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Outline

» Benchmarking of Fluidity and MIKE 21 in a simplified
tidal basin geometry.

» Implementation of turbines in coarse resolution tidal
models.

» Correction to drag coefficient to avoid incorrect mesh
dependence

Stephan Kramer et al.

The modelling of tidal turbine farms using multi-scale, unstructured mesh models



Imperial College

http://amcg.ese.ic.ac.uk/fluidity
o Open Source Finite Element Modelling
1ty framework used for a variety of Earth sci-
ence and engineering applcations.
Fluidity solves 3D non-hydrostatic Navier Stokes equations, but
also depth-averaged 2D shallow water equations. It implements a
host of advanced numerical techniques, e.g. mesh adaptivity which
dynamically adapts the mesh to focus resolution where needed.

In development: optimisation framework for farm layouts
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o Open Source Finite Element Modelling
1ty framework used for a variety of Earth sci-
ence and engineering applcations.
Fluidity solves 3D non-hydrostatic Navier Stokes equations, but
also depth-averaged 2D shallow water equations. It implements a
host of advanced numerical techniques, e.g. mesh adaptivity which
dynamically adapts the mesh to focus resolution where needed.

In development: optimisation framework for farm layouts

Widely used in marine engineering.

» 3D and 2D capability (MIKE 3, MIKE 21)
» Sediment transport
MI KE » Ecological modelling (ECO Lab)
by DHI » Wetting and drying
» Structures (including turbines!)
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Tidal basin benchmark
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|dealised tidal basin based on Strangford Lough. Tidal forcing
through periodic free surface elevation on the left open
boundary. For now: fixed eddy viscosity (10 m?/s). Idealised
bathymetry. Both models use the same triangular meshes.
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Comparison in tidal basin - Flood
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Convergence of numerical results
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Integrated L2-norm difference between model results at various mesh
resolutions and at finest resolution (Az = 31.25 m). Blue shows the
convergence of Fluidity's results to its finest resolution result, and green
the convergence of MIKE's results to its finest resolution. Red shows the
convergence of MIKE's results to the finest resolution Fluidity results.
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Temporal average
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Convergence of temporal average of u? at a fixed point.

Stephan Kramer et al.

The modelling of tidal turbine farms u nulti-scale, unstructured mesh models



Imperial College

Parameterisation of turbines in SWE models

Total body drag force on turbine:

ﬁ(ﬁ) = %poCD(u)Acrossuu”ﬁ
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Represented as a momentum source f():
ou >

Depth avg. momentum eqn.: po 5 +poﬁ~ﬁﬁ+g§n+' - = f(a)

Applied over some horizontal area A, we need:

—
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Therefore, we end up with a quadratic “bottom” drag force:

Y pOCD(u>Across =
flay = LD ey 7
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rondon Turbines in Fluidity and MIKE
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Visualisation of wake by velocity deficit (difference between
solution with and without a turbine). Note that we do not
expect a realistic wake as no turbulence model is used (fixed
eddy viscosity).
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rondon Turbines in Fluidity and MIKE
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Turbines at coarse resolution are represented as point
momentum sources. This means the finer the resolution, the
smaller the area the drag is applied over. Leads to mesh
dependency when resolving close to the turbine scale.
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Drop in local velocity
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Local velocity in cell containing the turbine, drops significantly
with increasing resolution. This local velocity is used to

compute the drag force to be applied and the energy yield.
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Drop in local velocity
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For resolution near the turbine scale (turbine diameter here is
D = 16 m), the local velocity in cell matches the local turbine
velocity predicted by actuator disc theory (LMADT).
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Drop in local velocity
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For resolutions larger than the turbine scale, the local velocity
can be predicted by a modified actuator disc theory taking into
account the length scale, Az, over which the force is applied.
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Adjust actuator disc theory (see Garret and Cummins '07), to
take into account that the drag force F' = %pOCD(u)Acmssu2,
is not applied over the width of the turbine (diameter D), but
over the width, Ay, of the cell the drag is applied within.

Stephan Kramer et al.

The modelling of tidal turbine farms using multi-scale, unstructured mesh models



Imperial College

Correction in drag coefficient

Using the modified theory we can express the drag as a
function of the local cell velocity instead of the upstream

velocity:
F = 1p,Cr : 5 Across|| Wocat ||,
(V=)
where
I v
AyH

Here AyH is the modified cross section, the product of the
cell width Ay and water depth H.

In 3D, if we ignore the difference between the cell width and
the turbine diameter, we have v = C7 and we recover the
correction by Roc et al. '13. This assumes we resolve the
turbine scale.
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Correction in drag coefficient
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Without correction, the drag force applied in the model drops
significantly with resolution (up to 75 kN). With correction the
change in applied force is limited (less than 12kN).
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Conclusions:

» Study of hydrodynamic capabilities of MIKE 21 and Fluidity,
for the tidal modelling of turbine farms with an application of
energy resource and environmental impact assessments.

» Turbine drag parameterisation implemented as a point
momentum source is mesh dependent and leads to an
incorrect drag force for resolutions close to the turbine scale.

» Using actuator disc theory the drag coefficient can be
corrected such that the correct force is applied.

Future work:

» Study capabilities for environmental impact
studies: modelling biology with tracer fields,
particles, and species interactions (ECO Lab).

» Improved wake representation through
turbulence modelling. Comparison with 3D CFD
and lab results.
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