
Ecology and Evolution 2017; 1–11	 ﻿�   |  1www.ecolevol.org

Received: 19 February 2016  |  Revised: 15 September 2016  |  Accepted: 22 September 2016
DOI: 10.1002/ece3.2699

O R I G I N A L  R E S E A R C H

A simulation approach to assessing environmental risk of 
sound exposure to marine mammals

Carl R. Donovan1 | Catriona M. Harris1 | Lorenzo Milazzo2 | John Harwood1 |  
Laura Marshall1 | Rob Williams3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Centre for Research into Ecological 
and Environmental Research, The 
Observatory, University of St Andrew,  
St Andrews, UK
2Imperial College London, NHLI, St. Mary’s 
Campus, Norfolk Place, London, UK
3Sea Mammal Research Unit, Scottish Oceans 
Institute, University of St Andrews,  
St Andrews, UK

Correspondence
Carl R. Donovan, Centre for Research into 
Ecological and Environmental Modelling, 
The Observatory, University of St Andrews, 
St Andrews, UK.
Email: crd2@st-andrews.ac.uk

Abstract
Intense underwater sounds caused by military sonar, seismic surveys, and pile driving 
can harm acoustically sensitive marine mammals. Many jurisdictions require such activi-
ties to undergo marine mammal impact assessments to guide mitigation. However, the 
ability to assess impacts in a rigorous, quantitative way is hindered by large knowledge 
gaps concerning hearing ability, sensitivity, and behavioral responses to noise exposure. 
We describe a simulation-based framework, called SAFESIMM (Statistical Algorithms 
For Estimating the Sonar Influence on Marine Megafauna), that can be used to calculate 
the numbers of agents (animals) likely to be affected by intense underwater sounds. We 
illustrate the simulation framework using two species that are likely to be affected by 
marine renewable energy developments in UK waters: gray seal (Halichoerus grypus) 
and harbor porpoise (Phocoena phocoena). We investigate three sources of uncertainty: 
How sound energy is perceived by agents with differing hearing abilities; how agents 
move in response to noise (i.e., the strength and directionality of their evasive move-
ments); and the way in which these responses may interact with longer term constraints 
on agent movement. The estimate of received sound exposure level (SEL) is influenced 
most strongly by the weighting function used to account for the specie’s presumed 
hearing ability. Strongly directional movement away from the sound source can cause 
modest reductions (~5 dB) in SEL over the short term (periods of less than 10 days). 
Beyond 10 days, the way in which agents respond to noise exposure has little or no 
effect on SEL, unless their movements are constrained by natural boundaries. Most 
experimental studies of noise impacts have been short-term. However, data are needed 
on long-term effects because uncertainty about predicted SELs accumulates over time. 
Synthesis and applications. Simulation frameworks offer a powerful way to explore, un-
derstand, and estimate effects of cumulative sound exposure on marine mammals and 
to quantify associated levels of uncertainty. However, they can often require subjective 
decisions that have important consequences for management recommendations, and 
the basis for these decisions must be clearly described.
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1  | INTRODUCTION

A series of high-profile strandings of beaked whales following naval 
sonar exercises in the late 20th century (reviewed in Jepson et al. 
(2003)) drew public attention to the potential effects of intense anthro-
pogenic ocean noise on marine organisms and convinced many scien-
tists and policymakers that ocean noise is a pervasive, globally import-
ant environmental issue. In the subsequent decades, tremendous 
progress has been made in understanding the responses of sensitive 
species to particularly aversive sounds (Tyack et al., 2011). Regulatory 
agencies around the world are routinely required to approve or deny 
permit applications for industrial activities in important marine mammal 
habitats that may generate impulsive sound levels that are comparable 
to those produced by sonars. The two main activities that fall into this 
category are pile driving (Bailey et al., 2010) and the use of airguns in 
offshore oil and gas exploration (McCauley, Fewtrell, & Popper, 2003).

We developed a simulation framework, which we have called 
“SAFESIMM” (Statistical Algorithms For Estimating the Sonar 
Influence on Marine Megafauna), that uses agent-based models to 
quantify the extent to which marine mammals may be affected by pro-
posed noise-generating activities. Here, we describe that framework 
and explore the sensitivity of its predictions to uncertainty relating to 
different model components. Our framework is one of a small num-
ber of risk assessment tools available to the scientific, ocean business, 
and regulatory communities. Other published examples include 3 MB 
(Houser, 2006), AIM (Frankel, Ellison, & Buchanan, 2002) and ESME 
(Shyu & Hillson, 2006). All of these statistical tools have to solve a 
common set of problems, which we list below. We describe the statis-
tical derivation of SAFESIMM and similar risk assessment frameworks, 
investigate which aspects of these frameworks are most vulnerable to 
knowledge gaps, and identify priority research areas.

