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Abstract

Global wind energy has expanded 5-fold since 2010 and is predicted to expand another 8—10-fold
over the next 30 years. Wakes generated by wind turbines can alter downwind microclimates and
potentially downwind vegetation. However, the design of past studies has made it difficult to isolate
the impact of wake effects on vegetation from land cover change. We used hourly wind data to
model wake and non-wake zones around 17 wind facilities across the U.S. and compared
remotely-sensed vegetation greenness in wake and non-wake zones before and after construction.
We located sampling sites only in the dominant vegetation type and in areas that were not
disturbed before or after construction. We found evidence for wake effects on vegetation greenness
at 10 of 17 facilities for portions of, or the entire growing season. Evidence included statistical
significance in Before After Control Impact statistical models, differences >3% between expected
and observed values of vegetation greenness, and consistent spatial patterns of anomalies in
vegetation greenness relative to turbine locations and wind direction. Wakes induced both
increases and decreases in vegetation greenness, which may be difficult to predict prior to
construction. The magnitude of wake effects depended primarily on precipitation and to a lesser
degree aridity. Wake effects did not show trends over time following construction, suggesting the
changes impact vegetation greenness within a growing season, but do not accrue over years. Even
small changes in vegetation greenness, similar to those found in this study, have been seen to affect
higher trophic levels. Given the rapid global growth of wind energy, and the importance of
vegetation condition for agriculture, grazing, wildlife, and carbon storage, understanding how
wakes from wind turbines impact vegetation is essential to exploit or ameliorate these effects.

1. Introduction

Wind energy is rapidly and globally expanding, hav-
ing increased at a rate of ~21% a year since 2010
with forecasts of a ~10-fold increase in installed capa-
city by 2050 as many countries implement policies
supporting increased renewable energy (Interna-
tional Renewable Energy Agency 2019, International
Energy Agency 2021). Continued growth of wind
energy, however, has technical (Veers et al 2019),
social (Mai et al 2021) and environmental hurdles
(Katzner et al 2019) to overcome. Widely acknow-
ledged environmental impacts include wildlife deaths
from turbine collisions, habitat loss, and behavi-
oural avoidance of wind facilities by some species

(Allison et al 2019). A newly emerging, potential
environmental impact may be the effects of tur-
bine wakes (‘wakes’) on microclimates and vegeta-
tion. Wind turbines generate wakes as they remove
energy from wind resulting in lower wind speeds and
increased turbulence. These wakes are large enough
to reduce energy generation at downwind facilities
(Lundquist et al 2019). They can also change air,
surface, and soil temperatures, as well as humidity
(Zhou et al 2012, Armstrong et al 2016, Xia et al
2016, Rajewski et al 2020), but not always (Moravec
et al 2018). Field-collected and remotely-sensed
surface temperature data show wakes can cause
nighttime warming up to 1.5 °C-1.9 °C (Rajewski
et al 2013, Smith et al 2013) and cool daytime
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temperatures (Rajewski et al 2013, Xia et al 2016),
although these effects vary with wind conditions and
season.

A small number of studies suggest wakes may
impact vegetation. Kaffine (2019) found US counties
with larger capacities of installed wind energy had lar-
ger crop yields, but this study did not identify under-
lying mechanisms. Several studies have used remote
sensing to investigate wind energy impacts on veget-
ation greenness. One reported no effects (Xia and
Zhou 2017), one reported increased greenness (Luo
et al 2021), and one reported a decrease in green-
ness and leaf area index (Tang et al 2017). In addi-
tion, a recent, comprehensive study found increased,
decreased, and no changes to vegetation greenness
across 319 wind facilities in the US (Qin et al 2022).

These studies, however, were not designed to sep-
arate changes in vegetation caused by surface disturb-
ance from those caused by wakes. For example, all
four studies used 300 m to 1 km resolution satel-
lite imagery, so the pixels included a mix of vegeta-
tion, roads, buildings, and agriculture. In addition,
changes in vegetation were analysed across all pixels
in the study extent, including those pixels disturbed
by the installation of the facility, as well as pixels
experiencing ongoing ‘background’ levels of land
cover change or agriculture. Of those papers finding
changes in vegetation greenness, two papers describe
land cover change as the main mechanism (Luo et al
2021, Qin et al 2022), not wake effects. Furthermore,
these studies used distance buffers to estimate wake
and no wake zones, instead of modelled wakes based
on wind direction, which limited their ability to isol-
ate microclimate impacts on vegetation.

Several studies have shown that the installation of
wind energy results in surface disturbance, but that
the area impacted by surface disturbance is small rel-
ative to the general size of the facility (Denholm et al
2009, Diffendorfer et al 2019). If wakes, not surface
disturbance, alter vegetation condition, then wind
facilities have the potential to affect a much larger area
than that initially impacted by construction activit-
ies. In this study, we designed a sampling strategy to
control for vegetation change caused by site construc-
tion and isolate the effects of wakes from turbines
on vegetation greenness. Our focus on wake effects,
not surface disturbance, is unique relative to previous
studies on vegetation change at wind facilities.

