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A B S T R A C T

Effective minimization of negative effects of wind energy on wildlife is an iterative process whereby direct 
observations of wildlife effects inform and validate mitigation strategies. Yet, the full implementation of this 
adaptive management has been hindered by a lack of appropriate data. The accurate, high-resolution data 
required exceeds the capacity of most current monitoring approaches (human observers or monitoring tech
nologies applied in isolation). Current applications of monitoring technologies struggle to harness their full 
potential by failing to capitalize on opportunities for integration with additional technologies and/or by having 
limited temporal and spatial resolution. At the emergence of this new frontier of wildlife monitoring, we review 
the elements of a robust wind-wildlife monitoring system and highlight sensor fusion principles that facilitate 
effective implementation and integration of multiple monitoring technologies. We also illustrate how sensor 
fusion solutions can generate high resolution data on collision and displacement effects on terrestrial wildlife 
across complex spatial and temporal scales.

1. Introduction

Land-based wind energy is a critical component to global energy 
production yet continues to have unintended negative effects on wildlife 
(Allison et al., 2019; Schuster et al., 2015). Primary effects of concern 
are collision, whereby wind turbine blades make lethal contact with 
wildlife (Arnett et al., 2008; Marques et al., 2014), and displacement, 
whereby the presence of wind turbines causes wildlife to redistribute 
across the landscape—resulting in functional loss of habitat (Dohm 
et al., 2019; Lloyd et al., 2022). To balance the tradeoff between wind 
energy production and wildlife conservation goals, we must monitor 
effects (i.e., mortality, displacement), correlates of effects (i.e., indi
vidual behaviors at multiple scales), and the effectiveness of minimi
zation approaches.

Most post-construction wildlife monitoring programs focus only on 
quantifying collision effects through ground-based carcass surveys per
formed by human observers (U.S. Fish and Wildlife Service, 2012). 
Human-based post-construction mortality surveys are resource intensive 
(e.g., surveyor labor and maintenance associated with clearing vegeta
tion from survey plots) and often generate mortality estimates too un
certain to effectively validate or improve minimization measures. 
Further, these post-construction wildlife monitoring programs cannot 
collect real time data on wind and wildlife interactions that could inform 
species vulnerability and risk models used to guide wind turbine and 

wind farm siting and operation decisions. To overcome the limitations of 
human-based post construction monitoring surveys, there is a growing 
need to leverage sensor technologies capable of collecting high-quality 
data required to generate accurate estimates of effects and limit model 
parameter uncertainty (Chadès et al., 2015; Searle et al., 2025).

Species affected by wind farms are often highly cryptic and/or mo
bile species, and accurate observations of such species require resolution 
that exceeds the ability of human observers or sensors applied in isola
tion. As such, effectively monitoring wind-wildlife interactions requires 
a suite of integrated sensor technologies. Multiple integrated sensors 
surpass the capabilities of any one sensor. Accomplishing critical 
monitoring tasks will require one or more sensors to be effectively fused 
into the same system. The sensor fusion framework, borrowed from the 
computer science and engineering fields (Elmenreich, 2002), provides 
language to frame the discussion of how sensors can be combined to best 
address wind-wildlife monitoring goals at a variety of spatial scales.

There are three distinct categories of sensor fusions: competitive 
fusion, complementary fusion, and cooperative fusion (Fig. 1). 
Competitive fusion, or ‘back-up’ fusion, is designed to add redundancy 
and accuracy to a system by using 2 or more independent sensors that 
each collect data on the same landscape feature(s) or biological phe
nomenon. Monitoring with multiple units of the same sensor is an 
effective way to ensure data reliability by limiting the number of data 
gaps incurred via non-operational sensors. This redundancy is 
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particularly important when operators are not able to receive real-time 
system operation updates remotely and allows sensors to be offline for 
repairs without disruption to data collection. Complementary fusion 
occurs when multiple sensors collect independent but related data that 
can be combined to give a more comprehensive picture of the phe
nomenon. This type of fusion is particularly important as it can extend 
the spatial resolution when greater coverage of the wind turbine or wind 
farm is needed. Finally, cooperative fusion uses data from two or more 
independent sensors to derive emergent metrics. This type of coopera
tive fusion is commonly applied in single sensor – multi-unit configu
rations (i.e., two or more of the same sensor). For example, when two 
overlapping sensors can derive 3-dimensional (3D) movement.

In the following sections, we describe how sensor tech
nologies—often integrated with sensor fusion techniques—are used to 
collect data for assessing collision and behavioral effects, parameter
izing vulnerability and risk models, and informing minimization models. 
We also present a case study illustrating how sensor fusion systems can 
generate high-resolution data across complex spatial and temporal 
scales. We use this example to further explore how these data are used to 
address parameter uncertainty for collision-risk models and, when 
combined with automated processing and real-time feedback design 
elements, can be used to implement a curtailment minimization mea
sure. Finally, we expand on our case study to demonstrate how an 
effective wind-wildlife monitoring system can be used iteratively in an 
adaptive management process to guide a hypothetical collision mini
mization measure.

2. Evaluate: observe effects

2.1. Collision monitoring

Collision with wind turbine blades has become a major anthropo
genic cause of mortality for certain species of raptors and migratory bats 
(Arnett et al., 2008; Marques et al., 2014). Traditional carcass moni
toring is ground-based and conducted by humans or dogs who regularly 
search a portion of the ground surrounding a subset of wind turbines for 
carcasses (Table 1). The raw counts from ground-based carcass survey 
data are converted to mortality rates using estimators such as GenEst 
(Dalthorp et al., 2018) that account for methodological variability (e.g., 
plots vs. roads and pads, human vs. dog team searchers, and cleared vs. 
uncleared plots). These estimators additionally account for variability 
associated with carcass persistence, searcher efficiency, and carcasses 
that fall outside of the search area (Dalthorp et al., 2018). Through 
standard analysis approaches and continuing efforts to standardize 

mortality databases, ground-based survey approaches continue to 
improve in generating metrics that characterize the cumulative mor
tality from wind energy (e.g., fatalities per turbine, fatalities per MW).

