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Abstract

Comprehensive maps of biological characteristics are increasingly employed to support the management of human activities in marine
environments. However, their development is often constrained by insufficient data coverage across broad spatial scales. Here, we
apply a big data approach by integrating marine epifaunal data from 2 m beam trawls across the UK shelf and wider North Sea to
enhance understanding of the ecological characteristics of epifaunal assemblages in sedimentary habitats. We analyse spatial patterns
in univariate metrics (taxon richness, total abundance) and assemblage taxonomic structure. Taxon richness was found to peak in
the northern North Sea and English Channel, while abundance hotspots occurred along the Norwegian coast, southern North Sea, and
inshore regions around the UK and Ireland. We also identify 11 distinct assemblage types, each exhibiting their own taxonomic epifaunal
composition, with strong biogeographic structure. We identify the main environmental drivers shaping these patterns and discuss how
the creation of such maps, and the added insight gained from them, may be used to facilitate the management of anthropogenic
activities.
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Introduction

Marine epifauna—such as echinoderms (e.g. brittle stars
Opbhiothrix spp.), crustaceans (e.g. brown shrimp Crangon
crangon), molluscs (e.g. scallops Pecten maximus), cnidari-
ans (e.g. hydroids), and demersal fish (e.g. plaice Pleuronectes
platessa)—play an important role in ecosystem functioning—
facilitating nutrient cycling, providing nursery areas, and
modifying sediment biogeochemistry (Murillo et al. 2020),
and linking benthic and pelagic systems by providing biomass
for large predators (Griffiths et al. 2017; Chen et al. 2021).
Their often-high abundances and rapid turnover rates support
the flow of energy through marine food webs (Newcombe &
Taylor 2010). As essential trophic links between benthic pri-
mary producers and higher-order consumers such as carniv-
orous invertebrates and commercially important fish species,
epifaunal communities contribute substantially to secondary
production, representing up to 75% of the total annual pro-
duction in some habitats (Taylor 1998; Kramer et al. 2015).
Interest in the distribution, structure and diversity of epifau-
nal communities is long-standing (Rees et al. 2007). Their dis-
tributions having been described in the North Sea (Jennings et
al. 1999; Ziihlke et al. 2001; Callaway et al. 2002), the English
Channel (Kaiser et al. 1999), and Irish Sea and Bristol Chan-
nel (Ellis et al. 2002). However, whilst integrated assessment
has been conducted for the infauna (Cooper and Barry 2017;
Bolam et al., 2023; Cooper et al., in press), there is no sin-
gle study that describes epifaunal assemblage patterns across
the UK continental shelf and adjacent North Sea. Understand-
ing spatial distributions and variability at such scales requires
large, integrated empirical datasets. Historically, efforts to de-
velop reliable maps biologically characterising the seabed at
these scales have been constrained by limited data access and

insufficient IT infrastructure (Stelzenmuller et al. 2015). To
address these limitations, we apply a big data approach—
integrating large disparate datasets from multiple sources and
time periods, harmonised via metadata filtering and standard-
ised taxonomy—enabling robust, large-scale mapping of epi-
faunal communities. Here, we use “big data” in the broader
sense of large and complex datasets, rather than implying con-
tinuous real-time data streams (Guidi et al. 2020).

For the infauna, Cooper and Barry (2017) showed that
integrating seabed sampling data from governmental and
non-governmental sources (e.g. marine aggregates, offshore
wind, oil and gas) (OneBenthic https://rconnect.cefas.co.uk/
onebenthic_portal/) could produce a robust biological base-
line. In a management context, the availability of such maps
(Cooper et al. 2019; O’Brien et al. 2022) is appealing as dif-
ferences in the component taxa between different assemblages
will undoubtedly manifest through differences in sensitivity
to, and functional responses from, anthropogenic pressures
(Bolam et al. 2023). Understanding these patterns and their
environmental drivers is therefore an important prerequisite
for effective conservation and spatial ecosystem-based man-
agement (Reiss et al. 2010).

In this paper, we demonstrate that empirical epifaunal
abundance data obtained from 2 m beam trawls can be in-
tegrated using a large-scale data approach to improve under-
standing of spatial patterns in community structure metrics
(e.g. taxon richness, abundance) and taxonomic composition
(i.e. assemblage biotopes) across the UK shelf and wider North
Sea. We use a random forest modelling framework to predict
these patterns based on environmental conditions and pro-
duce continuous maps of their variation. We discuss the im-
plications of these patterns and drivers for informing man-
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Figure 1. Locations of all 2 m beam trawl samples contained in OneBenthic. Background bathymetry from GEBCO Grid (The GEBCO_2023 Grid |

GEBCO).

agement decisions related to licencing and mitigating anthro-
pogenic activities that affect epifaunal assemblages.

Methods

The dataset

The empirical epifaunal data used in this study were sourced
from the OneBenthic trawl database (https:/rconnect.cefas.
co.uk/onebenthic_portal/). OneBenthic brings together pub-
licly available disparate benthic datasets (biological abun-
dance/biomass and sediment particle size) in a cloud-based
PostgreSQL database. The epifaunal dataset accessed on 26th
March 2025 includes 3 799 trawl samples from 110 surveys
collected over 36-years (1987-2023). Its spatial extent covers
UK shelf waters and regions of northeast Atlantic countries

including France, Belgium, The Netherlands, Germany, Den-
mark, and Norway (Fig. 1).