Because atmospheric conditions like air tem-
perature are fundamental drivers of plant growth,
we hypothesized that wakes could affect vegetation
greenness. However, effects may be subtle because
wake impacts on microclimates might occur only in
specific wind regimes, at certain times, and in prox-
imity to turbines. Wake impacts on biological pro-
cesses may therefore occur seasonally and be variable
across wind facilities, depending on the interaction
between local wind regimes, weather, the layout of
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the turbines, and the plant community. Quantifying
potential microclimate effects on vegetation green-
ness caused by turbine wakes requires a methodology
that uses wind direction to identify wake and non-
wake locations while also controlling for the potential
influence of land cover change.

We investigated the impact of wakes on veget-
ation greenness at 17 wind facilities across the
United States representing diverse vegetation types
(figure 1(a), supplementary table S1). Vegetation
greenness was measured using 30 m resolution Nor-
malized Difference Vegetation Index (NDVI) from
Landsat. Impacts were evaluated across different time
periods in the growing season and periods of high
versus low precipitation. We used a Before After
Control Impact (BACI) statistical design to com-
pare vegetation greenness before and after construc-
tion in wake (impact) and no or low wake (control)
zones. Wake and control zones were delineated by
applying Jensen’s wake decay model and hourly wind
direction data ((Gelaro et al 2017), supplementary
figure S1 and table S2) from the year of construc-
tion to 2019 at each turbine (figure 1(c)) and pre-
dicting the cumulative, interactive wake effect from
all turbines out to 10 km at each facility (figure 1(d)).
We randomly selected 200 sampling points in each
wake and control zone, only sampling pixels repres-
enting the dominant vegetation class, not classified
as pasture (to avoid grazing effects), or cultivated
crops, and those that did not change land cover type
before and after facility construction based on the
National Land Cover Database (NLCD) (2001-2016,
figure 1(e)). Sampling points reduces potential bias
attributable to spatial autocorrelation relative to ana-
lysing a continuous surface (Ives et al 2021). To test
for evidence of wake effects on greenness at each
facility we: (1) performed BACI analyses using linear
mixed effects models to determine if wakes impacted
NDVI. (2) Calculated the change in wake NDVT rel-
ative to expected, using the before and after con-
trol NDVI. (3) Mapped the spatial patterns of wake
impacts on greenness. And (4) developed secondary
linear mixed effects models to investigate variables
driving the magnitude of wake effects on greenness.

2. Method

We describe below the following components of our
approach: (1) Selecting wind facilities across the US
that varied in natural vegetation and geographic
region. (2) Characterizing vegetation phenology at
each facility to determine the optimal time periods
for sampling NDVI. (3) Modelling wake and low-
wake zones using hourly wind data. (4) Controlling
for land use change in the sample locations and alloc-
ating sampling ‘points’ across wake and low-wake
zones. (5) Processing the remotely-sensed vegetation
greenness data before and after construction at each
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Figure 1. Wake zone modelling and sampling at facilities. 17 wind facility locations with the ten facilities showing evidence for
wake effects on greennes in bold (a), average NDVI for each facility used to determine peak, up and down time periods (b), single

wind turbine wake modelled using Jensen’s decay formula (c), combined interacting wakes with control and impact areas defined
by wake intensity (d), sample points in control and wake zones (e).

facility. (6) Analysing the vegetation greenness data
using a BACI statistical design. (7) Modelling the
drivers of vegetation anomalies within the wake zones
after construction.

2.1. Wind facility selection

The potential impact of wind facilities on vegetation
greenness was evaluated across 17 wind facilities in
the US (supplementary table S1). Using the United
States Wind Turbine Database (USWTDB, Rand et al
2020), we selected facilities based on multiple factors.
First, we chose facilities isolated from others (>20 km)
to assure wake effects came from a single wind facil-
ity. Second, because we wanted to detect potential
trends in vegetation through time after construction,
we selected facilities installed prior to 2016, allow-
ing a minimum of 4 years of post-construction data.
The USWTDB includes the year a facility became
operational, often called the year of commissioning,
though we use ‘construction or post-construction.
Third, wake effects may differ across climate regimes
and vegetation communities, so we selected facilit-
ies dominated by shrubland, grassland, or forest land
cover classes and representing a broad spatial cover-
age of the US (except for the southeast due to a lack of
facilities). Fourth, we focused on utility scale turbines
1.5 MW or greater in nameplate capacity.

2.2. Vegetation phenology and sample timing

We estimated the timing of seasonal vegetation
growth at each facility using all pixels within a Min-
imum Convex Polygon (MCP) created around the
turbine locations at a facility. We selected all pixels

3

within the MCP corresponding to the dominant ‘nat-
ural’ vegetation type using the 2016 NLCD (30 m
resolution). Doing so excluded urban, agriculture,
water, and other non-vegetation cover types. We
derived a pre-construction vegetation phenology by
averaging 8—16-day NDVI data to a single value per
month across all pixels in the MCP for 5 years pre-
construction. NDVI values were derived from Land-
sat 5, 7, and 8 surface reflectance image collections in
Google Earth Engine.

