire trial period. 

LONGLINE FLEET NUMBER 

Figure 4.3.3. Longline-catch rates for cod arranged in chronological order. The two longline 
jleets taken at the same distance each day are regarded as a single unit. The catches are shown 
relative to the average (horizontal line) for the entire trial period. 
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Figure 4.3.4. Longline-catch rates for haddock arranged in chronolgical order. The two longline 
jleets tcrkrn at tl7e same clisrance each h y  are regardrd as a single unit. The catches are shown 
relcrtii~e to the nilerage (horizontal line) for the entire trial period. 

The catches of cod, as with trawl, were distinctly reduced from the moment the seismic 

shooting began. There was, however, large variation in fish quantity from longline fleet to 

longline fleet. It must be considered that the longline fleets at all distances from the shooting 

area are included in the figure and, as earlier mentioned, there was no reduction in catch at 

the border of the trial area. This will contribute to greater variability than in the 

corresponding figure for trawl catches. 



It might appear that there was a distinctly negative trend in the average catch rates for 

haddock by longline before the shooting started. However, the variability in catch was quite 

large in this period. When the shooting began, the variability in catch rates was much less, 

and the rates stabilized at a low level. 

Length distribution and number of fish in the catch 

For cod caught by longline there was a corresponding relationship between weight reduction 

and number reduction as by trawl. While the reduction in weight of cod in the central area 

was 44%, the reduction in number at the same place was only 26% (Fig. 4.3.5). A 

corresponding relationship between number reduction and weight reduction was also observed 

at the other distances. In the longline catches too this was caused by changes in the length 

distribution of the catches when the shooting began. The reduction in the number of haddock 

varied between 25 and 50% (Fig. 4.3.6), while the weight reduction was about 50% over the 

entire area. 
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Figure 4.3.5. Average number of cod caught by longline before, during and after shooting, 
arranged by distance from the shooting area. 
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F'ig~rr-e 4.3.6. Aver-age nunzber o f  hndn'ock c a u ~ h t  hy longline hefore, during and after shooting, 
nrrtctzgcirl h\! clisrarice jr0171 the shooting area. 

The length distribution for both cod and haddock was also bimodal (two-peaked) in the 

longline catches (Figs. 4.3.7 and 4.3.8). The length spectrum for cod closely resembled that 

from ti-awl, with a peak near 50 cm and another near 80 cm. Haddock had a broader 

distribution in the longline catches than in the trawl catches, and a more distinct bimodal 

distribution, with maxin-ta at  40 and 60 cm. When the shooting started, clear changes in 

length spectra occurred for both cod and haddock. For cod the peak near 80 cm broadened, 

while that at 60 cm becarne higher. For haddock a reduction occurred over the entire length 

spectrum, but the decline was greatest for fish over 50 cm. 

Fig11re.s 4.3.9 and 4.3.10 show the number of cod and haddock over and under 60 cm in the 

longline catches before, during and after the shooting (also Appendix E, Tables 7 and 8). The 

nurnber of' lai-gc cod within the shooting area was reduced by 57%. There was also a 

signil'icant reduction in the two i-egions nearest the shooting area (27 and 34%), while there 

was no change at the greatest distance. There did Lippeai- to be an increase in the catches of 

large cod after the shooting ended. For cod less than 60 cm there was, however, 
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Figure 4.3.9. Number of ( a )  small (<o0 rmk ond ( b )  large (260 cm) coci caughr by longline 
before, during and afier shooritzg. 
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Figure 4.3.10. Nurnber of ( a )  srnall (<60 cm) and (b)  large (260 cm) haddock caught by longline 
before, during and afrer shonting. 



an increase in the number of fish per longline fleet during the shooting, relative to that before 

the shooting began. This increase was respectively 65, 60, 36 and 90% at the various 

distances. 

For haddock there was a dramatic reduction in the number of large fish during the shooting 

(Fig. 4.3.10b). The number reduction within the shooting area was 85%, while the reduction 

at the other distances was respectively 69, 64 and 68% (Appendix E, Table 8). After 

conclusion of the shooting, the catch rates stabilized at the same leve1 as during the shooting. 

For smaller fish, differences in catches before and during shooting were small (Fig. 4.3. loa), 

but the cumulative reductions in number from the period before shooting to the period during 

shooting were respectively 22, 0, 3 and 11% at the various distances. This decrease continued 

after conclusion of the shooting, with a reduction from the period during shooting to that after 

shooting of respectively 27, 33, 21 and 21%. 

4.4 Stomach samples 

On board the longliner "LORAN" stomach samples from cod and haddock were taken every 

day. On board the trawler "ANNY KRÆMER" stomach samples were collected daily from 

cod. In general there was a low content of food in the. stomaches of both cod and haddock 

throughout the entire trial period. Between 91 and 95% of the cod caught by trawl had empty 

stomaches (Table 4.4.1). In the longline catches between 73 and 79% of the cod stomaches 

were empty, and 45-54% of the haddock stomaches were empty. 

The degree of filling, which is a measure of the quantity of food content on a scale from 1 

(empty) to 5, (full), changed little throughout the trial period for both species and with both 

gears (Table 4.4.2). This was low (1.09-1.17 on average) for cod from the trawl catches. 

Evidently cod caught by longline had fed more than cod caught by trawl. Here the degree 

of filling was 1.4-1.5. The cause of this difference was, however, that remains of longline bait 

(squid and mackerel) were in the cod stomaches. If stomach samples containing remains of 



Table 4.4.1. Number and proportion as a percentage (in parentheses) of cod and haddock, with and without stomach contents, from the trawl and 
longline catches. 

Cod Haddock 

Longline Trawl Lon~line 

Before During After Before During After Before During After 

6 1 67 60 82 134 84 26 43 30 
E ~ P ~ Y  (74.4) (73.6) (78.9) (93.2) (95 .O) (91.3) (45.6) (53.8) (50.0) 

With content 

With bait remains 

Table 4.4.2. Average degree of filling (+ standard error) in stomach samples from cod and haddock. Range of degrees of filling: I=empty stomach, 
5=full stomach. 

Cod Haddock 

Longline Longline 

Total Total excluding 
bait remains 

Trawl 
Total 

Total excluding 
bait remains 

Before 1.51 + 0.11 1.1 1 + 0.06 1.13 + 0.06 1.74 + 0.12 1.53 + 0.08 

During 1.51 rt 0.11 1.24 I 0.08 1 .O9 rt 0.04 1.68 + 0.10 1.54 i 0.08 

After 1.42 2 0.10 1.18 + 0.07 1.17 rt 0.07 1.80 + 0.13 1.63 + 0.12 



bait are excluded, then there is no significant difference in degree of filling for cod caught 

by longline or by trawl. The degree of filling for haddock caught by longline was somewhat 

higher than that for cod; from 1.53 to 1.63 if bait remains are ignored. 