Carcass surveys are limited by inherent “partial observability” un
certainty. Human surveys are unlikely to directly observe collision 
events in real time because collisions are relatively rare events, not all 
wind turbines are monitored, and most carcass surveys are conducted 
during the day while collisions for bats and nocturnal migratory birds 
occur at night. These limitations result in a temporal gap between the 
moment of collision and the carcass discovery. This lag can be further 
exacerbated by survey schedules where 2- to 7- day gaps may exist be
tween searches.

Sensors allow for continuous monitoring of wind turbine blades, 
thereby limiting temporal data gaps. Exchanging intermittent ground 
surveys with continuous technology-driven monitoring can maintain or 
improve the ability to estimate total wind turbine mortality, while 
simultaneously providing greater spatial and temporal survey resolu
tion. Recent advances in computer vision have resulted in camera-based 
sensor systems that can directly observe collision events and subsequent 
tracks (i.e., movement of the carcass directly from the wind turbine 
blades to the ground) (Table 1). Visible light camera-based systems are 
useful for diurnal species whereas nocturnal species can be monitored 
with thermal or near infrared camera-based systems. Light Detection 
and Ranging (LiDAR) sensors can provide high-resolution 3-dimensional 
information on targets. The data can be used to track individual birds 
and bats within the field of view although LiDAR is not able to distin
guish among broad taxonomic groups. Further, sensors can provide 
metrics of exposure rates (e.g., activity per unit of operational time) as a 
low-cost proxy for collision events. For example, Peterson et al. (2021)
found that bat exposure, quantified as ultrasonic vocalizations per unit 
time wind turbines were operational, was highly correlated with mor
tality rates calculated from ground-based surveys. Activity rates derived 
from camera data and/or LiDAR data may also be informative, provided 
they are validated to correlate with fatality rates.

Sensor systems could also offer additional insights into specific risky 
flight behaviors such as attraction. This is particularly true for bats, 
whose patterns of activity and mortality suggest they may be attracted to 
wind turbines (Goldenberg et al., 2021). For example, bats have been 
observed approaching wind turbines and making multiple passes 
through the rotor swept zone suggesting that individuals are not coin
cidentally struck when their flight path happens to intersect a moving 
blade (Horn et al., 2008; Cryan et al., 2014; Goldenberg et al., 2021). At 
larger scales, attraction may present as increased activity within a 
development footprint compared to surrounding areas or increased 

Fig. 1. Hypothetical example of three different sensor fusion scenarios applied to a 2-video camera system tasked with monitoring bats on a landscape.
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activity following construction (Hein et al., 2013; Solick et al., 2020). 
Disentangling the mechanisms of attraction is crucial because it has 
direct implications for collision risk and identifying the drivers of risk is 
key to developing effective mitigation strategies or interventions.

Camera-based mortality monitoring has several potential limita
tions. The spatial coverage or field of view (FOV) of a single camera 
oriented upward is unable to visualize the entire rotor-swept area with 
adequate resolution for small targets. In some contexts, it may be 
necessary to use complimentary sensor fusion to increase the spatial 
coverage. Second, thermal and infrared camera systems as well as LiDAR 
sensors have limited taxonomic resolution. Recent advances in camera- 
based computer vision algorithms can classify targets as non-biological 
or biological and further classify biological targets into broad categories 
of bat, bird, or insect. However, differentiation from thermal video alone 
remains challenging due to limitations in resolving body size and dis
tance (Matzner et al., 2015). Camera-based systems that are comple
mentary fused with acoustic detectors may allow for species 
identification for individuals crossing the detection threshold of both 
sensors (Willmott et al., 2023). Further, with video datasets that are 
annotated with species identifications obtained with acoustics, it may be 
possible to use machine learning techniques to gain even better taxo
nomic resolution with camera-based systems alone. In addition, LiDAR 
can be used in competitive fusion to provide a backup to camera datasets 
as well as cooperative fusion application to provide higher resolution 
information on target size, and 3D flight dynamics.

Collision detection systems can be mounted on wind turbine blades 
and use sound or vibration sensors to record the exact timing of collision 
events. This technology limits the amount of processing required to 
analyze video footage from several feeds by providing an accurate time 
stamp and perhaps offers an efficient standardization approach for 
generating mortality rate estimates. Though capable of categorizing 
subjects that strike the wind turbine blade into size/weight classes, 
collision sensors also have limited taxonomic resolution unless coupled 
with human observers to visit sites and retrieve carcasses, or via com
plementary sensor fusions with camera systems and acoustic detectors.

2.2. Displacement monitoring

Functional habitat is determined not only by the suitability of local 
biotic and abiotic conditions, but also by whether suitable habitat is 
accessible through movements (Van Moorter et al., 2023). When or
ganisms no longer perceive habitat as suitable (e.g., perceived predation 

risk is too high) or suitable habitat is no longer accessible (e.g., 
impassable dam across a river), individuals are displaced and forced to 
redistribute across the landscape. When animals perceive the presence 
of novel anthropogenic structures such as wind turbines as risk factors 
indicating habitat unsuitability or as impassable barriers between suit
able habitat, individuals may avoid habitat around a wind farm (macro 
avoidance) or wind turbines (meso avoidance) (Fig. 2). In some situa
tions, these behavioral responses can result in displacement effects 
(May, 2015). While grouse have been a major focus of land-based wind 
energy displacement studies (LeBeau et al., 2023; Londe et al., 2022), 
displacement can affect many species, including pronghorn and reindeer 
(Milligan et al., 2023; Skarin et al., 2018), raptors (Dohm et al., 2019; 
Garvin et al., 2011), songbirds (Lehnardt et al., 2024), and bats 
(Ellerbrok et al., 2022). Displacement is also a concern for seabirds at 
offshore wind farms (Masden et al., 2010).