For each facility, we used the average annual
phenological pattern of NDVI to demarcate three
periods of the growing season (figure 1(b)). The
3 months with the highest NDVI were ‘peak green-
ness, and these months did not have to be continuous.
The ‘green up’ period was the two months preced-
ing the first month of peak greenness and the ‘green
down’ period was the two months following the final
month of peak greenness (supplementary table S1).
We filtered the data by monthly precipitation to gen-
erate the high (upper 25th percentile) and low (lower
25th percentile) precipitation periods. We also ana-
lysed the data across the entire growing season.

2.3. Modelling turbine wakes

A key part of detecting wake effects is determining
‘control’ locations where turbine wakes are absent or
minimal. These areas should share similar weather
and vegetation composition as the wake zones. We
identified wake and ‘non wake’ areas by integrat-
ing hourly wind direction and distance from tur-
bines with Jensen’s wake model (Jensen 1983), to
estimate the proportional decline in wake velocity
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from each turbine individually, and then summing
these declines across all turbines.

Modelling turbine wakes included four primary
steps. First, we summarized hourly wind direction
from the year of installation to 2019 for eight wind
directions (NNE, ENE, ESE, SSE, SSW, WSW, WNW,
NNW) up to 10 kilometres from each turbine. We
used wind direction data from the Modern-Era Ret-
rospective analysis for Research and Applications
(MERRA-2, (Gelaro et al 2017)). MERRA-2 is a
widely used meteorological dataset, and many stud-
ies have investigated how biases in wind speed in
MERRA?2 (and other climate reanalyses) may affect
estimates of wind energy power output (Gruber
et al 2019, Jourdier 2020, Gualtieri 2022). Perhaps
because wind direction does not factor into power
production, far fewer analyses exist for wind dir-
ection. Carvalho (2019) show MERRA2 wind dir-
ection estimates have relatively low bias, and lower
than other modern reanalyses in the US, though they
are measured with uncertainty. Similar results were
found in Pakistan (Asim et al 2020).

The MERRA-2 data include U-wind (eastward)
and V-wind (northward) components representing
the wind velocity every hour at 50 m above surface.
We converted hourly U and V wind vectors into dir-
ection in R (R Core Team 2018) and calculated the
proportion of hours wind occurred in each of the 8
wind direction classes (supplementary figure 1 and
table S2). For example, if a facility had 8 years of post-
construction data and a 3 month growing season each
year and there were 1728 h in the NE wind direction,
then 10% of the hourly data were in the NE direction
because (8 years x 3 months x 30d x 24 h = 17280
total hours and 1728/17 280 = 0.1).

Second, within any one of the 8 wind directions,
we had multiple hourly observations of wind. We
used the mean and 1.5 standard deviations of these
hourly data to generate the mean direction and out-
ward spread of the wake from each turbine, resulting
in a binary raster map of where the wake occurred
within each of the 8 direction classes. The value of
the pixel was the proportion of the total hours wind
occurred in that wind direction.

Third, for each turbine, we generated a distance
raster map, where each pixel represented the distance
from the turbine. From this, we calculated the pro-
portional decline in velocity using Jensen’s model.
Jensen’s wake formulation models velocity at a dis-
tance downwind from a turbine:

2
v:u{l—2/3(roroo<x) } (1)

where r, is the rotor diameter, u is the wind velocity
entering the turbine, x is distance, and « is the decay
constant,
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where z is the hub height and z, is the surface rough-
ness. Following Shakoor et al (2016), we set z, to 0.075
and retrieved z from the USWTDB. Given the goal of
using an easily generalizable approach that adequately
modelled where the majority of wake effects occur at
a facility, we did not attempt more refined approaches
that might include different surface roughness values
based on the surrounding land cover.

In equation (1), dividing both sides by u results
in the proportional decline in velocity and makes the
right-hand side of Jensen’s equation independent of
wind speed. We used this formulation to estimate the
proportional decline in velocity at different distances
from wind turbines of specific hub heights. This gen-
erated a raster map for each turbine that was the
modelled proportional decline in velocity from the
turbine.

Fourth, for each turbine we multiplied the pro-
portional decline in velocity with the proportion of
hours wind occurred in a given direction, effectively
weighting the proportional decline in velocity by the
proportion of time wind came from that direction
(figure 1(c)). We then summed the wake direction/
decay maps across all turbines to create a single ‘wake
effect’ map for each facility (figure 1(d)). We note the
single turbine wake model did not explicitly include
the effects of one turbine on another and the loss of
energy to downwind turbines from upwind turbines.
Our approach may be improved by more complex
wake modelling.