4.5 Radiated noise measurements 

Sound measurements of the seismic shots were made by hydrophones at 80 m depth. Figure 

4.5.1 shows the waveform of a shot measured at 165 m distance from the source. The peak 

value was computed to be 248.7 dB re 1 pPa at 1 m, which is the highest value among those 

recorded. Inasmuch as the measurement point was roughly 65 deg from the acoustic axis, the 

leve1 was somewhat higher than expected from the specified on-axis sound level of the air 

gun array, namely 250 dB re 1 pPa at 1 m (Fig. 4.5.2). In addition, a variation in peak value 

from shot to shot of about 3 dB was observed. 

Figure 4.5. l .  Measured waveform for a single shot frotn the air Run nrray ot7 "ACADEMIC 
SHA TSKl Y". 



Figure 4.5.2. Waveform from the air gun arrny as specified by Geco-Prakla. 

The measured waveform deviated in part from the specified form, which most likely is a 

result of interference between the direct and surface-reflected sounds. With respect to 

frequency there was a good correspondence between measured and specified sound spectra 

(Figs. 4.5.3 and 4.5.4). The main part of the energy in the waveform was confined to the 

band 10-150 Hz. 

Figure 4.5.3. Mensured frequency spectrum from the air gun arrny on "ACADEMIC SHATSKIY". 
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Figure 4.5.4. 
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Frequency spectrum from the air gun array as specified by Geco-Prakla. 

The spectral level of the sound from the air guns was about 120 dB over the ambient noise 

level (Fig. 4.5.5) and about 60 dB over the noise leve1 from "STALLO" and "ANNY 

KRÆMER" when trawling. Figures 4.5.6 and 4.5.7 show the noise spectra from all of the 

vessels at trawling or working speeds and when cruising, respectively. 

F r e q u e n c y  (Hz)  

Figure 4.5.5. Ambient noise level on North Cape Bank ( I )  and in Sørøy Sound ( 2 )  during acoustic 
measurement of the air gun array and vessels. 
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Figure 4.5.6. Frequency spectra during working conditions for the vessels that participated in the 
[rial. "ANNY KREMER" and "STALLO" were measured during trawling. "LORAN" was 
measured during heaving of the longline. "ACADEMIC SHATSKIY" was measured at the speed 
that is used during shooting with the air gun array. 

- S t o l l o  
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Figure 4.5.7. Frequency spectra of all vessels that participated in the trial, measured under 
free-sailing conditions. 
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With respect to noise, "STALLO" and "ANNY KREMER" were sirnilar both when trawling 

and cruising, with a maximum leve1 under cruising of about 153-155 dB re 1 pPa/Hz at 1 m 

in the frequency band 60-200 Hz. "ACADEMIC SHATSKIY" had a maximum level of 160 

dB re 1 pPalHz at 1 m over the band 90-200 Hz when cruising, but was much lower under 

operation. When cruising the noise leve1 of "LORAN" resembled that of the trawlers, while 

the noise level was at least 10 dB less when working. 

4.6 Current measurements and STD-measurements 

The current speed at 10 m over the bottom was on average 12 c d s ,  principally in a northerly 

direction (Appendix G, Figs. 1 and 2). Although a diurnal variation was demonstrated, which 

is assumed to be tidal, no systematic differences between the various periods were 

demonstrated which could have influenced the longline results. 

Typical temperature, salinity and sound speed profiles in the survey area are shown in 

Appendix G, Figure 3. The sound speed varied from 1467 to 1471 d s ,  and it is on this basis 

that approximately linear, direct sound paths are expected in the survey area. 



5. DISCUSSION 

5.1 Does seismic shooting affect catch and catch-availability of cod and 

haddock? 

Effect on catch rates 

The acoustic mapping and catch trials with trawl and Iongline on North Cape Bank showed 

that seismic shooting with air guns affects the fish distribution and catch rates for cod and 

haddock, not merely locally within the region where shooting occurs, but also significantly 

in surrounding areas. 

The trawl-catch rates for both cod and haddock was halved within the total survey area of 40 

x 40 nautical miles when the shooting commenced. The reduction was greatest in the center, 

that is, in the seismic shooting area, where the reduction was as much as 70% compared to 

the rate before the shooting began. The reduction in trawl catches was in general agreement 

with the acoustic observations, which indicated a reduction of 45% in the total quantity of cod 

and haddock within the survey area. Similarly, the reduction in acoustic values was greatest 

in the central region. 

The reduction in longline-catch rates for cod were not as great as those for trawling. The 

reduction was 44% in the seismic shooting area, but the influence on catch rates gradually 

diminished towards the border of the survey area. For the longline fleets that were set 

furthest from the shooting area (16-18 nautical miles), no decrease in catch rates for cod was 

observed. For haddock, a reduction in weight per fleet of roughly 50% was demonstrated 

over the entire survey area. 

The catching principles for trawl and longline are quite different. A trawl is an active gear 

which in principle catches all fish over a given size that come between the trawl doors within 



the height of the trawl, if avoidance and sweep effects are ignored. In the present case, the 

distance between the trawl doors is 150 m and the trawl height is 4.2 m. Longline is a 

passive gear which is based on the principle of active search by the fish. Fish sense odors 

from longline bait over a large area, dependent on dissolution of the odor-bearing substances, 

water velocity, etc., and move towards the gear if wanting to feed. Longline can be saturated 

with respect to the catch quantity, because it cannot catch more fish when all of the hooks 

are occupied or the bait has been consumed (Skud 1978). This indicates that longline does 

not necessarily give a true picture of the total quantity of fish in an area. 

Two possible reasons may be given for the reduction in trawl-catch of cod at the border of 

the survey area, which was not observed by the longline. Firstly, a density gradient was 

observed from the center towards the border of the survey area during shooting. Although 

the quantity of cod was reduced in the border region, it is possible that the number of fish 

remaining in the vicinity was sufficient to maintain the longline catch, in other words, that 

longlining does not give a true picture of the total quantity in the region. Secondly, there 

may be differences in fish reaction to noise from the seismic shooting, dependent on the 

distance from the source of sound. The difference in sound level between the center and 

16- 18 nautical miles is large, and the sound will clearly be more unpleasant and frightening 

to fish near the source of sound. It may be assumed that the behavior pattern of fish, 

including grazing behavior, is affected more near the sfiooting area than further away. This 

can result in a smaller proportion of the fish seeking longline in the central trial area. 

