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Abstract 

Comprehensive maps of biological characteristics are increasingly employed to support the management of human activities in marine 
environments. However, their development is often constrained by insufficient data coverage across broad spatial scales. Here, we 
apply a big data approach by integrating marine epifaunal data from 2 m beam trawls across the UK shelf and wider North Sea to 

enhance understanding of the ecological characteristics of epifaunal assemblages in sedimentary habitats. We analyse spatial patterns 
in univariate metrics (taxon richness, total abundance) and assemblage taxonomic structure. Taxon richness was found to peak in 

the northern North Sea and English Channel, while abundance hotspots occurred along the Norwegian coast, southern North Sea, and 

inshore regions around the UK and Ireland. We also identify 11 distinct assemblage types, each exhibiting their own taxonomic epifaunal 
composition, with strong biogeographic structure. We identify the main environmental dri ver s shaping these patterns and discuss how 

the creation of such maps, and the added insight gained from them, may be used to facilitate the management of anthropogenic 
activities. 
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Introduction 

Marine epifauna—such as echinoderms (e.g. brittle stars 
Ophiothrix spp.), crustaceans (e.g. brown shrimp Crangon 

crangon ), molluscs (e.g. scallops Pecten maximus ), cnidari- 
ans (e.g. hydroids), and demersal fish (e.g. plaice Pleuronectes 
platessa )—play an important role in ecosystem functioning—
facilitating nutrient cycling, providing nursery areas, and 

modifying sediment biogeochemistry (Murillo et al. 2020 ),
and linking benthic and pelagic systems by providing biomass 
for large predators (Griffiths et al. 2017 ; Chen et al. 2021 ).
Their often-high abundances and rapid turnover rates support 
the flow of energy through marine food webs (Newcombe & 

Taylor 2010 ). As essential trophic links between benthic pri- 
mary producers and higher-order consumers such as carniv- 
orous invertebrates and commercially important fish species,
epifaunal communities contribute substantially to secondary 
production, representing up to 75% of the total annual pro- 
duction in some habitats (Taylor 1998 ; Kramer et al. 2015 ). 

Interest in the distribution, structure and diversity of epifau- 
nal communities is long-standing (Rees et al. 2007 ). Their dis- 
tributions having been described in the North Sea (Jennings et 
al. 1999 ; Zühlke et al. 2001 ; Callaway et al. 2002 ), the English 

Channel (Kaiser et al. 1999 ), and Irish Sea and Bristol Chan- 
nel (Ellis et al. 2002 ). However, whilst integrated assessment 
has been conducted for the infauna (Cooper and Barry 2017 ; 
Bolam et al., 2023 ; Cooper et al., in press ), there is no sin- 
gle study that describes epifaunal assemblage patterns across 
the UK continental shelf and adjacent North Sea. Understand- 
ing spatial distributions and variability at such scales requires 
large, integrated empirical datasets. Historically, efforts to de- 
velop reliable maps biologically characterising the seabed at 
these scales have been constrained by limited data access and 
© Crown copyright 2026. This Open Access article contains public sector inform
(https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).
nsufficient IT infrastructure (Stelzenmuller et al. 2015 ). To 

ddress these limitations, we apply a big data approach—
ntegrating large disparate datasets from multiple sources and 

ime periods, harmonised via metadata filtering and standard- 
sed taxonomy—enabling robust, large-scale mapping of epi- 
aunal communities. Here, we use “big data” in the broader 
ense of large and complex datasets, rather than implying con-
inuous real-time data streams (Guidi et al. 2020 ). 

For the infauna, Cooper and Barry (2017) showed that 
ntegrating seabed sampling data from governmental and 

on-governmental sources (e.g. marine aggregates, offshore 
ind, oil and gas) ( OneBenthic https://rconnect.cefas.co.uk/ 
nebenthic_portal/) could produce a robust biological base- 

ine. In a management context, the availability of such maps
Cooper et al. 2019 ; O’Brien et al. 2022 ) is appealing as dif-
erences in the component taxa between different assemblages 
ill undoubtedly manifest through differences in sensitivity 

o, and functional responses from, anthropogenic pressures 
Bolam et al. 2023 ). Understanding these patterns and their
nvironmental drivers is therefore an important prerequisite 
or effective conservation and spatial ecosystem-based man- 
gement (Reiss et al. 2010 ). 

In this paper, we demonstrate that empirical epifaunal 
bundance data obtained from 2 m beam trawls can be in-
egrated using a large-scale data approach to improve under- 
tanding of spatial patterns in community structure metrics 
e.g. taxon richness, abundance) and taxonomic composition 

i.e. assemblage biotopes) across the UK shelf and wider North
ea. We use a random forest modelling framework to predict
hese patterns based on environmental conditions and pro- 
uce continuous maps of their variation. We discuss the im-
lications of these patterns and drivers for informing man- 
ation licensed under the Open Government Licence v3.0

https://orcid.org/0000-0003-0625-6333
mailto:keith.cooper@cefas.gov.uk
https://rconnect.cefas.co.uk/onebenthic_portal/
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
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Figure 1. Locations of all 2 m beam trawl samples contained in OneBenthic . Background bathymetry from GEBCO Grid (The GEBCO_2023 Grid | 
GEBCO). 
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gement decisions related to licencing and mitigating anthro-
ogenic activities that affect epifaunal assemblages. 

ethods 

he dataset 

he empirical epifaunal data used in this study were sourced
rom the OneBenthic trawl database ( https://rconnect.cefas.
o.uk/onebenthic_portal/). OneBenthic brings together pub-
icly available disparate benthic datasets (biological abun-
ance/biomass and sediment particle size) in a cloud-based
ostgreSQL database. The epifaunal dataset accessed on 26th
arch 2025 includes 3 799 trawl samples from 110 surveys

ollected over 36-years (1987–2023). Its spatial extent covers
K shelf waters and regions of northeast Atlantic countries
ncluding France, Belgium, The Netherlands, Germany, Den-
ark, and Norway ( Fig. 1 ). 
The OneBenthic database uses taxonomic information

rom the World Register of Marine Species (WoRMS Editorial
oard 2025 ) enabling outputs with standardised nomencla-

ure. WoRMS data were accessed via in R (R Core Team 2025 )
sing the worms package (Chamberlain & Ooms, 2023 ), with
ach taxon uniquely identified by the aphiaID field. 