Two key lessons have emerged from the development of manage-
ment procedures that set sustainable limits to direct and indirect lethal 
takes of marine mammals. First, any scientific advice must be robust 
to uncertainty (Harwood & Stokes, 2003; Taylor, Wade, de Master, & 
Barlow, 2000). For example, marine mammal abundance estimates gen-
erally suffer from low precision, so marine mammal scientists have been 
early adopters of precautionary approaches to management (Taylor, 
Martinez, Gerrodette, Barlow, & Hrovat, 2007; Wade, 1998). Secondly, 
a formal and well-specified management strategy evaluation process is 
needed to adapt to new information (Cooke, 1999; Punt & Donovan, 
2007). SAFESIMM satisfies the first criterion because it is constructed 
in a modular way to account for uncertainty in all of the components 
of the simulations. However, although SAFESIMM and similar frame-
works have been used extensively by industry and regulators to explore 
effects of noise-generating activities on a variety of marine mammal 
species, their performance has not previously been subjected to the 
kind of statistical scrutiny that forms the core of management strategy 
evaluation. This requires a transparent exploration of the sensitivity of 
model outputs to misspecification and uncertainty in key inputs.

A useful description of a quantitative risk assessment was pro-
vided by Zacharias and Gregr (2005). The authors partition risk into 

two components: sensitivity, which is the degree to which organisms 
respond to a stressor (i.e., deviations in environmental conditions 
beyond the expected range); and vulnerability, which is the probability 
that an organism will be exposed to a stressor to which it is sensi-
tive. For our purposes, a marine mammal’s sensitivity to sound has 
to do with features of the sound exposure (e.g., received level in dif-
ferent frequency bands and duration) and the biology of the animal 
(e.g., the species’ dose–response curve, its hearing ability (audiogram), 
the ecological context in which the stressor occurs (Ellison, Southall, 
Clark, & Frankel, 2011; Williams, Lusseau, & Hammond, 2006), and 
the evasive tactics or movement patterns it exhibits in response to 
exposure). Vulnerability is a function of marine mammal distribution 
and abundance in space and time (with associated measures of uncer-
tainty), and the noise levels experienced by each individual. The latter 
are determined by propagation models that predict received sound 
levels, depending on source levels, peak frequencies and bathymetry, 
and each individual’s response to the received sound levels.

Industrial developments that generate high-amplitude noise within 
important marine mammal habitats generally have to comply with country-
specific policies that require an assessment of the harm likely to result 
from those activities. These assessments may be at the individual or pop-
ulation level and allow managers, regulators, and decision makers to eval-
uate whether such levels of risk are acceptable. While the details of those 
policies vary from country to country (Horowitz & Jasny, 2007), they gen-
erally include an overarching requirement for an estimate of the number 
of individuals of a given species that are expected to experience received 
noise levels high enough to cause behavioral disturbance or injury, namely 
a permanent or temporary loss of hearing sensitivity (e.g., a permanent 
threshold shift, “PTS,” or a temporary threshold shift, “TTS”; Southall et al., 
2007). That number, referred to as a “take” under US policies, along with 
consideration of the population’s conservation status forms the basis of 
a decision on whether to authorize the activity. Such authorizations are 
generally subject to conditions that require the proponent to mitigate 
harm wherever feasible. Although most national policies require estimates 
of take in terms of individual animals exposed, newer analytical methods 
aim to quantify potential impacts to populations (Harwood, King, Schick, 
Donovan, & Booth, 2014; New et al., 2014) or important habitats (Erbe, 
MacGillivray, & Williams, 2012). Our focus is at the level of individuals.

Although national policies are spelled out in terms of overarching 
objectives, implementation relies on considerable discretion from reg-
ulatory agencies. Taken as a whole, the process of quantifying risk asso-
ciated with marine mammals and noise-generating activities involves 
highly technical and interdisciplinary discussions, with aspects of the 
assessment partitioned and considered separately by experts in the 
fields of statistical and acoustic modeling, marine biology, physiology, 
marine spatial planning, and quantitative risk assessment (Harwood, 
2000). Given the uncertainty inherent in estimating the abundance, 
distribution and movements of marine mammals, sound field propaga-
tion, and behavioral and physiological responses of marine mammals 
to noise, the field of noise impact assessments lends itself to proba-
bilistic approaches to simulating all of these sources of variability. In 
practice, the physical acoustics literature often ignores uncertainty in 
sound field propagation modeling (Erbe et al., 2012).
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As a result of the current compartmentalization of specialties 
involved in assessing the risk to marine organisms from anthropogenic 
noise, it would be easy for regulators to miss, or misunderstand, some 
of the assumptions that must be made during these assessments. 
The offshore renewables industry, with its associated noise produc-
tion from pile-driving activities, is large and growing (Gill, 2005), 
and many regions of the world’s oceans are dominated by seismic 
survey noise (Gordon et al., 2003). In our view, the sheer number of 
noise-generating activities being evaluated and permitted each year 
around the globe creates a need to evaluate the performance of the 
risk assessment tools currently in use and to make practical sugges-
tions about the best way to provide robust scientific advice that takes 
account of uncertainty associated with these assessments.