Monitoring displacement effects is challenging because unlike lethal 
collisions that occur in discrete events, displacement is a sublethal effect 
that varies in time and space. Identifying displacement requires disen
tangling natural changes from anthropogenic ones (Christie et al., 
2019). Therefore, quantifying displacement requires long-term moni
toring and careful study design to account for spatial and temporal 
variation in species presence, activity rates, habitat use, and/or move
ment patterns (often quantified as movement track densities) between 
pre-construction and post-construction conditions. To draw statistically 
robust inference about displacement effects, researchers most frequently 
consider avoidance within the framework of Before-After-Control- 
Impact (BACI) studies (Mendel et al., 2019; Peschko et al., 2020). A 
BACI framework emphasizes the importance of consistent monitoring 
from pre-construction through the post-construction phases of the 
project. However, study designs may vary by site and organism, such 
that After-Impact or After-Impact-Gradient (AIG) studies may be 
adequate to infer displacement via differences in species' activity rates or 
direct observations of individual avoidance or attraction behavior 
(Welcker and Nehls, 2016; Skov et al., 2018; Ellerbrok et al., 2022; 
Gaultier et al., 2023; Tjørnløv et al., 2023).

Acoustic detectors are a reliable option for continuously monitoring 
species activity rates (e.g., vocalizations per night) for species that 
regularly vocalize, such as echolocating bats and some migratory 
songbirds (Table 1). Despite a limited viewshed (40 m), the low cost of 
acoustic detectors means many units can take advantage of comple
mentary fusion techniques to cover large spatial areas. Long-term 
acoustic surveys may be used in a BACI framework to detect 

Table 1 
Technologies applicable to monitoring different priority effects of wind energy on wildlife. Implementation measures may incorporate any number of the listed metrics 
depending on the minimization strategy. Xs assigned to matrix even when capabilities are partial, e.g., species ID is possible with acoustics for some but not all species.

Data need for monitoring task Human 
survey

Blade 
impact 
sensor

Camera 
(ground or 
turbine)

Camera 
(aerial)

3D camera 
(ground/ 
turbine

Acoustics 2D 
radar

3D 
radar

Lidar RF 
tags

GPS 
tags

Enumerate fatalitiesa x x x x x
Exposure risk (fatality proxy)a x x x x x x x x
Species IDa,b x x x x x x
Annual distribution overlap with 

wind farma,b
x x x x x x

Density/activity rates (e.g., 
passes per time interval)a,b

x x x x x x x x

Time within the rotor-swept 
areab

x x x x x

Flight activity budgetsb x x x x x x x x
Micro attraction/avoidanceb x x
Meso attraction/avoidancea,b x x
Macro attraction/avoidancea,b x x x
3D flight path (height, direction, 

speed, micro attraction/ 
avoidance)b

x x x x

Flux ratesa,b x x x x x x

a Evaluate: observe effects.
b Parameterize: observe drivers of effects.
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differences between pre- and post-construction activity rates for one or 
more species (Solick et al., 2020) and are also ideal for monitoring along 
a gradient (e.g., from a monopole out to 1 km or more; Gaultier et al., 
2023). However, acoustic detectors are ineffectual for species that do 
not vocalize frequently. Further, when interpreting acoustic data, it is 
important to recognize that single-microphone acoustic detectors are 
unable to determine whether a set of multiple vocalizations from the 
same species were produced by multiple individuals or a single indi
vidual making multiple approaches past the detector microphone, as 
would be expected if a bat was foraging. To address this limitation for 
bats, ultrasonic detectors may leverage cooperative fusion by comparing 
microsecond differences in arrival time of vocalizations at multiple 
microphones. This approach can assign calls to individual bats and may 
be able to reconstruct flight paths for several individuals simultaneously. 
However, distinguishing between specific individuals that move in and 
out of range of the detector remains challenging (Koblitz, 2018).

X-band radar has a viewshed of 1 km–10 km or more, depending on 
the biological target size and context (Nilsson et al., 2018) such that at 
the meso and sometimes macro scale, radar is the most effective way to 
quantify the flux rates and total amount of biomass using a site 
throughout the season. Cryan et al. (2014) showed such conditions, with 
a passage rate of 3 to 4 million animals, but only a small proportion of 
that biomass was ever detected by thermal cameras and acoustic de
tectors that were monitoring the micro scale over the same time period. 
Radar technologies can be an effective way to monitor displacement 
effects by quantifying habitat use in a BACI framework or along a 
gradient (Skov et al., 2018). X-band vertical-looking radar, and x-band 
3D radar can track multiple individuals to generate passage rate metrics 
(Tjørnløv et al., 2023) and individual continuous tracks of larger bodied, 
volant species at the meso and macro spatial scales. Flight tracks can be 
used to quantify avoidance rates for a species or species group by 
deriving flight track densities within the wind power project's footprint 
compared to track densities outside the project (Skov et al., 2018; Box 
1). Though radar is capable of tracking targets across a large viewshed, 
there are currently constraining target size limitations as well as ground 
clearance limitations (i.e., targets must be in flight to avoid ground 
interference) As such, for terrestrial applications, radar has mostly been 
used to monitor larger raptors. Radar classification software is quickly 
developing so that targets can be categorized as nonbiological, insect, 
bird, or plane (Werber et al., 2023), but species identification remains 
limited. Complementary fusion between radar and high-resolution 
ambient-light cameras is a progressing technique that allows some 

morphologically distinct avian targets to be identified by species 
(Lagerveld et al., 2020). A further limitation of radar monitoring is that 
terrestrial wind power projects, unlike most offshore wind plants, are 
often not uniformly distributed into grids. This makes After-Impact 
studies difficult because the delineation between inside and outside 
the project may not be discrete. In such cases, complementary fusion 
between several radar units may be appropriate to ensure adequate 
spatial coverage.