Turbine wake effect maps had many pixels with
very small wake effect values, and far fewer with lar-
ger modelled wake effects (figure 1(d)). Given these
right-skewed distributions, we used a geometric clas-
sification in ArcGIS 10.6 to delineate 4 ‘wake zones’
The skewed nature of the data meant the differences
between the low wake effect zones (3 and 4) were
small. To assure our sampling locations were stratified
across areas with and without potential wake effects,
we used zone 4 as ‘controls’ and combined zones 1
and 2 into a ‘wake zone’. Zone 3 was reclassified as a
buffer between the wake zone and control zone and
no locations in this zone were sampled (figure 1(d)).

(2)

X =

2.4. Sampling strategy- land cover change and
sample allocation

Sampling was designed as a BACI study. We selected
sampling points at each wind facility in wake and low-
wake (control) zones that met specific land cover cri-
teria. Previous studies of wake effects used remotely-
sensed temperature or vegetation data that did not
exclude land cover change. To avoid sampling land
cover change, we used four versions of NLCD data
(2001, 2006, 2011 and 2016) to filter pixels that only
included the dominant vegetation type at the facility
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and excluded pixels that changed from one land cover
type to another at any interval from 2001 to 2016. For
grassland and shrubland facilities, if a dominant land-
cover type was present (i.e. either grassland or shrub-
land) a single land cover type was used. If the site con-
tained a mix of grassland and shrubland, these were
combined into a single class due to the NLCD’s low
accuracy in distinguishing these two land cover types
from one another (Chen et al 2005). For forested facil-
ities, we manually checked NLCD categories using
high resolution aerial photography in Google Earth
Pro at our sampling points (see next paragraph). We
determined the misclassification rate between forest
and mixed forest was too large to separate these two
classes with confidence, so we combined them.

We randomly generated 200 sampling points
within each wake and low-wake zone (400 total points
per facility, figure 1(e)) in ArcGIS 10.6.1. Sampling
points were >150 m apart to minimize spatial auto-
correlation. A visual inspection of each sample point
was conducted using high resolution imagery to con-
firm each sample and the surrounding 90 m? was
fully within the dominant vegetation class and did not
sample the edge of an impervious surface or a dif-
ferent land cover type; when necessary, the sampling
point was moved away from edges into the dominant
vegetation class.

2.5. Remotely-sensed data

Landsat NDVI values were analysed as a surrogate
of vegetation greenness (Tucker 1979). NDVI is the
most widely used spectral index of vegetation green-
ness (Lawley et al 2016). NDVI was selected over the
Enhanced Vegetation Index, as low leaf area index
was more common across facilities than high leaf
area index and associated potential NDVI saturation.
Landsat Thematic Mapper and Enhanced Thematic
Mapper images were converted to surface reflectance
using the Landsat Ecosystem Disturbance Adapt-
ive Processing System algorithm (Masek et al 2006).
Landsat Operational Land Imager images were con-
verted to surface reflectance using the Landsat Surface
Reflectance Code algorithm (Vermote et al 2016).
Values identified as cloud or cloud shadow were
masked using cFMask (Foga et al 2017). All cloud-
free NDVI observations over the identified grow-
ing season, from 5 years pre-construction through
2019, were consolidated into consecutive 8 d peri-
ods and exported from Google Farth Engine. Erro-
neous values can still persist, attributable to a sub-
set of images having a higher root mean square
error, errors in converting raw images to surface
reflectance, poor or uneven atmospheric condi-
tions, or residual cloud or cloud shadows (Masek
et al 2006, Feng et al 2012). To minimize inclu-
sion of potentially erroneous observations, all NDVI
observations <=0 or >0.99 were assumed to be erro-
neous and removed (1.6% of observations). Further,
time series of NDVI were graphed and extreme
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outliers were identified and removed (0.2% of
observations).

2.6. Before-After-Control-Impact analyses

We followed statistical approaches for BACI studies
with multiple, paired, sampling events before and
after the treatment (Underwood 1994). Low-wake
zones were considered controls. Treatment (control
vs wake) and period (before vs after construction)
were fixed effects. Sampling points were modelled as
random effects and to capture monthly variation in
NDVI that varied from year to year, monthly NDVI
was a random effect nested within year. Data within
the year of construction were excluded because we did
not know when the facility began operating within
the year. We ran the linear mixed effects models in
R using Imer in the Ime4 package (Bates et al 2015).

We focused on the treatment by period inter-
action, which determines if any changes in NDVI
before and after construction were different between
wake and no-wake zones. This isolates potential wake
effects from other background changes such as along-
term increase or decrease in overall vegetation green-
ness across the entire study area. This ‘BACI contrast’
was estimated from the model expected marginal
means as (CA—-CB)—(WA-WB), where CA = control
zone, after construction; CB = control zone, before
construction; WA = wake zone, after construction;
and WB = wake zone, before construction. We also
compared random effects only models to fixed effects
models, as well as models with main effects only
(treatment and period) to models with main effects
and the BACI contrast (treatment by period). Mod-
els were compared using sample size adjusted Akaike’s
information criterion (AICc) to check for evidence
that models with fixed effects and the BACI contrast
had greater support than random effects models.

