Modelling impact assessment in renewables development areas using the new R package, MRSea v0.1.1

LAS Scott-Hayward¹, ML Mackenzie, CS Oedekoven Centre for Research into Ecological and Environmental Modelling, University of St Andrews, Scotland

CG Walker Department of Engineering Science, University of Auckland, New Zealand.

CREEM

Centre for Research into Ecological and Environmental Modelling

marine scotland science

Introduction

- Mapping spatial distribution from line transect or vantage point surveys
- Particular focus on spatially explicit impact effects
- Previous assessment tended to measure differences in animal abundance prior to and following development.

Introduction

- This approach suffered from some disadvantages:
 - attributing any potential change to development as the causal agent
 - failing to acknowledge other forces that influence animal abundance and distribution
 - insensitivity to more subtle changes in animal populations

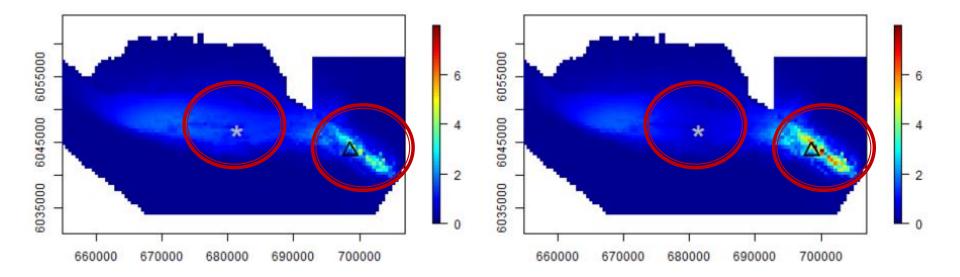
- We present a new R package MRSea,
 - developed specifically to tackle the assessment of potential impacts of renewable developments on marine wildlife
 - although the methods are applicable to other studies as well.
- The package functions can be used to analyse
 - segmented line transect data
 - and nearshore vantage point data

See CREEM website for details

The MRSea Package

- 6 data sets
 - Offshore or Nearshore (vantage point)
 - No impact effect (*no*)
 - Decrease in animals across the survey region (*de*)
 - Redistribution of animals from one part of the survey region (impact site) to another environmentally similar region (*re*)

The MRSea Package

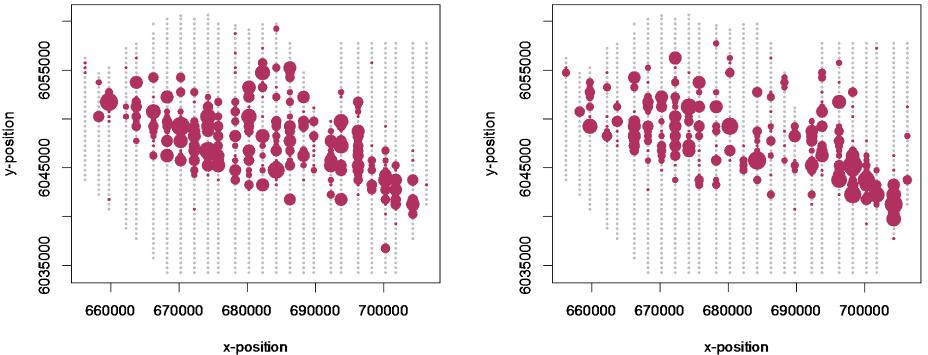

- 6 data sets
 - Offshore or Nearshore (vantage point)
 - No impact effect (*no*)
 - Decrease in animals across the survey region (*de*)
 - Redistribution of animals from one part of the survey region (impact site) to another environmentally similar region (*re*)
 - Offshore data is in the form of a line transect survey (dis.data.xx)
 - Vantage point is a grid of 41 repeatedly measured cells
 - Also a prediction grid for each data set.

The MRSea Package

- 6 data sets
 - Offshore or Nearshore (vantage point)
 - No impact effect (*no*)
 - Decrease in animals across the survey region (*de*)
 - Redistribution of animals from one part of the survey region (impact site) to another environmentally similar region (*re*)
 - Offshore data is in the form of line transect surveys (dis.data.xx)
 - Vantage point is a grid of 41 repeatedly measured cells
 - Also a prediction grid for each data set.
- A variety of functions for fitting and diagnosing models and making inference.

The Data

- We focus on off-shore survey data with a redistribution of animals within the study region
- Observed counts, with imperfect detection imposed, were lifted from the simulated true surface in the form of line-transects. This is the data set called dis.data.re within the MRSea package.



Simulated densities of birds (per km²) before impact (left) and after impact (right).

The grey star is the centre point of the impact and the black triangle the centre point of redistribution.

Correcting For Imperfect Detection

- Use distance sampling methods [5] to adjust the observed counts for imperfect detection.
- Specifically a half-normal detection function was fitted to the raw data.
- Use create.NHAT() to adjust observed counts using estimated detection function.

Mean bird counts estimated from a distance sampling analysis before (left) and after (right) the impact.

Bubbles are sized as log of estimated counts.