The OmneBenthic database uses taxonomic information
from the World Register of Marine Species (WoRMS Editorial
Board 2025) enabling outputs with standardised nomencla-
ture. WoRMS data were accessed via in R (R Core Team 2025)
using the worms package (Chamberlain & Ooms, 2023), with
each taxon uniquely identified by the aphialD field.

An essential step for integrating data from disparate sources
is to review associated metadata—such as sampling gear,
mesh size, tow speed and length, and sample location—
to refine the dataset and enhance comparability. From the
full dataset of 3799 samples, we selected a subset of 2383
meeting the following criteria: sampled using a 2 m beam
trawl fitted with either a 4 mm or 5 mm cod end mesh
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(Supplementary Fig. S1), towing speed less than 2 knots, tow
length less than 2 km, and sample location outside areas li-
censed for anthropogenic activities (e.g. dredging/extraction,
disposal, renewables). This last criterion was applied to min-
imise the influence of recent or ongoing human activities
that could alter epifaunal community structure, ensuring that
the dataset more accurately reflects natural spatial patterns
and baseline conditions. We recognise that demersal fishing
is widespread across the region and acknowledge that ex-
cluding all areas exposed to fishing pressure was not feasi-
ble given its pervasive extent; instead, we aimed to exclude
only those samples clearly flagged as potentially not represen-
tative of typical benthic conditions for their habitat type (i.e.
those from within licensed areas). As sampling occurred year-
round (Supplementary Fig. S1), no seasonal restriction was
applied.

Raw taxon records were reviewed to exclude pelagic
species, taxa better sampled with grabs (e.g. polychaetes), bur-
rowing species, high level entries (e.g. Pisces), and juvenile or
larval stages. These exclusions were made to ensure that the
dataset reflected taxa that are reliably and consistently sam-
pled by 2 m beam trawl, and to avoid including groups whose
presence or abundance would not be accurately represented
by this gear type. Demersal fish species, and those feeding on
demersal prey, were retained because they are effectively sam-
pled by beam trawl and form an integral part of the epifaunal
community structure in these habitats. Colonial taxa which
are recorded as “present” (e.g. hydroids, sponges) were in-
cluded and assigned abundance of 1 (in accordance with how
they are treated for grab samples (Mcllwaine et al. 2025)).
Taxa were aggregated to the family level to address identifi-
cation and/or sample processing inconsistencies which inher-
ently occur with combining disparate data sources (Cooper
and Barry 2017).

Prior to analysis, spatial autocorrelation was assessed us-
ing the R package emon (Barry et al. 2017), which calcu-
lates empirical semi-variograms and fits Gaussian models by
least squares (Cressie 1993) (Supplementary Fig. S2). Signif-
icant spatial autocorrelation was detected between samples
less than 2 km apart, leading to the removal of 983 sam-
ples (Supplementary Fig. S3). The final dataset used for spatial
analyses contained 1400 samples.

Community metrics

Prior to the deriving community metrics, raw epifaunal abun-
dance data were assessed for outliers using modified z-scores
(Saleem et al. 2021). Based on the N-sqrt criterion, whereby
N-sqrt is the square root of total abundance of each sam-
ple, 106 samples were flagged as potential outliers, typically
due to extremely high counts of certain taxa (e.g. Crangon
spp., Ophiothrix spp.). To address this, a cap of 1000 in-
dividuals per taxon per sample was applied. Following out-
lier handling, two univariate metrics of community struc-
ture were derived for each sample: Taxon richness, as de-
scribed by the total number of taxa (S) and the square root
of the total abundance of individuals (N). These metrics
were selected because they are commonly used, easily inter-
pretable, and provide a meaningful context for interpreting
the resulting multivariate spatial patterns in the benthic as-
semblage sampled using the 2 m beam trawl (see Section
2.3).

Multivariate taxonomic structure

Epifaunal abundance data were used to identify the spatial
distribution of discrete faunal groups based on multivariate
taxonomic structure, following the approach of Cooper and
Barry (2017). Square-root transformed abundance data were
clustered using the using the k-means algorithm (MacQueen,
1967) implemented via the R function kmeans. This method
partitions samples by minimising the within-cluster sum of
squares across all variables. K-means clustering was selected
for its suitability for large datasets and its successful applica-
tion in comparable infaunal assessments (Cooper and Barry
2017; Bolam et al. 2023; Cooper et al. (in press)). The number
of cluster groups was determined using an elbow plot to bal-
ance biological detail and broader spatial patterns. The final
number of clusters is generally chosen based on where along
the profile of the plot the gradient starts to decrease.

To quantify relative similarity among the resulting faunal
groups, absolute distances between K-means cluster centres
were calculated across all variables using the R function dist.
The resulting dissimilarity matrix was used to generate a den-
drogram via group-average hierarchical clustering (R function
hclust) and visually represent the observed difference between
k-means cluster groups. Each group was then assigned a code
(and colour) based on the dendrogram structure to reflect re-
latedness.

To describe the biological characteristics of each epifaunal
group, we examined both the cluster centres and the results of
a SIMPER analysis (Primer v7®; Clarke and Gorley 2015) to
determine the taxa which best characterised each group. Ad-
ditionally, mean univariate measures of taxon richness (S) and
total abundance (N) of each group, along with the proportions
of taxa by major phyla, were calculated.