BACT analyses were performed across 6 ‘time peri-
ods’: the entire growing seasons (All months) and
data filtered to periods of green up (spring), peak
greenness, green down (late summer to fall), and high
and low precipitation.

We used multiple lines of evidence to determine
if turbine wakes affected vegetation greenness. First,
if the BACI contrasts were not statistically significant
at p < 0.05, we concluded evidence for wake effects
was not sufficient. The BACI statistical models had
large sample sizes and hence they estimated small
BACI contrasts as statistically significant at p < 0.05.
If the BACI contrasts were significant at p < 0.05
we then evaluated the magnitude of the effect. The
BACI contrasts varied considerably in size depend-
ing on the dominant vegetation type. Arid regions
had very low baseline NDVI values with BACI con-
trasts much lower than forested locations, so we could
not simply use the size of the BACI contrast as an
estimate of effect size. Instead, we calculated an expec-
ted mean NDVI in wake zones after construction and
compared it to the observed mean NDVI. If wakes
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had no impact on NDVI, we would expect wake and
control zones to change identically through time such
that WA/WB = CA/CB. The expected NDVI in wake
zones (WA cxpected) Was simply the mean NDVI in wake
zones before construction (WB) multiplied by the
ratio of the mean NDVI in control zones after and
before construction:
WA expected = WB X % (3)
We then calculated the percent change between
the observed (WA) and expected NDVI in wake zones
after construction:

Changerelativeto expected

(WA - WAexpected )

=100 x
WAexpected

(4)

Cases where the BACI contrast was statistically
significant at p < 0.05 and the change relative to
expected was greater than 3% were considered evid-
ence for an effect. We used these admittedly subject-
ive thresholds to assure transparency in the meth-
ods. Others may select a less stringent p-value and/or
a different value for change relative to expected. To
visualize the results and further confirm the BACI
results, we compared the statistical outputs to time
series graphs of monthly mean NDVI values for con-
trol and wake zones as well as maps of the change
in NDVI before vs after construction across all 17
facilities using data across the entire growing season
(the ‘All Months’ time period, figure 4). For these
maps, we first calculated the difference between a
sampling point vs the mean NDVI value across all
control points for each month and calculated the
mean anomaly across months. We then subtracted the
mean of these monthly anomalies after construction
from the mean before construction. We mapped these
differences in relation to turbine locations and the
modelled wake zones.

2.7. Drivers of wake effects

The BACI analyses modelled the interactive effects
of wakes and pre vs post installation on vegeta-
tion greenness but did not allow a more refined
understanding of how wake effects might respond to
explanatory variables that change through time and
across space. To understand these more nuanced pat-
terns, we modelled the anomaly in NDVI during the
entire growing season for the four facilities show-
ing consistent wake effects across all time periods
(AZ-1,CA-1,NM-1, and TX-1). At these facilities, we
used just those samples within the wake zone, after
the year of construction, and calculated the anom-
aly in NDVI at each point in the wake zone, for each
month, by subtracting the mean NDVT across all con-
trol points at the month of interest from each point
in the wake zone (figures 2(c) and (d), mean anomaly
time series).
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For each facility, we fit a set of linear mixed
effects models to the post construction, monthly
NDVI anomaly, using a set of covariates that could
drive wake effects on greenness. Topographic covari-
ates were derived from the U.S. Geological Survey
Digital Elevation Model at 30 m resolution (Gesch
etal2018), and included the (1) percent slope, (2) dis-
tance to nearest turbine (m), (3) change in elevation
between each sampling point and the nearest turbine,
and (4) folded aspect. Aspect measures the direction
a slope faces and influences solar radiation intensity
and heat load, which affects plant community com-
position and growth. Following McCune and Keon
(2002), folded aspect provides higher values for slopes
with a SW aspect:

Aspectpyigeq = abs (180 — abs (aspect —225))  (5)

We derived climate covariates from the
Parameter-elevation Regressions on Independent
Slopes Model (PRISM, monthly, 4 km resolution,
(Daly et al 2008)). Four of the covariates were calcu-
lated as anomalies from the climate normal (1981—
2010): (1) maximum temperature from June to
August (°C), (2) maximum vapour pressure deficit
(VPD) from June to August (hPa), (3) annual pre-
cipitation (mm), and (4) the 3 months, cumulative
lagged precipitation. Aridity and the 3 months cumu-
lative lagged aridity were also included as covariates.
Aridity was calculated as the monthly ratio of precip-
itation and potential evapotranspiration (PET). PET
indicates the atmospheric demand for evaporation
and transpiration in the absence of water limitations
and was calculated from PRISM and North American
Land Data Assimilation System Phase 2 datasets using
minimum and maximum temperature, daily average
dew point temperature (equivalently, vapour pres-
sure or VPD), wind speed, and downward shortwave
radiation (Mitchell et al 2004, Abatzoglou 2013). All
these climate covariates can affect plant growth and
thus potentially influence how wake effects impact
vegetation greenness.