An essential step for integrating data from disparate sources
s to review associated metadata—such as sampling gear,
esh size, tow speed and length, and sample location—

o refine the dataset and enhance comparability. From the
ull dataset of 3 799 samples, we selected a subset of 2 383
eeting the following criteria: sampled using a 2 m beam

https://rconnect.cefas.co.uk/onebenthic_portal/
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( Supplementary Fig. S1 ), towing speed less than 2 knots, tow 

length less than 2 km, and sample location outside areas li- 
censed for anthropogenic activities (e.g. dredging/extraction, 
disposal, renewables). This last criterion was applied to min- 
imise the influence of recent or ongoing human activities 
that could alter epifaunal community structure, ensuring that 
the dataset more accurately reflects natural spatial patterns 
and baseline conditions. We recognise that demersal fishing 
is widespread across the region and acknowledge that ex- 
cluding all areas exposed to fishing pressure was not feasi- 
ble given its pervasive extent; instead, we aimed to exclude 
only those samples clearly flagged as potentially not represen- 
tative of typical benthic conditions for their habitat type (i.e.
those from within licensed areas). As sampling occurred year- 
round ( Supplementary Fig. S1 ), no seasonal restriction was 
applied. 

Raw taxon records were reviewed to exclude pelagic 
species, taxa better sampled with grabs (e.g. polychaetes), bur- 
rowing species, high level entries (e.g. Pisces), and juvenile or 
larval stages. These exclusions were made to ensure that the 
dataset reflected taxa that are reliably and consistently sam- 
pled by 2 m beam trawl, and to avoid including groups whose 
presence or abundance would not be accurately represented 

by this gear type. Demersal fish species, and those feeding on 

demersal prey, were retained because they are effectively sam- 
pled by beam trawl and form an integral part of the epifaunal 
community structure in these habitats. Colonial taxa which 

are recorded as “present” (e.g. hydroids, sponges) were in- 
cluded and assigned abundance of 1 (in accordance with how 

they are treated for grab samples (McIlwaine et al. 2025 )).
Taxa were aggregated to the family level to address identifi- 
cation and/or sample processing inconsistencies which inher- 
ently occur with combining disparate data sources (Cooper 
and Barry 2017 ). 

Prior to analysis, spatial autocorrelation was assessed us- 
ing the R package emon (Barry et al. 2017 ), which calcu- 
lates empirical semi-variograms and fits Gaussian models by 
least squares (Cressie 1993 ) ( Supplementary Fig. S2 ). Signif- 
icant spatial autocorrelation was detected between samples 
less than 2 km apart, leading to the removal of 983 sam- 
ples ( Supplementary Fig. S3 ). The final dataset used for spatial 
analyses contained 1 400 samples. 

Community metrics 

Prior to the deriving community metrics, raw epifaunal abun- 
dance data were assessed for outliers using modified z-scores 
(Saleem et al. 2021 ). Based on the N-sqrt criterion, whereby 
N-sqrt is the square root of total abundance of each sam- 
ple, 106 samples were flagged as potential outliers, typically 
due to extremely high counts of certain taxa (e.g. Crangon 

spp., Ophiothrix spp.). To address this, a cap of 1 000 in- 
dividuals per taxon per sample was applied. Following out- 
lier handling, two univariate metrics of community struc- 
ture were derived for each sample: Taxon richness, as de- 
scribed by the total number of taxa (S) and the square root 
of the total abundance of individuals (N). These metrics 
were selected because they are commonly used, easily inter- 
pretable, and provide a meaningful context for interpreting 
the resulting multivariate spatial patterns in the benthic as- 
semblage sampled using the 2 m beam trawl (see Section 

2.3). 
ultivariate taxonomic structure 

pifaunal abundance data were used to identify the spatial
istribution of discrete faunal groups based on multivariate 
axonomic structure, following the approach of Cooper and 

arry (2017) . Square-root transformed abundance data were 
lustered using the using the k-means algorithm (MacQueen,
967 ) implemented via the R function kmeans . This method
artitions samples by minimising the within-cluster sum of 
quares across all variables. K-means clustering was selected 

or its suitability for large datasets and its successful applica-
ion in comparable infaunal assessments (Cooper and Barry 
017 ; Bolam et al. 2023 ; Cooper et al. (in press) ). The number
f cluster groups was determined using an elbow plot to bal-
nce biological detail and broader spatial patterns. The final 
umber of clusters is generally chosen based on where along
he profile of the plot the gradient starts to decrease. 

To quantify relative similarity among the resulting faunal 
roups, absolute distances between K-means cluster centres 
ere calculated across all variables using the R function dist .
he resulting dissimilarity matrix was used to generate a den-
rogram via group-average hierarchical clustering (R function 

clust ) and visually represent the observed difference between 

-means cluster groups. Each group was then assigned a code
and colour) based on the dendrogram structure to reflect re-
atedness. 

To describe the biological characteristics of each epifaunal 
roup, we examined both the cluster centres and the results of
 SIMPER analysis (Primer v7®; Clarke and Gorley 2015 ) to
etermine the taxa which best characterised each group. Ad- 
itionally, mean univariate measures of taxon richness (S) and 

otal abundance (N) of each group, along with the proportions
f taxa by major phyla, were calculated. 

odelling 

nvironmental predictors 
 range of raster layers representing environmental vari- 
bles known to influence epifaunal distributions were as- 
embled for use as model predictors ( Table 1 ). Data were
ourced from Bio-ORACLE ( https://www.bio-oracle.org/; As- 
is et al. 2018 ; Tyberghein et al. 2012 ) and Mitchell et
l. (2019) . Bio-ORACLE layers were downloaded using the 
ownload Manager with the following settings: Dataset ver- 

ion: Bio-ORACLE v3; Period of layers = Present-day con- 
itions (2000–2010); Depth of layers = Benthic layers; Lay- 
rs = Mean and Range. 