We originally developed SAFESIMM to quantify impacts of naval 
sonar use on marine mammals, and as such, the methodology has 
been scrutinized by the naval community (Mollett et al., 2009). More 
recently, SAFESIMM has been used to assess the potential effects 
of noise associated with offshore renewable energy construction in 
the UK. Here, we undertake a formal evaluation of the performance 
and strengths and weaknesses of agent-based simulation tools using 
SAFESIMM as an example framework. We document the assumptions 
underlying our simulation framework and identify situations when its 
predictions may be unreliable. These tools were originally designed to 
understand the impacts of short-term tactical sonar exercises, carried 
out over hours or days, rather than activities that may take place over 
weeks, months, or years. Given the central role that such tools play 
in the production of marine mammal impact assessments (MMIAs), 
it is important to explore the consequences of different parameter-
izations and model assumptions. This will allow regulators to better 
understand the basis for the MMIAs and have more confidence in their 
own permitting decisions. For illustrative purposes, we use PTS as the 
response variable of interest, but risk tolerance is a policy decision. 
Managers may wish to minimize TTS or the number of behavioral dis-
turbance events, in which case simulation approaches like SAFESIMM 
can be easily adapted to track other noise exposure metrics.

2  | METHODS

SAFESIMM (Donovan, Harris, Harwood, & Milazzo, 2012) was devel-
oped in conjunction with BAE Systems Insyte Ltd. from 2005 and served 
as the template for their Environmental Risk Mitigation Capability 
(ERMC) software (Mollett et al., 2009). All code was written in the sta-
tistical programming environment R (R Development Core Team, 2011).

We provide an overview of the agent-based approach (Bonabeau, 
2002) used within SAFESIMM and describe the individual compo-
nents of the framework. We then describe a set of scenarios that were 
used to test the sensitivity of the predictions made by SAFESIMM 
to key assumptions. The modular structure of SAFESIMM is shown 
in Figure 1, and the inputs required by each module are described in 
Table 1.

The movement of thousands of agents representing dozens 
of species is tracked through time within each simulation, and 

received sound levels (RLs) for each agent are recorded at each 
time step by reference to the input sound field. These RLs are then 
weighted to account for the hearing sensitivities of the different 
species at the relevant frequency, and the resulting sound exposure 
is accumulated over time. These accumulated, weighted SELs are 
then used as input to dose–response relationships to determine 
the probability that an agent will experience a physiological effect 
(i.e., PTS or TTS) or exhibit a behavioral response (e.g. Moretti et al. 
2014, Williams, Erbe, Ashe, Beerman, & Smith, 2014). At the end 
of the simulation process, the sound histories for each agent and 
the number of physical and behavioral effects they experienced are 
summarized.

2.1 | Horizontal density

Density data, with associated measures of uncertainty, are required 
by the horizontal density module (Figure 1, Table 1) to allow agents 
to be distributed through a sound field in a realistic way. The frame-
work can accept gridded density data at any resolution with density 
expressed as animals per km2, and an associated coefficient of vari-
ation (CV). The density data used in the scenarios described below 
were generated based on the results of modeling which combined 
available survey data with an index of relative environmental suitabil-
ity (RES; Kaschner, Watson, Trites, & Pauly, 2006). This allowed us to 
extrapolate density estimates to areas with no survey data. However, 
any suitable species density or abundance map can be used to seed 
the simulations.

2.2 | Horizontal and vertical movement

SAFESIMM models the “natural” movement of agents in both horizon-
tal and vertical planes, and their responses to acoustic disturbance. 
These responsive movements are modeled by modifying the natu-
ral patterns of movement. For example, each species has diving and 
swimming characteristics, such as maximum dive depths, dive dura-
tions, and typical and maximum swim speeds. These can be thought 
of as parameters governing a directed random walk that is used to 
simulate movement. Some species are reported to cease diving in 
the presence of acoustic disturbance, and others may exhibit fleeing 
behaviors. Although these processes are generally poorly understood, 
key parameters of the movement model can be modified to reflect the 
latest state of knowledge.

We reviewed the literature on the natural and responsive move-
ments of the 115 marine mammal species that can be modeled using 
SAFESIMM and compiled a database of relevant parameter values and 
functions. These parameters include dive depth, dive duration, swim 
speed, surface time, group size, and whether or not agents are known 
to respond to noise. The responsive movement parts of the database 
include parameters that govern functions for dive shapes and dose–
response. The database also contains information on audiograms 
and M-weighting functions. If no data were found for a species and 
field, a value was inferred from the most closely related species in the 
database.
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TABLE  1 The modules of SAFESIMM as they contribute to describing the vulnerability and sensitivity of marine mammals to sound 
exposure, and the required inputs for the modules

SAFESIMM module Required inputs

Vulnerability (probability that marine mammals 
will be exposed to noise to which they are 
sensitive)

Horizontal density Estimated/predicted number of animals (with 
measure of uncertainty, e.g., CVs) by space and 
time

Horizontal movement, vertical movement, 
movement modification

Dive depth, dive duration, swim speed, surface 
time, group size, bathymetry, and coastline

Sound exposure SPL in dB. Typically a library of precalculated 
sound fields covering the extent of the scenario.