Modelling
Environmental predictors

A range of raster layers representing environmental vari-
ables known to influence epifaunal distributions were as-
sembled for use as model predictors (Table 1). Data were
sourced from Bio-ORACLE (https://www.bio-oracle.org/; As-
sis et al. 2018; Tyberghein et al. 2012) and Mitchell et
al. (2019). Bio-ORACLE layers were downloaded using the
Download Manager with the following settings: Dataset ver-
sion: Bio-ORACLE v3; Period of layers = Present-day con-
ditions (2000-2010); Depth of layers = Benthic layers; Lay-
ers = Mean and Range.

From Mitchell et al. (2019), available data products in-
cluded sediment composition (% Mud, % Sand, % Gravel;
https://doi.org/10.14466/CefasDataHub.63), and additional
environmental predictors such as water depth, wave veloc-
ity, current speed, and suspended inorganic particulate matter
(SPM—summer, winter and mean); https://doi.org/10.14466/
CefasDataHub.62.

Five additional environmental layers representing seafloor
topography were derived from the bathymetry layer (water
depth) using SAGA GIS tools for QGIS (v.3.2; Conrad et al.
2015). These included variables such as topographic slope
length and steepness (LS-Factor) and Relative Slope Posi-
tion (RSP, Bohner & Selige 2006). The LS-Factor combines
slope gradient over slope length to estimate erosion potential
(Desmet & Govers, 1996) and is analogously applied in the
marine context to reflect the potential stability of sediment de-
posits and the likelihood of exposed hard substrata. The RSP
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Table 1. Raster variables used in modelling and for explaining patterns in biodiversity cluster distribution.

Cooper et al.

Variable Units Detail Source

Depth m Mitchell 2019 et al. 2019 Bathymetry (m) Mitchell et al. (2019)

Valley depth m SAGA Valley depth derived metric from Depth layer
Closed depressions - SAGA Closed depressions derived metric from Depth layer
Ch. network distance m SAGA Channel network distance derived metric from Depth layer
LS-factor - SAGA slope length and steepness factor derived metric from Depth layer
Rel. slope pos. - SAGA Relative slope position derived metric from Depth layer
Wave velocity ms~! Mitchell 2019 Wave velocity Mitchell et al. (2019)

Current speed ms~! Mitchell 2019 Current speed Mitchell et al. (2019)

Gravel % Mitchell 2019 Gravel fraction (%) Mitchell et al. (2019)

Mud % Mitchell 2019 Mud fraction (%) Mitchell et al. (2019)

Mean SPM gm™3 Mitchell 2019 Average suspended matter Mitchell et al. (2019)

Summer SPM gm™3 Mitchell 2019 Summer suspended matter Mitchell et al. (2019)

Winter SPM gm™3 Mitchell 2019 Winter suspended matter Mitchell et al. (2019)

Diss. Iron

Diss. Oxygen mmol m~3
2000-2018.
Nitrate mmol m~3
Bottom temp. °C
2000-2019.
Bottom temp. range °C
2000-2019.
pH -
Phosphate mmol m~3
Salinity mean ppt
Salinity range ppt
Silicate mmol m~3
Chlorophyll mmol
KD PAR (Light) m~!
Mean 2000-2020.
Phytoplankton mmol m~3 Bio-Oracle v.3 Total Phytoplankton [depthSurf] Baseline

2000-2020.

mmol m~3 Bio-Oracle v.3 Dissolved Iron [depthMean] Baseline 2000-2018.
Bio-Oracle v.3 Dissolved Molecular Oxygen [depthMean| Baseline

Bio-Oracle v.3 Nitrate [depthMean] Baseline 2000-2018.
Bio-Oracle v.3 Ocean Temperature [depthMean]| Baseline

Bio-Oracle v.3 Ocean Temperature [depthMean| Baseline

Bio-Oracle v.3 pH [depthMean] Baseline 2000-2018.

Bio-Oracle v.3 Phosphate [depthMean] Baseline 2000-2018.

Bio-Oracle v.3 Salinity [depthMean] Baseline 2000-2019.

Bio-Oracle v.3 Salinity [depthMean] Baseline 2000-2019.

Bio-Oracle v.3 Silicate [depthMean] Baseline 2000-2018.

m~3 Bio-Oracle v.3 Chlorophyll [depthSurf] Baseline 2000-2018.
Bio-Oracle v.3 Diffuse Attenuation Coefficient PAR [depthSurf]

https://www.bio-oracle.org/
https://www.bio-oracle.org/

https://www.bio-oracle.org/
https://www.bio-oracle.org/

https://www.bio-oracle.org/

https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/
https://www.bio-oracle.org/

https://www.bio-oracle.org/

describes the relative position along a slope (from 0 at the base
to 1 at the crest) and can reflect differences in hydrodynamic
conditions associated with the vertical position of seabed fea-
tures (Bohner & Selige 2006). To ensure consistency across all
inputs, Bio-ORACLE raster layers were cropped and resam-
pled to match the spatial extent and pixel resolution of those
from Mitchell et al. (2019).

Response variables (univariate metrics and assemblage clus-
ters)

Full-coverage maps of community metric (S, N) and assem-
blage clusters were generated using random forest modelling-
an ensemble method that builds a large number of deci-
sion trees (typically 500-1000) from random subsets of the
samples and predictor variables (Breiman 2001; Cutler et al.
2007). A random forest modelling approach was selected for
its capacity to predict both numeric and categorical response
variables, and its ability to account for complex interactions
and nonlinear relationships between response and predictor
variables (Rodriguez-Galiano et al. 2012). Models were imple-
mented in R using the randomForest package (Liaw & Wiener,
2002) with the default settings and 1 000 trees.

