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ABSTRACT

Effective minimization of negative effects of wind energy on wildlife is an iterative process whereby direct
observations of wildlife effects inform and validate mitigation strategies. Yet, the full implementation of this
adaptive management has been hindered by a lack of appropriate data. The accurate, high-resolution data
required exceeds the capacity of most current monitoring approaches (human observers or monitoring tech-
nologies applied in isolation). Current applications of monitoring technologies struggle to harness their full
potential by failing to capitalize on opportunities for integration with additional technologies and/or by having
limited temporal and spatial resolution. At the emergence of this new frontier of wildlife monitoring, we review
the elements of a robust wind-wildlife monitoring system and highlight sensor fusion principles that facilitate
effective implementation and integration of multiple monitoring technologies. We also illustrate how sensor
fusion solutions can generate high resolution data on collision and displacement effects on terrestrial wildlife

across complex spatial and temporal scales.

1. Introduction

Land-based wind energy is a critical component to global energy
production yet continues to have unintended negative effects on wildlife
(Allison et al., 2019; Schuster et al., 2015). Primary effects of concern
are collision, whereby wind turbine blades make lethal contact with
wildlife (Arnett et al., 2008; Marques et al., 2014), and displacement,
whereby the presence of wind turbines causes wildlife to redistribute
across the landscape—resulting in functional loss of habitat (Dohm
et al., 2019; Lloyd et al., 2022). To balance the tradeoff between wind
energy production and wildlife conservation goals, we must monitor
effects (i.e., mortality, displacement), correlates of effects (i.e., indi-
vidual behaviors at multiple scales), and the effectiveness of minimi-
zation approaches.

Most post-construction wildlife monitoring programs focus only on
quantifying collision effects through ground-based carcass surveys per-
formed by human observers (U.S. Fish and Wildlife Service, 2012).
Human-based post-construction mortality surveys are resource intensive
(e.g., surveyor labor and maintenance associated with clearing vegeta-
tion from survey plots) and often generate mortality estimates too un-
certain to effectively validate or improve minimization measures.
Further, these post-construction wildlife monitoring programs cannot
collect real time data on wind and wildlife interactions that could inform
species vulnerability and risk models used to guide wind turbine and

wind farm siting and operation decisions. To overcome the limitations of
human-based post construction monitoring surveys, there is a growing
need to leverage sensor technologies capable of collecting high-quality
data required to generate accurate estimates of effects and limit model
parameter uncertainty (Chades et al., 2015; Searle et al., 2025).
Species affected by wind farms are often highly cryptic and/or mo-
bile species, and accurate observations of such species require resolution
that exceeds the ability of human observers or sensors applied in isola-
tion. As such, effectively monitoring wind-wildlife interactions requires
a suite of integrated sensor technologies. Multiple integrated sensors
surpass the capabilities of any one sensor. Accomplishing critical
monitoring tasks will require one or more sensors to be effectively fused
into the same system. The sensor fusion framework, borrowed from the
computer science and engineering fields (Elmenreich, 2002), provides
language to frame the discussion of how sensors can be combined to best
address wind-wildlife monitoring goals at a variety of spatial scales.
There are three distinct categories of sensor fusions: competitive
fusion, complementary fusion, and cooperative fusion (Fig. 1).
Competitive fusion, or ‘back-up’ fusion, is designed to add redundancy
and accuracy to a system by using 2 or more independent sensors that
each collect data on the same landscape feature(s) or biological phe-
nomenon. Monitoring with multiple units of the same sensor is an
effective way to ensure data reliability by limiting the number of data
gaps incurred via non-operational sensors. This redundancy is
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particularly important when operators are not able to receive real-time
system operation updates remotely and allows sensors to be offline for
repairs without disruption to data collection. Complementary fusion
occurs when multiple sensors collect independent but related data that
can be combined to give a more comprehensive picture of the phe-
nomenon. This type of fusion is particularly important as it can extend
the spatial resolution when greater coverage of the wind turbine or wind
farm is needed. Finally, cooperative fusion uses data from two or more
independent sensors to derive emergent metrics. This type of coopera-
tive fusion is commonly applied in single sensor — multi-unit configu-
rations (i.e., two or more of the same sensor). For example, when two
overlapping sensors can derive 3-dimensional (3D) movement.

In the following sections, we describe how sensor tech-
nologies—often integrated with sensor fusion techniques—are used to
collect data for assessing collision and behavioral effects, parameter-
izing vulnerability and risk models, and informing minimization models.
We also present a case study illustrating how sensor fusion systems can
generate high-resolution data across complex spatial and temporal
scales. We use this example to further explore how these data are used to
address parameter uncertainty for collision-risk models and, when
combined with automated processing and real-time feedback design
elements, can be used to implement a curtailment minimization mea-
sure. Finally, we expand on our case study to demonstrate how an
effective wind-wildlife monitoring system can be used iteratively in an
adaptive management process to guide a hypothetical collision mini-
mization measure.

