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1 | INTRODUCTION

Over the coming decade, a rapid expansion of offshore wind en-
ergy developments is expected in the North Sea, as European gov-
ernments set ambitious targets for renewable energy growth to
address climate change (Ostend declaration of energy ministers on
the North Seas as a green power plant of Europe, 2023). Offshore
wind power is regarded as one of the key technologies for reducing
greenhouse gas emissions globally (Offshore Wind Outlook 2019:
World Energy Outlook Special Report, 2019). However, it can nega-
tively impact biodiversity through multiple impact pathways and at
multiple scales (Bailey et al., 2014; Furness et al., 2013; Gill, 2005).
Birds and bats on migration, both of which could cross offshore
wind farms (OWFs) in large numbers, are particularly at risk of col-
lision mortality, disturbance and barriers to migration. Disturbance
and barriers are indirect sources of mortality, where effects can
be long-term, that is affecting future survival and reproduction,
and are particularly impactful to migratory species (Shuter et al.,
2011). Disturbance of migratory birds might lead to avoidance of
the area, entirely or partly, whereas barrier effects induce migrants
to fly around or over the wind farm with subsequent extra ener-
getic flight costs (Masden et al., 2009). Assessing these impacts
can be challenging given the difficulties of monitoring offshore and
the large distances often covered by species in the marine environ-
ment, including migrating birds. As offshore wind energy expands,
it is crucial that the balance of mitigating climate change whilst also
conserving biodiversity is considered.

In the North Sea, the large-scale development of OWFs will
place several large wind farms directly in the key migration path-
way for many migratory bird species. As of July 2023, there was
27 GW of installed offshore wind farm capacity in the North Sea
and if all currently planned developments are completed by 2030,
capacity within the North Sea alone will increase rapidly to 147 GW
(Critchley & Buckingham, 2024). It will be important to assess the
potential cumulative impacts to biodiversity within the North Sea
from this rapid development to ensure that impacts can be miti-
gated and accounted for in future strategic environmental assess-
ments and wind energy development plans.

It is estimated that hundreds of millions of birds cross the North
Sea every year on Spring and Autumn migration, partially in large
mass migration events (Shamoun-Baranes & van Gasteren, 2011).
Large numbers of migrating birds crossing the North Sea come
from Norwegian, Scandinavian and Arctic breeding populations
migrating east-west to and from the UK, and north-south along
the Danish, German and Dutch coasts (Alerstam, 1993). Several of
these belong to species listed as threatened on the IUCN red list
both in Norway (Artsdatabanken, 2021) and globally (IUCN, 2022),
and their populations are already under pressure from many other
stressors, including climate change and land use changes (Croxall
et al., 2012; Kirby et al., 2008). However, due to the challenges
of monitoring offshore, very little is known about the exact mi-
gration paths of these birds when crossing the North Sea (Brust
& Huppop, 2022; Nilsson et al.,, 2019), or the potential overlap

with offshore infrastructure, including wind energy developments.
From radar observations at coastal and offshore wind farms in the
southern North Sea, peak migration traffic rates of around 500 to
1000birds per km/hour, likely at lower elevations, crossing a wind
farm at night have been measured during the migration period
(Degraer et al., 2017; Fijn et al., 2015).

Ringing data is a valuable source of information on bird move-
ments on a large scale (Fiedler, 2009) and has been used extensively
to reveal migration flyways in Europe for over 100years (Hiuppop
& Hiippop, 2011). Whilst it provides a much lower resolution than
data collected from telemetry devices, it covers many more species
and individuals over a longer period. However, ringing recovery data
for most species only provides two points in time—when the bird
was first ringed and when it was recovered—leaving us to infer the
path taken by the bird between the two points. Brownian bridge
movement models (BBMMs) can be used to create more realistic
pathways of animal movement based on the time between locations
and have previously been used to estimate migration routes (Horne
et al., 2007; Palm et al., 2015). In this study, we utilise BBMMs of
ringing recovery data to map migration movements of Norwegian
breeding birds across the North Sea basin. By combining ringing data
for multiple species within a migration group, we infer likely migra-
tion routes utilised by different bird groups across the North Sea.