From Mitchell et al. (2019) , available data products in-
luded sediment composition (% Mud, % Sand, % Gravel;
ttps://doi.org/10.14466/CefasDataHub.63 ), and additional 
nvironmental predictors such as water depth, wave veloc- 
ty, current speed, and suspended inorganic particulate matter 
SPM—summer, winter and mean); https://doi.org/10.14466/ 
efasDataHub.62 . 
Five additional environmental layers representing seafloor 

opography were derived from the bathymetry layer (water 
epth) using SAGA GIS tools for QGIS (v.3.2; Conrad et al.
015 ). These included variables such as topographic slope 
ength and steepness (LS-Factor) and Relative Slope Posi- 
ion (RSP, Böhner & Selige 2006 ). The LS-Factor combines
lope gradient over slope length to estimate erosion potential 
Desmet & Govers, 1996 ) and is analogously applied in the
arine context to reflect the potential stability of sediment de-
osits and the likelihood of exposed hard substrata. The RSP

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf227#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf227#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf227#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf227#supplementary-data
https://www.bio-oracle.org/;
https://doi.org/10.14466/CefasDataHub.63
https://doi.org/10.14466/CefasDataHub.62
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Table 1. Raster variables used in modelling and for explaining patterns in biodiversity cluster distribution. 

Variable Units Detail Source 

Depth m Mitchell 2019 et al. 2019 Bathymetry (m) Mitchell et al. (2019) 
Valley depth m SAGA Valley depth derived metric from Depth layer 
Closed depressions – SAGA Closed depressions derived metric from Depth layer 
Ch. network distance m SAGA Channel network distance derived metric from Depth layer 
LS-factor – SAGA slope length and steepness factor derived metric from Depth layer 
Rel. slope pos. – SAGA Relative slope position derived metric from Depth layer 
Wave velocity m s−1 Mitchell 2019 Wave velocity Mitchell et al. (2019) 
Current speed m s−1 Mitchell 2019 Current speed Mitchell et al. (2019) 
Gravel % Mitchell 2019 Gravel fraction (%) Mitchell et al. (2019) 
Mud % Mitchell 2019 Mud fraction (%) Mitchell et al. (2019) 
Mean SPM g m−3 Mitchell 2019 Average suspended matter Mitchell et al. (2019) 
Summer SPM g m−3 Mitchell 2019 Summer suspended matter Mitchell et al. (2019) 
Winter SPM g m−3 Mitchell 2019 Winter suspended matter Mitchell et al. (2019) 
Diss. Iron mmol m−3 Bio-Oracle v.3 Dissolved Iron [depthMean] Baseline 2000–2018. https://www.bio-oracle.org/
Diss. Oxygen mmol m−3 Bio-Oracle v.3 Dissolved Molecular Oxygen [depthMean] Baseline 

2000–2018. 
https://www.bio-oracle.org/

Nitrate mmol m−3 Bio-Oracle v.3 Nitrate [depthMean] Baseline 2000–2018. https://www.bio-oracle.org/
Bottom temp. ◦C Bio-Oracle v.3 Ocean Temperature [depthMean] Baseline 

2000–2019. 
https://www.bio-oracle.org/

Bottom temp. range ◦C Bio-Oracle v.3 Ocean Temperature [depthMean] Baseline 
2000–2019. 

https://www.bio-oracle.org/

pH – Bio-Oracle v.3 pH [depthMean] Baseline 2000–2018. https://www.bio-oracle.org/
Phosphate mmol m−3 Bio-Oracle v.3 Phosphate [depthMean] Baseline 2000–2018. https://www.bio-oracle.org/
Salinity mean ppt Bio-Oracle v.3 Salinity [depthMean] Baseline 2000–2019. https://www.bio-oracle.org/
Salinity range ppt Bio-Oracle v.3 Salinity [depthMean] Baseline 2000–2019. https://www.bio-oracle.org/
Silicate mmol m−3 Bio-Oracle v.3 Silicate [depthMean] Baseline 2000–2018. https://www.bio-oracle.org/
Chlorophyll mmol m−3 Bio-Oracle v.3 Chlorophyll [depthSurf] Baseline 2000–2018. https://www.bio-oracle.org/
KD PAR (Light) m−1 Bio-Oracle v.3 Diffuse Attenuation Coefficient PAR [depthSurf] 

Mean 2000–2020. 
https://www.bio-oracle.org/

Phytoplankton mmol m−3 Bio-Oracle v.3 Total Phytoplankton [depthSurf] Baseline 
2000–2020. 

https://www.bio-oracle.org/

d  

t  

c  

t  

i  

p  

f

R  

t
F  

b  

a  

s  

s  

2  

i  

v  

a  

v  

m  

2
 

v  

m  

d  

r  

t  

b  

d  

p
 

b  

i  

o  

t  

t  

m  

t  

t  

p  

c
 

w  

m  

t  

e  

c  

m  

C  

t  

a  

l
 

c  

f  

a  

o  

t

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/83/1/fsaf227/8415061 by PN
N

L Technical Library user on 06 February 2026
escribes the relative position along a slope (from 0 at the base
o 1 at the crest) and can reflect differences in hydrodynamic
onditions associated with the vertical position of seabed fea-
ures (Böhner & Selige 2006 ). To ensure consistency across all
nputs, Bio-ORACLE raster layers were cropped and resam-
led to match the spatial extent and pixel resolution of those
rom Mitchell et al. (2019) . 

esponse variables (univariate metrics and assemblage clus-
ers) 
ull-coverage maps of community metric (S, N) and assem-
lage clusters were generated using random forest modelling-
n ensemble method that builds a large number of deci-
ion trees (typically 500–1 000) from random subsets of the
amples and predictor variables (Breiman 2001 ; Cutler et al.
007 ). A random forest modelling approach was selected for
ts capacity to predict both numeric and categorical response
ariables, and its ability to account for complex interactions
nd nonlinear relationships between response and predictor
ariables (Rodriguez-Galiano et al. 2012 ). Models were imple-
ented in R using the randomForest package (Liaw & Wiener,
002 ) with the default settings and 1 000 trees. 
Regression trees were applied to the continuous response

ariables—taxon richness (S) and total abundance (N)—to
odel how these metrics vary in space. A regression tree is a
ecision-tree-based model that predicts a numeric outcome by
epeatedly splitting the data based on environmental variables
o minimise prediction error. The random forest approach
uilds many such trees (here, 1 000), each trained on a ran-
om subset of the data and predictors, and then averages their
redictions to improve accuracy and reduce overfitting. 
For the categorical response variable—epifaunal assem-

lage cluster—we used classification trees, which operate sim-
larly but are designed to predict discrete categories instead
f numeric values. Each tree assigns a sample to a clus-
er based on environmental conditions, and the final predic-
ion is based on the majority vote across all trees (i.e. the
ost frequently predicted cluster). In addition, we calculated

he class-specific probability for each prediction, reflecting
he proportion of trees that assigned a given sample to a
articular cluster—providing a measure of confidence in the
lassification. 