For certain species, behavioral studies may require tracking long- 
term individual movements with tagging technologies such as radio
frequency (RF) telemetry tags or GPS tags (Table 1) affixed to wildlife. 
Although tagging requires that researchers overcome the challenges 
associated with capturing and handling wildlife, the data acquired from 
tagging efforts can reveal previously unknown aspects of a species' life 
history (Weller et al., 2016). RF tags emit radio signals at a specific 
frequency that can be identified and tracked by specialized receivers, 
while GPS tags use satellite signals to determine the exact position of an 
individual. RF tags are generally smaller and less expensive, making 
them particularly valuable for tracking small-bodied organisms such as 
temperate bat species (McGuire et al., 2014; True et al., 2023) and 
migratory songbirds (Brown and Taylor, 2017; Morbey et al., 2018) that 
have too little mass to carry heavier high-resolution GPS tags. RF tags 
may also serve as lower-cost options for larger bodied organisms. The 
Motus network is a large-scale effort to track individuals through a co
ordinated open-source system of radio-telemetry arrays. This network 
may be valuable for investigating large-scale movement patterns of in
dividuals tagged at a focal wind plant or tagged by researchers from 
other regions studying wind-wildlife interactions (Lamb et al., 2023; 
Loring et al., 2020) or movement ecology more generally. For tracking 
organisms within the wind farm, it may be possible to set up an array of 
receivers to recreate high-resolution movement tracks or establish 
several receiver stations as part of the Motus network. GPS tags are ideal 
when organisms have a large enough mass to support high-resolution 
solar-powered tags without impeding mechanical movements, such 
that data can be retrieved from satellites more frequently, for long pe
riods of time, and can be remotely transmitted without tag retrieval. GPS 
tags have been used successfully to recreate the movement tracks of 
ungulates (Tsegaye et al., 2017), the flight tracks of multiple raptor 
species including white-tailed eagles (May et al., 2013), and several 
wading bird species during coastal breeding and migration (Loring et al., 
2020). GPS tags are also important in monitoring the landscape-scale 
movements of grouse species (LeBeau et al., 2023). Pilot studies are 

Fig. 2. Hypothetical example of three different spatial scales of avoidance metrics derived from datasets that can be generated from video (micro scale), radar (meso 
and macro scale), and or high-resolution radio frequency (RF) or GPS tags (meso and macro scale).
Modified from Skov et al. (2018) and Leemans et al. (2022).
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exploring the application of very small, low-power communication tags 
that connect to alternate terrestrial networks to track bat migration 
(Hurme et al., 2025; Wild et al., 2023).

To quantify interactions with wind energy infrastructure, movement 
tracks collected with tags are analyzed similarly to those produced by 
radar. RF and GPS tags make it additionally possible to compare the 
usage of the landscape during pre-construction conditions to post- 
construction conditions, or to compare movement activity within the 
wind power project to activity outside the project. These comparisons 
help researchers understand how individuals respond to wind farms and 
wind turbines over the course of several weeks to months, using RF tags 
(the temporal duration is limited by battery and adhesive ability), or 
multiple years using GPS tags (LeBeau et al., 2023). Tagging efforts 
leverage both competitive and complementary fusion, in that each new 
tag deployed increases the likelihood of retrieving usable data and that 
each new tagged individual increases the spatial extent of our under
standing about the movement dynamics of the population. While op
portunities for sensor fusions with tags are less established, one 
promising avenue of exploration is competitive fusion with tagged in
dividuals and radar. Identifying radar tracks of tagged individuals can 
provide researchers with high-accuracy training datasets of tracks from 
known species, which will improve radar classification by enabling more 
accurate species identification. Additionally, known tagged individuals 
could support species identification in other camera-based sensor 
systems.

2.3. Parameterize: observe drivers of effects

2.3.1. Monitoring to parameterize vulnerability and collision risk models
Vulnerability models are used to quantitatively assess if a population 

is susceptible to displacement or collision effects and are critical to 
effectively implementing mitigation frameworks (Croll et al., 2022). 
Vulnerability models consider population status and demography (e.g., 
population size, adult survival and reproduction, and conservation 
threat status) as well as collision and displacement-specific risk pa
rameters such as flight activity rates and flight height (Furness et al., 
2013; Kelsey et al., 2018. Though wind and wildlife monitoring systems 
may help inform population status and demographic parameters, we 
consider those metrics to be better suited for coordinated landscape- 
level monitoring systems (e.g., NABAT; Loeb et al., 2015) and there
fore secondary to onsite monitoring systems. Species populations that 
are highly vulnerable to collision are unlikely to persist at wind farms 
because unsustainable mortality rates reduce populations. These species 
are expected to exhibit low avoidance rates; have low flight maneu
verability; spend a large proportion of time in flight; and have charac
teristic flight speeds, heights, and durations within the rotor-swept area. 
Additionally, the turbulent environment of wind farms may interfere 
with flight (Shepard, 2025). Differences in visual perception can also 
contribute to collision vulnerability; many collision prone bird species 
have reduced visual capability when looking ahead (Martin and Banks, 
2023). In contrast, displacement-vulnerable species are those that are 
unlikely to occupy the same space with wind plants because they are 
affected disproportionally by barrier effects or functional habitat loss. 
Such species are expected to exhibit low habitat flexibility (informed by 
natural history, not wind-wildlife monitoring systems) and high macro 
and meso avoidance rates of wind turbines (Kelsey et al., 2018).

For volant species, collision-risk models are versatile and can be used 
to predict risk at multiple spatial scales, including the wind farm, a set of 
wind turbines, or a single wind turbine (Masden and Cook, 2016). 
Collision-risk models may be used during pre-construction to estimate 
the expected mortality rates of a proposed project, or can be used to 
assess risk at an existing wind farm in an iterative process to improve 
predictive models of mortality rates, or to better understand collision 
probability (i.e., drivers of collision, when and why collisions occur). 
Over the past two decades researchers have explored a variety of ap
proaches to collision-risk modeling (Masden and Cook, 2016). Despite 

extensive development, collision risk models fail to predict risk for 
certain species (Lintott et al., 2016) and the outputs remain sensitive to 
certain parameters such as flight speed (Masden et al., 2021) requiring 
increased efforts to collect high resolution species-specific flight data.