Measuring the cumulative impacts of energy developments
on multiple species over a large area, such as birds on migration
across the North Sea, can be challenging, particularly when trying
to assess future impacts. Methods such as Environmental Impact
Assessments, which are usually applied on a by wind farm basis, are
not as well-suited to cover such a large scope. Other frameworks that
have been developed to assess the consequences of disturbance on
populations, such as the Population Consequences of Disturbance
framework (Keen et al., 2021), require significant amounts of data
for a complete assessment, which may not be available when as-
sessing impacts to many species over a large area offshore. Life-
cycle impact assessments (LCIAs) provide a useful alternative tool
for assessing the potential relative environmental impacts from
energy technology in a standardised way across multiple sites, for
instance the impact of bird collisions per kWh energy production in
an onshore wind farm (May et al., 2020). LCIAs have previously been
used to assess greenhouse gas emissions and energy accounting for
wind farms (Wang et al., 2019) and were further developed by May
et al. (2020, 2021) to assess impacts of onshore wind energy de-
velopments on bird diversity both globally and in Norway, through
habitat loss, disturbance, collisions and barrier effects. These LCIA
models use the spatial distributions of species (e.g. migrating bird
distributions) to quantify relative impacts and have the advantage
of allowing the assessment of multiple impact pathways for multiple
species or groups simultaneously. LCIA models would be most use-
ful for the early stages of offshore wind farm planning, particularly
for site selection as the method allows direct comparison of impacts
across multiple sites.

Here, we adapt the methodology of May et al. (2020, 2021) to
assess the life-cycle impact of offshore wind energy developments
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in the North Sea on Norwegian migrating bird diversity through
three impact pathways: collision, disturbance and barrier effects.
We demonstrate how LCIAs can be used to assess relative impacts
to bird diversity in an area from both current and future offshore
wind energy developments, and how the method can be used for
comparing potential impacts across a region to inform strategic

wind farm siting.

2 | MATERIALS AND METHODS

A LCA was applied to maps of Norwegian birds on migration to as-
sess the potential effects of offshore wind energy developments
in the North Sea up to 2030 through three impact pathways: (1)
collision, (2) disturbance and (3) barrier effects. The methods
were adapted from May et al. (2020, 2021), who developed LCAs
to evaluate impacts of onshore wind energy on bird species rich-
ness, and first tested for a pilot wind farm study in Norwegian
waters (Layton-Matthews et al., 2023) before being expanded to
the entire North Sea. The potentially disappeared fraction of spe-
cies (PDF)—a measure of the potential loss of species richness in
an area—for each impact, pathway was calculated for each migra-
tion group based on (a) the number, size and location of all cur-
rent and future wind turbines in the North Sea up to 2030, and
(b) values within each individual grid cell for a standard 15-MW
turbine (Evan et al., 2020). PDF is a relative impact metric recom-
mended for use in LCA models, which assess biodiversity impacts
(Verones et al., 2017). PDF values are not an absolute metric, that
is they do not quantify expected mortalities or population loss but
instead represent the estimated fractional loss of species richness
in an area due to unfavourable conditions. An overview of the LCA

methodology is shown in Figure 1.

2.1 | Estimating bird migration trajectories

Ringing and recovery data were provided by the Norwegian Bird
Ringing Centre at Stavanger Museum, Norway and their collabora-
tors within the EURING network to produce maps of migration tra-
jectories. The available data ranged from 1906 to 2021, with most
records (93%) recorded in the last 50years (1974 or later). We used
ringing and recovery events for Norwegian migratory birds cross-
ing the North Sea basin, where at least one event occurred either
in the UK, France, Belgium, the Netherlands, Germany or Denmark.
Events occurring at longitudes outside -17-40, and latitudes less
than 45 were excluded. Time intervals longer than 60days between
ringing and recovery events were also excluded to reduce the likeli-
hood of including recoveries from two migration events. Data were
pooled for all years and both Spring and Autumn migration periods;
therefore, distributions reflect average bird migration patterns and
diversity during migration across an entire year. This resulted in data
for 123 species, which were then grouped into five migration groups
according to their taxonomy and migration ecology: marine birds,
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soaring birds, songbirds, waders and waterbirds. See the Supporting
Information for a full list of species (Table S1) and reasoning for the
group composition.

