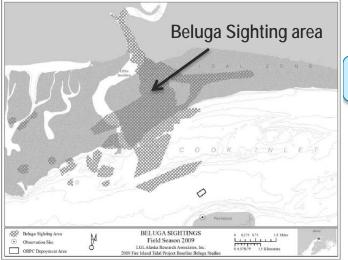


Advances in Research to Understand the Impacts of Wave and Tidal Energy Devices in the United States Jocelyn Brown-Saracino New West Tech. LLC in support of: US Department of Energy Wind and Water Power Technologies Office

Wind and Wate Power Technologies Office	• Increase the development and deployment of reliable, affordable, and environmentally sustainable wind and		
Strategic Environmenta Research Pla	rick and a gap analysis		
Research Areas	 Research and modeling to assess environmental impacts Advance monitoring technologies Analysis and dissemination of research findings 		
Talk Focus	 Understanding effects of operational noise Understanding the probability and effects of blade strike events 		

Noise - Establishing potential levels of exposure



Energy Efficiency & Renewable Energy

Determine where animals are located

Acoustic Monitoring of Beluga Whales in Cook Inlet, AK (Ocean Renewable Power Company) <u>http://mhk.pnl.gov/sites/default/files/publications/ORPC%20Beluga%20Whal</u> e%202014_0.pdf

Determine potential noise-level exposure

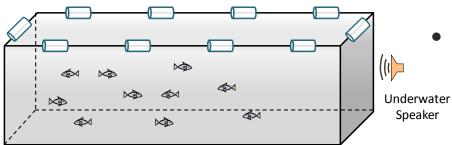
Underwater Noise Measurements of a 1/7th Scale Wave Energy Converter (University of Washington, Columbia Power Technologies)

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6107283&url= http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farn umber%3D6107283

Measuring Changes in Ambient Noise Levels from the Installation and Operation of a Wave Energy Converter in the Coastal Ocean (Oregon State University)

Physiological Effects – Lab Experimentation

- Effects of Tidal Turbine Noise on Fish (Pacific Northwest National Laboratory)
 - Juvenile Chinook salmon and largemouth bass exposed to tidal turbine noise (155-164 dB re 1 µPa rms) for 24 hours
 - Tested hearing sensitivity of salmon
 - Assessed tissue damage between control and treatment for salmon and bass


http://mhk.pnl.gov/sites/default/files/publications/Effects_of_Tidal_Turbine_Noise_on_Fish.pdf

Organism	Hearing Sensitivity	Tissue Damage
Juvenile Chinook Salmon	No significant impact	No significant impact
Largemouth Bass	Not tested	No significant impact

Behavioral Effects – Controlled Setting

Effects of Noise from Hydrokinetic Devices on Fish Behavior: Exposure Studies (Oak Ridge National Laboratory)

- Monitored behavioral response of transmitter-tagged fish to recorded hydrokinetic device sounds
 - Largemouth bass, paddlefish & pallid sturgeon
- No consistent trends of attraction or avoidance or changes in activity level to
 hydrokinetic device sounds at any volume

Floating Net Pen (6m wide x 20m long x 1.5m deep)

Characterization of Sound & Organismal Response In-Situ

- Acoustic Effects of Tidal Power Turbines (University of Washington) <u>http://mhk.pnl.gov/sites/default/files/publications/SnoPUD_Acoustic_Effects_final_report.pdf</u>
- Marine Mammal Behavioral Response to Tidal Power Turbines (University of Washington)

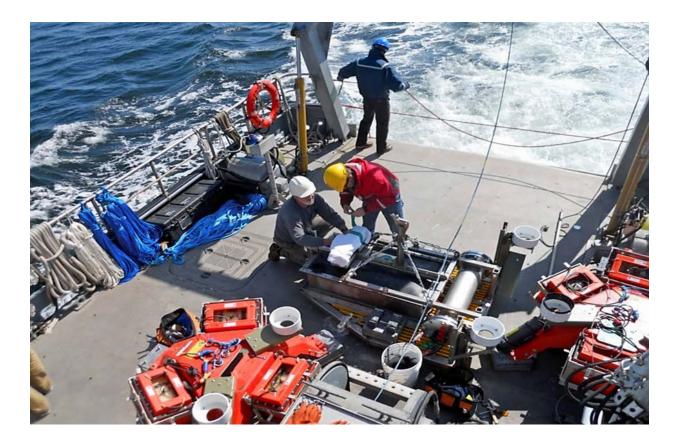
Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERGY

Development and Adaptation of Flexible Noise Models


Sound generation and propagation models (Sandia National Lab)

- Predict device-specific noise outputs based on design
- Predict noise propagation at project site
- Integrate into flexible modeling tools, including EFDC
- Proactively address concerns regarding noise effects

Development of Monitoring Tools

Marine and Hydrokinetic Environmental and Resource Characterization Instrumentation Funding Opportunity

- Aggregate, analyze and distribute data to understand trends and increase the impacts of research
- Tethys online database
 <u>http://tethys.pnnl.gov/</u>
- Annex IV Final Report
 - Chapter devoted to effects of MHK acoustic output

http://mhk.pnl.gov/sites/default/files/publications/Final%20Annex%20IV%20Report%202013%20v2.pdf

U.S. DEPARTMENT OF EN ENERGY Re

Flume Studies

Evaluation of Behavior and Survival of Fish Exposed to an Axial Flow Turbine (Electric Power Research Institute, ONRL, Alden)

http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002003911

- Avoidance in both light and dark conditions

	% Avoidance			
Species	Day	Night		
Rainbow Trout (small)	>86%	>98%		
Rainbow Trout (large)	>95%	>98%		
Hybrid Striped Bass	>32%	>65%		
White Sturgeon	>87%	>87%		

Field Data Informing Predictive Models

- BACI study around the ORPC project (University of Maine)
- Eulerian Lagrangian Agent Method (ELAM) For Modeling Fish Interactions with a Tidal Turbine (Argonne National Laboratory, University of Maine, SNL, Army Corps of Engineers)
 - Utilizes mobile hydroacoustic data to predict fish behavior in flow fields around MHK devices
- Informing Tidal Turbine Strike Probability Model through Characterization of Fish Behavioral Response Using Multibeam Sonar Output (ORNL)
 - Incorporates video footage of fish behavior around full scale tidal turbine into analysis to estimate encounter and injury probability

Strike: Examining outcomes of strike events

ENERGY Energy Efficiency & Renewable Energy

Environmental Effects of Hydrokinetic turbines on Fish: Desktop and Laboratory Flume Studies (EPRI, Conte, Alden)

http://mhk.pnl.gov/sites/default/files/publications/Jacobson_et_al_2012.pdf

Evaluation of Behavior and Survival of Fish Exposed to an Axial Flow Turbine (EPRI, ONRL, Alden)


http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002003911

Species	FFP Ducted Axial Flow	Lucid Spherical	Welka Axial Flow	Encurrent Vertical Axis
Rainbow Trout	>97%	>98%	>99%	-
Hybrid Striped Bass	>91%*	-	-	-
White Sturgeon	100%	-	-	-
Largemouth Bass	-	-	>99%	-
Juvenile Atlantic Salmon	-	-	-	Same as control
American Shad	-	-	-	Same as control

Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade (SNL, PNNL)

 Provided estimate of worst-case scenario results of blade strike

http://mhk.pnl.gov/sites/default/files/publications/Ope nHydro_Whale_Strike_Assessment_Final.pdf

*Potential experimental artifact – one trial with lower mortality than others

Tools for Monitoring

- Marine Animal Alert System (Pacific Northwest National Laboratory)
 - Marine mammal monitoring using passive and active acoustics http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20812.pdf
- Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy Projects (Scientific Solutions Inc.)
 - Active acoustics tracking tool for marine mammals near MHK projects http://www.osti.gov/scitech/servlets/purl/1113677
- Development of the AMP for the Admiralty Inlet project (University of Washington/SnohomishPUD)
- MHK Environmental and Resource Characterization Instrumentation Funding Opportunity

Meta-Analysis and Dissemination

Energy Efficiency & Renewable Energy

- Aggregate, analyze, and distribute data to understand trends and increase the impacts of research
- Tethys & Annex IV
- Annex IV Final Report
 - Chapter devoted to interactions of marine animals with turbine blades

http://mhk.pnl.gov/sites/default/files/publications/Final%20Annex%20IV%20Report%202013%20v2.pdf

Many thanks to the researchers involved in these studies.

For more information: jocelyn.brownsaracino@ee.doe.gov