The reduction in catch rates that was observed for cod and haddock on North Cape Bank 

largely agrees with that found in other investigations. LØkkeborg and Soldal (1993) found 

a 50-80% reduction in the catch of cod on longline fleets placed within a seismic shooting 

area off the Finnmark coast. Also observed was a reduction of about 80% in the secondary 

catch of cod in the shrimp fishery within and near to (up to 5 nautical miles distance) the 

seismic shooting area east of Bear Island and off the coast of east Finnmark. L~kkeborg and 

Soldal (1993) also observed, however, an increase in the secondary catch of cod in the 

cornrnercial saithe fishery on Storegga during two brief periods of seismic shooting (3 and 

9 hours). This increase is explained by a "plowing" effect, which will be discussed in more 



detail ~ ~ e l o w  under the heading "Effect on fish behavior pattern". Skalski et al. (1992) 

observed a 50% reduction in longtine catches of various redfish species off the California 

coast during operation of a single air gun. 

Effect on large and small fish 

By splitting the catch into two size groups (larger and smaller than 60 cm or about 2 kg), i t  

was evident that large fish disappeared from trawl and longline catches in a larger degree than 

did small fish. However, while the number of small cod was reduced in the trawl catch, the 

nuruber increased in the longline catch, The acoustic investigations also showed that both 

size groups were reduced, but that the relatively greater reduction occurred for fish larger than 

60 cm. A similar relative reduction was observed for haddock, both from trawl and longline 

catches and from the acoustic estimates, although a reduction in both size groups was not 

demonstrated. 

The reason that the number of small cod in the longline catch increased somewhat, rather than 

decreased as in the trawl catch and acoustic estimates, may lie hidden in the catch capacity 

of the several gears and catching method. While the trawl and acoustic data give a more 

direct measure of stock size, fish behavior plays a major role in catching by longline. What 

is caught by Iongline can, among other things, be the result of competition among different 

species and size groups. As already rnentioned, i t  was especially the large fish that 

disappeared when the shooting began. This suggests that the smaller fish had less competition 

in the fight for food, in this case in the form of longline bait, and there could thus be an 

increase in the number of small fish caught by longline even if the total number of fish in the 

area was somewhat reduced. 

A question can also be raised as to why a larger proportion of large than small fish 

disappeared? One theory is that larger fish perceive sound from air guns as more unpleasant 

than do srnaller fish, for example, because of the effect of swimbladder resonance. If the 

air-filled swimbladder vibrates in strong resonance, this must be considered as unpleasant for 



the fish. The resonance frequency depends on the swimbladder size, thence the fish size. 

The larger the fish is, the lower the resonance frequency. However, the resonance frequency 

for a pressure-compensated cod that is 1 m long is about 600 Hz (Hawkins 1977; Lovik & 

Hovem 1979). The main part of the energy in the air gun spectrum is under 150 Hz. At such 

high frequencies as 600 Hz and above, the energy is significantly less. There should therefore 

be little reason to assume that resonance phenomena can cause differences in the behavior 

pattern of large and small fish. 

Another explanation is that the differences are due to size-dependent differences in swimming 

capacity of fish. Larger fish clearly have a greater ability to flee from the sound source. In 

case fish react to shots from the air gun array with calm avoidance, it may be assumed that 

they swim away at the so-called cruising speed. For a 30-cm-long cod this implies a 

swimming speed of 0.6 m/s, while a 70-cm fish will swim at 1 d s  (Wardle 1977). At such 

speeds the cod can swim without exhaustion. If the fish reacts with panic, it can increase its 

speed, but only over a short time period. If it is assumed that fish within the shooting area 

when the shooting began swam out of the area at cruising speed, then a 30-cm fish would 

have been able to swim 52 km or 28 nautical miles in the course of a single 24-hour day, and 

a 70-cm fish, 86 km or 47 nautical miles. Both would have been able to reach the outer edge 

of the trial area in under one day without panic-swimming. It is thus unlikely that mere 

swimming capacity prevents fish smaller than 60 cm from avoiding the sound to the same 

degree as larger fish do. Accordingly, it must be concluded that the present theories do not 

account for differences in response among large and small fish. 

Effect on fmh behavior pattern 

It hrs earlier been asserted (Dalen & Raknes 1985) that bottom fish such as cod and haddock 

react to noise by seeking the bottom, where it remains inactive as long as it is frightened. 

This ought to render the fish more available to bottom trawling, which actively catches fish 

that are on the bottom or within 4 m of the bottom. Longline catches should thus be reduced, 

because this type of fishing is based on the fish actively seeking food. 



The i i  \ , i l \  on North Capc I : , ~ n k  do not support this hypothesis. The acoustic mapping 

demonstrated that the fish quantity both in the pelagic and bottom-near parts of the water 

column were reduced. If the fish was frightened to so near the bottom that it could not be 

acoustically detected (acoustic "dead zone"), then the relative proportion of measured acoustic 

density in the bottom channel and catch rates for bottom trawl should have changed during 

the shooting. This was not the case. The correlation between bottom-trawl catches and 

acoustically measured fish density in the bottom channel was quite high (r=0.84), and the 

relationship between catch and acoustics was similar in all three periods (p=0.534). 

Within the shooting area the catch rates sank immediately after the onset of shooting. At 1-3 

nautical miles from the shooting area the catch rates in the first two hauls that were taken 

after the shooting began were at least as large as those taken before the shooting. Most likely 

this is explained by a "plowing" effect around the seismic vessel. Fish react to sound by a 

diagonal movement downwards and away from the sound source. While the fish are moving 

i t  is possible that they bunch around the sound source. This effect will be brief and disappear 

as soon as the fish has had enough time to swim away from the area. Such a diving response 

to sound stimuli is described both in small-scale trials (Engås et al. 1991) and through studies 

of fish reaction to vessel noise in field conditions (Olsen et ai. 1983; Ona 1988; Ona &  god^ 

1990). An increase in the secondary catch of cod under trawling of saithe on Storegga after 

brief seismic shooting has been explained according to such a reaction pattern (Løkkeborg & 

Soldal 1993). 

In  case the fish remained inactive on the bottom after huving been frightened by a sound 

source, the stomach contents should decrease in course of the trial period, because the fish 

will no longer actively seek nourishment. Stomach samples from fish on North Cape Bank 

during the trial gave no support to this hypothesis. There was generally a low content of food 

in the stomachs through the whole trial period, and no changes were observed in the degree 

of stomach filling or in the proportion of stomachs with contents while the trials lasted. 