A Brownian bridge movement model (BBMM) was used to es-
timate migration trajectories from the filtered ringing and recov-
ery data and plot kernel densities for each migration group. The
BBMM estimates an animal's likely occurrence in an area based on
individual observations, using a conditional random walk and taking
into account the distance and time between observations (Horne
et al., 2007). Thus, it can also be used to estimate migration trajecto-
ries based on spatial and temporal observations (Horne et al., 2007;
Palm et al., 2015). We used the BBMM to estimate migratory trajec-
tories between the ringing and recovery events as a kernel density
on a 2x2km grid across the North Sea basin. The resulting maps
estimate the likelihood of a grid cell being utilised by a species from
the given migration group whilst on migration. Core migration areas
for each group were delineated as the top 5% of kernel density val-
ues. The R package ‘adehabitatHR’ was used to model the BBMMs
and produce kernel density maps (Calange, 2006).

2.2 | North Sea offshore wind energy
developments

Data on current and future offshore wind energy developments in
the North Sea up to 2030 were compiled from several publicly avail-
able sources. Turbine locations for most existing wind farms were
sourced from Martins et al. (2023), which compiled data from multi-
ple sources to generate a dataset of wind turbines in the North Sea.
Proxy turbine locations for future wind farms were created based on
the projected number of turbines or projected wind farm and tur-
bine capacity as per Critchley and Buckingham (2024). To estimate
the potential impacts relative to annual energy production, the PDF
per GWh was calculated for each wind farm and for each group. We
used the average annual capacity factor of 35.59% for all offshore
wind farms in the North Sea in 2021 (IRENA, 2023) to calculate en-
ergy production in GWh for a full year (8760h) from total wind farm
capacity in MW.

Wind farm capacity = 8760 % 0.3559
1000

Annual energy production =

All wind farms that overlap with the core migration area for each
group were identified and the total GWh located within each groups'

core area was calculated per country.

2.3 | Life-cycle assessment for collision,
disturbance, and barrier impacts

PDF values for the collision, disturbance and barrier impact pathways
were calculated for each migration group based on the methods in
May et al. (2020, 2021) on a per turbine basis and then combined for
each wind farm. See Table 1 for details of the equations and inputs.
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Migration map
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LCA outputs

Species metrics Group level impacts

Collision rate Collision

Flight initiation distance Disturbance

Migration distance Vulnerability

Average mass

Group metrics

Cumulative impacts

Collision probability
Flight initiation distance
Disturbance factor

Migration cost

Impact maps per group
for a 15 MW turbine

FIGURE 1 Flow chart of the LCA methodology.

As in May et al. (2020), the slope of the species-area relationship in
logarithmic scale (z) was taken to be 0.21. For all impact pathways,
org) was 4km?. As

this study included several species not assessed in the previous on-

the area within which impacts were calculated (A

shore wind energy LCAs, mainly seabirds, new data were collated for
these species as detailed below.

PDF values for collision impacts were quantified as the reduc-
tion of the species at risk due to collision (Table 1, Equation 1). The
number of species at risk is those that utilise the influence area sur-
rounding each turbine delineated by the rotor sweep zone (nrwz) and
have some probability of collision (R,) based on species-specific col-
lision rates for wind turbines (taken from Thaxter et al. (2017)) within
group k. There is currently little available data on turbine collision

Combine all group maps

Cumulative

impact maps

rates for seabird species given the challenges of monitoring offshore
wind farms. We therefore estimated collision rates for some sea-
birds based on the species' ranking within a collision vulnerability
index, which were calculated using the methodology from Furness
et al. (2013) (updated to account for avoidance behaviour; Wade
et al., 2016) and modelled estimates of time spent flying at turbine
height (Johnston et al., 2014). For species with missing collision
rates, the average value between the two species ranked above and
below them in the collision vulnerability rankings was calculated.
New values for R, per migration group were then calculated using
this updated data.