Accumulation of sound Duty cycles, timings and frequencies for the 
scenario. Linked to specific sound fields in the 
library and generate sets of sound exposure 
histories (SEL through time)

Sensitivity (degree to which marine mammals will 
respond to noise)

Horizontal movement, vertical movement, 
movement modification

Dive depth, dive duration, swim speed, surface 
time, group size, movement in response to sound, 
bathymetry, and coastline

Auditory weighting Audiograms (A-weighting), M-weighting functions

Probability of effect Dose–response curve or threshold values for 
response (TTS/PTS or behavioral)

F IGURE  1 The modular nature of SAFESIMM

Horizontal Density
• Large numbers of random 

placements, with reference to 
density maps  if available

Horizontal Movement
• Random walk from circular 

distributions
• Directed/correlated via, e.g., 

mean and variance of wrapped 
Normal distribution

• Stochastic speeds: parameters 
from literature

Vertical Movement
• Functions of speed, random 

depth/duration and bathymetry
• Parameters from literature
• “V” or “bathtub” shapes result

Auditory Weighting
• Adjust for frequency

sensitivities, e.g., Audiogram or 
M-weighting adjustments

Accumulation of sound
• Sound Exposure Levels (SELs) 

accumulated through time

Movement Modification
• Potential responsive movement via 

circular distributions and/or alteration of 
diving

Probability of Effect
• Dose–response curves relating 

SEL to effects, e.g., TTS/PTS, 
behaviour

• Parameterization from literature

Sound Exposure
• Propagation loss modeling 

appropriate for source through time
• Parameterised e.g., source location, 

frequencies, duty cycle, strength.

Iterate through time if required

Total number affected
• Scale effects to local population 

sizes if known
• Uncertainties propagated 

throughout simulations –
reflected in final estimates
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Bathymetric data for the area of interest are also required, so that 
the movements of individual agents can be related to the physical 
environment. This ensures that agents do not dive below the seafloor, 
or swim onto land.

2.3 | Sound exposure

The RL for each agent at each time step is calculated using an esti-
mated sound field specific to the properties of the sound and the area 
in which the sound source is located. These sound fields are gener-
ated using sound propagation models that calculate the loss of sound 
energy as it travels away from the source. Sound propagation through 
water is dependent on source level and sound frequency, plus a num-
ber of physical factors, for example water depth and temperature. 
The framework is flexible as regards propagation loss models, and the 
agents simply call for a predicted sound level at a particular point at a 
particular time.

Industrial activities are rarely continuous, and so the sound expo-
sure module has a built-in duty cycle that determines the frequency 
with which the sound source is active, and this determines the amount 
of time that agents are actually exposed to sound.

2.4 | Auditory weightings

Once the RL for each individual agent at each time step has been cal-
culated, it is weighted to allow for the species’ hearing sensitivities at 
given frequencies. Two auditory weighting schemes are supported in 
the SAFESIMM: one derived from the species’ audiogram (the meas-
ured or inferred hearing thresholds plotted over a range of frequen-
cies), referred to hereafter as an A-weighting (“A” for audiogram); 
and one derived from the M-weightings developed by Southall et al. 
(2007). To determine these weighting, Southall et al. (2007) classified 
all marine mammal species into five functional groups, on the basis 

of their phylogeny, and their measured or estimated hearing charac-
teristics. These groups are: low-frequency cetaceans (baleen whales), 
medium-frequency cetaceans (beaked whales and most dolphins), high-
frequency cetaceans (porpoises, freshwater dolphins, and dolphins in 
the genus Cephalorhynchus), pinnipeds (seals and sea lions) in water, 
and pinnipeds in air. M-weightings are markedly different from, and 
simpler than, the A-weightings for our species of interest (Figure 2).

2.5 | Probability of effect

The probability that an agent will respond to the weighted SEL that 
it is estimated to receive over a particular time interval can be deter-
mined using a simple threshold, or a dose–response relationship. 
Southall et al. (2007) recommend different thresholds for perma-
nent threshold shift (PTS) for each functional group, and for pulsed 
and nonpulsed sound. For the simulations presented here, we adopt 
the simple thresholds of Southall et al. (2007), or Heathershaw et al. 
(2001). However, SAFESIMM typically uses a dose–response relation-
ship for PTS that is derived from similar data to that used by Southall 
et al. (2007) for their thresholds. It is based on the results of experi-
mental studies of a range of marine mammal species summarized in 
Finneran, Carder, Schlundt, and Ridgway (2005). These predict that 
statistically significant temporary threshold shift (TTS) begins to occur 
at an SEL of 195 dB re 1 μPa2/s. This equates to a predicted probabil-
ity of TTS of 0.18–0.19 based on an approximation of the fitted curve 
reported in Finneran et al. (2005).

2.6 | Model outputs

The current summary outputs provided by SAFESIMM are the proba-
bility (by species) that any agent will experience PTS and the expected 
number of agents within each species that are expected to experi-
ence TTS. This information can be summarized for an entire area or 

F IGURE  2 Southall et al.’s (2007) 
M-weighting functions for the functional 
groups that include gray seal and harbor 
porpoise and corresponding audiogram 
weightings (A-weightings). Sound levels are 
dB re 1 μPa2/s
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displayed at the spatial resolution of the input data, allowing areas of 
high and low risk to be identified.

All density estimates held in the internal database have an estimate 
of uncertainty associated with them. These uncertainties, together with 
the uncertainty associated with the other parameters used in the simu-
lation process, allow confidence intervals to be provided for any outputs.