Effects of catching effort 

There may be reason to question whether the large effort with the gear within the trial area 

can explain the observed reduction in catches. The relatively largest effort (number of trawl 

hauls and longline fleets per unit area) was made within the shooting area. Before the 

shooting commenced, 13 trawl hauls and 14 longline fleets were taken within this area. For 

the trawls, about 7 tons of cod and 0.5 tons of haddock were captured, and for long line, 

about 13 tons of cod and 4 tons of haddock. According to the calculated sweep area for the 

trawl, 5.7% of the area in the inner region was covered, that is, about 6% of the fish near the 

bottom (up to 4.2 m height) was caught, in case all fish between the doors was caught. For 

longline i t  is is difficult to compute an effective sweeping area. The acoustic estimates show 

however that there was about 110 tons of large cod (>60 cm) near tne bottom within the 

central area before the shooting began. In the trawl and longline catches there was about 13 

tons of fish over 60 cm. This indicates that the maximum exploitation of fish near the bottom 

was about 10%. In total, there was about 710 tons of fish within the central region. The total 

catch was about 20 tons, or less than 3% of the total available. 

Based on the catching effort, a weak reduction in the catches could be expected with time, 

something that is particularly suggested by the data set on haddock. However, the catching 

trials demonstrate that the seismic shooting caused a reduction in catch that far exceeded that 

which the actual catch could cause. In case the reduction should be exclusively attributed to 

catching, then there should also be expected a continued decrease in the catches after the 

seismic shooting had ended. According to both the acoustic abundance estimates and trawl 

catches of cod, there was a flattening of the leve1 after the shooting. The longline catches 

showed a tendency towards an increase. The haddock catches, however, showed a continued 

weak decrease for both gears, which can suggest a distinct fishery effect. 

A reduction in the stock because of catching should also produce an even, gradual decrease 

in catches throughout the trial period. A large and rapid reduction in the catches immediately 

after the seisrnic shooting began cannot be explained as a fishery effect. All such trials will 

inevitably be subject to lesser errors due to the effect of the experimental design. With such 



an iniriiilly large stock, here c,rirnated to be about 33,000 tons of fish, a total exploitation of 

about 100 tons must have had a minimal effect on the result. 

5.2 Distance effect 

Expected reaction distance 

One of the initially formulated problems that was to be addressed by the trial on North Cape 

Bank was determining how far from the shooting area a possible effect on catch could be 

proven. The size of the trial area (40 x 40 nautical miles) was chosen based on an 

expectation of how far away fish would react to a sound leve1 corresponding to that of an air 

gun array and on experiences from earlier investigations. 

On the basis of a sound pressure leve1 of 210 dB re 1 pPalHz at 1 m in spectral leve1 and a 

transmission loss of 20 log R, the sound leve1 18 nautical miles from the air gun array would 

be about 120 dB re 1 pPa/Hz. According to Chapter 2, fish should be able to perceive this 

sound IeveI, and it was expected that there would be a reaction out to about 5.4 nautical miles 

(10 km). 

The acoustic observations and trawl catches demonstrated, however, that the fish were 

affected over a larger area than expected from the assumed source leve1 and reaction distance. 

The trawl catches showed a significant reduction over the entire trial area, even l8 nautical 

miles from the shooting area. Longlining showed a significant decline in haddock catches, 

but not in cod catches, at the most distant longline fleet (16-18 nautical miles from the 

shooting area). At the other positions there was a demonstrable reduction in catches of both 

cod and haddock. 



As earlier mentioned, changes in behavior were demonstrated with a total sound level of 

150-167 dB re 1 pPa among redfish species (Sebastes sp.), when subjected to noise from a 

single air gun (Pearson et al. 1992). This corresponds approximately to a spectral level of 

110-130 dB re 1 pPa, or the sound leve1 computed for the edge of the investigation area. 

This can suggest that the assumed difference between detection and reaction levels for air gun 

noise is less than expected. 

Effect of vessel noise 

Throughout the triai period there was considerable traffic due to vessels in the trial area, 

especially in the shooting area. It may be wondered whether vessel noise may have 

contributed to the frightening of fish out of the region. As earlier mentioned, it has been 

demonstrated that fish react by avoidance when sound from propeller and machinery exceeds 

a given level (see, for example, Olsen et al. 1983; Ona 1988; Engås et al. 1991; Ona &  god^ 

1990). That vessel noise could have produced local avoidance cannot be denied, but there 

are many factors which show that this can hardly explain the observed reduction in fish 

density and catch rates. 

There was intense fishing within the central area in the days before and during the seismic 

shooting. A reduction in the stock and catch as a consequence of vessel avoidance could be 

demonstrated by an even, moderate decrease. However, an abrupt and significant reduction 

in catch was observed irnrnediately with the onset of shooting by the seismic vessel. The 

fishing vessels and the acoustic survey vessel crisscrossed the entire trial area in transects 

from border to border. For fish on the bottom the influence of noise relative to the vessels 

will be independent of direction. Vessel noise could hardly cause a net migration out of the 

area, but rather brief local movements in random directions around the vessels. That reactions 

to vessel noise are local in extent, with a duration of 8-10 minutes, has als0 been 

experimentally demonstrated (Ona 1988; Ona &  god^ 1990; among others). 



At thc i>dge of the area the cl;;ree of coverage with both acoustics and catching trials was 

much lower than in the center. Here the influence of the vessels was co small that an effect 

on the stock is most unlikely. Nonetheless, a reduction both in trawl catches and acoustically 

measured fish density was observed. An important point is that for fish near the bottom the 

sound leve1 from the air gun array is higher than that from the vessels over the entire trial 

area, even at 18 nautical miles. Comparing spectral levels, the noise at the bottom directly 

under a fishing vessel is about 110 dB re 1 pPafHz, or just over the fish detection threshold, 

while the sound leve1 from an air gun will be about 120 dB re 1 pPa/Hz. The noise from an 

air gun array will thus exceed vessel noise, even at the edge of the trial area. 

5.3 Time effect 

Another problem formulated at the outset was determining how long after the shooting 

program was completed a possible effect on fish density and catch rates could last. The 

acoustic mapping showed no increase in the density of cod and haddock during the five days 

after the shooting ceased. The trawl catches also failed to show any increase during the same 

period. However, a return to the pre-shooting fish size distribution was suggested. During 

the shooting there was a marked decline in the average size of caught fish. This decline was 

greatest in the central region and less towards the periphery. These differences, depending 

on the distance from the shooting area, were disappearing as the trial was ending, most likely 

because the fish that remained in the area began to disperse in random fashion. 