Disturbance PDF values are measured as the proportion of spe-
cies displaced from the influence area (Table 1, Equation 2), based
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TABLE 1 Equations for calculating the
potential disappeared fraction (PDF) of
species from May et al. (2020, 2021) and

Equation 1: Collision

e
AO,E,RWW*(”( 2) ) ] ]

1601

S Pky,:number of species locally present at
cell i within group k

Aorg

ol
parameter definitions. In all equations, PDF(C),,, =
k represents a migration group and w

represents an individual wind turbine.

¥ SePe Ay =4km?

t,,=one turbine

r,,=rotor blade length of turbine w (m)
R, =probability of annual per turbine
collision within group k

z=0.21 (species-area relationship)

Equation 2: Disturbance

S,(Pk‘,v[l—[
PDF(D),,, =

q 2\ V¥
Amg—tw»«(n(ok. ’;6%36‘ ) )] ]

D, =disturbance factor within group k
0y max=maximum flight initiation distance
within group k (m)

Aorg

Equation 3: Barrier

SkPk,i[1 [
PDF(B),, =

q 2\ Y
Ao,g—<mtw*Mk»;(Dk* kemax ) )] ]

Z: Sk Pk,i

M, =migration cost within group k

Aorg

on migration group disturbance factors (D,) and species-specific
flight initiation distances (d,). Flight initiation distances were taken
from May et al. (2021) and updated with new values for 14 species
(Critchley et al., 2025). New values for D, per migration group were
then calculated using this updated data. See Supporting Information
for details of how D, was calculated.

PDF values for impacts due to barrier effects (Table 1,
Equation 3) were calculated as the proportion of species displaced
from the influence area with an additional relative migration cost
(M,). Migration distance and average mass values (the inputs for M,)
were collated for all new species. To calculate the barrier effect, it
was assumed that the most utilised migratory paths would lie within
the 50% kernel of the migration maps. Any presence values outside
of the 50% kernel were set to zero. Values within the kernel were
then rescaled to between zero and one. See Supporting Information
for details of how M, was calculated.

PDF values were calculated for each group per turbine and then
summed to produce cumulative impacts per wind farm, per country
and across the entire North Sea for existing and future wind farms
up to 2030. Cumulative PDF values per year were calculated for all
wind farms in the North Sea combined and compared with annual en-
ergy production (GWh). The sensitivity of the PDF equations to key

parameters (S, Pis ' Rio Dy d and M,) was investigated by a Sobol

k,max
variance-based sensitivity analysis using the sensobol R package (Puy
et al., 2022). Finally, we assessed which wind farm parameters were
most important for predicting the PDF value using a linear regression
model for the following parameters: country; distance to coast (m); sea
depth (m); turbine power (MW); and number of turbines. All analyses

were performed using R version 4.2.2 (R Core Team, 2022).

3 | RESULTS

The map of combined kernel densities for all migration groups
in Figure 2 highlights hotspots of migration for Norwegian birds

TSPy

between the Shetland Islands and the western Norwegian coast,
between the southern Norwegian coast and Denmark, and along
the Swedish and Dutch coasts. Kernel densities per migration group
highlight the importance of different regions for each migration
group (see Figure S1 in the Supporting Information).

A large variation was observed in the amount of wind energy
production (GWh) estimated to be located within the 5% kernel de-
lineating the core migration area for each migration group by 2030
(Figure 3). The highest amount of wind energy production (148,930
GWh per year) was found in the core migration area for waterbirds,
whilst the lowest (17,578 GWh per year) amount was found in the
core migration area for marine birds.

