Using the FLOWBEC seabed frame to understand underwater interactions between diving seabirds, prey, hydrodynamics and MREDs

Benjamin Williamson, James Waggitt, Eric Armstrong, Paul Bell, Philippe Blondel, Shaun Fraser, Chris Hall, Beth Scott
FLOWBEC upward facing sonar platform

- Entire water column (plankton, fish, seabirds, marine mammals)
- Captures movement, behaviour and interactions with MREDs
- Self-contained, portable between sites
- Continuously samples spring/neap 2-week period
- Complemented by concurrent:
 - hydrodynamic model data
 - above water radar and bird observations
- Field proven: 5 × 2-week deployments at EMEC, Orkney, UK
Simrad EK60 echosounder (38, 120, 200 kHz)
- bird and fish abundance, school behaviour
- multi-frequency target identification
- morphology of turbulence, plankton

Imagenex multibeam sonar (260 kHz)
- interactions of fish, diving seabirds, marine mammals with MREDs
- target tracking, avoidance behaviour

ADV
- current, temperature, depth

Fluorometer
- chlorophyll (phytoplankton)
Multibeam for target tracking

EK60 for multifrequency ID

FLOWBEC upward facing sonar platform

History (seconds)

t=-7s

Turbine structure and seabed

Target tracked with multibeam

Sea surface

Fish shoal

Guillemots / razorbills

Targets moving with tide

10-50m (20m shown)

Time (9 minutes shown at Wave Energy Site)

Acoustic classification ground truthed by shore observations
Multibeam tracking of diving guillemots/razorbills feeding beneath a fish shoal at a wave energy site
Fish shoal

FLOWBEC target tracking

Green = Turbine structure, Dashed = Expected blade radius

• Target detection using the multibeam and EK60
• Target tracking using the multibeam
• Multifrequency analysis using the EK60
All tracked targets (mammals, birds, fish schools, individual fish) next to Atlantis turbine structure = 3909 tracks over 2 week period

Vertical overlap with turbine height = 227 tracks over 2 week period
Target Classification

- **Large School**
- **Single Target**
- **Small School**
- **Diving Bird**
Vertical distribution (collision risk) of target classes

- **Large School**
- **Small School**

Target Vertical Distribution
- Green = Turbine structure
- Dashed = Expected blade radius
FLOWBEC upward facing sonar platform

Benefits:

- High range (≈50m) and good detection
- Visibility / illumination independent
- Small data volumes (raw ≈ 6GB/day)
- Low power (self-contained)
- Realtime processing feasible

Limitations:

- Limited detail for species identification
- Observation of final (<1m) interaction
 - collision Y/N?
 - effect of collision?
- Any behavioural response to acoustics?

Potential solution: multi-instrument integration...
Intelligent triggering of instruments across multiple scales

- Combines large-scale with fine-detail
- Reduces data processing / archival
- Cycle passive / active acoustics
- Trigger camera for ID / detail

Multi-instrument integration

- Passive acoustic: localisation (~1km) or tag receiver
- MBES: behaviour / interactions
- EK60: abundance / ID
- Camera: ID / fine-scale behaviour

Archival tags integrated in post-processing
Investigating the ecological effects of installing and operating MREDs

- Determine collision risk probabilities
- Define vertical habitat use and any changes in habitat use pre & post installation for a range of species
- Increase overall environmental understanding of mobile animal use of high energy sites
- Inform marine spatial planning, device design, licensing and operation
- Guide scaling-up to arrays and new site selection
- Increase predictive power to eventually reduce monitoring
Using the FLOWBEC seabed frame to understand underwater interactions between diving seabirds, prey, hydrodynamics and MREDs