2.7 | Simulations/case studies

Three sets of scenarios were considered, in which agents were 
exposed to a modeled sound field based on a 1-kHz nonpulsed 
sound source with a source strength of 240 dB re 1 μPa2/s and 
a 10% duty cycle over periods ranging from 1 hour to 10 days. All 

TABLE  2 Percentage of simulated animals that exceed a PTS threshold over time

Weighting
PTS threshold 
(dB)

Scenario length (hr)

1 6 12 24 48 96 168 240

Gray seal A 166 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M 203 0.14 2.55 5.58 7.55 9.75 11.28 12.28 13.78

Harbor porpoise A 175 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M 215 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SELs are calculated using either an audiogram weighting (A) or the M-weighting (M) of Southall et al. (2007). Thresholds for PTS are those recommended 
in Southall et al. (2007) in the case of M-weightings and “audiogram appropriate” figures from Heathershaw et al. (2001) for A-weighting.

F IGURE  3 Comparing the effect of M- versus A-weightings on predicted mean SELs for two species over time—M-weightings giving the 
upper curves. The horizontal lines indicate (a) Dashed lines - the Southall et al. (2007) threshold for PTS in gray seals (203 dB) and harbor 
porpoise (215 dB) when exposed to nonpulsed sound and (b) Solid lines - thresholds for PTS for use with A-weighting. The latter are 95 dB 
above the threshold of hearing (Heathershaw et al., 2001), which equates to 166 dB for gray seals and 175 dB for harbor porpoise at 1 kHz. 
Gray shading gives a 95% prediction interval, that is, the central 95% of SELs calculated for simulated animals. Note nonlinear x-axis for display, 
and sound levels are dB re 1 μPa2/s
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simulations were based on 10,000 agents, 15 log(R) propagation 
loss models, and a uniform 50-m bathymetry. Species’ distributions, 
speeds, and diving characteristics were from sources described 
previously.

1.	 Auditory weighting. We calculated SELs for gray seals and harbor 
porpoises using both A- and M-weighting. At this frequency, 
the M-weighting for both species is effectively zero.

2.	 Responsive movement. For gray seals, SELs were calculated under 
different assumed levels of avoidance, ranging from no response 
to very marked avoidance. Movement was modeled as a directed 
random walk (in the statistical sense) away from the source. A 
wrapped normal distribution was chosen for computational speed 
(Agostinelli, 2012; Jammalamadaka & Sengupta, 2001). Two pa-
rameters (mean and variance) governed directionality and dic-
tated how similar sequential random draws would be. A high 
variance results in movement that is erratic: effectively a direc-
tionless random walk. As the variance is decreased, movement 
becomes more directed. In the extreme case of zero variance, 

every draw from the distribution involves continual movement in 
the same direction. The standard deviations (SD) used were 10, 1, 
0.5, 0.1, and 0.05, going from directionless movement to directed 
fleeing.

3.	 Constrained movement. In these simulations, we compared situa-
tions in which the movement of agents was effectively uncon-
strained for up to 10 days, with those in which there was a hard 
boundary preventing movement beyond 75 or 100 km. These 
simulations were carried out for gray seals, using M-weighting, and 
responsive movement variances of 0.5 and 10.

3  | RESULTS

3.1 | Auditory weighting

The number of agents that might experience PTS was calculated 
using different threshold values for the M- and A-weighting schemes. 
We used the threshold recommended by Southall et al. (2007) 
with the M-weighting scheme and an “audiogram appropriate” 

F IGURE  4 The effect of different degrees of responsive movement by gray seals on SEL. A standard deviation of 10 results in directionless 
movement; a standard deviation of 0.05 results in marked avoidance of the source. The horizontal line is the threshold (203 dB) for PTS 
suggested by Southall et al. (2007) for pinnipeds exposed to nonpulsed sound. Gray shading gives a 95% prediction interval, that is, the central 
95% of SELs calculated for simulated animals. Note nonlinear x-axis for display, and sound levels are dB re 1 μPa2/s
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threshold proposed by Heathershaw, Ward, and David (2001) with 
the A-weighting scheme—the threshold being 95 dB above the 
threshold of hearing.

The choice of weighting scheme, even in combination with its 
associated threshold, had a marked effect on the proportion of 
the simulated population estimated to experience PTS (Figure 2 
and Table 2). Regardless of the period over which agents were 
exposed to noise, there were large (tens of dB) differences for both 
species between the estimates of SEL made using the two differ-
ent weightings (Figure 3). Although different thresholds for PTS 
are associated with these weightings, they do not make these weight-
ing schemes equivalent, as measured by the proportion of the pop-
ulation estimated to experience PTS. This is shown in Figure 3 by 
the 95% prediction ellipses (the central 95% of SELs for the simu-
lated population) in relation to their PTS thresholds.

The practical effect of the choice of weighting, and therefore PTS 
threshold, was very marked (Table 2). No gray seal agents were pre-
dicted to experience PTS when A-weightings were used. However, 
2.6% of gray seal agents were predicted to experience PTS after 6 hr 
of exposure when M-weightings were used, and 13.8% were predicted 
to experience PTS after 10 days of exposure.

3.2 | Responsive movement

The magnitude and directionality of the avoidance responses also 
affected the estimated SEL (Figure 4). The effect depended on the 
duration of the scenario. The interval is widest when SD = 10, which 
represents a situation in which there is effectively no response to 
sound. After 1 day of exposure, the average difference in the SEL 
for agents that showed a directionless response was about 5 dB 
higher than for agents that showed very directed movement. After 
10 days, the difference was in the order of 10 dB.