Preliminary models including all environmental variables
ere run to identify the most informative predictors and re-
ove those exhibiting high covariance. Redundant variables-

hose with strong correlations with other predictors or poor
xplanatory relationships with the response variable-were ex-
luded. In cases of high correlation, the variable deemed less
echanistically linked to epifaunal assemblages was removed.
ovariance among predictors was assessed using values ex-

racted from raster layers at sample locations, with correlation
nalysis used to visualise relationships and guide variable se-
ection. 

While Random Forest models are generally robust to multi-
ollinearity (Huang and Boutros 2016 ), simpler models with
ewer predictors are easier to interpret and yield more vari-
nce importance measures. Highly correlated predictors can
bscure the contribution of individual variables by acting in-
erchangeably within component trees. 

https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
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Model Performance and Predictive Confidence 
We evaluated model performance and robustness using cross- 
validation with repeated subsampling, a common technique 
to assess predictive accuracy and generalisability (Mitchell et 
al. 2018 ). Specifically, we generated ten independent train-test 
splits of the data. In each split, 75% of the samples were ran- 
domly selected for model training and 25% reserved for test- 
ing. Stratified sampling was used to ensure that all response 
variable levels (e.g. cluster classes) were proportionally repre- 
sented in both sets. 

For the continuous response variables—taxon richness (S) 
and abundance (N)—we used Random Forest regression mod- 
els. Final predictions were computed as the mean of the ten 

model runs at each spatial location (i.e. grid cell). To assess 
spatial prediction uncertainty, we calculated the coefficient of 
variation (CV) at each location, defined as the standard devi- 
ation divided by the mean of predictions across runs. Model 
performance was summarised using the coefficient of determi- 
nation (R2 ), reporting both the mean and standard deviation 

across the ten validation runs. 
For the categorical response variable—the epifaunal assem- 

blage clusters—we used Random Forest classification models.
At each location, the final predicted class was determined by 
majority vote: the class most frequently predicted by the ten 

models. To quantify prediction confidence, we generated three 
complementary confidence layers: i) Class frequency: the num- 
ber of times (out of 10) that the predicted class was selected; ii) 
Mean class probability: the average predicted probability for 
the most frequently selected class; iii) Combined confidence 
index: the product of (i) and (ii), providing a single value that 
reflects both consistency and probability-based certainty. 

Classification model performance was evaluated using stan- 
dard metrics derived from confusion matrices: sensitivity (true 
positive rate), specificity (true negative rate), and balanced ac- 
curacy (the average of sensitivity and specificity). These met- 
rics were reported for each assemblage class and overall, av- 
eraged across the ten validation runs. 

The final model outputs of the classification model there- 
fore include:(a) predicted maps of epifaunal cluster distribu- 
tions (based on majority-vote classification across ten models),
and (b) spatial confidence maps that indicate prediction reli- 
ability at each location, where higher values denote greater 
confidence in the class assignment. 

Explaining patterns 

Two broad approaches were used to explain the drivers of epi- 
faunal spatial patterns, tailored separately to the continuous 
community metrics and the categorical assemblage clusters, as 
described below. 

Community metrics 
For the univariate metrics S and N, explanatory patterns were 
assessed using Variable Importance (VI) and Partial Depen- 
dence (PD) plots -derived from the random forest models.
VI plots rank predictor variables by their contribution to 

model accuracy, calculated via Monte Carlo permutation of 
“out-of-bag” data, and reported as the percentage increase in 

mean squared error (% MSE) when the variable is permuted.
PD plots illustrate the marginal effect of a predictor variable 
(x-axis) on the modelled response (y-axis), providing insight 
into the functional relationship between them. For clarity and 
revity, we present PD plots for the top three predictor vari-
bles identified by the VI plots for each modelled layer. 

ssemblage clusters 
o explore the extent to which environmental variables ex- 
lain variation in the assemblage clusters, we applied the best
nd adonis functions from the R vegan package (Oksanen 

t al. 2024 ). The best function identifies the subset of en-
ironmental variables that maximises rank correlation with 

ssemblage dissimilarities, effectively identifying the predic- 
ors that best explain variation in the biodiversity data. The
donis function performs a permutational multivariate anal- 
sis of variance (PERMANOVA) using distance matrices to 

uantify how much of the variability in assemblage structure 
an be explained by the predictor variables. Relationships be- 
ween samples and environmental predictors were visualised 

sing distance-based redundancy analysis (dbRDA) ordina- 
ion plots, where the axes represent the primary linear com-
inations of environmental variables that explain the greatest 
ariation in community composition. Assemblage dissimilar- 
ties were calculated using the Bray-Curtis resemblance mea- 
ures (Bray and Curtis 1957 ). 