Cumulative PDF values (annual PDF for all groups and wind farms
combined) for all impact pathways are predicted to be higher in 2030
than they currently are in 2023. Cumulative PDF values steadily in-
crease by year in line with annual energy production, with collision
impacts estimated to increase more rapidly than disturbance or
barrier impacts between 2023 and 2030 (Figure 4a). The large in-
crease in impacts seen in a single year in 2030 is due to the 34 wind
farms that are planned for completion in that year. Cumulative im-
pacts relative to annual energy production (PDF/GWh) have slowly
been decreasing since 2002 for both disturbance and barrier effects
(Figure 4b). Whereas impacts relative to annual energy production
for collisions show an initial decrease followed by a slight increase
and then a levelling off from around 2020 onwards.

Results of the Sobol sensitivity analysis found that disturbance
distance (dk,max) has the biggest influence on both the barrier PDF
values (5,=0.346, T,=0.585) and the disturbance PDF values
(5,=0.384, T,=0.611). Rotor length (r,) has the largest influence
on the collision PDF values (5,=0.264, T;=0.460), although this is
very similar to the influence of both species' presence (5,=0.247,
T,=0.445) and collision probability (5,=0.223, T,=0.402). Here, S,
refers to the Sobol index value, which measures the first-order ef-
fects of parameters in the model and their influence on the model
output (PDF value). T, refers to the total-order index value, which
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measures the first-order effect of each parameter jointly with its
interactions with all other parameters (Puy et al., 2022). See the
Supporting Information for reporting of second-order effects and
Sobol' indices plots (see Figure S2, Tables 52-54). The results of
the linear regression model to assess which wind farm parameters
best predict PDF value are shown in Table 2. Number of turbines
has a large significant effect on PDF value for all three impact
pathways. Turbine capacity (in MW) also has a larger influence on
collision impacts, but not on disturbance or barrier impacts.

Efficiency of wind energy production in relation to impacts on
Norwegian migrating birds (PDF/GWh) varies by country, with cur-
rent and future wind farms in Denmark estimated to have the high-
est impacts across all three impact pathways (Figure 5). PDF values
per GWh are predicted to decrease for all countries between 2023
and 2030, apart from in France and Sweden—both of which did not
have any existing wind farms in the North Sea prior to 2023. Wind
farms in Germany and the UK will have the largest GWh capacity by
2030 and are therefore predicted to have the highest cumulative
impact (PDF) on migrating birds by 2030 (Figure S2).

FIGURE 2 Kernel density of
Norwegian bird migration trajectories in
the North Sea for all migration groups
combined. The white lines delineate

the top 1%, 5% and 10% of grid square
values, that is the regions most utilised

by Norwegian birds on migration. See
Supporting Information for kernel density
maps and migration corridors per group.

10°E

For all migration groups combined, offshore wind farms in
the North Sea in 2030 were estimated to lead to an annual PDF
of 0.749x1077 (0.031x1077-3.064x10™°) due to disturbance,
0.065x1077 (0.028x1077-0.101x107%) due to collision, and
0.322x1077 (0.019x1077-1.296 x 107%) due to barrier effects (see
Table S5 for values per migration group).

The migration group with the highest disturbance and barrier
PDF values from offshore wind farms in the North Sea is migrating
waterbirds (including waterfowl) (Figure 6, Table S5). The group with
the highest collision PDF values is migrating soaring birds (raptors
and owls). Migrating marine birds and waders have the lowest PDFs
for collision but still have high susceptibility to the impacts of dis-
turbance and barrier effects. The species most impacted across all
three impact pathways (see order in Figure 6) are waterbirds and
soaring birds. Migrating songbirds ranked the lowest for combined
impacts, although they do rank slightly higher for collision risks on
their own. PDF values for all other migration groups combined are
highest for disturbance impacts, followed by barrier impacts and
lowest for collision impacts (Table S2).
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FIGURE 3 Amount of annual GWh per country located in the core migration areas for each group by 2030.