With longline an increase in the catches of cod was observed at the end of the trial period, 

but not in the catches of haddock. This is also an indication that the conditions began to 

normalize within a few days of completion of the shooting. Longline-catching depends, as 

earlier mentioned, on fish actively seeking the bait. Even if the fish density, as reflected in 

the trawl catches and acoustic abundance estimates, did not increase, the catch rate with 

longline could increase if the fish changed its feeding behavior towards the longline bait. It 

is possible that fish increase their search for food when the scaring effect of air guns ceases. 



All in all the trawl catches showed no indications of normalizing five days after the shooting 

stopped, but the longline catches did change in a positive direction. The winter longline 

fishery for cod off the coast of Finnmark produced evidence for normalizing of catches near 

seisrnic vessels roughly one day after conclusion of shooting (Løkkeborg & Soldal 1993). 

In addition, the secondary catch of cod in shrimp trawls increased to its pre-shooting leve1 

approximately one day after the seismic vessel left the area (Løkkeborg & Soldal 1993). 

Clearly it is difficult to give a simple answer to the question of how much time it takes before 

catches return to their pre-shooting leve1 after a period of shooting. Most likely this varies 

with season, locality, duration of shooting, and so forth. Factors such as the availability of 

food at the site, whether the fish are migrating, etc., will almost certainly also play an 

important role. 



6. CONCLUSION 

The trials on North Cape Bank showed that seismic shooting with air guns has an effect on 

fish distribution and catching rates for cod and haddock, not only locally within the area 

where the shooting takes place, but also in the surrounding area. 

The total quantity of cod and haddock in the investigation area, as measured acoustically, was 

reduced by 45% compared to the pre-shooting quantity. The reduction was largest within and 

out to 5 nautical miles from the center of the shooting area. The fish quantity decreased in 

both the pelagic and bottom (lowest 10 m) parts of the water column. 

The results from the catching trials agreed well with the acoustic abundance computations. 

When the shooting began, the catch rates for cod by trawling and haddock by trawling and 

longlining decreased by about 50% throughout the trial area. The reduction was greatest 

within the shooting area, where the decline in trawl catches was 70% compared to the level 

before the shooting began. The reduction in catch rates for cod by longlining were however 

less. Within the shooting area the reduction was 44%. This decreased gradually out towards 

the edge of the investigation area. At the most distant longline position ( 1  6- 18 nautical miles) 

there was no change in the catch rates for cod. 

The weight reduction in trawl and longline catches was larger than the number reduction for 

both cod and haddock. This was associated with the reduction in catch rates being larger for 

fish greater than 60 cm than for fish less than 60 cm. On longline the number of small fish 

was observed to increase during the shooting. The reason that the seisrnic shooting affects 

large fish more stroiigly than small fish is unknown. 

Acoustic mapping and catch rates with the first trawl hauls taken after the start of shooting 

suggested that the fish reacted to noise from the air guns by swimrning out to the side of the 

sound source and out of the trial area. No evidence was found for the hypothesis that the fish 

remained in the area, but distributed in such a way that it was not available for catching. 



During the trial period the catching effort was large within the trial area, especially in the 

shooting area. However, the exploitation was not large enough to be able to explain the large 

reduction that was demonstrated in the acoustically measured abundance and in the catch rates 

by trawl and longline. A reduction in fish quantity as a consequence of exploitation would 

produce a gradual decline in the catch rates. The same decline could also be explained by 

avoidance of the area due to noise from the survey vessels. The triais demonstrated, however, 

a large and sharp decline in the catch quantity that coincided with the start of the shooting. 

This reduction can hardly be explained from either exploitation or vessel avoidance alone. 

The size of the trial area, 40 x 40 nautical miles, was established on the basis of estimates 

of how far from an air gun array fish would be able to hear and react to the transmitted sound 

signal. Effects on both fish distribution and catch rates were found, however, over a larger 

area than was anticipated at the outset. Both the acoustic abundance estimates and catch rates 

indicated a reduction throughout the investigation area, out to l8 nautical miles. The longline 

catches of cod, however, were not reduced at the furthest longline position (16-18 nautical 

miles). The trials therefore do not give an exact answer to the question of how far the 

influence on catching extends. 

The investigation also fails to answer the question of how long effects of seismic shooting 

will last after cessation of the shooting. No increase in fish quantity was observed in the area 

during the five days the trials continued after the shooting ended. The single exception was 

a small increase in the catch rates of cod by longline. A change in the length distribution in 

the trawl catches suggested a certain normalizing of conditions after the shooting. 
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APPENDIX A 

ACOUSTIC METHODOLOGY 

The standard acoustic method of estimating fish abundance has been followed in the 

investigation. The method is thoroughly described in textbooks, such as those by Forbes & 

Nakken (1972), Johannesson & Mitson (1983), MacLennan & Sirnrnonds (1992) and 

Sirnrnonds et al. (1991). For clarification, a brief outline of the method is given here. 

The echo integration method is based on a physicai measurement of area density of fish, 

which is possible when the echo sounder is calibrated and accurately compensates for 

geometrical spreading and absorption of the transmitted sound pulse and received echo. How 

this is executed in the EK500 echo sounding system and Bergen Echo Integrator is described 

in detail by Nes (1992) and Knudsen (1990). 

The echo integration equation, 

consists of just three terms when the echo sonder is calibrated, namely 

pA = area density of fish (number of fish per square nautical mile), 

sA = average measured acoustic backscattering coefficient (square meters per square 

nautical mile), 

<o> = average acoustic backscattering cross section of an individual fish (square 

meters). 

The area backscattering coefficient (sA) is measured by surnming all echoes, here expressed 

through the volume backscattering coefficient (sv), within a specified depth intervai from zl 

to z2, and further accumulated (or integrated) over a specified number of transmissions 

(pings) : 



APPENDIX A 

Division of this sum by the number of pings over a given interval of sailed distance, for 

example, 1 nautical mile, gives a quantitative measure of "acoustic" density. This average 

often involves thousands of individual measurements, depending on the ping rate and vessel 

speed. 

The frequency of measurement, or registration, both vertically and horizontally, is chosen by 

the operator, and will depend on the purpose of the investigation. The raw data wi11 in a11 

cases be stored ping by ping, with full, l-m vertical resolution, such that further analyses may 

be performed on the same basic data. 