Regression trees were applied to the continuous response
variables—taxon richness (S) and total abundance (N)—to
model how these metrics vary in space. A regression tree is a
decision-tree-based model that predicts a numeric outcome by
repeatedly splitting the data based on environmental variables
to minimise prediction error. The random forest approach
builds many such trees (here, 1000), each trained on a ran-

dom subset of the data and predictors, and then averages their
predictions to improve accuracy and reduce overfitting.

For the categorical response variable—epifaunal assem-
blage cluster—we used classification trees, which operate sim-
ilarly but are designed to predict discrete categories instead
of numeric values. Each tree assigns a sample to a clus-
ter based on environmental conditions, and the final predic-
tion is based on the majority vote across all trees (i.e. the
most frequently predicted cluster). In addition, we calculated
the class-specific probability for each prediction, reflecting
the proportion of trees that assigned a given sample to a
particular cluster—providing a measure of confidence in the
classification.

Preliminary models including all environmental variables
were run to identify the most informative predictors and re-
move those exhibiting high covariance. Redundant variables-
those with strong correlations with other predictors or poor
explanatory relationships with the response variable-were ex-
cluded. In cases of high correlation, the variable deemed less
mechanistically linked to epifaunal assemblages was removed.
Covariance among predictors was assessed using values ex-
tracted from raster layers at sample locations, with correlation
analysis used to visualise relationships and guide variable se-
lection.

While Random Forest models are generally robust to multi-
collinearity (Huang and Boutros 2016), simpler models with
fewer predictors are easier to interpret and yield more vari-
ance importance measures. Highly correlated predictors can
obscure the contribution of individual variables by acting in-
terchangeably within component trees.
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Model Performance and Predictive Confidence

We evaluated model performance and robustness using cross-
validation with repeated subsampling, a common technique
to assess predictive accuracy and generalisability (Mitchell et
al. 2018). Specifically, we generated ten independent train-test
splits of the data. In each split, 75% of the samples were ran-
domly selected for model training and 25% reserved for test-
ing. Stratified sampling was used to ensure that all response
variable levels (e.g. cluster classes) were proportionally repre-
sented in both sets.

For the continuous response variables—taxon richness (S)
and abundance (N)—we used Random Forest regression mod-
els. Final predictions were computed as the mean of the ten
model runs at each spatial location (i.e. grid cell). To assess
spatial prediction uncertainty, we calculated the coefficient of
variation (CV) at each location, defined as the standard devi-
ation divided by the mean of predictions across runs. Model
performance was summarised using the coefficient of determi-
nation (R2), reporting both the mean and standard deviation
across the ten validation runs.

For the categorical response variable—the epifaunal assem-
blage clusters—we used Random Forest classification models.
At each location, the final predicted class was determined by
majority vote: the class most frequently predicted by the ten
models. To quantify prediction confidence, we generated three
complementary confidence layers: i) Class frequency: the num-
ber of times (out of 10) that the predicted class was selected; ii)
Mean class probability: the average predicted probability for
the most frequently selected class; iii) Combined confidence
index: the product of (i) and (ii), providing a single value that
reflects both consistency and probability-based certainty.

Classification model performance was evaluated using stan-
dard metrics derived from confusion matrices: sensitivity (true
positive rate), specificity (true negative rate), and balanced ac-
curacy (the average of sensitivity and specificity). These met-
rics were reported for each assemblage class and overall, av-
eraged across the ten validation runs.

The final model outputs of the classification model there-
fore include:(a) predicted maps of epifaunal cluster distribu-
tions (based on majority-vote classification across ten models),
and (b) spatial confidence maps that indicate prediction reli-
ability at each location, where higher values denote greater
confidence in the class assignment.

Explaining patterns

Two broad approaches were used to explain the drivers of epi-
faunal spatial patterns, tailored separately to the continuous
community metrics and the categorical assemblage clusters, as
described below.

Community metrics

For the univariate metrics S and N, explanatory patterns were
assessed using Variable Importance (VI) and Partial Depen-
dence (PD) plots -derived from the random forest models.
VI plots rank predictor variables by their contribution to
model accuracy, calculated via Monte Carlo permutation of
“out-of-bag” data, and reported as the percentage increase in
mean squared error (% MSE) when the variable is permuted.
PD plots illustrate the marginal effect of a predictor variable
(x-axis) on the modelled response (y-axis), providing insight
into the functional relationship between them. For clarity and

brevity, we present PD plots for the top three predictor vari-
ables identified by the VI plots for each modelled layer.

Assemblage clusters

To explore the extent to which environmental variables ex-
plain variation in the assemblage clusters, we applied the best
and adonis functions from the R vegan package (Oksanen
et al. 2024). The best function identifies the subset of en-
vironmental variables that maximises rank correlation with
assemblage dissimilarities, effectively identifying the predic-
tors that best explain variation in the biodiversity data. The
adonis function performs a permutational multivariate anal-
ysis of variance (PERMANOVA) using distance matrices to
quantify how much of the variability in assemblage structure
can be explained by the predictor variables. Relationships be-
tween samples and environmental predictors were visualised
using distance-based redundancy analysis (dbRDA) ordina-
tion plots, where the axes represent the primary linear com-
binations of environmental variables that explain the greatest
variation in community composition. Assemblage dissimilar-
ities were calculated using the Bray-Curtis resemblance mea-
sures (Bray and Curtis 1957).