2. Evaluate: observe effects
2.1. Collision monitoring

Collision with wind turbine blades has become a major anthropo-
genic cause of mortality for certain species of raptors and migratory bats
(Arnett et al., 2008; Marques et al., 2014). Traditional carcass moni-
toring is ground-based and conducted by humans or dogs who regularly
search a portion of the ground surrounding a subset of wind turbines for
carcasses (Table 1). The raw counts from ground-based carcass survey
data are converted to mortality rates using estimators such as GenEst
(Dalthorp et al., 2018) that account for methodological variability (e.g.,
plots vs. roads and pads, human vs. dog team searchers, and cleared vs.
uncleared plots). These estimators additionally account for variability
associated with carcass persistence, searcher efficiency, and carcasses
that fall outside of the search area (Dalthorp et al., 2018). Through
standard analysis approaches and continuing efforts to standardize

Fusion Type

Competitive Fusion:
Reliability and

Independent sensors produce data on Accuracy

the same phenomenon.

Complementary Fusion:

Independent sensor data provide
additive information to generate more
complete information about
phenomenon.

Cooperative Fusion:

Independent sensor data are used to
derive information about
phenomenon not available from a
single sensor.

Completeness --

Biological Conservation 311 (2025) 111449

mortality databases, ground-based survey approaches continue to
improve in generating metrics that characterize the cumulative mor-
tality from wind energy (e.g., fatalities per turbine, fatalities per MW).

Carcass surveys are limited by inherent “partial observability” un-
certainty. Human surveys are unlikely to directly observe collision
events in real time because collisions are relatively rare events, not all
wind turbines are monitored, and most carcass surveys are conducted
during the day while collisions for bats and nocturnal migratory birds
occur at night. These limitations result in a temporal gap between the
moment of collision and the carcass discovery. This lag can be further
exacerbated by survey schedules where 2- to 7- day gaps may exist be-
tween searches.

Sensors allow for continuous monitoring of wind turbine blades,
thereby limiting temporal data gaps. Exchanging intermittent ground
surveys with continuous technology-driven monitoring can maintain or
improve the ability to estimate total wind turbine mortality, while
simultaneously providing greater spatial and temporal survey resolu-
tion. Recent advances in computer vision have resulted in camera-based
sensor systems that can directly observe collision events and subsequent
tracks (i.e., movement of the carcass directly from the wind turbine
blades to the ground) (Table 1). Visible light camera-based systems are
useful for diurnal species whereas nocturnal species can be monitored
with thermal or near infrared camera-based systems. Light Detection
and Ranging (LiDAR) sensors can provide high-resolution 3-dimensional
information on targets. The data can be used to track individual birds
and bats within the field of view although LiDAR is not able to distin-
guish among broad taxonomic groups. Further, sensors can provide
metrics of exposure rates (e.g., activity per unit of operational time) as a
low-cost proxy for collision events. For example, Peterson et al. (2021)
found that bat exposure, quantified as ultrasonic vocalizations per unit
time wind turbines were operational, was highly correlated with mor-
tality rates calculated from ground-based surveys. Activity rates derived
from camera data and/or LiDAR data may also be informative, provided
they are validated to correlate with fatality rates.

Sensor systems could also offer additional insights into specific risky
flight behaviors such as attraction. This is particularly true for bats,
whose patterns of activity and mortality suggest they may be attracted to
wind turbines (Goldenberg et al., 2021). For example, bats have been
observed approaching wind turbines and making multiple passes
through the rotor swept zone suggesting that individuals are not coin-
cidentally struck when their flight path happens to intersect a moving
blade (Horn et al., 2008; Cryan et al., 2014; Goldenberg et al., 2021). At
larger scales, attraction may present as increased activity within a
development footprint compared to surrounding areas or increased

Example Resulting Data Set

Two-dimensional (2D)
-+ movement tracks in Area
A with Sensor 1 and 2

2D movement tracks in
Area A with Sensor 1

i

2D movement tracks in
Area B with Sensor 2

Three-dimensional (3D)
movement tracks in Area
ANB with Sensor 1 and 2

Fig. 1. Hypothetical example of three different sensor fusion scenarios applied to a 2-video camera system tasked with monitoring bats on a landscape.
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Table 1
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Technologies applicable to monitoring different priority effects of wind energy on wildlife. Implementation measures may incorporate any number of the listed metrics
depending on the minimization strategy. Xs assigned to matrix even when capabilities are partial, e.g., species ID is possible with acoustics for some but not all species.