The acoustic backscattering cross section of a single fish of the same species and size that is 

measured is expressed as <o>. This is the average contribution that an individual fish makes 

during echo integration, and its value is needed for converting acoustic measures of fish 

density to biological measures of the same. The backscattering cross section measures the 

capacity of the target to reflect or scatter sound back towards the transducer, hence depends 

on both the size and reflection properties of the target. 

The average value of the acoustic cross section, or average "target strength", is known for a 

number of species as a function of fish size, both from experimental measurements and from 

measurements made in situ by means of the split-beam part of the EK500 (Foote 1987; 

MacLennan & Simrnonds 1992). By means of such measurements on individual cod and 

haddock of various sizes, the Institute of Marine Research has established a size-dependent 

target strength relation for these species. This is now used in the abundance estimation of 

cod and haddock stocks in the Barents Sea: 
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where TS is the target strength, and L is the fish length in centimeters. As an exarnple, a 

100-cm-long cod will have an average target strength of -28 dB. Since this measure is 

logarithmic, conversion to a linear quantity must be effected, as by the definition of target 

strength given by Urick (1975): 

or, inverting, 

<a> = 41c 10 ( TS/ l O )  

This means that both species and size data are required from trawling in order to perforrn an 

accurate acoustic abundance estimation, in case trawl data must be used to estimate the 

average fish target strength. 

Interpretation of the echogram and echo integrator data 

When the echogram registrations and trawl catch data are available for a given region, the 

echograms are displayed on a workstation, and the echo integration system BE1 (Knudsen 

1990) is used for interpretation. During this process the registrations and acoustic 

measurements are analyzed in 5-nautical-mile sections, being assigned to fish scattering 

classes on the basis of a series of interpretation criteria and the degree of mixing in the trawl 

catches. The basic interpretation scheme employed by the Institute of Marine Research is 

described by Dalen & Nakken (1983). A further refinement of this method is now possible 

through the Bergen Echo Integrator (BEI), where thresholding can be effected instantaneously 

on the echogram image, and an arbitrary subdivision of the water column can be made. Fish 

scatterers that can be easily distinguished according to appearance, echo strength and position 

in the echogram image may be imrnediately separated out, while those that are rnixed and 
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difficult to distinguish because of sirnilar acoustic properties are separated later on the basis 

of data from trawl catches. 

Trawl catches 

Trawl catches taken inside of a given area, when considered representative of the acoustic 

registrations, are often combined. Weights are assigned in this process as the sarnples are 

representative of the fish quantity or only of fish length. When the trawl catches are coded 

in accordance with the Institute of Marine Research sampling protocols, a standard computer 

program is run to compute the abundance of each length group for each species, and 

eventually the abundance by age class. 

For the simple case of a single species, the quantity in each length group is computed as 

follows: 

Given an average acoustic value for a single species over a unit area, csA> (rn2/nrn2), and 

catch information from all pertinent trawl hauls, where the number of fish in length group i 

is ni, the total number of fish in length group i is 

where coi> is computed from the target strength-fish length relation for the average length 

in the i-th length group. Thus is allowance made for size-dependent differences in target 

strength, with small fish generally having lower target strengths than large fish. In the linear 

domain, the acoustic backscattering cross section is approximately proportional to the square 

of fish length. 

The total quantity in terms of weight is computed according to the equation 
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where the mean weight for each length group is computed from individual length-weight data, 

as measured during the cruise. In the case that a fish scatterer class includes two species that 

must be separated according to the catch, the expression is sirnilar, but in the proportion of 

squared lengths for the respective species. 

Table l .  Settings and calibration values for the EK-500, measured in Olderfjord, 1 May 1992. 

Pararneterlfunction Setting Comment 

Frequency 38 kHz 

Absorption coefficient 10 dBIkrn a, 38 kHz, sea water 

Time-varied gain 20 IogR TVG factor 

Depth range (most used) 0-500 m Referred to transducer depth 3.5 
m 

Pulse duration Medium 1.0 ms 

Bandwidth Wide 3.3 kHz (filter) 

Transmitter power 2000 W Maximum 

Angle sensitivity 21.9 Phasdreal angle 

Two-way beam angle -20.0 dB (for ES38-29 Effective, ideal beam angle 
( 10 log('f')) transducer) 

Calibration 

Parameter Setting Comrnent 

SV - transducer gain 26.6 dB for integration 

TS - transducer gain 26.8 dB for TS measurement 

3-dT3 beamwidth 7.2' for TS measurement 

Alongships angle offset O.OO for TS measurement 

Athwartships angle offset O.OO for TS measurement 



APPENDIX B 

References 

Dalen, J. & Nakken, 0 .  1983:On the application of the echo integration method. ICES C.M. 
1983/B:19. 30 pp. 

Foote, K.G. 1987. Fish target strengths for use in echo integrator surveys. J. Acoust. Soc. Am. 
82(3): 98 1-987. 

Forbes, S.T. & Nakken, 0 .  1972. Manual for methods for fisheries survey and appraisal. Part 
2. The use of acoustic instniments for fish detection and abundance estimation. FAO 
Man. Fish. Sci. (5), 138 pp. 

Johannesson, K.A. & Mitson, R.B. 1983. Fisheries acoustics: a practical manual for biomass 
estimation. FAO Fish. Tech. Pap. 240. 249 pp. 

MacLennan, D.N. & Sirnmonds, E.J. 1991. Fisheries Acoustics. Chapman Hall, London, 
England. 336 pp. 

Urick, R.J. 1975. Principles of underwater sound. 2. ed., Mc. Graw-Hill Book Company, New 
York, 1975. 384 pp. 



99 APPENDIX B 

Figure I .  Standard sampling trawl, Campelen 1800, with specijication of the rigging. 
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Figure 2. Standard fishing trawl, Alfredo no. 3, with speci'cation of the rigging. 
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Figure 1. Length-weighr curve for cod as caught by trawl with "ANNY KRÆMER". 

Length (an) 

Figure 2. Length-weight curve for haddock as caughr by trawl with "ANNY KRÆMER". 
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o 
O 20 40 60 80 1 O0 120 

Length (cm) 

Figure 3. Length-weight relationship for cod in the southwestern part of the Barents Sea in 1992. 
3  3.083 Source: Demersal Fish Section, Institute of Marine Research. Fitted curve: w=6.30 10- L , 

weight w in grams, length L in centimeters. 