Both vulnerability and risk models are species-specific and rely on 
metrics of individual movement, including characteristic flight speed; 
flight height; flight duration within the rotor swept area; and measures 
of macro, meso, and micro avoidance and/or attraction. High-resolution 
movement tracks for ground-based species (e.g., grouse) and species- 
specific 3D flight tracks are necessary to properly parameterize 
models. In certain cases, when species-specific data is unavailable, sur
rogates are used given that they closely match the characteristics of the 
species of interest.

There are several approaches to acquiring high-quality 3D flight and 
movement behaviors data. It depends on the target taxa and the spatial 
scale and temporal resolution required to derive metrics (e.g., micro 
avoidance vs macro avoidance). 3D flight tracks are most cost- 
effectively acquired via cooperative thermal or ambient light camera 
sensor fusions. Two calibrated cameras, with known distances from each 
other, and a defined viewshed allow researchers to quantify flight di
rection, speed, and height. From these primary metrics it is possible to 
further derive a measure of micro avoidance and exposure time (i.e., 
amount of time the target flies within the rotor-swept area). Species 
identification with video alone is still in development for non-raptor 
species of birds and bats. Several video classification algorithms have 
demonstrated proficiency in identifying a biological target from a non- 
biological target and rudimentary ability to broadly classify biological 
targets into size-based bird, bat, and insect categories, but species 
identification has not been successfully implemented with these classi
fication algorithms. Ambient light cameras oriented toward the rotor- 
swept area can acquire data of high-enough quality that human ob
servers are able to classify targets during post-analysis. Under clear, 
daylight conditions, they are often able to accurately identify insects, 
birds, and diurnally flying bats to the family and often species level. 
However, monitoring biological targets during the nocturnal period 
when visual identification is unfeasible will most often require com
plementary fusions with acoustic detectors that can identify species or 
species groups.

While tracking via tagging technology, such as RF and GPS tags, 
continues to be the most common way to acquire movement data for 
large-bodied ground birds, traditional applications of these sensors may 
not provide the spatial resolution required to improve modeling efforts. 
Typical radio telemetry applications are effective at providing the po
sition of a tagged individual but contain varying measures of error. 
Combining multiple antennas into an x, y, z array via complementary 
fusion techniques may provide much higher resolution movement data 
for individuals as they move through an entire wind farm footprint for 
both ground-based and volant species alike.

2.3.2. Modeling to parameterize minimization models
Operators may use real-time data to trigger curtailment when colli

sion risk is highest. For example, wind speed data collected onsite is 
frequently used as an indicator of bat collision risk, with risk modeled as 
a decreasing function of wind speed with operators curtailing turbine 
operations when wind speed drops below a designated threshold (e.g., 
5.0 m/s) (Whitby et al., 2021). Further, real-time wind speed data has 
been combined with bat acoustic activity rates to refine collision-risk 
probability models and subsequent minimization measures (e.g., 
curtail when wind speed is less than 5.0 m/s and a bat ultrasonic call is 
detected) (Hayes et al., 2019). Yet we still lack a detailed understanding 
of the abiotic and biotic drivers of risk, limiting our ability to improve 
current minimization techniques. Sensor technologies that can help us 
understand the drivers of attraction to turbines and elucidate the rela
tionship between attraction and collisions are critical. Understanding 
how and under what conditions bats are attracted to turbines will help 
inform future sensor placements as well. For example, if the majority of 
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bats or birds are attracted to the rotor swept zone from the ground level, 
then using ground based sensors to inform curtailment may be an 
effective and less costly way to inform a real-time activity based 
curtailment system. Further, thermal cameras and/or collision-impact 
sensors that can pinpoint the exact timing of a collision event, present 
additional opportunities to collect data, which can be used to parame
terize site and species-specific collision probability models helping op
erators optimize the tradeoff between mortality reduction and energy 
production (Machado et al., 2024).

2.4. Supporting an iterative minimization framework with a robust wind 
wildlife monitoring system

An iterative minimization framework is critical to achieving the goal 
of limiting effects on wildlife until some performance criteria are met (e. 
g., no net loss of biodiversity). Specifically, this adaptive management 
approach supports decision making by iterating between modeling and 
empirically testing minimization measures (Fig. 3, A). The success and 
utility of this iterative process is contingent on the inclusion of high- 
quality data. This cycle of modeling and empirical testing must be 
supported by a robust wind-wildlife monitoring system that can: 1) 
monitor effects to assess the efficacy of an implemented mitigation 
measure (e.g., quantify mortality), and 2) monitor the drivers of effects 
to parameterize vulnerability and risk models (e.g., collision-risk 
models) (Fig. 3, B) (Runge, 2011). Designing and implementing a 
wind-wildlife monitoring system capable of accomplishing both moni
toring goals requires integrating several design elements (Fig. 3, C), 
including sensor fusion principles, to increase system capacity (Fig. 3, 
D).

To further illustrate the use of such a system (one that leverages 
several sensor technologies integrated with sensor fusion techniques) 
consider a hypothetical scenario where a wind power project is planned 
to accomplish three goals with its monitoring system: 1) assess bat 
collision effects, 2) use metrics of bat activity rates to trigger real-time 
curtailment measures, and 3) gather data that reduces collision-risk 
model parameter uncertainty. While there are many suites of technol
ogy fusions that could potentially accomplish this goal, in this example, 
researchers have deployed nacelle-mounted ultrasonic detectors and 
upward-facing monopole-mounted thermal cameras.

Ultrasonic detectors are inexpensive and robust sensors that can be 
applied to record spatiotemporal activity patterns of echolocating 

species at spatial scales up to 40 m. Mounting these detectors on the 
nacelle will collect data from individuals flying near the wind turbine. 
Competitive fusion principles should be applied to the spatial deploy
ment of these detectors to ensure continuous data collection is achieved. 
Sensors should also be monitored by humans periodically to assess 
functionality and avoid disruptions to data collection. When integrated 
with the SCADA system, activity rate data obtained in real time (acoustic 
calls per time interval) are used to inform collision-risk probability and 
to trigger curtailment (Hayes et al., 2019, Wildlife Acoustics).