Data need for monitoring task Human Blade Camera Camera 3D camera Acoustics 2D 3D Lidar RF GPS
survey impact (ground or (aerial) (ground/ radar radar tags tags
sensor turbine) turbine
Enumerate fatalities” X X X X X
Exposure risk (fatality proxy)” X X X X X X X X
Species ID*" X X X X X X
Annual distribution overlap with X X X X X X
wind farm®”
Density/activity rates (e.g., X X X X X X X X
passes per time interval)™”
Time within the rotor-swept X X X X X
area”
Flight activity budgets” X X X X X X X X
Micro attraction/avoidance” X X
Meso attraction/avoidance™"” X X
Macro attraction/avoidance™” X X X
3D flight path (height, direction, X X X X
speed, micro attraction/
avoidance)”
Flux rates™” X X X X X X

2 Evaluate: observe effects.
b parameterize: observe drivers of effects.

activity following construction (Hein et al., 2013; Solick et al., 2020).
Disentangling the mechanisms of attraction is crucial because it has
direct implications for collision risk and identifying the drivers of risk is
key to developing effective mitigation strategies or interventions.

Camera-based mortality monitoring has several potential limita-
tions. The spatial coverage or field of view (FOV) of a single camera
oriented upward is unable to visualize the entire rotor-swept area with
adequate resolution for small targets. In some contexts, it may be
necessary to use complimentary sensor fusion to increase the spatial
coverage. Second, thermal and infrared camera systems as well as LIDAR
sensors have limited taxonomic resolution. Recent advances in camera-
based computer vision algorithms can classify targets as non-biological
or biological and further classify biological targets into broad categories
of bat, bird, or insect. However, differentiation from thermal video alone
remains challenging due to limitations in resolving body size and dis-
tance (Matzner et al., 2015). Camera-based systems that are comple-
mentary fused with acoustic detectors may allow for species
identification for individuals crossing the detection threshold of both
sensors (Willmott et al., 2023). Further, with video datasets that are
annotated with species identifications obtained with acoustics, it may be
possible to use machine learning techniques to gain even better taxo-
nomic resolution with camera-based systems alone. In addition, LiDAR
can be used in competitive fusion to provide a backup to camera datasets
as well as cooperative fusion application to provide higher resolution
information on target size, and 3D flight dynamics.

Collision detection systems can be mounted on wind turbine blades
and use sound or vibration sensors to record the exact timing of collision
events. This technology limits the amount of processing required to
analyze video footage from several feeds by providing an accurate time
stamp and perhaps offers an efficient standardization approach for
generating mortality rate estimates. Though capable of categorizing
subjects that strike the wind turbine blade into size/weight classes,
collision sensors also have limited taxonomic resolution unless coupled
with human observers to visit sites and retrieve carcasses, or via com-
plementary sensor fusions with camera systems and acoustic detectors.

2.2. Displacement monitoring

Functional habitat is determined not only by the suitability of local
biotic and abiotic conditions, but also by whether suitable habitat is
accessible through movements (Van Moorter et al., 2023). When or-
ganisms no longer perceive habitat as suitable (e.g., perceived predation

risk is too high) or suitable habitat is no longer accessible (e.g.,
impassable dam across a river), individuals are displaced and forced to
redistribute across the landscape. When animals perceive the presence
of novel anthropogenic structures such as wind turbines as risk factors
indicating habitat unsuitability or as impassable barriers between suit-
able habitat, individuals may avoid habitat around a wind farm (macro
avoidance) or wind turbines (meso avoidance) (Fig. 2). In some situa-
tions, these behavioral responses can result in displacement effects
(May, 2015). While grouse have been a major focus of land-based wind
energy displacement studies (LeBeau et al., 2023; Londe et al., 2022),
displacement can affect many species, including pronghorn and reindeer
(Milligan et al., 2023; Skarin et al., 2018), raptors (Dohm et al., 2019;
Garvin et al.,, 2011), songbirds (Lehnardt et al., 2024), and bats
(Ellerbrok et al., 2022). Displacement is also a concern for seabirds at
offshore wind farms (Masden et al., 2010).

Monitoring displacement effects is challenging because unlike lethal
collisions that occur in discrete events, displacement is a sublethal effect
that varies in time and space. Identifying displacement requires disen-
tangling natural changes from anthropogenic ones (Christie et al.,
2019). Therefore, quantifying displacement requires long-term moni-
toring and careful study design to account for spatial and temporal
variation in species presence, activity rates, habitat use, and/or move-
ment patterns (often quantified as movement track densities) between
pre-construction and post-construction conditions. To draw statistically
robust inference about displacement effects, researchers most frequently
consider avoidance within the framework of Before-After-Control-
Impact (BACI) studies (Mendel et al., 2019; Peschko et al., 2020). A
BACI framework emphasizes the importance of consistent monitoring
from pre-construction through the post-construction phases of the
project. However, study designs may vary by site and organism, such
that After-Impact or After-Impact-Gradient (AIG) studies may be
adequate to infer displacement via differences in species' activity rates or
direct observations of individual avoidance or attraction behavior
(Welcker and Nehls, 2016; Skov et al., 2018; Ellerbrok et al., 2022;
Gaultier et al., 2023; Tjgrnlgv et al., 2023).