3.3 | Constrained movement

The effect of a physical constraint on SEL was less than the simple 
effect of weighting scheme or directed movement (2 dB more after 
1 day of exposure and 5 dB more after 10 days), as seen when agents 
were constrained to stay within 100 km of the source (Figure 5, no 
aversion). However, the effect of constraint becomes more marked if 
combined with directed movement (8 dB more after 1 day and 15 dB 
more after 10 days), as seen when constrained to stay within 75 km of 
the source (Figure 6, moderate aversion).

F IGURE  5 The effect of constraining movement of gray seals to within 100 km of the sound source on long-term SEL. The horizontal line 
is the threshold (203 dB) for PTS suggested by Southall et al. (2007) for pinnipeds exposed to nonpulsed sound. Gray shading gives a 95% 
prediction interval, that is, the central 95% of SELs calculated for simulated animals. Note nonlinear x-axis for display, and sound levels are dB re 
1 μPa2/s. Animals are specified to have low levels of responsive movement
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4  | DISCUSSION

SAFESIMM was used to investigate the probability that individu-
als of two marine mammal species will experience a physical effect 
(PTS) under a range of different scenarios and to illustrate the level of 
uncertainty associated with these predictions.

Simulation frameworks offer a powerful way to explore, under-
stand, and estimate effects of cumulative sound exposure on marine 
mammals. However, important but subjective assumptions that can 
dramatically alter their predictions may be hidden within them. For 
example, they may, as illustrated here, be underpinned by different 
auditory weighting functions. These different assumptions may result 
in different recommendations being made to managers about the 
sound exposure levels that will exceed allowable harm limits; in this 
example, the proportion of the local population estimated to expe-
rience PTS. This difference is largely a consequence of the combina-
tion of the weighting scheme and injury thresholds/functions that are 
applied; although more subtly, response to sound is also a function 
of SELs. However, while there is an unambiguous pairing of weight-
ings and thresholds in Southall et al. (2007), there are no similar 

standard recommendations for use with A-weightings. If the weight-
ing approach is not mandated by regulators, developers can provide 
very different risk assessments for exactly the same sound exposure 
scenario depending on which simulation framework they use.

Our results also highlight that the sensitivity of results to certain 
assumptions depends on the timescale over which animals are exposed 
to anthropogenic noise. A great deal of effort has, and can be, expended 
on accommodating fine-scale movement behaviors of agents within 
the models. The effort is both at a programming level and subsequent 
provision of parameter estimates. We have varied one such parameter, 
avoidance, which is arguably the most relevant in terms of the accu-
mulation of sound exposure. This is relatively unimportant for short-
term (<12 hr) exposures, but becomes more important as the duration 
of exposure increases. We can infer from this that finer-scale details of 
3D animal movement (such as pitching or yawing) are likely to have an 
even smaller effect on cumulative sound exposure for short scenarios.

Predictions for longer-term scenarios are more dependent on 
the assumed movement models, and any boundaries imposed on 
that movement. These could either be hard boundaries, such as land, 
or virtual boundaries such as those imposed by site fidelity where 

F IGURE  6 The effect of constraining movement of gray seals to within 75 km of the sound source on long-term SEL. The horizontal line 
is the threshold (203 dB) for PTS suggested by Southall et al. (2007) for pinnipeds exposed to nonpulsed sound. Gray shading gives a 95% 
prediction interval, that is, the central 95% of SELs calculated for simulated animals. Note nonlinear x-axis for display, and sound levels are dB re 
1 μPa2/s. Animals have been specified to have a moderate level of responsive movement
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individuals have a strong preference to stay within a restricted area. 
We approximated this kind of site fidelity by limiting the distance 
animals could move away from the source. In the long term, an 
animal’s acceptance of sound exposure and its decision to remain 
within a preferred environment will affect its cumulative exposure 
levels. However, there is little information on how animals respond 
in the longer term to sound exposure (Morton & Symonds, 2002; 
Thompson et al., 2013). For example, in general, we do not know 
whether they leave an area where they are exposed to noise and 
never return, if they return within some period of time, or if they 
remain in the vicinity of the noise source, despite disturbance. In 
reality, these responses are likely to be context specific. Given these 
uncertainties, we need to be aware of the sensitivity of long-term 
simulations to the assumptions that underpin the treatment of move-
ment, because long-term predictions may simply reflect subjective 
decisions about these assumptions.

We found that predictions of SELs over long durations were primar-
ily constrained by limitations in knowledge (i.e., the ability to parame-
terize the movement models with empirical data). The proximate cause 
of this lack of data is probably the result of logistical constraints on 
long-term deployment of tags on marine mammals (Johnson, de Soto, 
& Madsen, 2009), but its ultimate cause may be a legacy of the fact 
that research priorities have been driven by the needs to predict the 
short-term, acute impacts of military sonar on acoustically sensitive 
marine mammals. However, long-term data are needed to assess and 
mitigate the impacts of offshore renewable energy construction on 
marine mammals. This is a relatively new industry and, to date, suf-
ficient data have not been collected to support these new impact 
assessments.