Thermal cameras are deployed to gather high-quality data about 
microscale bat and wind turbine interactions. Thermal cameras can 
monitor collisions and provide information about the behaviors and 
conditions that are associated with increased collision probability. 
Collisions are directly detected with a 2-thermal camera system that can 
be mounted on the monopole facing upwards. The cameras are inte
grated with complementary fusion to generate 3D flight tracks and in
crease the spatial coverage to include the entire rotor-swept area (~125- 
m rotor diameter). New data analysis tools are being explored to allow 
analysis in near real time (Matzner et al., 2020; Corcoran et al., 2021). 
Initial observations of collisions should be verified by human observers 
until the system demonstrates certain site-specific performance criteria 
and can identify collisions autonomously with high confidence.

In this example, as it relates to the iterative framework (Fig. 3), 
imagine an initial state of wind turbine operations with no minimization 
measures enacted. During facility operations, thermal cameras are used 
to directly assess collision effects. If collision effects exceed some agreed- 
upon threshold, operators may leverage data gathered on drivers of 
collision probability (e.g., flight dynamics prior to the collision event) 
from both the thermal cameras and acoustic detectors to parameterize 
collision-risk models. The outputs of such models can guide a site- 
specific minimization measure. Implementing a minimization measure 
may rely on using data collected in real time from acoustic detectors or 
thermal cameras, depending on which metric(s) is/are being used as an 
indicator of collision risk, to trigger the minimization measure (e.g., 
curtailment). This process of measuring effects, parameterizing models, 
updating minimization measures, and using real-time sensor data to 
implement a minimization measure should continue in an iterative 
process until stakeholder goals are achieved.

While the previous use case is valuable, both ultrasonic detectors and 
thermal cameras operate only at the microscale. There is a pressing need 
for greater exploration of individual behavior at the meso scale before 

Fig. 3. To iterate between modeling mitigation measures and empirical validating mitigation measure decisions (A), an effective technology-driven wind and 
wildlife monitoring system must be capable of accomplishing two monitoring goals: 1) observe effects (e.g., quantify mortality) to assess minimization performance 
and 2) observe drivers of effects (e.g., flight height, avoidance, or use of real-time data to implement mitigation such as curtailment) to parameterize (B). 
Accomplishing the monitoring goals requires that we integrate several monitoring system design elements (C) each providing additional monitoring system ca
pacity (D).
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individuals approach the wind turbine (Fig. 4). A deeper understanding 
of bat behavior at the meso scale (within the project's footprint) is a 
critical missing element in the current suite of wind-wildlife monitoring 
tools. Obtaining this understanding will require a sensor with the 
capability to monitor movement of multiple-size targets at increasing 
spatial scales to parameterize models. To date, vertical-looking radar 
and 3D radar are capable of continuous tracking for larger subjects (e.g., 
raptor species.) but have not yet been validated for high-resolution 
target identification and tracking of smaller-bodied avian and bat spe
cies (5–150 g) (Nilsson et al., 2018). The application of radar for smaller 
targets is limited by a lack of radar datasets containing known targets 
and their extracted metrics (e.g., wing beat and/or flapping frequency) 
that can be used to train radar classification tools across different re
gions and conditions (Werber et al., 2023). Such a dataset could be 
achieved through competitive sensor fusion techniques whereby 
captured bats are tagged with high-resolution RF tags and monitored 
with a 3D receiver array or hand released and monitored with thermal 
cameras within the viewshed of radar systems. Once 3D radar is capable 
of effectively tracking these smaller targets at a meso scale, individual 
flight characteristics and population-level flux rates can be integrated 
into the iterative monitoring framework and used to reduce collision- 
risk model parameter uncertainty.

3. Concluding remarks

As we transition from human-based to technology-based wind- 
wildlife monitoring solutions, several benefits are expected. These 
benefits include increased temporal resolution of collision events, which 
should lead to more comprehensive characterizations of the abiotic and 
biotic drivers of collision risk; reduced parameter uncertainty, which 
should result in better vulnerability and risk model performance; and 
real-time processing and feedback that can be easily integrated into 
wind plant system controls for more cost-effective minimization 
strategies.

Despite the potential benefits, it is necessary to understand and 
articulate the limitations of technology-driven monitoring solutions, 
including hardware malfunctions, substantial data storage re
quirements, and high upfront costs. In many cases, these limitations can 
be overcome by combining multiple technologies or by using the higher- 
quality system outputs, e.g., more effective curtailment results in greater 
energy production, thereby offsetting upfront cost of installation. 
However, it is important for technology providers, researchers, and 
wind energy developers to engage early and often regarding the proper 
use and integration of technologies at the wind farm. This includes un
derstanding where the technologies will be located on the wind turbine 
or within the project, how the technology will be powered, and how data 
will be collected onsite or transmitted to an offsite location. Addition
ally, the exact technical requirements of any monitoring system will 
vary based on the species of interest and the priorities of the operator.

Widespread adoption of technology-driven wind-wildlife monitoring 
systems may be hampered if monitoring technologies cannot be more 
effectively integrated as part of system digitization efforts, and as part of 
socio-technical-economic- political (STEP) co-design considerations 
(Aziz et al., 2022). Initial steps toward better consideration of envi
ronmental monitoring may include development of upstream (turbine 
manufacturer-level) technology and/or data flow, engaging with the 
community to foster excitement and acceptance, and demonstrating to 
regulators a more industry-wide commitment to advancing our knowl
edge about wind and wildlife interactions.

The application and development of technologies that more effec
tively quantify wildlife behavior allows for rebalancing of monitoring 
resources and for removing a critical barrier to a fully functional 
adaptive management framework (Månsson et al., 2023). The concept of 
a more expansive and technology-driven wildlife monitoring system has 
already benefited from interdisciplinary collaborations whereby in 
recent years engineers and computer scientists have more frequently 
worked with wildlife biologists to apply the tools of their trade to the 
wind energy and wildlife domain. As such, it has become increasingly 
common to deploy a range of sensor technologies and novel sensor 
fusion techniques at wind farms during pre- and post-construction pe
riods to address questions at a variety of temporal and spatial scales. 
Several studies have explicitly leveraged sensor fusion techniques to 
support monitoring goals at wind facilities (Cryan et al., 2014; Lagerveld 
et al., 2020; Willmott et al., 2023), and future studies will benefit from 
identifying their monitoring goals and sensor fusion techniques when 
designing their monitoring systems.