Acoustic detectors are a reliable option for continuously monitoring
species activity rates (e.g., vocalizations per night) for species that
regularly vocalize, such as echolocating bats and some migratory
songbirds (Table 1). Despite a limited viewshed (40 m), the low cost of
acoustic detectors means many units can take advantage of comple-
mentary fusion techniques to cover large spatial areas. Long-term
acoustic surveys may be used in a BACI framework to detect
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Last-second flight maneuver to
avoid collision with turbine blade
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Macro-avoidance

Flight maneuver in response
to the presence a wind farm,
resulting in a redistribution
of individuals outside the
wind farm perimeter

\ Meso-avoidance

Flight maneuver in response to
the presence of turbines, resulting
in a redistribution of individuals
within the wind farm

Fig. 2. Hypothetical example of three different spatial scales of avoidance metrics derived from datasets that can be generated from video (micro scale), radar (meso
and macro scale), and or high-resolution radio frequency (RF) or GPS tags (meso and macro scale).

Modified from Skov et al. (2018) and Leemans et al. (2022).

differences between pre- and post-construction activity rates for one or
more species (Solick et al., 2020) and are also ideal for monitoring along
a gradient (e.g., from a monopole out to 1 km or more; Gaultier et al.,
2023). However, acoustic detectors are ineffectual for species that do
not vocalize frequently. Further, when interpreting acoustic data, it is
important to recognize that single-microphone acoustic detectors are
unable to determine whether a set of multiple vocalizations from the
same species were produced by multiple individuals or a single indi-
vidual making multiple approaches past the detector microphone, as
would be expected if a bat was foraging. To address this limitation for
bats, ultrasonic detectors may leverage cooperative fusion by comparing
microsecond differences in arrival time of vocalizations at multiple
microphones. This approach can assign calls to individual bats and may
be able to reconstruct flight paths for several individuals simultaneously.
However, distinguishing between specific individuals that move in and
out of range of the detector remains challenging (Koblitz, 2018).
X-band radar has a viewshed of 1 km-10 km or more, depending on
the biological target size and context (Nilsson et al., 2018) such that at
the meso and sometimes macro scale, radar is the most effective way to
quantify the flux rates and total amount of biomass using a site
throughout the season. Cryan et al. (2014) showed such conditions, with
a passage rate of 3 to 4 million animals, but only a small proportion of
that biomass was ever detected by thermal cameras and acoustic de-
tectors that were monitoring the micro scale over the same time period.
Radar technologies can be an effective way to monitor displacement
effects by quantifying habitat use in a BACI framework or along a
gradient (Skov et al., 2018). X-band vertical-looking radar, and x-band
3D radar can track multiple individuals to generate passage rate metrics
(Tjornlgv et al., 2023) and individual continuous tracks of larger bodied,
volant species at the meso and macro spatial scales. Flight tracks can be
used to quantify avoidance rates for a species or species group by
deriving flight track densities within the wind power project's footprint
compared to track densities outside the project (Skov et al., 2018; Box
1). Though radar is capable of tracking targets across a large viewshed,
there are currently constraining target size limitations as well as ground
clearance limitations (i.e., targets must be in flight to avoid ground
interference) As such, for terrestrial applications, radar has mostly been
used to monitor larger raptors. Radar classification software is quickly
developing so that targets can be categorized as nonbiological, insect,
bird, or plane (Werber et al., 2023), but species identification remains
limited. Complementary fusion between radar and high-resolution
ambient-light cameras is a progressing technique that allows some

morphologically distinct avian targets to be identified by species
(Lagerveld et al., 2020). A further limitation of radar monitoring is that
terrestrial wind power projects, unlike most offshore wind plants, are
often not uniformly distributed into grids. This makes After-Impact
studies difficult because the delineation between inside and outside
the project may not be discrete. In such cases, complementary fusion
between several radar units may be appropriate to ensure adequate
spatial coverage.

