An overview of a simulation approach to assessing environmental risk of sound exposure to marine mammals.

Dr. C. Donovan
[C. Harris, L. Marshall, L. Milazzo, R. Williams & J. Harwood]
Centre for Research into Ecological and Environmental Modelling (CREEM), School of Mathematics and Statistics, University of St Andrews.
Outline

- Motivation
- Agent-based model overview
- Sensitivities
- Simulation scenarios
- Findings
- Conclusions
Motivation

- Proliferation of off-shore wind farms.
- Concerns about effects of noise on marine fauna – particularly during installation (pile-driving and drilling).
- A number of tools for investigating the effects of sound on marine fauna already developed in the context of SONAR (3MB, NEMO, ERMC).
- Interest in the long-term cumulative effects of installations on local animal populations – these tools are being employed e.g.:
 - A variety of installation scenarios off UK coast already assessed.
 - BOEM’s recent RFP “Acoustic Propagation and Marine Mammal Exposure Modeling of Geophysical Sources in the Gulf of Mexico” – ten year planning for seismic survey noise impacts.
Motivation

- Many of the tools are agent-based simulations.
- The underpinnings are broadly similar across tools.
- Given similar inputs/parameterisations, expect similar results (in short term scenarios).
- Hence similar sensitivities in terms of inputs and parameterisations (ie the results/conclusions are altered to different extents by the perturbation of the inputs).
- We’ve conducted a series of simulation studies that investigate some key parameters that are subject to debate.
- The intention is to identify modelling decisions that are influential on results, but may not be transparent to end users.
Model overview - SAFESIMM

- Individual/agent-based system, simulating individual animals moving through time, accumulating sound.
- SAFESIMM\(^1\) – the set of R-based code that was replicated for the commercial BAE Systems Instye product ERMC(S)\(^2\).
- Principal Development 2005-2007, continuing modifications to present.
- Substantial constraints in original remit: very little time permitted for calculations and on low-spec computing.
- Commercial version has a full GUI similar to ESME, whereas SAFESIMM is largely a research tool with no user-friendly front/back-end.

2. Environmental Risk Mitigation Capability (Sonar)
Commercial version has a full GUI similar to ESME, whereas SAFESIMM is largely a research tool with no user-friendly front/back-end.
Model overview - SAFESIMM

Horizontal Density Module

Horizontal Movement

Dive Module

Movement Modification

Probability of Effect, Affected Marine Mammals

Final Results

Iterate through time if required

Accumulated Effect

Sound Propagation

Biological Consequence Module
Model overview - SAFESIMM

- Horizontal Density Module
- Horizontal Movement
- Dive Module
- Movement Modification
- Probability of Effect, Affected Marine Mammals
- Accumulated Effect
- Sound Propagation
- Biological Consequence Module
Model overview - SAFESIMM

Horizontal Density Module

Horizontal Movement

Dive Module

Movement Modification

Probability of Effect, Affected Marine Mammals

Accumulated Effect

Sound Propagation

Biological Consequence Module

Iterate through time if required

Final Results
Model overview - SAFESIMM

- Individual/agent-based system, simulating individual animals moving through time, accumulating sound.
- Simulation animals are distributed in space and move through time.
- Calls to sound fields are made periodically – animals may respond (in movement) depending on parameterisation.
- SELs are calculated.
- Physical effects (TTS/PTS) determined stochastically via dose response relationships. Behavioural dose responses have been used.
Model overview - SAFESIMM

- Simulated animals move on the surface, dive and resurface.
- Vertical and horizontal movement may be modified by exposure, depending on species specific parameters.
Two species considered: grey seal (*Halichoerus grypus*) and harbour porpoise (*Phocoena phocoena*). Three broad areas looked at:

- Comparisons of SEL weightings: audiogram & M-weighted (Southall *et. al.*, 2007)
- Comparisons over levels of “fleeing” behaviour
- Site-fidelity: constrained versus unconstrained long term movement.
Simulation scenarios

10 day exposure periods, 1kHz, 225dB re 1 μPa source

<table>
<thead>
<tr>
<th>Audiogram weighting versus M-weightings</th>
<th>No aversion versus varied aversion levels</th>
<th>Long-term movement constraints e.g. site fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiogram weighted SEL and PTS threshold at 95dB above auditory threshold (>8 hrs)</td>
<td>No response to sound</td>
<td>Freedom of movement over exposure</td>
</tr>
<tr>
<td>Southall et al M-weighted SEL and associated PTS thresholds</td>
<td>Increasingly directed response to sound (away) via precision on directed random walk.</td>
<td>Site fidelity that constrains animals to be within 75 – 100km of source (e.g. tolerate exposures circa 140dB re 1 μPa)</td>
</tr>
</tbody>
</table>
Audiogram-weightings vs M-weightings

Broadly two methods for adjusting received sound levels for differing sensitivity to frequency.