Though not the focus of this review, there is great value in continuing 
to acquire baseline data collection that can be used to increase our un
derstanding of landscape level distributions and abundance of species. 
Ultimately, monitoring species population health via long-term baseline 
metrics (e.g., population growth rates) is critical to understanding 
landscape-level impacts of the wind energy industry. However, assessing 
such impacts often requires coordinated monitoring efforts beyond the 
spatial extent and temporal bounds of a single wind plant. And so, at the 
wind farm level, monitoring the proximate collision and displacement 
effects remains the priority.

Target audience

Wind-wildlife practitioners, wind farm developers/operators, and 
conservation scientists.

Acknowledgement of financial and institutional support

This work was authored in part by NREL for the U.S. Department of 
Energy (DOE), operated under Contract No. DE-AC36-08GO28308. 
Funding provided by U.S. Department of Energy Office of Energy Effi
ciency and Renewable Energy Wind Energy Technologies Office. The 

Fig. 4. Spatial range of common wind and wildlife monitoring technology sensors. X-axis on log scale.

L. Dempsey et al.                                                                                                                                                                                                                                Biological Conservation 311 (2025) 111449 

7 



views expressed in the article do not necessarily represent the views of 
the DOE or the U.S. Government. The U.S. Government retains and the 
publisher, by accepting the article for publication, acknowledges that 
the U.S. Government retains a nonexclusive, paid-up, irrevocable, 
worldwide license to publish or reproduce the published form of this 
work, or allow others to do so, for U.S. Government purposes.

CRediT authorship contribution statement

Laura Dempsey: Writing – review & editing, Writing – original 
draft, Investigation, Conceptualization. Jeff Clerc: Writing – review & 
editing, Writing – original draft, Investigation. Cris Hein: Writing – 
review & editing, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

Allison, T.D., Diffendorfer, J.E., Baerwald, E.F., Beston, J.A., Drake, D., Hale, A.M., 
Hein, C.D., Huso, M.M., Loss, S.R., Lovich, J.E., Strickland, M.D., 2019. Impacts to 
wildlife of wind energy siting and operation in the United States. Issues Ecol. 21 (1), 
2–18.

Arnett, E.B., Brown, W.K., Erickson, W.P., Fiedler, J.K., Hamilton, B.L., Henry, T.H., 
Jain, A., Johnson, G.D., Kerns, J., Koford, R.R., Nicholson, C.P., 2008. Patterns of bat 
fatalities at wind energy facilities in North America. The Journal of Wildlife 
Management 72 (1), 61–78.

Aziz, M.J., Gayme, D.F., Johnson, K., Knox-Hayes, J., Li, P., Loth, E., Pao, L.Y., 
Sadoway, D.R., Smith, J., Smith, S., 2022. A co-design framework for wind energy 
integrated with storage. Joule 6, 1995–2015.

Brown, J.M., Taylor, P.D., 2017. Migratory blackpoll warblers (Setophaga striata) make 
regional-scale movements that are not oriented toward their migratory goal during 
fall. Mov. Ecol. 5, 1–13.

Chadès, I., Tarnopolskaya, T., Dunstall, S., Rhodes, J., Tulloch, A., 2015. A comparison of 
adaptive management and real options approaches for environmental decisions 
under uncertainty. In: Proceedings of the 21st International Congress on Modelling 
and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and 
New Zealand Inc. (MSSANZ), pp. 1056–1062.

Christie, A.P., Amano, T., Martin, P.A., Shackelford, G.E., Simmons, B.I., Sutherland, W. 
J., 2019. Simple study designs in ecology produce inaccurate estimates of 
biodiversity responses. J. Appl. Ecol. 56, 2742–2754.

Corcoran, A.J., Schirmacher, M.R., Black, E., Hedrick, T.L., 2021. Thrutracker: open- 
source software for 2-d and 3-d animal video tracking. bioRxiv, 2021–05.

Croll, D.A., Ellis, A.A., Adams, J., Cook, A.S.C.P., Garthe, S., Goodale, M.W., Hall, C.S., 
Hazen, E., Keitt, B.S., Kelsey, E.C., Leirness, J.B., Lyons, D.E., McKown, M.W., 
Potiek, A., Searle, K.R., Soudijn, F.H., Rockwood, R.C., Tershy, B.R., Tinker, M., 
VanderWerf, E.A., Williams, K.A., Young, L., Zilliacus, K., 2022. Framework for 
assessing and mitigating the impacts of offshore wind energy development on 
marine birds. Biol. Conserv. 276. https://doi.org/10.1016/j.biocon.2022.109795.

Cryan, P.M., Gorresen, P.M., Hein, C.D., Schirmacher, M.R., Diehl, R.H., Huso, M.M., 
Hayman, D.T.S., Fricker, P.D., Bonaccorso, F.J., Johnson, D.H., 2014. Behavior of 
bats at wind turbines. Proc. Natl. Acad. Sci. 111, 15126–15131.

Dalthorp, D., Madsen, L., Huso, M.M., Rabie, P.A., Wolpert, R., Studyvin, J., Simonis, J., 
Mintz, J., 2018. GenEst Statistical Models—A Generalized Estimator of Mortality 
(No. 7-A2). US Geological Survey.

Dohm, R., Jennelle, C.S., Garvin, J.C., Drake, D., 2019. A long-term assessment of raptor 
displacement at a wind farm. Front. Ecol. Environ. 17 (8), 433–438.

Ellerbrok, J.S., Delius, A., Peter, F., Farwig, N., Voigt, C.C., 2022. Activity of forest 
specialist bats decreases towards wind turbines at forest sites. J. Appl. Ecol. 59, 
2497–2506.