For certain species, behavioral studies may require tracking long-
term individual movements with tagging technologies such as radio-
frequency (RF) telemetry tags or GPS tags (Table 1) affixed to wildlife.
Although tagging requires that researchers overcome the challenges
associated with capturing and handling wildlife, the data acquired from
tagging efforts can reveal previously unknown aspects of a species' life
history (Weller et al., 2016). RF tags emit radio signals at a specific
frequency that can be identified and tracked by specialized receivers,
while GPS tags use satellite signals to determine the exact position of an
individual. RF tags are generally smaller and less expensive, making
them particularly valuable for tracking small-bodied organisms such as
temperate bat species (McGuire et al., 2014; True et al., 2023) and
migratory songbirds (Brown and Taylor, 2017; Morbey et al., 2018) that
have too little mass to carry heavier high-resolution GPS tags. RF tags
may also serve as lower-cost options for larger bodied organisms. The
Motus network is a large-scale effort to track individuals through a co-
ordinated open-source system of radio-telemetry arrays. This network
may be valuable for investigating large-scale movement patterns of in-
dividuals tagged at a focal wind plant or tagged by researchers from
other regions studying wind-wildlife interactions (Lamb et al., 2023;
Loring et al., 2020) or movement ecology more generally. For tracking
organisms within the wind farm, it may be possible to set up an array of
receivers to recreate high-resolution movement tracks or establish
several receiver stations as part of the Motus network. GPS tags are ideal
when organisms have a large enough mass to support high-resolution
solar-powered tags without impeding mechanical movements, such
that data can be retrieved from satellites more frequently, for long pe-
riods of time, and can be remotely transmitted without tag retrieval. GPS
tags have been used successfully to recreate the movement tracks of
ungulates (Tsegaye et al., 2017), the flight tracks of multiple raptor
species including white-tailed eagles (May et al., 2013), and several
wading bird species during coastal breeding and migration (Loring et al.,
2020). GPS tags are also important in monitoring the landscape-scale
movements of grouse species (LeBeau et al., 2023). Pilot studies are
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exploring the application of very small, low-power communication tags
that connect to alternate terrestrial networks to track bat migration
(Hurme et al., 2025; Wild et al., 2023).

To quantify interactions with wind energy infrastructure, movement
tracks collected with tags are analyzed similarly to those produced by
radar. RF and GPS tags make it additionally possible to compare the
usage of the landscape during pre-construction conditions to post-
construction conditions, or to compare movement activity within the
wind power project to activity outside the project. These comparisons
help researchers understand how individuals respond to wind farms and
wind turbines over the course of several weeks to months, using RF tags
(the temporal duration is limited by battery and adhesive ability), or
multiple years using GPS tags (LeBeau et al., 2023). Tagging efforts
leverage both competitive and complementary fusion, in that each new
tag deployed increases the likelihood of retrieving usable data and that
each new tagged individual increases the spatial extent of our under-
standing about the movement dynamics of the population. While op-
portunities for sensor fusions with tags are less established, one
promising avenue of exploration is competitive fusion with tagged in-
dividuals and radar. Identifying radar tracks of tagged individuals can
provide researchers with high-accuracy training datasets of tracks from
known species, which will improve radar classification by enabling more
accurate species identification. Additionally, known tagged individuals
could support species identification in other camera-based sensor
systems.

2.3. Parameterize: observe drivers of effects

2.3.1. Monitoring to parameterize vulnerability and collision risk models

Vulnerability models are used to quantitatively assess if a population
is susceptible to displacement or collision effects and are critical to
effectively implementing mitigation frameworks (Croll et al., 2022).
Vulnerability models consider population status and demography (e.g.,
population size, adult survival and reproduction, and conservation
threat status) as well as collision and displacement-specific risk pa-
rameters such as flight activity rates and flight height (Furness et al.,
2013; Kelsey et al., 2018. Though wind and wildlife monitoring systems
may help inform population status and demographic parameters, we
consider those metrics to be better suited for coordinated landscape-
level monitoring systems (e.g., NABAT; Loeb et al., 2015) and there-
fore secondary to onsite monitoring systems. Species populations that
are highly vulnerable to collision are unlikely to persist at wind farms
because unsustainable mortality rates reduce populations. These species
are expected to exhibit low avoidance rates; have low flight maneu-
verability; spend a large proportion of time in flight; and have charac-
teristic flight speeds, heights, and durations within the rotor-swept area.
Additionally, the turbulent environment of wind farms may interfere
with flight (Shepard, 2025). Differences in visual perception can also
contribute to collision vulnerability; many collision prone bird species
have reduced visual capability when looking ahead (Martin and Banks,
2023). In contrast, displacement-vulnerable species are those that are
unlikely to occupy the same space with wind plants because they are
affected disproportionally by barrier effects or functional habitat loss.
Such species are expected to exhibit low habitat flexibility (informed by
natural history, not wind-wildlife monitoring systems) and high macro
and meso avoidance rates of wind turbines (Kelsey et al., 2018).