Prior to analyses, environmental variables (see Section 2.4.1
and Table 1) were screened for multicollinearity using Varia-
tion Inflation Factors (VIFs) calculated using the vifstep func-
tion in the usdm package (Naimi et al. 2014). The vifstep func-
tion applies a stepwise procedure to iteratively exclude vari-
ables with high VIF values (>2.5). This resulted in the removal
of wave velocity and current.speed due to high collinearity
with other predictors. To address right-skewed distributions,
log(x+0.1) transformations were applied to winter SPM,
gravel, rel. slope pos., LS factor, mud and closed depressions.
All selected environmental variables were then normalised
to a common scale. Environmental dissimilarities were sub-
sequently calculated using Euclidean distance, which is suit-
able for continuous, standardised variables and allows for the
quantification of overall differences in environmental condi-
tions between samples.

Results

Community metrics
Model description

Spatial patterns in the two univariate metrics assessed—taxon
richness (S) and abundance (N)—are shown in Fig. 2a and 2b
respectively. Family-level richness (S) across the 1400 sam-
ples ranged from 1 to 63 and exhibited clear, broad-scale
spatial gradients. Elevated values of S were observed in the
northern North Sea, the mid- and western English Chan-
nel, the Southwest Approaches and along the southern Irish
coast (Fig. 2a, left panel). In contrast, lower values of S
were recorded in the southern North Sea, eastern English
Channel and much of the Irish Sea, particularly in inshore
areas.

The spatial distribution of total abundance (N) displayed
a distinctly different—and in some regions, contrasting—
pattern relative to S. Untransformed abundance values ranged
from 1 to 8 263 individuals per sample. Based on the square-
root-transformed abundance model, low abundances were
widespread across the study area, including most of the North
Sea, the Irish Sea, and the eastern and western English Channel
(Fig. 2b, left panel). In contrast, elevated abundances were lo-
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calised and found along the Norwegian coast, in the German
Bight off the Dutch coast, inshore areas of the mid-English
Channel (both English and French coasts), the Southwestern
Approaches, and a small area off southwest Wales in the Celtic
Sea (Fig. 2b, left panel).

Model performance and predictive confidence

The Random Forest model for taxon richness (S) performance
was characterised by having a relatively low R? value of 0.37
(£ 0.03 SD), indicating the model explains a moderate, though
limited, proportion of the variance in S. The spatial distribu-
tion of model confidence was heterogeneous, with variation
observed at relatively fine spatial scales; no broad region of
the study area consistently demonstrated either high or low
model confidence (Figure 2a, right panel).

The Random Forest model for square-root-transformed
total abundance (N) achieved a lower R? value of

0.13 (£ 0.03 SD), reflecting relatively low explanatory
power. As with S, model performance varied over small
spatial scales. Regions of comparatively higher predictive
confidence were evident in the western English Channel and
northern North Sea (Figure 2b, right panel).

Explaining patterns

Partial dependence plots (PDPs) for the top three predictor
variables provide insights into the environmental drivers of
spatial variation in epifaunal community metrics. For taxon
richness (S), the three most influential variables were mean
salinity, wave velocity, and current speed (Fig. 3a). Mean salin-
ity, identified as the most important predictor, showed a clear
positive relationship with richness, indicating higher taxon
richness in areas of elevated salinity. In contrast, wave velocity
exhibited a negative relationship with taxon richness. Current
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Figure 3. Partial dependence plots (PDPs) from the random forest model predicting (a) taxon richness, and (b) square-root-transformed total abundance.
Each panel shows the marginal effect of a predictor variable on each metric. The 15, 2", and 3™ labels above the subplots indicate the ranking of the
most influential variables, with the 1st being the most important according to the mean decrease in Gini coefficient. Grey lines represent model

iterations.

speed displayed a generally positive relationship, with richness
increasing alongside faster bottom currents.

For observed variations in square-root-transformed total
abundance (N) values, the top predictors were winter SPM,
current speed, and bottom temperature respectively (Fig. 3b).
The relationship with winter SPM was nonlinear: abundance
peaked at moderate SPM levels but declined under very high
concentrations, possibly reflecting the dual role of SPM as
both a food source and a potential stressor. Current speed
showed a weakly nonlinear pattern, with a decline in abun-
dance at low speeds, followed by stabilisation and a slight in-
crease at higher speeds. Bottom temperature was positively
associated with abundance, suggesting that warmer benthic
conditions may enhance epifaunal productivity or survival in
certain regions.

Multivariate taxonomic assemblage structure
Clustering

K-means clustering of square-root-transformed epifaunal
abundance data identified 11 distinct assemblage groups,
based on a cut-off point where the rate of change in total
within-cluster sum of squares diminished (Fig. 4a). While the
elbow plot suggested that 13 clusters might also be justifiable,
a solution of 11 clusters was selected to align with the objec-
tives of this study—specifically, to avoid over partitioning sub-
tle differences in assemblages across the broad spatial extent
of the study region. This approach ensures that the resulting
clusters are ecologically interpretable and relevant at manage-
ment scales, rather than reflecting minor variations that may

not be meaningful for large-scale spatial analysis or practical
application. The resulting 11 cluster groups exhibit varying
degrees of assemblage similarity and dissimilarity (Fig. 4b). A
higher-level grouping structure was apparent, with the clusters
organised into five main groups (Epi_A to Epi_E) based on a
70% similarity threshold. These groups were named to reflect
their relative similarities, such that, for example, Epi_A and
Epi_B are more similar to each other than to Epi_C, Epi_D, or
Epi_E. One exception to this grouping structure was Epi_C,
which did not contain sub-groups and appeared more distinct.
Colours were applied to the cluster visualisation to reflect rel-
ative similarity relationships and facilitate interpretation of
spatial patterns.