The results for the second part of the analysis, estimating
impacts if a 15-MW turbine was placed in each grid square of
the migration group kernel density maps, are shown in Figure 7.
Mapping cumulative PDF values for all migration groups com-
bined highlights variation in estimated impacts across the North
Sea. Collision impacts (Figure 7b) are highest between southern
Norway and northern Denmark, whereas barrier and disturbance
impacts (Figure 7a,c) have additional hotspots along the coasts
of Belgium and the Netherlands. Waterbirds are the group most
likely to be impacted due to barrier, collision and disturbance ef-
fects, particularly along their migration corridor between south-
ern Norway and northern Denmark and along the coast of the
Netherlands (Figure S1).

4 | DISCUSSION

Migrating birds from Norway and other northern European popula-
tions will be at increasing risk of impacts from multiple offshore wind
farms in the North Sea as development in the region rapidly expands.
Many species from these groups are already listed as threatened on
the Norwegian Red List of threatened species, and additional pres-
sures both on their migration routes as well as at their breeding and
wintering grounds will likely have negative population-level impacts.
Our results highlight how several hazards due to OWF (collision, bar-
riers and disturbance) add up to potentially large impacts on migrat-
ing species beyond their country of origin, and the need to consider
transboundary effects when siting offshore wind farms.

The migration groups exposed to the highest amount of GWh in
their core migration area are waterbirds and songbirds, with much

of this capacity located in Germany for both groups. However,
when looking at how this exposure translates to cumulative im-
pacts, we found that Denmark has the highest cumulative PDF
values per GWh, both currently and for future planned develop-
ments. This indicates that offshore wind farms in Denmark are not
well-sited for mitigating impacts to migrating birds from Norway,
reflecting the fact that the core migration area for all migration
groups combined covers the majority of the Danish EEZ and the
older existing wind farms are built close to the coast (Figures 2 and
7). Cumulative impacts relative to total installed capacity (GWh)
in the North Sea have slowly declined since 2002 for both distur-
bance and barrier effects, indicating that offshore wind farms over-
all are increasingly being better sited in a way that mitigates these
impacts (either intentionally or unintentionally). It is estimated that
cumulative impacts per GWh for disturbance and barrier effects
will continue to decrease up to 2030. This pattern is less clear for
cumulative impacts per GWh for collisions, and there appears to be
a stabilising of collision impacts relative to annual energy produc-
tion up to 2030. This could partly be explained by the sensitivity
of the collision PDF equation to turbine rotor length (Table S4) and
the large significant influence of turbine MW capacity and number
of turbines on the PDF values for collision impacts (Table 2). Most
planned wind farms in the North Sea will have very large turbines
of 15-20-MW capacity, resulting in a smaller number of turbines
per wind farm compared to early offshore wind farms built in the
2000s. The larger turbine size increases the collision risk zone per
turbine; however, the reduced number of turbines may partly miti-
gate this risk (Johnston et al., 2014; Thaxter et al., 2017).

For all migration groups combined, disturbance and barrier ef-
fects resulted in the highest expected impacts on species richness,
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FIGURE 4 Annual cumulative potentially disappeared fraction (PDF) of species across all migration groups and wind farms in the North
Sea per year combined for each impact pathway, both (a) absolutely and (b) relative to the annual energy production. Green lines show
barrier impacts (+ SD), orange lines show collision impacts (+ SD), and blue lines show disturbance impacts (+ SD). The grey-dashed line in
the upper panel shows annual energy production (GWh) of North Sea offshore wind farms. The grey vertical line delineates the current (up

to 2023) and future (2023-2030) time periods for developments.

whereas collision impacts were substantially lower—in line with
the findings of May et al. (2021) for onshore wind energy develop-
ments in Norway. The most obvious consequence of wind energy
developments is bird collisions, representing a source of direct
mortality (Drewitt & Langston, 2006). There is currently very lim-
ited monitoring of collisions at offshore wind farms, and in general,
onshore wind farm monitoring studies report relatively low levels