For volant species, collision-risk models are versatile and can be used
to predict risk at multiple spatial scales, including the wind farm, a set of
wind turbines, or a single wind turbine (Masden and Cook, 2016).
Collision-risk models may be used during pre-construction to estimate
the expected mortality rates of a proposed project, or can be used to
assess risk at an existing wind farm in an iterative process to improve
predictive models of mortality rates, or to better understand collision
probability (i.e., drivers of collision, when and why collisions occur).
Over the past two decades researchers have explored a variety of ap-
proaches to collision-risk modeling (Masden and Cook, 2016). Despite
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extensive development, collision risk models fail to predict risk for
certain species (Lintott et al., 2016) and the outputs remain sensitive to
certain parameters such as flight speed (Masden et al., 2021) requiring
increased efforts to collect high resolution species-specific flight data.

Both vulnerability and risk models are species-specific and rely on
metrics of individual movement, including characteristic flight speed;
flight height; flight duration within the rotor swept area; and measures
of macro, meso, and micro avoidance and/or attraction. High-resolution
movement tracks for ground-based species (e.g., grouse) and species-
specific 3D flight tracks are necessary to properly parameterize
models. In certain cases, when species-specific data is unavailable, sur-
rogates are used given that they closely match the characteristics of the
species of interest.

There are several approaches to acquiring high-quality 3D flight and
movement behaviors data. It depends on the target taxa and the spatial
scale and temporal resolution required to derive metrics (e.g., micro
avoidance vs macro avoidance). 3D flight tracks are most cost-
effectively acquired via cooperative thermal or ambient light camera
sensor fusions. Two calibrated cameras, with known distances from each
other, and a defined viewshed allow researchers to quantify flight di-
rection, speed, and height. From these primary metrics it is possible to
further derive a measure of micro avoidance and exposure time (i.e.,
amount of time the target flies within the rotor-swept area). Species
identification with video alone is still in development for non-raptor
species of birds and bats. Several video classification algorithms have
demonstrated proficiency in identifying a biological target from a non-
biological target and rudimentary ability to broadly classify biological
targets into size-based bird, bat, and insect categories, but species
identification has not been successfully implemented with these classi-
fication algorithms. Ambient light cameras oriented toward the rotor-
swept area can acquire data of high-enough quality that human ob-
servers are able to classify targets during post-analysis. Under clear,
daylight conditions, they are often able to accurately identify insects,
birds, and diurnally flying bats to the family and often species level.
However, monitoring biological targets during the nocturnal period
when visual identification is unfeasible will most often require com-
plementary fusions with acoustic detectors that can identify species or
species groups.

While tracking via tagging technology, such as RF and GPS tags,
continues to be the most common way to acquire movement data for
large-bodied ground birds, traditional applications of these sensors may
not provide the spatial resolution required to improve modeling efforts.
Typical radio telemetry applications are effective at providing the po-
sition of a tagged individual but contain varying measures of error.
Combining multiple antennas into an x, y, z array via complementary
fusion techniques may provide much higher resolution movement data
for individuals as they move through an entire wind farm footprint for
both ground-based and volant species alike.

2.3.2. Modeling to parameterize minimization models

Operators may use real-time data to trigger curtailment when colli-
sion risk is highest. For example, wind speed data collected onsite is
frequently used as an indicator of bat collision risk, with risk modeled as
a decreasing function of wind speed with operators curtailing turbine
operations when wind speed drops below a designated threshold (e.g.,
5.0 m/s) (Whitby et al., 2021). Further, real-time wind speed data has
been combined with bat acoustic activity rates to refine collision-risk
probability models and subsequent minimization measures (e.g.,
curtail when wind speed is less than 5.0 m/s and a bat ultrasonic call is
detected) (Hayes et al., 2019). Yet we still lack a detailed understanding
of the abiotic and biotic drivers of risk, limiting our ability to improve
current minimization techniques. Sensor technologies that can help us
understand the drivers of attraction to turbines and elucidate the rela-
tionship between attraction and collisions are critical. Understanding
how and under what conditions bats are attracted to turbines will help
inform future sensor placements as well. For example, if the majority of
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bats or birds are attracted to the rotor swept zone from the ground level,
then using ground based sensors to inform curtailment may be an
effective and less costly way to inform a real-time activity based
curtailment system. Further, thermal cameras and/or collision-impact
sensors that can pinpoint the exact timing of a collision event, present
additional opportunities to collect data, which can be used to parame-
terize site and species-specific collision probability models helping op-
erators optimize the tradeoff between mortality reduction and energy
production (Machado et al., 2024).