Model specification

- Over dispersed counts modelled with a quasi-poisson error structure.
- Covariates:
 - depth
 - season (factor; 1:4)
 - impact (factor; 0/1)
 - spatial term (x,y)
 - spatial-impact interaction term to allow redistribution
- A CReSS-GEE framework to estimate the smooth terms in the model
 - This allows for positive autocorrealation in model residuals

Model Fitting and Model Selection

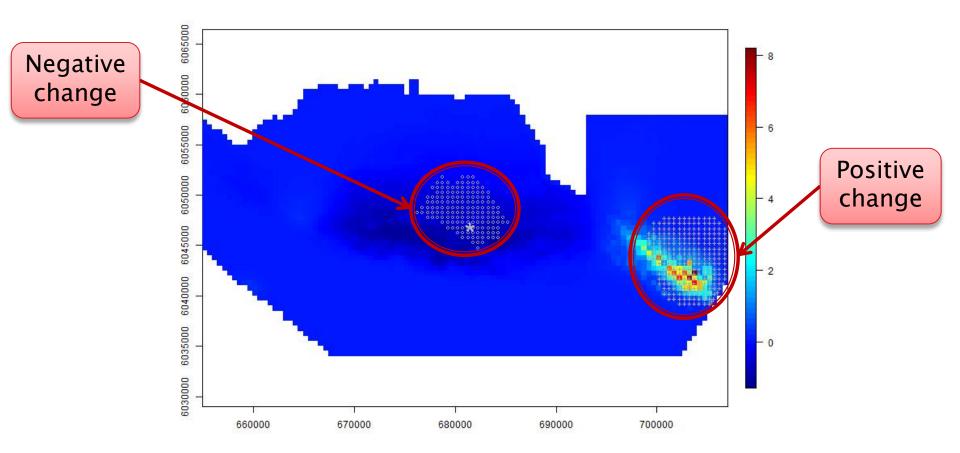
- runSALSA1D() employed to choose the smoothness of the depth relationship.
 - finds the best smoothness for each covariate but does not consider if the covariate should be linear or removed
- Alternatively runSALSA1D_withremoval() cycles through each covariate (specified to be a smooth term) and either removes or retains based on k-fold cross-validation.
- runSALSA2D() employed to determine the smoothness of the spatial term; s(x,y).
- See the MRSea user guide for details on these functions and their use [6].

- The models returned from runSALSA1D() and runSALSA2D() are of class 'glm' so functions such as summary, update, predict and fitted etc are available to the user.
- GEE based p-values may also be used for model selection.
 These can be found using the getPvalues() function.

Variable	p-value
s(Depth)	< 0.0001
as.factor(Season)	<0.0001
s(X,Y)	<0.0001
as.factor(Impact)	0.5468
s(X,Y):as.factor(Impact)	0.0081

Diagnostics

- Functions to perform diagnostics in the MRSea package include:
- runPartialPlots:
 - partial plots for the estimated relationships between each covariate and the response with GEE based confidence intervals (95%).
- runDiagnostics:
 - plot of observed vs fitted values to assess model fit
 - (with marginal R² and concordance correlation reported in the title)
 - plot of fitted values vs scaled Pearsons residuals to assess the mean-variance relationship.


- > plotRunsProfile:
 - runs profile plots ordered by covariate value, fitted value and indexed value to assess the correlated nature of residuals.
- runInfluence:
 - plots of correlated block ID vs PRESS and COVRATIO statistics.
 - used to assess how aspects of the model change when individual blocks are removed from the analysis.

Prediction and Inference

- Make predictions using predict()
- Bootstrap upper and lower percentile confidence intervals for combining both:
 - uncertainty at the detection function fitting stage and
 - uncertainty in model parameters at the count model fitting stage.
- do.bootstrap.cress calculates all the new predictions and makeBootCIs takes these to calculate the percentile intervals.

Spatially explicit Differences

- where in the predicted surface is there a significant change in animal numbers
- getDifferences() assesses the before and after predictions for each bootstrap iteration and finds the difference and the 95% interval for the difference.
- If the interval contains zero, there is likely no difference before and after.
- In this case there was a large decline in animals around the impact site and an increase in the south east of the study area.

Mean differences in predicted bird density (mean birds/km²) before and after impact. Positive values indicate more birds post impact and negative values fewer birds post impact.

'+' indicates a large positive difference and 'o' a large negative one. The grey star is the centre of the impact event.

Conclusions

- This is an example of just some of the functions available in the MRSea package.
 - A full list is available in the reference manual [2]
- A full worked example and some additional tips and tricks in the user guide [6].
- Both these documents, along with the package can be found at http://creem2.standrews.ac.uk/software.aspx

ACKNOWLEDGEMENTS

> Thanks to Marine Scotland for funding this research.

[5] висклапи, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., вогспетs, D. L., and momas, L. (2001). Introduction to Distance Sampling. Oxford University Press.

[6] Scott-Hayward LAS, Oedekoven CS, Mackenzie ML, Walker CG and Rexstad E (2013). "User Guide for the MRSea Package: Statistical Modelling of bird and cetacean distributions in offshore renewables development areas." University of St Andrews. Contract with Marine Scotland: SB9 (CR/2012/05), URL:http://creem2.st-and.ac.uk/software.aspx