Prior to analyses, environmental variables (see Section 2.4.1 

nd Table 1 ) were screened for multicollinearity using Varia-
ion Inflation Factors (VIFs) calculated using the vifstep func- 
ion in the usdm package (Naimi et al. 2014 ). The vifstep func-
ion applies a stepwise procedure to iteratively exclude vari-
bles with high VIF values ( > 2.5). This resulted in the removal
f wave velocity and current.speed due to high collinearity 
ith other predictors. To address right-skewed distributions,

og(x + 0.1) transformations were applied to winter SPM,
ravel, rel. slope pos., LS factor, mud and closed depressions.
ll selected environmental variables were then normalised 

o a common scale. Environmental dissimilarities were sub- 
equently calculated using Euclidean distance, which is suit- 
ble for continuous, standardised variables and allows for the 
uantification of overall differences in environmental condi- 
ions between samples. 

esults 

ommunity metrics 

odel description 

patial patterns in the two univariate metrics assessed—taxon 

ichness (S) and abundance (N)—are shown in Fig. 2 a and 2 b
espectively. Family-level richness (S) across the 1 400 sam- 
les ranged from 1 to 63 and exhibited clear, broad-scale
patial gradients. Elevated values of S were observed in the
orthern North Sea, the mid- and western English Chan- 
el, the Southwest Approaches and along the southern Irish 

oast ( Fig. 2 a, left panel). In contrast, lower values of S
ere recorded in the southern North Sea, eastern English 

hannel and much of the Irish Sea, particularly in inshore
reas. 

The spatial distribution of total abundance (N) displayed 

 distinctly different—and in some regions, contrasting—
attern relative to S. Untransformed abundance values ranged 

rom 1 to 8 263 individuals per sample. Based on the square-
oot-transformed abundance model, low abundances were 
idespread across the study area, including most of the North

ea, the Irish Sea, and the eastern and western English Channel
 Fig. 2 b, left panel). In contrast, elevated abundances were lo-



6 Cooper et al.

Figure 2. Spatial predictions of epifaunal taxon richness (a) and square-root-transformed total abundance (b) across the study area. Colour scales indicate 
predicted values per sample, with blue representing low values and red representing high values. Right-hand panels show the associated model 
confidence, with colour scales indicating the coefficient of variation. 
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alised and found along the Norwegian coast, in the German
ight off the Dutch coast, inshore areas of the mid-English
hannel (both English and French coasts), the Southwestern
pproaches, and a small area off southwest Wales in the Celtic
ea ( Fig. 2 b, left panel). 

odel performance and predictive confidence 
he Random Forest model for taxon richness (S) performance
as characterised by having a relatively low R2 value of 0.37

 ± 0.03 SD), indicating the model explains a moderate, though
imited, proportion of the variance in S. The spatial distribu-
ion of model confidence was heterogeneous, with variation
bserved at relatively fine spatial scales; no broad region of
he study area consistently demonstrated either high or low
odel confidence (Figure 2a, right panel). 
The Random Forest model for square-root-transformed

otal abundance (N) achieved a lower R2 value of
.13 ( ± 0.03 SD), reflecting relatively low explanatory
ower. As with S, model performance varied over small
patial scales. Regions of comparatively higher predictive
onfidence were evident in the western English Channel and
orthern North Sea (Figure 2b, right panel). 

xplaining patterns 
artial dependence plots (PDPs) for the top three predictor
ariables provide insights into the environmental drivers of
patial variation in epifaunal community metrics. For taxon
ichness (S), the three most influential variables were mean
alinity, wave velocity, and current speed ( Fig. 3 a). Mean salin-
ty, identified as the most important predictor, showed a clear
ositive relationship with richness, indicating higher taxon
ichness in areas of elevated salinity. In contrast, wave velocity
xhibited a negative relationship with taxon richness. Current
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Figure 3. Partial dependence plots (PDPs) from the random forest model predicting (a) taxon richness, and (b) square-root-transformed total abundance. 
Each panel shows the marginal effect of a predictor variable on each metric. The 1st , 2nd , and 3rd labels above the subplots indicate the ranking of the 
most influential variables, with the 1st being the most important according to the mean decrease in Gini coefficient. Grey lines represent model 
iterations. 
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speed displayed a generally positive relationship, with richness 
increasing alongside faster bottom currents. 

For observed variations in square-root-transformed total 
abundance (N) values, the top predictors were winter SPM,
current speed, and bottom temperature respectively ( Fig. 3 b).
The relationship with winter SPM was nonlinear: abundance 
peaked at moderate SPM levels but declined under very high 

concentrations, possibly reflecting the dual role of SPM as 
both a food source and a potential stressor. Current speed 

showed a weakly nonlinear pattern, with a decline in abun- 
dance at low speeds, followed by stabilisation and a slight in- 
crease at higher speeds. Bottom temperature was positively 
associated with abundance, suggesting that warmer benthic 
conditions may enhance epifaunal productivity or survival in 

certain regions. 

Multivariate taxonomic assemblage structure 

Clustering 
K-means clustering of square-root-transformed epifaunal 
abundance data identified 11 distinct assemblage groups,
based on a cut-off point where the rate of change in total 
within-cluster sum of squares diminished ( Fig. 4 a). While the 
elbow plot suggested that 13 clusters might also be justifiable,
a solution of 11 clusters was selected to align with the objec- 
tives of this study—specifically, to avoid over partitioning sub- 
tle differences in assemblages across the broad spatial extent 
of the study region. This approach ensures that the resulting 
clusters are ecologically interpretable and relevant at manage- 
ment scales, rather than reflecting minor variations that may 
ot be meaningful for large-scale spatial analysis or practical 
pplication. The resulting 11 cluster groups exhibit varying 
egrees of assemblage similarity and dissimilarity ( Fig. 4 b). A
igher-level grouping structure was apparent, with the clusters 
rganised into five main groups (Epi_A to Epi_E) based on a
0% similarity threshold. These groups were named to reflect 
heir relative similarities, such that, for example, Epi_A and 

pi_B are more similar to each other than to Epi_C, Epi_D, or
pi_E. One exception to this grouping structure was Epi_C,
hich did not contain sub-groups and appeared more distinct.
olours were applied to the cluster visualisation to reflect rel-
tive similarity relationships and facilitate interpretation of 
patial patterns. 

odel description 

he spatial distribution of modelled epifaunal assemblage 
lusters across the study area is presented in Fig. 5 , with asso-
iated group characteristics summarised in Table 2 . Clusters in
he Epi_A group (e.g. Epi_A1; navy blue) are highly localised,
estricted to small inshore areas of the east coast of the UK.
espite their very limited spatial extent, they are notable for
aving among the highest taxon richness and abundance val-
es observed in the study. 
The Epi_B group (Epi_B1a in turquoise and Epi_B1b in 

rey blue) is largely confined to the English Channel. These
lusters show high taxon richness relative to others, with mod-
rate abundance, and are more broadly distributed than the 
pi_A group, though still regionally restricted. 
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Figure 4. Outputs of k means clustering of the 2 m beam trawl square root-transformed abundance data, showing (a) elbow plot used to aid decisions 
regarding number of cluster groups present, and (b) dendrogram showing the relative similarity in epifaunal taxonomic multivariate structure of each 
cluster group. In (b), the y-axis represents Euclidean distance between cluster centroids, indicating the degree of dissimilarity in assemblage 
composition. 