2.4. Supporting an iterative minimization framework with a robust wind
wildlife monitoring system

An iterative minimization framework is critical to achieving the goal
of limiting effects on wildlife until some performance criteria are met (e.
g., no net loss of biodiversity). Specifically, this adaptive management
approach supports decision making by iterating between modeling and
empirically testing minimization measures (Fig. 3, A). The success and
utility of this iterative process is contingent on the inclusion of high-
quality data. This cycle of modeling and empirical testing must be
supported by a robust wind-wildlife monitoring system that can: 1)
monitor effects to assess the efficacy of an implemented mitigation
measure (e.g., quantify mortality), and 2) monitor the drivers of effects
to parameterize vulnerability and risk models (e.g., collision-risk
models) (Fig. 3, B) (Runge, 2011). Designing and implementing a
wind-wildlife monitoring system capable of accomplishing both moni-
toring goals requires integrating several design elements (Fig. 3, C),
including sensor fusion principles, to increase system capacity (Fig. 3,
D).

To further illustrate the use of such a system (one that leverages
several sensor technologies integrated with sensor fusion techniques)
consider a hypothetical scenario where a wind power project is planned
to accomplish three goals with its monitoring system: 1) assess bat
collision effects, 2) use metrics of bat activity rates to trigger real-time
curtailment measures, and 3) gather data that reduces collision-risk
model parameter uncertainty. While there are many suites of technol-
ogy fusions that could potentially accomplish this goal, in this example,
researchers have deployed nacelle-mounted ultrasonic detectors and
upward-facing monopole-mounted thermal cameras.

Ultrasonic detectors are inexpensive and robust sensors that can be
applied to record spatiotemporal activity patterns of echolocating

A. Components of
Iterative Minimization

B. Monitoring Goals

Empirical Test of Effects
Minimization Measure *

Modeling To Guide Effects
Minimization Measure

% If performance criteria is not met, continue iterating

Evaluate
Observe effects

Biological Conservation 311 (2025) 111449

species at spatial scales up to 40 m. Mounting these detectors on the
nacelle will collect data from individuals flying near the wind turbine.
Competitive fusion principles should be applied to the spatial deploy-
ment of these detectors to ensure continuous data collection is achieved.
Sensors should also be monitored by humans periodically to assess
functionality and avoid disruptions to data collection. When integrated
with the SCADA system, activity rate data obtained in real time (acoustic
calls per time interval) are used to inform collision-risk probability and
to trigger curtailment (Hayes et al., 2019, Wildlife Acoustics).

Thermal cameras are deployed to gather high-quality data about
microscale bat and wind turbine interactions. Thermal cameras can
monitor collisions and provide information about the behaviors and
conditions that are associated with increased collision probability.
Collisions are directly detected with a 2-thermal camera system that can
be mounted on the monopole facing upwards. The cameras are inte-
grated with complementary fusion to generate 3D flight tracks and in-
crease the spatial coverage to include the entire rotor-swept area (~125-
m rotor diameter). New data analysis tools are being explored to allow
analysis in near real time (Matzner et al., 2020; Corcoran et al., 2021).
Initial observations of collisions should be verified by human observers
until the system demonstrates certain site-specific performance criteria
and can identify collisions autonomously with high confidence.

In this example, as it relates to the iterative framework (Fig. 3),
imagine an initial state of wind turbine operations with no minimization
measures enacted. During facility operations, thermal cameras are used
to directly assess collision effects. If collision effects exceed some agreed-
upon threshold, operators may leverage data gathered on drivers of
collision probability (e.g., flight dynamics prior to the collision event)
from both the thermal cameras and acoustic detectors to parameterize
collision-risk models. The outputs of such models can guide a site-
specific minimization measure. Implementing a minimization measure
may rely on using data collected in real time from acoustic detectors or
thermal cameras, depending on which metric(s) is/are being used as an
indicator of collision risk, to trigger the minimization measure (e.g.,
curtailment). This process of measuring effects, parameterizing models,
updating minimization measures, and using real-time sensor data to
implement a minimization measure should continue in an iterative
process until stakeholder goals are achieved.

While the previous use case is valuable, both ultrasonic detectors and
thermal cameras operate only at the microscale. There is a pressing need
for greater exploration of individual behavior at the meso scale before

C. Elements of Monitoring System
D. Monitoring System Justification

Human Observations
Ground truthing

Competitive Sensor Fusion
Continuous temporal resolution

Complementary Sensor Fusion
Increased spatial range and completeness

Cooperative Sensor Fusion
Expanded pool of model parameters

Parameterize
Observe drivers of effects

Fig. 3. To iterate between modeling mitigation measures and empirical validating mitigation measure decisions (A), an effective technology-driven wind and
wildlife monitoring system must be capable of accomplishing two monitoring goals: 1) observe effects (e.g., quantify mortality) to assess minimization performance
and 2) observe drivers of effects (e.g., flight height, avoidance, or use of real-time data to implement mitigation such as curtailment) to parameterize (B).
Accomplishing the monitoring goals requires that we integrate several monitoring system design elements (C) each providing additional monitoring system ca-