The models also included an annual linear trend.
Each sample, month, and year were included as ran-
dom variables with months nested within year. The
model set included all additive combinations of the
covariates but to avoid multicollinearity we did not
include covariates with correlations >0.6 in the same
model.

We ranked the set of models using AICc, inter-
preted as the conditional probability that a model is
the best model in the candidate model set. We used
model-averaged standardized coefficients and their
standard errors (Galipaud et al 2017) and the relat-
ive variable importance (Giam and Olden 2016) to
determine which covariates were the most import-
ant across the candidate model set. Model-averaged
standardized coefficients, were calculated using all
models in the candidate model set, substituting zero
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Figure 2. BACI contrasts (a) and their levels of statistical significance (*p < 0.05, **p <0.01, ***p < 0.001) and change relative
to expected difference in NDVI (b) for each facility and time period.

when the parameter of interest was absent (Burnham
and Anderson 2002).

To estimate model coefficients and effect sizes we
calculated the unstandardized model-averaged estim-
ates and their standard errors because full model-
averaged estimates can produce biased estimates
of effect sizes (Grueber et al 2011, Symonds and
Moussalli 2011). Finally, we generated biplots of the
anomaly in NDVI versus the covariate of interest
while setting the other covariates at their mean val-
ues to understand patterns in the response and visu-
ally check the modelled relationship. For both the
BACI and anomaly analyses we calculated a pseudo-
R? value (Nakagawa et al 2017) to estimate the vari-
ance explained by fixed effects in the models.

All the covariate data used in the analyses are pub-
licly available (supplementary table S6). All analyses
were performed in R 4.1.1 (R Core Team 2018).

3. Results

10 of 17 wind facilities showed evidence for wake
effects on greenness during one or more time periods
(AZ-1, AZ-2, CA-1, KS-1, ME-1, ND-1, ND-SD-1,
NM-1, OR-1, TX-1, figures 2(a) and (b), supplement-
ary table S3). Evidence for wake effects was defined
as: statistically significant BACI interaction terms and
a change in wake zone NDVI relative to expected
of >3% post-construction. Times series graphs of
NDVI or the anomaly in NDVI across the BACI con-
trasts (figures 3(a) and (b)), and spatial patterns in
the NDVI anomaly post-construction derived from
data across the entire growing season were consistent
with the statistical models (figures 4(a) and (b)). We
illustrate these visual lines of evidence with the four
facilities that had the largest change relative to expec-
ted in NDVI across the majority or all time periods
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effect size of wakes on vegetation were larger in other time periods in some cases.
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(AZ-1, CA-1, NM-1, TX-1, figure 2(b)). These facil-
ities had visual evidence for wake effects (figures 3(a)
and (b), figures 4(a) and (b)), while facilities without
wake effects on vegetation consistently showed little
or no evidence in time series or maps (figures 3(c)

and 4(c)).

At the ten facilities with wake effects on veget-
ation, we observed both increases and decreases in
greenness with the change relative to expected in wake
zones ranging from —12.5% to 8.6% (figure 2(b),
supplementary table S3). At KS-1, ME-1, ND-SD-1,
NM-1, and OR-1 wake zones were less green than
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wake effects across most time periods. The maps show data across the entire growing season, though the effect size of wakes on
vegetation were larger in other time periods in some cases. OK-1 is included as a facility showing no wake effects.
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expected while at AZ-1, AZ-2, CA-1,ND-1, and TX-1
wake zones were greener than expected during all or
some time periods. At ME-1, wake effects increased
vegetation greenness during green up but decreased
it during periods of low precipitation (figures 2(a)
and (b)). Qualitatively, facility characteristics such as
dominant vegetation or region (supplementary table
S1) were not associated with the direction of wake
effects.

Maps of the post construction anomaly in NDVI
across the entire growing season were generally

consistent with BACI contrasts (figure 4) but also
show underlying patterns of spatial variability. At
TX-1 and NM-1 (figures 4(a) and (b)) patterns of
anomalies were highly consistent with wake effects.
TX-1 had the largest anomalies at sampling points
downwind from turbines based on wind direction
(supplementary figure 1) while NM-1 had the largest
anomalies within the turbine arrays and to the north.
At AZ-1, and CA-1 (figure 4(a)), spatial patterns
were not as distinct, but sampling points in wake
zones generally had larger anomalies in NDVI than
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Figure 4. (Continued.)

control points, especially compared to OK-1 (no wake
effect, figure 4(c)), though considerable variation in
the anomalies occurred within both wake and control
zones.