Model description

The spatial distribution of modelled epifaunal assemblage
clusters across the study area is presented in Fig. 5, with asso-
ciated group characteristics summarised in Table 2. Clusters in
the Epi_A group (e.g. Epi_A1; navy blue) are highly localised,
restricted to small inshore areas of the east coast of the UK.
Despite their very limited spatial extent, they are notable for
having among the highest taxon richness and abundance val-
ues observed in the study.

The Epi_B group (Epi_Bla in turquoise and Epi_B1b in
grey blue) is largely confined to the English Channel. These
clusters show high taxon richness relative to others, with mod-
erate abundance, and are more broadly distributed than the
Epi_A group, though still regionally restricted.
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Big data approaches reveal large-scale spatial patterns in marine epifauna 9

Table 2. Cluster group characteristics including mean richness, mean abundance, phyletic composition (pie charts) and characterising taxa (family level or
above).

%
Cluster Area Richness (mean) Abundance (mean) Phyla Taxa

Pandalidae (Art), Polybiidae (Art), Asteriidae (Ech), Crangonidae (Art),
Paguridae (Art), Inachidae (Art), Solasteridae (Ech), Ophiuridae (Ech),
Cancridae (Art), Calyptraeidae (Mol), Sabellariidae (Ann), Callionymidae
(Cho), Gobiidae (Cho), Pleuronectidae (Cho), Flustridae (Bry),
Porcellanidae (Art), Agonidae (Cho), Liparidae (Cho), Sertulariidae (Cni),
Soleidae (Cho), Pholidae (Cho), Ascidiacea (Cho), Galatheidae (Art),
Ampeliscidae (Art), Pilumnidae (Art), Sepiolidae (Mol), Actiniaria (Cni),
Cottidae (Cho), Oregoniidae (Art), Calliostomatidae (Mol)

epi_ A1 RN 0 Jo 1621

Parechinidae (Ech), Pectinidae (Mol), Paguridae (Art), Inachidae (Art),
Ophiuridae (Ech), Asteriidae (Ech), Ophiotrichidae (Ech), Polybiid:
(Art), Ascidiidae (Cho), Galatheidae (Art), Anomiidae (Mol),
Hormathiidae (Cni), Porcellanidae (Art), Leucosiidae (Art), Gobiidae (Cho),
Pandalidae (Art), Crangonidae (Art), Oregoniidae (Art), Buccinidae (Mol),
Callionymidae (Cho), Sertulariidae (Cni), Styelidae (Cho), Serpulidae (Ann),
Alcyoniidae (Cni), Sagartiidae (Cni), Glycymerididae (Mol),

Calli idae (Mol), Calyptraeidae (Mol), Balanidae (Art),
Plumulariidae (Cni), Gobiesocidae (Cho), Molgulidae (Cho), Majidae (Art),
Pyuridae (Cho), Alcyonidiidae (Bry), Atelecyclidae (Art), Flustridae (Bry),
Trochidae (Mol), Soleidae (Cho)

Epi.Bla 05 | E | see

Pectinidae (Mol), Paguridae (Art), Parechinidae (Ech), Inachidae (Art),
dalidae (Art), Ophiotrichidae (Ech), Asteriidae (Ech), Buccinidae
(Mol), Polybiidae (Art), Galatheidae (Art), Gobiidae (Cho), Calyptraeidae

(Mol), Calliostomatidae (Mol), Serpulidae (Ann), Oregoniidae (Art),
Sertulariidae (Cni), Callionymidae (Cho), Ophiuridae (Ech), Crangonidae
(Art), Flustridae (Bry), Styelidae (Cho), Porcellanidae (Art), Pilumnidae
(Art), Ascidiidae (Cho), Leucosiidae (Art), Muricidae (Mol), Plumulariidae
(Cni), Pyuridae (Cho), Alcyoniidae (Cni)

Crangonidae (Art), Nuculidae (Mol), Pandalidae (Art), Nephropid.
(Art), Processidae (Art), Alpheidae (Art), Turritellidae (Mol), Polybiidae
(Art), Naticidae (Mol), Goneplacidae (Art), Paguridae (Art), Gobiidae
(Cho), Pleuronectidae (Cho), Munididae (Art), Astropectinidae (Ech),
Aphroditidae (Ann), Amphipoda (Art), Inachidae (Art), Amphiuridae (Ech),
Aporrhaidae (Mol), Sepiolidae (Mol), Pharidae (Mol), Cirolanidae (Art)

| 2 | 1219

Asteriidae (Ech), Soleidae (Cho), Astropectinidae (Ech), Polybiid:

(Art), Pleuronectidae (Cho), Bothidae (Cho), Paguridae (Art),
Callionymidae (Cho), Ophiuridae (Ech), Flustridae (Bry), Ammodytidae
(Cho), Inachidae (Art), Alcyonidiidae (Bry), Gobiidae (Cho), Trachinidae
(Cho), Sertulariidae (Cni), Corystidae (Art), Parechinidae (Ech), Alcyoniidae
(Cni), Crangonidae (Art)