O 20 40 60 

Length (cm) 

Figure 4. Length-weight relationship for haddock in the southwestern part of the Barenrs Sea in 
1992. Source: Demersal Fish Section, Institute of Marine Research. Fitted curve: w-6.26 
L ~ . ' ' ~ ,  weight w in grams, length L in centimeters. 
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Table 3. Average number of small (<60 cm) and large (260 cm) cod in trawl catches by "ANNY KRÆMER" before, during and after 
shooting. N = number of trawl hauls, nm = nautical miles (distance from the shooting area). 

In shootine area 1-3 nm 7-9 nm 16-18 nm 

Catch Standard Catch Standard Catch Standard Catch Standard 
N (nohaul) error N (nohaul) error N ( n o a )  error N (nohaul) error 

S Before shooting 12 76.8 7.7 16 77.5 12.8 16 62.7 9.3 16 60.3 12.9 
m 
a During shooting 15 63.7 7.8 16 84.5 14.3 17 57.7 7.7 17 33.3 2.9 
1 
I 
1 After shooting 12 58.2 7.5 16 54.6 8.8 16 51.2 7.4 16 31.0 5.7 

L Before shooting 12 110.4 11.4 16 96.9 9.1 16 75.3 7.8 16 80.6 10.1 
a 
r During shooting 15 27.5 3.2 16 47.3 7.4 17 47.8 4.0 17 45.6 5.4 
g 
e After shooting 12 36.4 2.1 16 45.7 4.6 16 49.4 5.5 16 41.7 4.8 

Table 4. Average number of small (<60 cm). and large (260 cm) haddock in trawl catches by "ANNY KRÆMER" before, during and 
after shooting. N = number of trawl hauls, nm = nautical miles (distance from the shooting area). 

In shootine area 1-3 nm 7-9 nm 16-18 nm 

Catch Standard Catch Standard Catch Standard Catch Standard 
(nohaul) error N (nohaul) error N (nohaul) error N (nohaul) error 

S Before shooting 12 76.8 7.7 16 77.5 12.8 I6 62.7 9.3 16 60.3 12.9 
m 
a Duringshooting 15 63.7 7.8 16 84.5 14.3 17 57.7 7.7 17 33.3 2.9 
1 
1 After shooting 12 58.2 7.5 16 54.6 8.8 16 51.2 7.4 16 3 1 .O 5.7 

L Before shooting 12 110.4 11.4 16 96.9 9.1 16 75.3 7.8 16 80.6 10.1 
a 
r During shooting 15 27.5 3.2 16 47.3 7.4 17 47.8 4.0 17 45.6 5.4 b 

g 
e After shooting 12 36.4 2.1 16 45.7 49.4 5.5 16 41.7 4.8 4.6 16 a1 

'd 
M 



Table 5. Average catch of cod (kglfleet) by the longliner "LORAN", combined in time in relation to shooting and distance from the 
shooting area. N = number of longline fleets, nm = nauticai miles (distance from the shooting area). 

In shooting area 1-3 nm 7-9 nm 16-18 nm 

N Catch Standard N Catch Standard N Catch Standard Catch Standard 
(kghieet) error (kgliieet) error (kgjfleet) error N (kglfleet) error 

Before shooting 14 793 44 14 784 39 14 954 55 14 882 60 

During shooting 10 437 38 1 O 647 59 10 700 49 1 O 926 73 

After shooting 9 580 49 9 802 35 8 863 65 9 712 67 

Table 6. Average catch of haddock (kglfleet) by the longliner "LORAN", combined in time in relation to shooting and distance from 
C 

the shooting area. N = number of longline fleets, nm = nautical miles (distance from the shooting area). Q: 
In shooting area 1-3 nm 7-9 nm 16-18 nm 

N Catch Standard. N Catch Standard Catch Standard Catch Standard 
(kglfleet) error (kglfleet) error N (kglfleet) error N (kglfleet) error 

Before shooting 14 306 5 1 14 247 38 14 215 21 14 173 27 

During shooting 1 O 100 4 10 124 1 O 10 121 14 1 O 85 6 

After shooting 9 84 6 9 95 13 8 109 13 9 104 22 



Table 7. Average number of small ( 4 0  cm) and large (260 cm) cod in longline catches by "LORAN" before, during and after 
shooting. N = number of longline fleets, nm = nautical miles (distance form the shooting area). 

In shooting area 1-3 nm 7-9 nm 16-18 nm 

Catch Standard Catch Standard Catch Standard Catch Standard 
N (nolfleet) error N (nolfleet) error N (nolfleet) error N (nolfleet) error 

S Before shooting 14 8 8 8 14 87 6 14 83 9 14 5 1 7 
m 
a During shooting 10 145 10 10 139 12 1 O 113 9 1 O 97 6 
I 
1 After shooting 9 147 12 9 144 9 8 134 8 9 73 1 O 

L Before shooting 14 174 11 14 175 10 14 214 13 14 196 13 
a 
r During shooting 10 75 7 10 128 13 1 O 142 l I 1 O 202 18 

After shooting 9 112 13 9 164 9 8 185 15 9 159 17 

Table 8. Average number of. small ( 4 0  cm) and large (260 cm) haddock in longline catches by "LORAN" before, during and after 
shooting. N = number of longline fleets, nm = nautical miles (distance from the shooting area). 

In shooting area 1-3 nm 7-9 nrn 16-18 nm 

Catch Standard N Catch Standard Catch Standard N Catch Standard 
N (nolfleet) error (nolfleet) error N (nolfleet) error (nolfleet) error 

S Before shooting 14 104 11 14 96 12 14 90 13 14 65 13 
m 
a Duringshooting 10 8 1 5 1 O 96 7 10 87 10 1 O 5 8 11 
1 

1 After shooting 9 59 5 9 64 6 8 69 13 9 46 7 
Y 

L Before shooting 14 84 18 14 62 13 14 53 7 14 44 9 3 
a 
r During shooting 10 13 1 10 19 4 10 19 6 1 O 14 4 9 C( 

w C After shmting 9 14 l 9 17 4 8 19 3 9 25 9 g 
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CATCH DATA STATISTICS 

Trawling 

Table 1 shows the most important statistical parameters for cod, where y (see model (1) in 

"Materials and methods") is the logarithm of the weight per haul. Interaction effects that are 

based on the cell average are not significant (p=0.12). This indicates that the effect of the 

seismic shooting is not dependent on distance within the investigated area. Figure 1 shows 

the cell averages. Since the effects of interactions are not significant, the main effects may 

be considered. The distance effect is not significant (p=O. 19). Although this is not of direct 

interest to the study, it indicates that the density of cod was quite uniform over the entire area 

of investigation. The time effect, however, is highly significant (p<0.001). Figure 2 shows 

computed average weights within the entire area, viewed integrally, together with the 95% 

confidence interval for the three time periods. The catch rate fell significantly during the 

shooting, and it appears not to have increased during the five days the investigation continued 

after conclusion of the shooting. 