- Audiogram – estimated auditory threshold functions (oft referred to as \(\text{dB}_{ht} \))

(Weighted) SELs then linked to physical effects e.g. Permanent Threshold Shift (PTS)

- Southall *et al* (2007) M-weighted SEL have accompanying PTS thresholds
- Audiogram weighted SELs have various possibilities: infer from few dose-response studies (e.g. Finneran *et al* 2005).
Audiogram-weightings vs M-weightings
Audiogram-weightings vs M-weightings

Simulations consisted of:

• Two species, 10 day exposure scenarios tracking 10,000 simulated animals.

• SELs and levels of induced PTS under:
 – M-weighting and Southall et al thresholds
 – Audiogram weightings and use Heathershaw et al (2001) link to PTS (95 dB above auditory threshold after 8 hr exposure).
Audiogram-weightings vs M-weightings
Audiogram-weightings vs M-weightings

Percentage of simulated animals exceeding PTS threshold under differing weighting and threshold schemes.

<table>
<thead>
<tr>
<th>Weighting</th>
<th>PTS threshold (dB)</th>
<th>Scenario length (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Grey seal</td>
<td>166</td>
<td>0.0</td>
</tr>
<tr>
<td>Southall M</td>
<td>186</td>
<td>0.3</td>
</tr>
<tr>
<td>Harbour</td>
<td>175</td>
<td>0.0</td>
</tr>
<tr>
<td>porpoise</td>
<td>198</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Level of responsive movement (avoidance)

Simulations consisted of:

- Grey seals, 10 day exposure scenarios tracking 10,000 simulated animals.
- 1kHz, 225 dB re 1 µPa source
- M-weighting and Southall et al thresholds
- Directed random walks with varying levels of directionality away\(^1\) from the source.

1. Variance parameters on a wrapped Normal distribution which determines the direction of the next movement – the mean direction of the distribution is away from the source.
Level of responsive movement (avoidance)
Constrained/unconstrained movement (site fidelity)

Simulations consisted of:

- Grey seals, 10 day exposure scenarios tracking 10,000 simulated animals.
- 1kHz, 225 dB re 1 μPa source
- M-weighting and Southall et al thresholds
- Simulations conducted over varying aversion to sound (zero in the following example).
- One scenario is unconstrained movement, the other has a hard boundary at 75km from source ~140dB.
Constrained/unconstrained movement (site fidelity)
Key points

Regarding sensitivities (physical effects – PTS):

• Short-term versus long-term scenarios have different sensitivities.
• Choice of weightings M-weights vs. audiograms can be markedly different under any length scenario.
• Whether responsive movement is specified or not has little influence in short scenarios (e.g. 6 hour). Differences can be marked on the order of days.
• Relatedly, site fidelity has little influence in short scenarios (e.g. 6 hour), differences become marked on the order of days.

[NB. Species density maps are not considered, but are a priori a large sensitivity and poorly known]
Key points

• Long-term exposure scenarios are not likely to be consistently addressed under the common agent-based models i.e. results may be very divergent based on qualitative decisions e.g. levels of site-fidelity, “fleeing”.

• Risk assessments for the same scenario can be very different based on the weighting scheme employed – this may be opaque.

[NB mitigation requires that scenario assessments be at least relatively correct, if not absolutely correct]
In order of the sensitivities considered here – assessment by agent-based models:

- [Density maps – not considered here].
- Weighting & thresholds.
- Site-fidelity, particularly for long-term assessment. Post/During exposure: Do they stay? Do they return? How long until they do?.
- Responsiveness to sound, particularly for long-term assessment.
- [recovery – not considered here but another notable aspect for long-term assessments]
References

Acknowledgements

“always end on a pretty picture” apparently