Elmenreich, W., 2002. Sensor Fusion in Time-Triggered Systems. Vienna University of 
Technology, Vienna, Austria, p. 173. PhD Thesis (PDF). 

Furness, R.W., Wade, H.M., Masden, E.A., 2013. Assessing vulnerability of marine bird 
populations to offshore wind farms. J. Environ. Manag. 119, 56–66.

Garvin, J.C., Jennelle, C.S., Drake, D., Grodsky, S.M., 2011. Response of raptors to a 
windfarm. J. Appl. Ecol. 48 (1), 199–209.

Gaultier, S.P., Lilley, T.M., Vesterinen, E.J., Brommer, J.E., 2023. The presence of wind 
turbines repels bats in boreal forests. Landsc. Urban Plan. 231, 104636.

Goldenberg, S.Z., Cryan, P.M., Gorresen, P.M., Fingersh, L.J., 2021. Behavioral patterns 
of bats at a wind turbine confirm seasonality of fatality risk. Ecol. Evol. 11, 
4843–4853. https://doi.org/10.1002/ece3.7388.

Hayes, M.A., Hooton, L.A., Gilland, K.L., Grandgent, C., Smith, R.L., Lindsay, S.R., 
Collins, J.D., Schumacher, S.M., Rabie, P.A., Gruver, J.C., 2019. A smart curtailment 
approach for reducing bat fatalities and curtailment time at wind energy facilities. 
Ecol. Appl. 29, e01881.

Hein, C.D., Gruver, J., Arnett, E.B., 2013. Relating pre-construction bat activity and post- 
construction bat fatality to predict risk at wind energy facilities: a synthesis. In: 
A Report Submitted to the National Renewable Energy Laboratory. Bat Conservation 
International, Austin, TX, USA, p. 22.

Horn, J.W., Arnett, E.B., Kunz, T.H., 2008. Behavioral responses of bats to operating 
wind turbines. J. Wildl. Manag. 72, 123–132. https://doi.org/10.2193/2006-465.

Hurme, E., Lenzi, I., Wikelski, M., Wild, T.A., Dechmann, D.K., 2025. Bats surf storm 
fronts during spring migration. Science 387 (6729), 97–102.

Kelsey, E.C., Felis, J.J., Czapanskiy, M., Pereksta, D.M., Adams, J., 2018. Collision and 
displacement vulnerability to offshore wind energy infrastructure among marine 
birds of the Pacific Outer Continental Shelf. Journal of Environmental Management 
227, 229–247.

Koblitz, J.C., 2018. Arrayvolution: using microphone arrays to study bats in the field. 
Can. J. Zool. 96 (9), 933–938.

Lagerveld, S., Noort, C.A., Meesters, L., Bach, L., Bach, P., Geelhoed, S., 2020. Assessing 
Fatality Risk of Bats at Offshore Wind Turbines. Wageningen Marine Research.

Lamb, J.S., Loring, P.H., Paton, P.W., 2023. Distributing transmitters to maximize 
population-level representativeness in automated radio telemetry studies of animal 
movement. Mov. Ecol. 11 (1), 1.

LeBeau, C., Smith, K., Kosciuch, K., 2023. Lesser prairie-chicken habitat selection and 
survival relative to a wind energy facility located in a fragmented landscape. Wildl. 
Biol. 2023(4). p.e01091. 

Leemans, J.J., van Bemmelen, R.S.A., Middelveld, R.P., Kraal, J., El, B.R., Beuker, D., 
Kuiper, K., Gyimesi, A., 2022. Bird fluxes, flight-and avoidance behaviour of birds in 
offshore wind farm Luchterduinen. In: Bureau Waardenburg Report, 22-078.

Lehnardt, Y., Barber, J.R., Berger-Tal, O., 2024. Effects of wind turbine noise on songbird 
behavior during nonbreeding season. Conserv. Biol. 38 (2), e14188.

Lintott, P.R., Richardson, S.M., Hosken, D.J., Fensome, S.A., Mathews, F., 2016. 
Ecological impact assessments fail to reduce risk of bat casualties at wind farms. 
Curr. Biol. 26 (21), R1135–R1136.

Lloyd, J.D., Aldridge, C.L., Allison, T.D., LeBeau, C.W., McNew, L.B., Winder, V.L., 2022. 
Prairie grouse and wind energy: the state of the science and implications for risk 
assessment. Wildl. Soc. Bull. 46 (3), e1305.

Loeb, S.C., Rodhouse, T.J., Ellison, L.E., Lausen, C.L., Reichard, J.D., Irvine, K.M., 
Ingersoll, T.E., Coleman, J.T., Thogmartin, W.E., Sauer, J.R., Francis, C.M., 2015. 
A plan for the North American bat monitoring program (NABat). In: Gen. Tech. Rep. 
SRS-208, vol. 208. US Department of Agriculture Forest Service, Southern Research 
Station, Asheville, NC, pp. 1–100.

Londe, D.W., Elmore, R.D., Davis, C.A., Hovick, T.J., Fuhlendorf, S.D., Rutledge, J., 2022. 
Why did the chicken not cross the road? Anthropogenic development influences the 
movement of a grassland bird. Ecol. Appl. 32, e2543.

Loring, P.H., McLaren, J.D., Goyert, H.F., Paton, P.W.C., 2020. Supportive wind 
conditions influence offshore movements of Atlantic Coast Piping Plovers during fall 
migration. Condor 122, duaa028.

Machado, R., Nabo, P., Cardia, P., Moreira, P., Nicolau, P., Repas-Goncalves, M., 2024. 
Bird Curtailment in Offshore Wind Farms: Application of Curtailment in Offshore 
Wind Farms at a Sea Basin Level to Mitigate Collision Risk for Birds. Birdlife Europe 
and Central Asia and STRIX, Brussels, Belgium. https://doi.org/10.5281/ 
zenodo.11237120. 

Månsson, J., Eriksson, L., Hodgson, I., Elmberg, J., Bunnefeld, N., Hessel, R., 
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