Across the four facilities showing wake effects
throughout all months of the growing season, cli-
mate variables associated with plant growth were the
most common factors explaining spatial and tem-
poral variability in the magnitude of the wake zone
greenness anomaly (figure 5, supplementary tables S4
and S5). The fixed effects (i.e. topographic, climatic,
and facility explanatory variables in these models
explained 25%-51% of the variation in the green-
ness anomaly (supplementary table S4). Precipitation
(lagged or current) had high relative variable import-
ance and model averaged standardized coefficients
at all four facilities; the anomaly in NDVI increased
with increasing precipitation at NM-1 and TX-1 and
declined with increasing precipitation at the other
facilities (figure 5, supplementary table S4). Aridity,
lagged aridity, anomaly in temperature, and anom-
aly in maximum VPD explained variation in wake
anomaly at some facilities. Physical characteristics
had few impacts on the wake anomaly, with distance
to nearest turbine affecting the anomaly at only one
facility (TX-1). At all facilities, year, as a linear trend,
had low relative variable importance, consistent with
the time series plots (figures 3(a) and (b)), suggesting
anomalies did not increase or decrease through time
after construction.
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4, Discussion

Our results provide strong evidence that the wakes
generated by wind facilities, independent of land
cover change, can affect vegetation greenness, as
measured by NDVI. We also illustrate nuances in
these effects, which occurred at some facilities but
not others, and varied in magnitude and the direc-
tional change in greenness. Wake effects also varied
by the time of year and the climatic variables associ-
ated with plant growth. The conditions under which
wake effects impact vegetation are not easily pre-
dicted. Wind facilities in shrublands, forests, grass-
lands, and on ridgetops or flat ground all showed
wake effects and facilities with no wake effects sim-
ilarly spanned several land cover types.

Wakes both increased and decreased vegetation
greenness and the lack of multi-year trends in the
magnitude of NDVI anomalies suggested wake effects
on vegetation are confined within a growing season,
or even part of a growing season. Further research
is needed to disentangle whether a change in NDVI
represents a change in leaf condition (i.e. stress or
moisture), leaf cover, or a shift in herbaceous spe-
cies composition, all of which influence gross primary
productivity.

Precipitation was a dominant variable influencing
the magnitude of wake-induced changes in green-
ness. While moisture availability is a primary driver
of plant productivity, the response of vegetation to



Environ. Res. Lett. 17 (2022) 104025

] E Diffendorfer et al

AZ-1
’(c; T T T T 0.05F T T ]
€
NG 0.00
5 0.00
1S
2 -0.05
S -0.05
>
% -0.10 u ] 1 1 1 ] 1 1
-20 0 20 40 -20 -10 O 10
Lagged precipitation Vapor Pressure Deficit
anomaly (mm) Anomaly (hPa)
CA-1 NM-1
= T T T T 0.50 F T T I T T T T
B 0.10
£ 000 0.25 '
3 0.00 0.05
g -0.25
= -0.25 0.00
< -0.50
A ~0.50 -0.05f .
4 1 1 1 I 1 1 1 | 1 1 1
0 1 2 3 4 -20 -10 0 -25 0 25 50
Lagged aridity Maximum temperature Lagged precipitation
anomaly (°C) anomaly (mm)
X1
’(;‘:? 0.15F T T T T 0.025F T T T ] T T T T
g 0.025
< 010 0.000
5 0.05 0.000
5 -0.025 -0.025
< 0.00
> -0.050 - 41 -0.0501 =
% -0.05F 1 1 1 1] 1 1 1 1 1 1 1
0 50 100 150 0.0 05 10 15 20 0 2000 4000
Lagged precipitation Aridity Distance to nearest
anomaly (mm) turbine (m)

Figure 5. Biplots of the anomaly in NDVI vs explanatory variables. Plots for five facilities with wake effects across most time
periods. Light blue bands show 95% confidence intervals, and the black line is the predicted value from the linear mixed effects

model holding all other covariates at their mean values.

changing moisture will depend on the antecedent
conditions, or the water status of the plant com-
munity and soil, so both increasing and decreasing
greenness in response to wakes is a reasonable find-
ing. Aridity and VPD were also consistently identi-
fied as important variables. We suggest wake-induced
changes in microclimate modify the response of
NDVI to precipitation by influencing surface evap-
oration, stomatal resistance, and plant evapotran-
spiration. Agricultural wind breaks show similar
site-dependent effects on vegetation, with both dir-
ectionality and magnitude of the change in green-
ness varying by year (Cleugh 1998). The stability of
wind entering a facility, its upstream moisture pro-
file, the configuration of turbines, and the degree of
mixing caused by turbines can all influence down-
wind patterns of humidity (Adkins and Sescu 2022),
suggesting existing atmospheric conditions, design
aspects of the wind facility, and the underlying plant
community might all interact to determine if wakes
impact vegetation.