pacity (D).
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individuals approach the wind turbine (Fig. 4). A deeper understanding
of bat behavior at the meso scale (within the project's footprint) is a
critical missing element in the current suite of wind-wildlife monitoring
tools. Obtaining this understanding will require a sensor with the
capability to monitor movement of multiple-size targets at increasing
spatial scales to parameterize models. To date, vertical-looking radar
and 3D radar are capable of continuous tracking for larger subjects (e.g.,
raptor species.) but have not yet been validated for high-resolution
target identification and tracking of smaller-bodied avian and bat spe-
cies (5-150 g) (Nilsson et al., 2018). The application of radar for smaller
targets is limited by a lack of radar datasets containing known targets
and their extracted metrics (e.g., wing beat and/or flapping frequency)
that can be used to train radar classification tools across different re-
gions and conditions (Werber et al., 2023). Such a dataset could be
achieved through competitive sensor fusion techniques whereby
captured bats are tagged with high-resolution RF tags and monitored
with a 3D receiver array or hand released and monitored with thermal
cameras within the viewshed of radar systems. Once 3D radar is capable
of effectively tracking these smaller targets at a meso scale, individual
flight characteristics and population-level flux rates can be integrated
into the iterative monitoring framework and used to reduce collision-
risk model parameter uncertainty.

3. Concluding remarks

As we transition from human-based to technology-based wind-
wildlife monitoring solutions, several benefits are expected. These
benefits include increased temporal resolution of collision events, which
should lead to more comprehensive characterizations of the abiotic and
biotic drivers of collision risk; reduced parameter uncertainty, which
should result in better vulnerability and risk model performance; and
real-time processing and feedback that can be easily integrated into
wind plant system controls for more cost-effective minimization
strategies.

Despite the potential benefits, it is necessary to understand and
articulate the limitations of technology-driven monitoring solutions,
including hardware malfunctions, substantial data storage re-
quirements, and high upfront costs. In many cases, these limitations can
be overcome by combining multiple technologies or by using the higher-
quality system outputs, e.g., more effective curtailment results in greater
energy production, thereby offsetting upfront cost of installation.
However, it is important for technology providers, researchers, and
wind energy developers to engage early and often regarding the proper
use and integration of technologies at the wind farm. This includes un-
derstanding where the technologies will be located on the wind turbine
or within the project, how the technology will be powered, and how data
will be collected onsite or transmitted to an offsite location. Addition-
ally, the exact technical requirements of any monitoring system will
vary based on the species of interest and the priorities of the operator.

Ultrasonic Acoustics

Avian Acoustics
Thermal Camera

Visible Light Camera
Lidar
Radar
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Widespread adoption of technology-driven wind-wildlife monitoring
systems may be hampered if monitoring technologies cannot be more
effectively integrated as part of system digitization efforts, and as part of
socio-technical-economic- political (STEP) co-design considerations
(Aziz et al., 2022). Initial steps toward better consideration of envi-
ronmental monitoring may include development of upstream (turbine
manufacturer-level) technology and/or data flow, engaging with the
community to foster excitement and acceptance, and demonstrating to
regulators a more industry-wide commitment to advancing our knowl-
edge about wind and wildlife interactions.

The application and development of technologies that more effec-
tively quantify wildlife behavior allows for rebalancing of monitoring
resources and for removing a critical barrier to a fully functional
adaptive management framework (Mansson et al., 2023). The concept of
a more expansive and technology-driven wildlife monitoring system has
already benefited from interdisciplinary collaborations whereby in
recent years engineers and computer scientists have more frequently
worked with wildlife biologists to apply the tools of their trade to the
wind energy and wildlife domain. As such, it has become increasingly
common to deploy a range of sensor technologies and novel sensor
fusion techniques at wind farms during pre- and post-construction pe-
riods to address questions at a variety of temporal and spatial scales.
Several studies have explicitly leveraged sensor fusion techniques to
support monitoring goals at wind facilities (Cryan et al., 2014; Lagerveld
et al., 2020; Willmott et al., 2023), and future studies will benefit from
identifying their monitoring goals and sensor fusion techniques when
designing their monitoring systems.

Though not the focus of this review, there is great value in continuing
to acquire baseline data collection that can be used to increase our un-
derstanding of landscape level distributions and abundance of species.
Ultimately, monitoring species population health via long-term baseline
metrics (e.g., population growth rates) is critical to understanding
landscape-level impacts of the wind energy industry. However, assessing
such impacts often requires coordinated monitoring efforts beyond the
spatial extent and temporal bounds of a single wind plant. And so, at the
wind farm level, monitoring the proximate collision and displacement
effects remains the priority.

Target audience

Wind-wildlife practitioners, wind farm developers/operators, and
conservation scientists.
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