The assumption that had the greatest influence on the estimates 
of the proportion of agents that experienced PTS was the choice of 
weighting scheme. However, in our view, at present published data are 
insufficient to justify the choice of one weighting scheme over another. 
Therefore, regulators and their scientific advisors need to be aware that 
the choice of weighting scheme is likely to have a profound effect on 
the predictions made using simulation frameworks, and greater trans-
parency about the assumptions that are embedded in these frame-
works is required. This serves as an important reminder that managers 
and policymakers are obliged to understand these assumptions and 
make decisions about how much risk they are willing to tolerate.

ACKNOWLEDGMENTS

We are grateful to the NERC MREKE programme and Marine 
Scotland for funding a workshop and the work described in this paper. 
SAFESIMM was originally part of the ERMC system that was devel-
oped in partnership with BAE Systems Integrated System Technologies 
Ltd. RW thanks the Pew Fellows in Marine Conservation program for 
support.

CONFLICT OF INTEREST

None declared.

REFERENCES

Agostinelli, C. (2012). CircStats: Circular Statistics, from “Topics in Circular 
Statistics” (2001) R package version 0.2-4. (S-plus original by Ulric Lund 
and R port by Claudio Agostinelli).

Bailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G., & Thompson, P. 
M. (2010). Assessing underwater noise levels during pile-driving at an 
offshore windfarm and its potential effects on marine mammals. Marine 
Pollution Bulletin, 60, 888–897.

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques 
for simulating human systems. Proceedings of the National Academy of 
Sciences of the United States of America, 99, 7280–7287.

Cooke, J. G. (1999). Improvement of fishery-management advice through 
simulation testing of harvest algorithms. ICES Journal of Marine Science: 
Journal du Conseil, 56, 797–810.

Donovan, C. R., Harris, C., Harwood, J., & Milazzo, L. (2012). A simulation-
based method for quantifying and mitigating the effects of anthropo-
genic sound on marine mammals. Proceedings of Meetings on Acoustics, 
17, 1–8. 070043; doi: 10.1121/1.4772738.

Ellison, W., Southall, B., Clark, C., & Frankel, A. (2011). A new context-based 
approach to assess marine mammal behavioral responses to anthropo-
genic sounds. Conservation Biology, 26, 21–28.

Erbe, C., MacGillivray, A., & Williams, R. (2012). Mapping cumulative noise 
from shipping to inform marine spatial planning. The Journal of the 
Acoustical Society of America, 132, EL423–EL428.

Finneran, J. J., Carder, D. A., Schlundt, C. E., & Ridgway, S. H. (2005). 
Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) 
exposed to mid-frequency tones. The Journal of the Acoustical Society 
of America, 118, 2696.

Frankel, A. S., Ellison, W. T., & Buchanan, J. (2002) Application of the 
Acoustic Integration Model (AIM) to predict and minimize environmen-
tal impacts. In OCEANS’02 MTS/IEEE (Vol. 3, pp. 1438–1443). IEEE.

Gill, A. B. (2005). Offshore renewable energy: Ecological implications of 
generating electricity in the coastal zone. Journal of Applied Ecology, 42, 
605–615.

Gordon, J., Gillespie, D., Potter, J., Frantzis, A., Simmonds, M., Swift, R., & 
Thompson, D. (2003). A review of the effects of seismic surveys on 
marine mammals. Marine Technology Society Journal, 37, 16–34.

Harwood, J. (2000). Risk assessment and decision analysis in conservation. 
Biological Conservation, 95, 219–226.

Harwood, J., King, S., Schick, R., Donovan, C., & Booth, C. A. (2014). A 
protocol for implementing the interim population consequences of 
disturbance (PCoD) approach: Quantifying and assessing the effects 
of UK offshore renewable energy developments on marine mammal 
populations. Report Number SMRU-TCE-2013-014. Scottish Marine 
and Freshwater Science, 5(2), 1–90. http://www.scotland.gov.uk/
Resource/0044/00443360.pdf. Accessed 30 June 2016.

Harwood, J., & Stokes, K. (2003). Coping with uncertainty in ecological 
advice: Lessons from fisheries. Trends in Ecology and Evolution, 18, 
617–622.

Heathershaw, A., Ward, P., & David, A. (2001). The environmental impact of 
underwater sound. Proceedings-Institute of Acoustics, 23, 1–12.

Horowitz, C., & Jasny, M. (2007). Precautionary management of noise: 
Lessons from the US Marine Mammal Protection Act. Journal of 
International Wildlife law and Policy, 10, 225–232.

Houser, D. (2006). A method for modeling marine mammal movement and 
behavior for environmental impact assessment. Oceanic Engineering, 
IEEE Journal of, 31, 76–81.

Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in circular statistics, 
Section 2.2.5. Singapore: World Scientific Press.

Jepson, P. D., Arbelo, M., Deaville, R., Patterson, I. A. P., Castro, P., Baker, J. 
R., … Fernandez, A. (2003). Gas-bubble lesions in stranded cetaceans. 
Nature, 425, 575–576.