Figure 5. Cluster map showing the spatial distributions of the eleven epifaunal cluster groups across the study area (left). Model confidence is shown in 
the right panel, with higher values indicating higher confidence. Confidence values are expressed as probabilities (ranging from 0 to 1). 
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Table 2. Cluster group characteristics including mean richness, mean abundance, phyletic composition (pie charts) and characterising taxa (family level or 
above). 

Note: Values for richness and abundance are group sample averages, where richness is reported as the mean number of family-level taxa per trawl sample and 
abundance as the mean number of individuals per trawl sample. Listed taxa are those with the highest mean centroid values, where the centroid represents the 
average abundance of each taxon within the cluster group in multivariate space. Highlighted taxa are those identified by a SIMPER analysis as contributing 
to ∼50% of the similarity between samples. Phyla codes are given in parenthesis (see legend at foot of table). 
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Table 3. Mean and standard deviation of model validation statistics for in- 
dividual cluster groups and overall based on 10 random split sample runs. 

Cluster n Sensitivity Specificity 
Balanced 
accuracy 

Epi_A1 9 0.32 ± 0.15 0.99 ± 0.00 0.66 ± 0.08 
Epi_B1a 17 0.28 ± 0.06 0.98 ± 0.01 0.63 ± 0.03 
Epi_B1b 32 0.5 ± 0.09 0.95 ± 0.01 0.73 ± 0.04 
Epi_C1 10 0.61 ± 0.14 0.99 ± 0.01 0.8 ± 0.07 
Epi_D1 27 0.58 ± 0.09 0.98 ± 0.01 0.78 ± 0.04 
Epi_D2a 27 0.63 ± 0.09 0.97 ± 0.01 0.8 ± 0.04 
Epi_D2b 86 0.5 ± 0.04 0.83 ± 0.01 0.66 ± 0.02 
Epi_D2c 25 0.71 ± 0.07 0.97 ± 0.01 0.84 ± 0.04 
Epi_D2d 32 0.46 ± 0.07 0.97 ± 0.01 0.71 ± 0.04 
Epi_E1a 44 0.79 ± 0.07 0.94 ± 0.01 0.86 ± 0.03 
Epi_E1b 36 0.92 ± 0.04 0.98 ± 0.01 0.95 ± 0.02 
Overall 1 055 0.6 ± 0.02 0.96 ± 0.00 0.78 ± 0.01 
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Table 4. Results of a “best” analysis identifying the subset of environmen- 
tal variables which are most correlated with the epifaunal abundance data. 

Size Variables 
Correlation 

( ρ) 

1 Salinity mean 0.2255 
2 Salinity mean, Bottom temp. 0.2378 
3 Salinity mean, Bottom temp., Gravel 0.2575 
4 Salinity mean, Bottom temp., Gravel, Rel. 

slope pos. 
0.2616 

5 Salinity mean, Winter SPM, Gravel, Rel. slope 
pos., Mud 

0.2641 

Note: “Size” refers to the number of environmental variables included in 
each subset tested. The row for size 5 is shown in bold because this subset 
achieved the highest correlation (i.e. represents the best model) 
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Epi_C1 (purple) is found mainly in offshore regions such as
he mid Irish Sea and Outer Celtic Sea. It is characterised by
oderate taxon richness but high mean abundance, indicating

hat these offshore shelf environments support dense but less
iverse assemblages. 
The Epi_D clusters (Epi_D1 in blood red, Epi_D2a in red,

pi_D2b in orange, Epi_D2c in yellow, and Epi_D2d in khaki)
re the most spatially widespread overall, together covering
early half of the model domain. Among these„ Epi_D2b (or-
nge) is one of the most extensive clusters, spanning much of
he UK’s west coast as well as the eastern seaboard of main-
and Europe. Across the D clusters, taxon richness is generally
ower, with abundance varying from low to moderate. 

The Epi_E group (Epi_E1a in dark green and Epi_E1b in
ight green) demonstrates a clear west–east contrast. Epi_E1b
s the single most extensive cluster overall, occupying large ar-
as of the northern North Sea, while Epi_E1a dominates the
outhwest approaches. Both E clusters show moderate rich-
ess, but typically lower abundance values in more northern
aters. 
Overall, the modelled clusters highlight marked biogeo-

raphic structuring of epifaunal assemblages across northwest
uropean shelf seas, reflecting regional environmental gradi-
nts and oceanographic conditions (Fig. 5; Table 2 ). 

odel performance and predictive confidence 
he random forest spatial model used to predict seabed epi-

aunal assemblage distribution showed generally strong per-
ormance, with an overall sensitivity of 0.60 ( ± 0.02 SD),
pecificity of 0.96 ( ± 0.00 SD), and balanced accuracy of
.78 ( ± 0.01 SD) ( Table 3 ). These metrics indicate that the
odel is generally effective in distinguishing between differ-

nt epifaunal assemblages. Assemblage-specific performance
aried, with clusters such as Epi_E1b achieving high sensi-
ivity (0.92 ± 0.04 SD) and balanced accuracy (0.95 ± 0.02
D), indicating strong predictive capability. Conversely, clus-
ers such as Epi_A1 and Epi_B1a showed lower sensitivity
0.32 ± 0.15 SD and 0.28 ± 0.06 SD, respectively), suggest-
ng areas for improvement. The high specificity values across
ll clusters (ranging from 0.83 to 0.99; Table 3 ) highlight the
odel’s effectiveness in avoiding false positives. These results

uggest that while the model is generally effective in predict-
ng epifaunal assemblages, further refinement is needed to en-
ance its performance for certain clusters. Confidence in the
odel varies spatially as shown in Fig. 5 b, with notably higher
onfidence in the northern North Sea. 