of collision mortality, with studies primarily focussed on large birds
(eagles, partridges, etc.) found during post-construction carcass
surveys (Drewitt & Langston, 2006; Stokke et al., 2020). A recent
study also found that true mortality for small birds may be consid-
erably underreported due to lower detection rates—17% of small
dummy carcasses were recovered compared to 74% of large dummy
(thrush- and wader-sized) carcasses (Nilsson et al., 2023). Based on
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the migration distributions and LCA used here, the groups expected
to be most affected by collisions were, unsurprisingly, waterbirds
and soaring birds. Many waterbird species follow a mostly coastal
migration path across the North Sea (Kruckenberg et al., 2023),
which would place them in or near multiple offshore wind farms in
Norway, Sweden, Denmark, Germany, the Netherlands and Belgium.
There has been much concern about soaring birds in relation to
onshore wind energy development, in Norway at Smgla wind farm
(Stokke et al., 2020), but also worldwide (Drewitt & Langston, 2006;
Kuvlesky Jr. et al., 2007). Soaring birds such as raptors are particu-
larly vulnerable to anthropogenically induced mortality due to their
high longevity, low reproductive rates and preference for thermal

TABLE 2 Results of a linear regression model assessing the
influence of wind farm parameters on log-transformed PDF values
for each impact pathway.

Impact pathway
Covariate Barrier Collision Disturbance
Country 15.416*** 17.033*** 18.722***
Distance to coast 13.162*** 17.621*** 12.631***
Sea depth 36.457*** 38.726*** 30.494***
Turbine MW 27.759*** 333.051*** 21.187***
Nr. of turbines 193.124***  221.203*** 176.102***
Turbine MW: Nr. of 39.981*** 46.4** 41.204***
turbines
Adjusted R-squared 0.7002 0.8145 0.6972

Note: F values are reported with a significance of ***p <0.001.

2023

1605

soaring during foraging trips. Despite limited possibilities for thermal
soaring across open sea, raptors are still prone to collisions offshore
during migratory crossings due to their attraction to wind farms, in
part for roosting (Skov et al., 2016). Collision mortality due to at-
traction to offshore structures for roosting is also a risk for some
marine birds such as gulls (Johnston et al., 2022). Similar to raptors,
marine bird populations are vulnerable to additional mortality due
to their reproductive strategies. Songbirds were the only group es-
timated to have higher impacts from collisions rather than distur-
bance and barrier effects, and whilst they are the most numerous
group of migrating birds, collision mortality is still likely to have a
lower effect on songbird populations due to their higher reproduc-
tive rates (Erickson et al., 2014). Whilst collision risks are lower than
barrier and disturbance impacts for most migration groups, there is
still a lack of empirical data on collision rates for birds at offshore
wind farms. Improved monitoring through the deployment of radars
and camera systems at offshore wind farms, along with transparent
reporting, will allow us to better assess the potential collision risks.
As for collisions, waterbirds and soaring birds were the groups
expected to be most impacted by disturbance and barrier effects.
Both groups have large disturbance distances, and the barrier and
disturbance PDF equations are most sensitive to the disturbance
distance parameter. Whereas migrating marine birds and waders
had the lowest values for collisions, they were considerably more
sensitive to disturbance and barrier effects. In contrast to breed-
ing marine birds, which might regularly encounter a wind farm near
their colony, habituation to offshore wind farms during migra-
tory crossings seems less likely. Some species of marine birds and
waterbirds are known to avoid and adjust their flight trajectories to

2030
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FIGURE 5 Cumulative PDF values per GWh by country for all current (up to 2023) and future (up to 2030) offshore wind farms in the
North Sea. The panel on the right shows cumulative GWh per year for all wind farms currently operational in the North Sea up to 2023 (dark
grey) and expected cumulative GWh per country by 2030 (light grey). Note that some countries, for example France, Sweden and the UK,

have offshore wind farms that are located outside of the North Sea.
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some degree in response to offshore wind farms, with subsequent
increased energetic flight costs (Masden et al., 2009; Petersen
et al., 2006). Whilst disturbance and barrier effects do not cause
direct mortality, these additional energetic costs can have long-
term impacts, particularly when birds encounter multiple wind
farms along their migration pathway (Cabrera-Cruz & Villegas-
Patraca, 2016; Masden et al.,, 2010). Here, we calculate relative
impacts per wind farm; however, there is a risk that if wind farms
are placed too close together within a core migration area, the cu-
mulative impact due to barrier effects could be greater due to the
large additional distances travelled by the migrating birds. Siting of
future wind farms in the North Sea beyond 2030 should be care-
fully considered in this context to ensure that we are not creating
excessively large barriers across core migration routes.