[Tl so | £ 26

Ophiuridae (Ech), Asteriidae (Ech), Paguridae (Art), Astropectinidae
(Ech), Polybiidae (Art), Loveniidae (Ech), Aphroditidae (Ann), Philinidae
(Mol), Corystidae (Art), Soleidae (Cho), Crangonidae (Art), Inachidae (Art),
Bothidae (Cho), Hydractiniidae (Cni), Parechinidae (Ech)

Crangonidae (Art), Paguridae (Art), Polybiidae (Art), Asteriidae (Ech),
Ophiuridae (Ech), Pandalidae (Art), Gobiidae (Cho), Inachidae (Art),
Sertulariidae (Cni), Pleuronectidae (Cho), Soleidae (Cho), Flustridae (Bry),
Trachinidae (Cho)

Ophiuridae (Ech), C idae (Art), Gobiidae (Cho), Soleidae (Cho),
Polybiidae (Art), Trachinidae (Cho), Paguridae (Art), Pleuronectidae
(Cho), Asteriidae (Ech), Callionymidae (Cho), Bothidae (Cho),
Ammodytidae (Cho), Sepiolidae (Mol), Hydractiniidae (Cni), Agonidae
(Cho), Inachidae (Art), Loveniidae (Ech), Parechinidae (Ech), Mactridae
(Mol), Balanidae (Art)

g

Epi.D2c 14 W 20 I

Ophiuridae (Ech), Crangonidae (Art), Paguridae (Art), Asteriidae (Ech),
Polybiidae (Art), Parechinidae (Ech), Inachidae (Art), Gobiidae (Cho),
Pandalidae (Art), Mactridae (Mol), Soleidae (Cho), Sertulariidae (Cni),
Agonidae (Cho), Naticidae (Mol), Buccinidae (Mol), Trachinidae (Cho),
Sepiolidae (Mol), Callionymidae (Cho), Pleuronectidae (Cho)

Paguridae (Art), Crangonidae (Art), Ophiuridae (Ech), Inachidae (Art),
Polybiidae (Art), Gobiidae (Cho), Hor iidae (Cni), Onuphidae (Ann),
Callionymidae (Cho), Processidae (Art), Leucosiidae (Art),
Astropectinidae (Ech), Asteriidae (Ech), Turritellidae (Mol), Soleidae (Cho),
Pectinidae (Mol), Aporrhaidae (Mol), Veneridae (Mol), Caryophyllidae
(Cni), Galatheidae (Art), Luidiidae (Ech), Pandalidae (Art), Ophiotrichidae
(Ech), Parechinidae (Ech), Atelecyclidae (Art), Bothidae (Cho),
Scaphandridae (Mol), Mactridae (Mol)

134 |mm ]

guridae (Art), pectinidae (Ech), Asteriidae (Ech), Buccinidae
(Mol), Crangonidae (Art), Echinidae (Ech), Colidae (Mol), Pandalidae
(Art), Onuphidae (Ann), Oregoniidae (Art), Ophiuridae (Ech),
Hormathiidae (Cni), Sertulariidae (Cni), Thoridae (Art), Serpulidae (Ann),
Flustridae (Bry), Luidiidae (Ech), Polybiidae (Art), Suberitidae (Por),
Alcyonidiidae (Bry), Loveniidae (Ech), Hydractiniidae (Cni), Epizoanthidae
(Cni), Aphroditidae (Ann), Ascidiidae (Cho), Pectinidae (Mol), Alcyoniidae
(Cni), Celleporidae (Bry)

EpiElb 332 | » | 299

a
2
s

Pie Chart Legend: Il Arthropoda (Art), Bl Chordata (Cho), Bl Echinodermata (Ech), Bl Mollusca (Mol), B Cnidaria (Cni), Bl Bryozoa (8ry), Bl Annelida (Ann), Bl porifera (Por)

Note: Values for richness and abundance are group sample averages, where richness is reported as the mean number of family-level taxa per trawl sample and
abundance as the mean number of individuals per trawl sample. Listed taxa are those with the highest mean centroid values, where the centroid represents the
average abundance of each taxon within the cluster group in multivariate space. Highlighted taxa are those identified by a SIMPER analysis as contributing
to ~50% of the similarity between samples. Phyla codes are given in parenthesis (see legend at foot of table).
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Table 3. Mean and standard deviation of model validation statistics for in-
dividual cluster groups and overall based on 10 random split sample runs.

Balanced

Cluster n Sensitivity Specificity accuracy
Epi_Al 9 0.32 £ 0.15 0.99 £ 0.00 0.66 + 0.08
Epi_Bla 17 0.28 £ 0.06 0.98 &£ 0.01 0.63 £+ 0.03
Epi_B1b 32 0.5 £ 0.09 0.95 £ 0.01 0.73 + 0.04
Epi_C1 10 0.61 £ 0.14 0.99 £+ 0.01 0.8 + 0.07
Epi_D1 27 0.58 £ 0.09 0.98 +£ 0.01 0.78 + 0.04
Epi_D2a 27 0.63 £ 0.09 0.97 £ 0.01 0.8 + 0.04
Epi_D2b 86 0.5 £ 0.04 0.83 £0.01 0.66 + 0.02
Epi_D2c 25 0.71 £ 0.07 0.97 £ 0.01 0.84 + 0.04
Epi_D2d 32 0.46 £ 0.07 0.97 £ 0.01 0.71 £ 0.04
Epi_Ela 44 0.79 £ 0.07 0.94 &£ 0.01 0.86 + 0.03
Epi_El1b 36 0.92 £ 0.04 0.98 &£ 0.01 0.95 + 0.02
Overall 1055 0.6 £ 0.02 0.96 £ 0.00 0.78 £ 0.01

Epi_C1 (purple) is found mainly in offshore regions such as
the mid Irish Sea and Outer Celtic Sea. It is characterised by
moderate taxon richness but high mean abundance, indicating
that these offshore shelf environments support dense but less
diverse assemblages.