xplaining Patterns 
he best analysis identified five variables: salinity mean, win-

er SPM, gravel, rel. slope pos. and mudas best explaining the
patial variability in epifaunal assemblage structure ( Table 4 ).
orrelation between the environmental and biological resem-
lance matrices was weak to moderate ( ρ = 0.264), and PER-
ANOVA ( adonis ) results indicated that these predictors col-

ectively explained only 7.1% of the total variation in assem-
lage composition. Individual contributions were as follows:
alinity mean = 2.2%, winter SPM = 2.1%, gravel = 1.8%,
el. slope, pos. = 0.7% and mud = 0.3%. Despite the low
roportion of explained variance, all predictors were statisti-
ally significant (p < 0.001). Spatial patterns shown by these
redictors are shown in Supplementary Fig. S4 . 
The dbRDA ordination ( Fig. 6 ) highlights environmental

radients influencing epifaunal assemblage distribution across
he study area. Assemblages Epi_B1a and Epi_B1b are associ-
ted with sediments containing higher gravel content, whereas
1 aligns with higher mud content. Assemblages Epi_D2a,
pi_D2c, and Epi_D2d cluster toward the winter SPM vector,

ndicating a shared association with areas experiencing ele-
ated suspended particulate matter during winter, with inter-
ediate sediment conditions likely characterised by high sand

ontent. In contrast, Epi_E1a and Epi_E1b occur toward the
alinity vector, suggesting a preference for more saline envi-
onments, typically away from areas of high winter SPM, and
n locations where sediments are likely to be finer. While most
emaining groups cluster closer to the centre of the ordination,
pi_A1a (blue) shows a tendency toward elevated winter SPM
nd gravel, indicating some affinity for coarser sediments un-
er higher particulate conditions. Epi_D1 (red) and Epi_D2b
orange) remain near the centre, suggesting mixed environ-
ental influences without a strong association with any single

ariable. 

iscussion 

y integrating disparate but comparable datasets, this study
emonstrates that a big data approach can produce large-
cale maps of epifaunal assemblage structure, which have the
otential to inform management decisions. Notable regions
f elevated epifaunal taxon richness (measured as number of
axa per sample) were identified in the northern North Sea
nd the English Channel, with significantly higher densities in

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf227#supplementary-data
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Figure 6. Distance-based redundancy analysis (dbRDA) ordination of epifaunal assemblage samples (points) constrained by environmental variables. 
Points are coloured by predicted assemblage type. Vectors indicate the direction and strength of environmental gradients (salinity mean, winter SPM, 
gravel, rel. slope pos. and mud) associated with variation in assemblage structure. The axes (CAP1 and CAP2) represent the primary canonical axes 
derived from principal coordinates analysis, showing the greatest proportion of variation in assemblage structure explained by the environmental 
predictors. The plot shows separation among assemblage types along environmental gradients, with notable influences of sediment composition and 
water column properties on assemblage differentiation. 
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the Irish Sea, southern North Sea, and along the Norwegian 

coast. The study distinguished five broad assemblage types 
(labelled A–E), each characteristic of distinct large areas of 
the study region, with three of these groups (B, D, and E) ex- 
hibiting more subtle internal variation that is further resolved 

into a total of 11 assemblage clusters. Clear structural differ- 
ences were evident among assemblages inhabiting the north- 
ern North Sea, southern North Sea, Celtic Sea, eastern English 

Channel, and western English Channel. These differences ap- 
pear to be driven by a combination of bed sediment particle 
size (e.g. estimated percentage contribution of gravel and mud 

content) and water column characteristics (e.g. salinity mean 

and winter SPM). Notably, the observed negative relation- 
ship between wave velocity and taxon richness suggests that 
higher wave energy may reduce habitat suitability or stabil- 
ity for diverse epifaunal communities, likely due to increased 

physical disturbance or sediment mobility in high-energy en- 
vironments (Kaiser et al. 1999 ; Reiss et al. 2010 ). The gener- 
ally positive relationship observed between current speed and 

taxon richness is also noteworthy. While higher current speeds 
might be expected to reduce local larval recruitment due to in- 
creased dispersal, they may also enhance connectivity and the 
influx of species from other areas. This increased exchange can 
upport higher local richness, as sites are more frequently re-
lenished by a wider pool of taxa, potentially increasing biodi-
ersity at both local and regional scales. The resulting maps of-
er valuable information on the presence and variation of epi-
aunal assemblages, supporting environmental management 
nd decision-making. This can help guide activities such as
ffshore construction, sediment disposal, and marine aggre- 
ate extraction to avoid areas of high biodiversity or partic-
lar assemblage types, thereby reducing the risk of adverse 

mpacts. 
Over recent decades, there has been increasing recognition 

f the value of reliable maps of habitats, species distribu-
ions, and community-structure metrics, both for understand- 
ng the processes shaping marine spatial patterns and for man-
ging human activities and conservation (Davies and Guinotte 
011 ; Harris and Baker 2012 ; Lecours 2017 ; Fraschetti et
l. 2024 ). This expansion in mapping has been facilitated by
mproved data acquisition capacity—both observational and 

nvironmental predictors (Costa et al. 2009 ; Heyman and 

right 2011 )—greater computational power, and the grow- 
ng body of evidence on cumulative anthropogenic impacts 
Halpern et al. 2008 ). In the marine environment, most map-
ing efforts have focused on habitats (areas defined by spe-
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ific physical, chemical, or biological characteristics) because
f their utility as management units (Lecours et al. 2015 ).
aps of marine biological assemblage distributions have re-

eived less attention, partly because they require large, stan-
ardised biological datasets collected across broad spatial ex-
ents. Cooper and Barry (2017) demonstrated that large-scale
aps of macroinfaunal taxonomic structure and univariate

ommunity metrics could be produced by integrating multi-
le datasets with careful harmonisation of metadata to ensure
omparability. This study extends that approach to the epifau-
al component of benthic ecosystems, providing new insights
nto the large-scale spatial patterns of epifaunal taxonomic
tructure across the UK shelf and North Sea, and into the key
nvironmental drivers of those patterns. 