Johnson, M., de Soto, N. A., & Madsen, P. T. (2009). Studying the behaviour 
and sensory ecology of marine mammals using acoustic recording tags: 
A review. Marine Ecology Progress Series, 395, 55–73.

https://doi.org/10.1121/1.4772738
http://www.scotland.gov.uk/Resource/0044/00443360.pdf
http://www.scotland.gov.uk/Resource/0044/00443360.pdf


     |  11DONOVAN et al.

Kaschner, K., Watson, R., Trites, A. W., & Pauly, D. (2006). Mapping world-
wide distributions of marine mammal species using a relative envi-
ronmental suitability (RES) model. Marine Ecology Progress Series, 316, 
285–310.

McCauley, R. D., Fewtrell, J., & Popper, A. N. (2003). High intensity anthro-
pogenic sound damages fish ears. The Journal of the Acoustical Society 
of America, 113, 638.

Mollett, A., Schofield, C., Miller, I., Harwood, J., Harris, C., & Donovan, C. 
(2009). Environmental risk management capability: Advice on minimising 
the impact of both sonar and seismic offshore operations on marine mam-
mals. In Offshore Europe, Society of Petroleum Engineers.

Moretti, D., Thomas, L., Marques, T., Harwood, J., Dilley, A., Neales, B., 
... Morrissey, R. (2014). A risk function for behavioral disruption 
of Blainville’s beaked whales (Mesoplodon densirostris) from 
mid-frequency active sonar. PloS one 9(1): 1–6. p.e85064.

Morton, A. B., & Symonds, H. K. (2002). Displacement of Orcinus orca (L.) 
by high amplitude sound in British Columbia, Canada. ICES Journal of 
Marine Science, 59, 71–80.

New, L. F., Clark, J. S., Costa, D. P., Fleishman, E., Hindell, M. A., Klanjcek, 
T., … Harwood, J. (2014). Using short-term measures of behaviour to 
estimate long-term fitness of southern elephant seals. Marine Ecology 
Progress Series, 496, 99–108.

Punt, A. E., & Donovan, G. P. (2007). Developing management procedures 
that are robust to uncertainty: Lessons from the International Whaling 
Commission. ICES Journal of Marine Science: Journal du Conseil, 64, 603–612.

R Development Core Team (2011) R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, Austria. 
ISBN: 3-900051-07-0. http://www.R-project.org/.

Shyu, H.-J., & Hillson, R. (2006). A software workbench for estimating the 
effects of cumulative sound exposure in marine mammals. IEEE Journal 
of Oceanic Engineering, 31, 8–21.

Southall, B., Bowles, A., Ellison, W., Finneran, J., Gentry, R., Greene, C., 
Kastak, D., … Nachtigall, P. (2007). Marine mammal noise exposure 
criteria: Initial scientific recommendations. Aquatic Mammals, 33, 
411–521.

Taylor, B. L., Martinez, M., Gerrodette, T., Barlow, J., & Hrovat, Y. N. (2007). 
Lessons from monitoring trends in abundance of marine mammals. 
Marine Mammal Science, 23, 157–175.

Taylor, B. L., Wade, P. R., de Master, D. P., & Barlow, J. (2000). Incorporating 
uncertainty into management models for marine mammals. Conservation 
Biology, 14, 1243–1252.

Thompson, P. M., Brookes, K. L., Graham, I. M., Barton, T. R., Needham, K., 
Bradbury, G., & Merchant, N. D. (2013). Short-term disturbance by a 
commercial two-dimensional seismic survey does not lead to long-term 
displacement of harbour porpoises. Proceedings of the Royal Society B, 
280, 1–8. 20132001; DOI: 10.1098/rspb.2013.2001.

Tyack, P. L., Zimmer, W. M. X., Moretti, D., Southall, B. L., Claridge, D. E., 
Durban, J. W., … Boyd, I. L. (2011). Beaked whales respond to simulated 
and actual navy sonar. PLoS ONE, 6, 1–15. e17009. doi:10.1371/journal. 
pone.0017009.

Wade, P. R. (1998). Calculating limits to the allowable human-caused mor-
tality of cetaceans and pinnipeds. Marine Mammal Science, 14, 1–37.

Williams, R., Erbe, C., Ashe, E., Beerman, A., & Smith, J. (2014). Severity of 
killer whale behavioral responses to ship noise: A dose-response study. 
Marine Pollution Bulletin, 79, 254–260.

Williams, R., Lusseau, D., & Hammond, P. S. (2006). Estimating relative 
energetic costs of human disturbance to killer whales (Orcinus orca). 
Biological Conservation, 133, 301–311.

Zacharias, M. A., & Gregr, E. J. (2005). Sensitivity and vulnerability in marine 
environments: An approach to identifying vulnerable marine areas. 
Conservation Biology, 19, 86–97.

How to cite this article:  Donovan CR, Harris CM, Milazzo L, 
Harwood J, Marshall L, Williams R. A simulation approach to 
assessing environmental risk of sound exposure to marine 
mammals. Ecol Evol. 2017;00:1–11. https://doi.org/10.1002/
ece3.2699

http://www.R-project.org/
https://doi.org/10.1098/rspb.2013.2001
https://doi.org/10.1371/journal.pone.0017009
https://doi.org/10.1371/journal.pone.0017009
https://doi.org/10.1002/ece3.2699
https://doi.org/10.1002/ece3.2699

