

Feasibility of OTEC Development for U.S. Islands

Andrea Copping Hayley Farr

Pacific Northwest National Laboratory

Pan-American Marine Energy Conference January 2024

PNNL is operated by Battelle for the U.S. Department of Energy

Examining feasibility of OTEC in US waters

- Purpose is to understand feasibility for OTEC in a range of US islands
- Reached out to experts around the world
- Examining barriers to development: technical, environmental, hazards, societal acceptance
- 4 use cases to examine feasibility: Puerto Rico, St. Croix, Hawaii, & Guam
- OTEC end uses: power, disaster recovery, seawater air conditioning, freshwater
- Multi-use OTEC platform feasibility in Hawaii

Potential environmental effects

- Discharge of cold water at surface
- Entrainment of water with biota
- Discharge of chemicals
- Interference with migration routes
- Entanglement in mooring lines
- Reef effect on fish
- Settling of benthic organisms, potential nonnative species introduction
- Changes in nearshore waters due to temperature, circulation changes

Each effect will depend on the scale and location of the **OTEC** plant

Potential environmental effects

- Discharge of cold water at surface
- Entrainment of water with biota
- Discharge of chemicals
- Interference with migration routes
- Entanglement in mooring lines
- Reef effect on fish
- Settling of benthic organisms, potential non-native species introduction
- Changes in nearshore waters due to temperature, circulation changes

- Model plume

- based closed cycle
- → Hazardous waste plan

Temperature shock of biota → Diffuse at depth

Release of ammonia for shore-Lubricants, chemicals at sea

Potential environmental effects

- Discharge of cold water at surface
- Entrainment of water with biota
- Discharge of chemicals
- Interference with migration routes
- Entanglement in mooring lines
- Reef effect on fish
- Settling of benthic organisms, potential nonnative species introduction
- Changes in nearshore waters due to temperature, circulation changes

development at sea

Puerto Rico and US Virgin Islands

- Islands in eastern Caribbean Sea
- Close to Puerto Rico trench = deep ocean water close to islands
- Adequate temperature differential year round

Puerto Rico Case Study

- 10 MW offshore OTEC plant
- Backup power grid, disaster recovery, emergency services, aquaculture
- Puerto Yabucoa nearest port
- 4.7km cable run to shore
- Hazards
- Environmental effects
- Community support

St Croix, USVI, Case Study

- 3 MW OTEC plant cycle
- Desalination
- Seawater air conditioning
- Power for aquaculture
- Small port nearby, larger port on other side of island
- 2km long cold water pipe
- Hazards
- Environmental effects
- Community support

- Existing plant at NELHA on Hawaii
- 10MW floating OTEC plant
- Power for nearby installations, SWAC
- Port of Kawaihae 37 km north
- Hazards
- Environmental
- Community support

Guam Case Study

- Micronesia, North Pacific, near Marianas Trench
- 5MW up to 10MW OTEC plant
- Best potential location:
 - Tanguisson for aquaculture power and deep water aquaculture enhancement
- Hazards
- Environmental effects
- Community support

Engaging Stakeholders

- Key to ensuring social license
- Need to reflect values of communities
- Train locals for maintenance
- Little information or research on attitudes,
- OTEC is little known among the public, government officials, financial markets
- Led to developing education program

Same messages, different formats for audiences

	Broad Public Audiences	Local Communities	Policy Makers Financial Marke
Fundamentals of OTEC	X	X	
Potential benefits and concerns	X	X	X
Contribution to climate change needs	X		
Costs of systems and power		X	
Siting		X	
Regulatory regimes			
Employment and financial effects		X	
Supply chain issues			X
Economics of OTEC			X

Ocean Thermal Energy Conversion

- 1. What is OTEC?
- 2. <u>History of OTEC</u>
- 3. Environmental Effects
- 4. Potential Benefits & Concerns
- 5. <u>Remaining Challenges</u>

Materials developed by Pacific Northwest National Laboratory for the U.S. Department of Energy.

Multi-Use OTEC Platform

- PNNL, Makai Engineering, & Ocean ERA
- Located off Kona, Hawaii at NELHA
- Technical feasibility of OTEC platform to provide:
 - Power
 - SWAC and district cooling
 - Desalination
 - Deep water for aquaculture
 - Critical mineral extraction
 - Efuels (ammonia/hydrogen)
- Tradeoffs for multiple uses
- Specific environmental effects
 - New plume model
- Community needs/values

Thank You!

Andrea Copping andrea.copping@pnnl.gov Pacific Northwest National Laboratory