Table 1. Analysis of variance for the total weight of cod in the trawl catches. The weights are given 
in logarithmic units. 

Source of Sum of Degrees of Average sum 
F 

Significance 
variation squares freedom of squares level 

Main effects 
Time 20.99 2 10.49 44.67 0.000 
Distance 1.13 3 0.37 1.60 0. 190 

Interaction 
Time*Distance 

2.42 
6 0.40 1.72 0.118 

Residual 40.64 173 0.23 

Total (corrected) 64.43 184 
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Figure l .  Average trawl-catch rates for cod, combined over time in relation to shooiing and by 
distance from the shooring area. 
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Figure 2.  Average catches of cod, with confidence intervnl, before, during and after shooring 
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The suitability of the model (1) for cod data was evaluated by standard diagnostic control of 

the residuals (see, for example, Box et al. 1978). No lack of fitting was found except when 

the residuals were treated as a time series (for example, as a function of the collection 

sequence), where a weak autocorrelation was found (r=0.2). However, since the hauls at 

different distances were made in a different sequence during the trial period, this will not have 

a significant effect on the computed probability levels in the model. 

As a final check on the significance of the reduction in catch after the shooting began, a time 

series model was used to analyze the data (Box & Jenkins 1976). An intervention analysis 

(Box &Tiao 1975) demonstrated that there was a 50% reduction in catch after the shooting 

began. 

The results from the statistical analyses of trawl-catch rates for haddock resembled those for 

cod (Table 2). Interaction effects were not significant (p=0.56). The main effect for distance 

was however significant (p<0.001), which indicates that the density of haddock varied over 

the trial area. As is apparent from Fig. 3, the density of haddock was greatest in the center, 

decreasing towards the periphery of the trial area. The time effect was also highly significant 

(p<0.001). Average catch rates over the entire area are presented in Fig. 4. As was the case 

for cod, the trawl catch rates for haddock fell during the shooting and seemed not to have 

increased as long as the investigation continued. 

Table 2. Analysis of variance for the total weight of haddock in the trawl catches. The weights are 
given in logarithmic units.  

Source of Surn of Degrees of Average sum 
F Signif'icance 

variation squares freedom of squares level 

Main eftectg 
Tirne 28 14 2 14 07 22 67 O O00 
Distance 17 29 3 5 76 9 28 O O00 

Interaction 
Tirne*Distance 3 .O3 6 

Residual 107.36 173 0.62 

Total (corrected) 154.73 184 
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Figure 4. Average catches of haddock, with confidence interval, before, during and aper shooting. 
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Longlining 

Table 3 shows the statistical results for cod caught by longlining. Interaction effects between 

time and distance are significant (p<0.001) and consequently the main effects specified in the 

model are meaningless. Figure 5 shows the cell averages. It appears that the catch decreased 

in the central area, but that the effect was less in the border regions of the investigation area. 

Since interaction effects were signficant, it is futile to present the average catch rates for cod 

caught by longlining in a diagram corresponding to those of Figs. 1 and 3. 

Table 3. Analysis of variance for the total weight of cod in the longline catches. The weights are 
given in logarithmic units. 

Source of Sum of Degrees of Average sum F 
Significance 

variation squares freedom of squares level 

Main effects 
Time 0.85 2 0.42 1 1.68 0.000 
Disiance 1.29 3 0.43 11.71 0.000 

Interaction 
Time*Distance 0.98 6 

Residual 2.02 55 0.03 

Total (corrected) 5.01 66 

For haddock caught by longlining the interaction effect and distance effect were not 

significant (Table 4). There was, however, a time effect (p<0.001). That is, there was a 

significant reduction in the catches of haddock during the shooting that seem to be the same 

over the entire trial area. The decrease in catch was about 50%. Figure 6 shows the cell 

averages, and Fig. 7 shows the average catches in the area for the three time periods, together 

with the corresponding 95% confidence intervals. 
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Figure 5. Average longline catch rates for cod, combined over time in relation to shooting and 
by distance from the shooting area. 

Figure 6. Avrrnge longline catch rates for haddock, combined over time in relation to shooting 
and hy distance from the shooting area. 
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Figure 7. Averagc catch rates for haddock, with confidence interval, before, during and afrer 
shooting. 

Average individual weights 

The average individual weight of cod and haddock caught by trawl decreased (cod: p<O.OO 1,  

haddock: p=0.06) when the shooting started (Tables 5 and 6). For cod this reduction was 

greatest within the central region (Fig. 4.2.1 l) ,  gradually decreasing towards the periphery of 

the trial area. At the most remote trawling station (16-18 nautical miles from the shooting 

area) there was no significant change in the individual weight of cod. It appears that the 

weight began to increase somewhat again at the end of the trial period, after the shooting had 

ceased, but this increase was not significant. For haddock, changes in individual weight 

depending on distance from the shooting area and time in relation to the shooting (Fig. 4.2.12) 

were not as clear. 
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Table 4. Analysis of variance for the total weight of haddock in the longline catches. The weights 
are given in logarithmic units. 

Source of Sum of Degrees of Average sum C Significance 
r 

variation squares freedom of squares level 

Main effects 
Time 10.10 2 
Distance 0.75 3 

Interaction 
Time*Distance 0.80 6 0.13 0.77 0.592 

Residual 9.49 5 5 0.17 

Total (corrected) 2 1.42 66 

Tahle 5. Analysis of variance for individual weight of cod in the trawl catches. 

Source of Sum of Degrees of Average sum C Significance 
variation 

l 

sauares freedom of sauares leve1 

Main effects 
Time 6.42 2 
Distance 7.25 3 

Interaction 
Time*Distance 3.78 6 0.63 3.16 0.005 

Residual 34.46 173 0.19 

Total (corrected) 5 1.93 184 

Tuhle 6.  Analvsis of variance for individual weight of haddock in the trawl catches. 

Source of Sum of Degrees of Average sum K Significance 
variation 

1 

squares freedom of squares leve1 

Main effects 
Time 1 .O1 2 
Distance 0.27 3 

Interaction 
Time*Distance 0.69 6 0.11 0.64 0.699 

Residual 29.88 169 0.18 

Total (corrected) 3 1.85 180 
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Figure I .  Current speed measured on North Cape Bank during the trial period. 

Figure 2. Frequency distribution of current direction during the trials on North Cape Bank. 