Our observed changes in NDVI were small com-
pared to processes such as wildfire or land conversion
that entirely alter vegetation communities. However,
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because NDVI reflects primary productivity, bio-
mass, and vegetation structure and condition, even
relatively small changes in NDVI have been linked
to changes in ecological systems and habitat condi-
tion. For example, increases in NDVI on overwin-
tering grounds of 0.05 were associated with changes
in clutch size from 4 to 4.5 in barn swallows (Lépez
Calderén et al 2019), and statistical models relating
NDVI to mule deer density in the western US sug-
gest changes in NDVI of 0.02 can alter density by
~33 animals/100 km? (Stoner et al 2018). Finally,
species richness, abundance, and biomass, as well as
the seasonal phenology of insects have been linked
to NDVI (Rhodes et al 2022). For example, in Aus-
tralia ground dwelling beetle species richness and
abundance increased by ~15% and 25% respectively
for every 0.1 increase in NDVI (Lassau and Hochuli
2008). At CA-1, KS-1, ME-1, ND-SD-1, NM-1, and
TX-1, BACI contrasts suggest changes in mean NDVI
were >~0.03 during one or more of the time peri-
ods we measured, suggesting wake effects on vegeta-
tion may be ‘biologically meaningful) with repercus-
sions for consumers and higher trophic levels. Some
of our arid sites (AZ-1, and NM-1) had low NDVI
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values (~0.12—0.19) and small BACI contrasts during
some time periods, yet a substantial percent change
in NDVI relative to expected (AZ-1 = 3.6%-5.9%,
NM-1 = — 5.7 to —12.5%). In arid systems, even
small changes in NDVI may result in large relative
deviations from baseline conditions, but it remains
unknown how proportional changes in NDVI trans-
late to direct impacts on consumers at wind facilities.

Ecological studies at terrestrial wind energy facil-
ities show a variety of responses (including no
response) to wind facilities (Schuster et al 2015,
Allison et al 2019, Coppes et al 2020). To our know-
ledge, ecological studies relating wake induced micro-
climate impacts to vegetation change and higher
trophic levels have not yet been done.

Using an approach that isolated microclimate
from land cover change, we found wind wakes
impacted down-wind vegetation greenness at ~60%
of the wind facilities we studied and that some of
these changes may be large enough to impact eco-
logical processes. This suggests impacts from wind
energy may go beyond direct land transformation
from roads and turbine pads. It also suggests previ-
ous studies on wind energy impacts on vegetation
greenness may have measured microclimate effects
caused by wakes on vegetation alongside impacts
from land cover change. 14 of our 17 wind facilities
were also examined by Qin et al (2022). Though not
a direct comparison, we checked Qin ef al’s (2022)
peak greenness NDVI anomaly at the closest wake
buffer, vs our anomaly at peak greenness. While
four of the 14 facilities showed negative anomalies
in both studies and two showed positive anomalies,
the remaining eight showed different directions of
change. We suggest these differences are primarily
caused by land cover change processes occurring in
Qin’s study that were excluded from consideration in
this study. This suggests the methodological approach
used in wake effect studies is critical when isolating
wake effects and measuring effect sizes. More stud-
ies are required to understand the best methods for
analysing wake effects, but our approach used high
resolution imagery, controlled for land cover change,
only focused on the dominant vegetation class, visu-
ally verified that sampling points were properly loc-
ated, and explicitly modelled wake zones.

5. Conclusion

Previous studies of wind energy impacts on veget-
ation greenness had limited ability to distinguish if
observed changes were caused by the installation of,
and ongoing landcover change around, the facility
or by the wakes caused by turbines. We designed
an approach that distinguished wake and non-wake
zones using simple wake models and hourly wind
direction. We also controlled for land cover change
by removing pixels that changed and targeting the
dominant vegetation type at each facility. We showed
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wakes from wind turbines, independent of land trans-
formation, can impact vegetation greenness.

Wakes induced increased or decreased vegetation
greenness at ten of 17 facilities based on BACI ana-
lyses, maps of the anomaly in greenness and the
difference between expected and observed green-
ness in wake zones. While the observed changes in
NDVI were relatively small, in some cases the change
in greenness were of a magnitude previously docu-
mented to affect ecological processes such as clutch
size, population abundance, and species richness. The
magnitude of wake effects depended primarily on
precipitation and to a lesser degree aridity. Future
research should advance spatial modelling of pre-
dicted wake zones, improve our ability to predict the
directionality of the wake impact, and concurrently
track microclimate, vegetation, and other ecological
variables.

As wind energy expands rapidly and globally, fur-
ther consideration of its potential positive and negat-
ive impacts to both natural and managed vegetation
will be critical for agricultural and grazing productiv-
ity, habitat condition, and carbon storage, all of
which co-exist with wind facilities. For example, if we
understand the conditions resulting in positive wake
effects on vegetation it may help us place turbines in
locations creating ‘win-wins’ for energy production
and perhaps increased agricultural yields or carbon
sequestration. Understanding where negative wake
effects occur can help predict necessary operational,
siting, or management actions to lessen such impacts.
As in offshore environments, where wakes affect sur-
face wave energy and the water column (van Berkel
et al 2020, Barfuss et al 2021), we are just beginning
to understand how wakes from wind turbines impact
the terrestrial environment and if we can exploit
their positive benefits and ameliorate any negative
effects.
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