Epifaunal taxon richness in the North Sea shows a clear
outh–north gradient, with significantly higher values in the
orth—a pattern consistent with previous studies (Jennings et
l. 1999 ; Neumann et al. 2008 ; Reiss et al. 2010 ). This gra-
ient, which is particularly marked near the 50 m depth con-
our, is often attributed to differences in water temperature
nd thermal stratification in deeper northern waters. However,
he broader UK-shelf coverage of this study demonstrates that
he northern North Sea is not the sole region of high epifau-
al richness; comparably elevated richness also occurs in the
nglish Channel, where environmental conditions differ sub-
tantially. These two regions also support distinct assemblage
ypes (e.g. Epi_E1b in the northern North Sea and Epi_B1b in
he mid-English Channel). 

Recognising structural variation in epifaunal assemblages
as important implications for managing human impacts. As-
emblages with high biodiversity or limited spatial extent rep-
esent areas of greater ecological risk from activities that dam-
ge benthic invertebrates. Under current UK licensing frame-
orks for offshore activities (e.g. renewables, aggregate ex-

raction, dredged material disposal), assessment of benthic
mpacts is primarily, though not exclusively, based on infau-
al assemblages sampled using grabs or corers. While appro-
riate, this approach does not necessarily consider the eco-
ogical significance of the epifaunal component of sediment
abitats, creating the risk that activities may be permitted in
reas of high epifaunal ecological value (Chen et al. 2021 ).
his study identifies regions where epifaunal assemblages ex-
ibit relatively high taxon richness and densities, or where as-
emblage composition is limited to small, isolated areas. For
xample, Epi_A1—the most abundant and among the most
axon-rich assemblages in the study region—is predicted to
ccur in only a small area off the inshore east coast of Eng-
and (0.1% of the study area). Similarly, Epi_B1a, occupying
.5% of the area, is highly abundant and diverse but restricted
o parts of the mid-English Channel. Such assemblages merit
xplicit consideration in environmental assessments to avoid
rreversible loss. Consistent with the biodiversity–ecosystem
unction paradigm (Ali 2023 ), prioritising protection of bio-
iverse assemblages is also likely to safeguard those that are
unctionally important. 

It should be noted that the sediment environmental rasters
sed in our modelling assume the presence of unconsolidated
ediments throughout the study area. As a result, model pre-
ictions may be less reliable in regions where rocky substrates
ccur, since these assumptions do not hold. This represents a
imitation in the spatial applicability of our results and should
e considered when interpreting the model outputs. In addi-
ion to these data-related limitations, the modelling frame-
ork itself warrants consideration. While this study focused
n random forest (RF) models, we acknowledge that other
pproaches—such as GLMs, MaxEnt, INLA, joint species dis-
ribution models, and neural networks—are available. RF was
hosen for its flexibility, ability to model complex nonlin-
ar relationships, and strong performance with large, hetero-
eneous ecological datasets. Correlated predictors generally
o not reduce RF’s predictive accuracy, but can bias vari-
ble importance metrics (Strobl et al. 2007 ), so we addressed
ollinearity during variable selection. 

Our predictions for richness, square-root abundance, and
ssemblage clusters include spatial confidence maps. For rich-
ess and square-root abundance, CV values were gener-
lly low, indicating consistent predictions across model runs.
owever, R2 values were moderate for richness (0.37) and

ower for square-root abundance (0.13), highlighting limited
xplanatory power, particularly for abundance. This demon-
trates that high model confidence (i.e. consistency) does
ot necessarily equate to high predictive accuracy, and both
hould be considered when interpreting results (McAlexander
 Mentch 2020 ). Additionally, while RF offers strong predic-

ive performance, it can be less interpretable than some para-
etric approaches. Although model comparison was not the

im of this study, future work could explore alternative ap-
roaches and further evaluation of model uncertainty to im-
rove predictive performance and interpretability. 
Future work should also address limitations in our ap-

roach to measuring taxon richness, which relied on simple
ounts of taxa per sample without incorporating taxon abun-
ance information. This method does not adjust for varia-
ion in sampling effort, evenness, or spatial turnover. Apply-
ng statistical techniques such as rarefaction (which estimates
he expected number of taxa in a standardized subsample,
hereby accounting for differences in sampling effort; Gotelli
nd Colwell 2001 ; Chao and Jost 2012 ), as well as diversity
etrics like Hill numbers (Hill 1973 ; Chao et al. 2014 ), and

he Whittaker framework for partitioning diversity into al-
ha, beta, and gamma components (Whittaker 1960 ), would
mprove comparability and robustness of biodiversity assess-
ents across space (see Cooper et al., in press ). 
To better support management of pressures and enable

nformed decisions about the ecological acceptability of ac-
ivities affecting epifaunal assemblages, there is an urgent
eed to understand how assemblages differ in their sensitiv-
ty and response to anthropogenic pressures. Future research
hould focus on quantifying sensitivity using biological “re-
ponse” traits and describing functional potential using “ef-
ect” traits. Trait-based approaches have been developed for
nfaunal benthic communities to assess sensitivity to activities
uch as trawling and dredged material disposal (Bolam et al.
014 , 2016 , 2021 ); applying similar frameworks to epifauna
ould facilitate more effective protection of these communi-

ies (Lambert et al. 2014 ; Hewitt et al. 2018 ). 
Finally, a more holistic understanding of the spatial vari-

bility in marine invertebrate assemblages will require inte-
ration of both infaunal and epifaunal components. The maps
resented here can be used alongside existing maps for in-
auna (Cooper and Barry 2017 ; Cooper et al. 2019 ; Bolam
t al. 2023 , Cooper et al., in press ; Bolam et al., in press)
o identify regions of elevated ecological risk from human
ctivities, reveal unique spatial patterns, and explore poten-
ial ecological interactions between infaunal and epifaunal
ommunities. 
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