Identifying bird migration pathways to assess the potential im-
pacts from wind farms remains a challenge given the extensive areas
covered and the difficulties of monitoring migration offshore. In this
study, we show how readily available ringing data and the use of
BBMMs can recreate more realistic migration pathways, an approach
that could easily be applied to other ringing data sets. However, it

is important to note the uncertainties that accompany the use of

Waterbirds-
Soaring birds-
Marine birds-
Waders-

Songbirds-

1e-13

ringing data. Bird ringing locations are not evenly spread across the
investigated countries and are strongly biased towards bird observa-
tories and other active bird ringing sites. Bird observatories have the
advantage of being located at sites where many migrants aggregate
before and after sea crossings. However, this is dependent on mi-
gratory season; some sites are used more during autumn than spring
and vice versa, as well as weather conditions. Recovery locations are
less biased, as recoveries can also stem from public observations of
dead ringed birds, typically killed by cats or in collisions with win-
dows and cars. However, ringing and recovery locations might also
bias the observed migratory pathway across the North Sea, as the
ringing or recovery might occur some distance from the actual cross-
ing over. Although there are hundreds of thousands of recoveries
between the selected countries, the data become restricted when
enforcing the 60-day limit on the time interval between ringing and
recovery events (to exclude recoveries encompassing two migratory
seasons). Furthermore, the kernel densities provide an estimate of
the utilisation of areas by migration groups rather than a measure of
abundance in each grid square. The results presented here should
be used as a relative indicator of the variation in impact between mi-

gration groups and not an exact measure of the number of birds that
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FIGURE 6 Potentially disappeared fractions (PDF) of migrating bird species richness in the North Sea relative to annual energy
production (GWh) for each impact pathway. Dashed lines show the upper and lower limits of variability in impacts across species within each

migration group.

FIGURE 7 Cumulative PDF value for all bird groups if a 15-MW turbine was placed in each grid cell for (a) barrier, (b) collision,

(c) disturbance and (d) all impacts combined. White outlines show in (a) the footprint of all existing wind farms in the North Sea up to July
2023, (b) the footprint of all existing and future wind farms in the North Sea up to 2030, (c) the Exclusive Economic Zones of all countries in
the North Sea basin and (d) the 1%, 5%, and 10% kernel density contours from the migration map in Figure 1. Note that maps are not plotted

on the same colour scale.
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will be impacted, or subsequent changes to population sizes (e.g.
through increased morality from collisions). These impacts are also
only relevant for migrating birds from Norwegian, Scandinavian and
Arctic breeding populations and do not provide insight on impacts to
migrating birds from populations breeding in countries west of the
North Sea (e.g. Ireland and the UK).

Our findings highlight the potential impacts to migrating birds
from offshore wind farms in the North Sea, particularly due to dis-
turbance and barrier effects. By calculating impacts per GWh, we
can assess how energy production relates to impacts and directly
compare relative impacts across bird groups, impact pathways, wind
farm sites and countries. The LCA methods presented here could
provide a useful tool for quickly assessing cumulative impacts to
migrating birds from offshore wind energy in the North Sea, or in
other regions, as the industry rapidly expands or comparing relative
impacts across proposed wind farm sites in an environmental im-
pact assessment. The LCA methodology could be adapted further
to rapidly assess impacts of other types of energy developments on
a wide range of migratory species, for example the barrier impacts
of hydropower on migrating salmon. The method uses existing data
collected from the literature and can be applied to any distribution
data. Rapid assessment tools such as this will be vital for assessing
and mitigating unintended negative impacts from the accelerated
expansion of renewable energy developments globally.
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