The Epi_D clusters (Epi_D1 in blood red, Epi_D2a in red,
Epi_D2b in orange, Epi_D2c in yellow, and Epi_D2d in khaki)
are the most spatially widespread overall, together covering
nearly half of the model domain. Among these,, Epi_D2b (or-
ange) is one of the most extensive clusters, spanning much of
the UK’s west coast as well as the eastern seaboard of main-
land Europe. Across the D clusters, taxon richness is generally
lower, with abundance varying from low to moderate.

The Epi_E group (Epi_Ela in dark green and Epi_E1Db in
light green) demonstrates a clear west—east contrast. Epi_E1b
is the single most extensive cluster overall, occupying large ar-
eas of the northern North Sea, while Epi_Ela dominates the
southwest approaches. Both E clusters show moderate rich-
ness, but typically lower abundance values in more northern
waters.

Overall, the modelled clusters highlight marked biogeo-
graphic structuring of epifaunal assemblages across northwest
European shelf seas, reflecting regional environmental gradi-
ents and oceanographic conditions (Fig. 5; Table 2).

Model performance and predictive confidence

The random forest spatial model used to predict seabed epi-
faunal assemblage distribution showed generally strong per-
formance, with an overall sensitivity of 0.60 (+ 0.02 SD),
specificity of 0.96 (£ 0.00 SD), and balanced accuracy of
0.78 (& 0.01 SD) (Table 3). These metrics indicate that the
model is generally effective in distinguishing between differ-
ent epifaunal assemblages. Assemblage-specific performance
varied, with clusters such as Epi_E1b achieving high sensi-
tivity (0.92 £ 0.04 SD) and balanced accuracy (0.95 £ 0.02
SD), indicating strong predictive capability. Conversely, clus-
ters such as Epi_A1 and Epi_Bla showed lower sensitivity
(0.32 £ 0.15 SD and 0.28 4 0.06 SD, respectively), suggest-
ing areas for improvement. The high specificity values across
all clusters (ranging from 0.83 to 0.99; Table 3) highlight the
model’s effectiveness in avoiding false positives. These results
suggest that while the model is generally effective in predict-
ing epifaunal assemblages, further refinement is needed to en-
hance its performance for certain clusters. Confidence in the

Cooper et al.

Table 4. Results of a “best"” analysis identifying the subset of environmen-
tal variables which are most correlated with the epifaunal abundance data.

Correlation

Size Variables (p)

1 Salinity mean 0.2255

2 Salinity mean, Bottom temp. 0.2378

3 Salinity mean, Bottom temp., Gravel 0.2575

4 Salinity mean, Bottom temp., Gravel, Rel. 0.2616
slope pos.

5 Salinity mean, Winter SPM, Gravel, Rel. slope 0.2641
pos., Mud

Note: “Size” refers to the number of environmental variables included in
each subset tested. The row for size 5 is shown in bold because this subset
achieved the highest correlation (i.e. represents the best model)

model varies spatially as shown in Fig. 5b, with notably higher
confidence in the northern North Sea.

Explaining Patterns

The best analysis identified five variables: salinity mean, win-
ter SPM, gravel, rel. slope pos. and mudas best explaining the
spatial variability in epifaunal assemblage structure (Table 4).
Correlation between the environmental and biological resem-
blance matrices was weak to moderate (p =0.264), and PER-
MANOVA (adonis) results indicated that these predictors col-
lectively explained only 7.1% of the total variation in assem-
blage composition. Individual contributions were as follows:
salinity mean = 2.2%, winter SPM = 2.1%, gravel = 1.8%,
rel. slope, pos. = 0.7% and mud = 0.3%. Despite the low
proportion of explained variance, all predictors were statisti-
cally significant (p < 0.001). Spatial patterns shown by these
predictors are shown in Supplementary Fig. S4.

The dbRDA ordination (Fig. 6) highlights environmental
gradients influencing epifaunal assemblage distribution across
the study area. Assemblages Epi_Bla and Epi_B1b are associ-
ated with sediments containing higher gravel content, whereas
C1 aligns with higher mud content. Assemblages Epi_D2a,
Epi_D2c, and Epi_D2d cluster toward the winter SPM vector,
indicating a shared association with areas experiencing ele-
vated suspended particulate matter during winter, with inter-
mediate sediment conditions likely characterised by high sand
content. In contrast, Epi_Ela and Epi_E1b occur toward the
Salinity vector, suggesting a preference for more saline envi-
ronments, typically away from areas of high winter SPM, and
in locations where sediments are likely to be finer. While most
remaining groups cluster closer to the centre of the ordination,
Epi_Ala (blue) shows a tendency toward elevated winter SPM
and gravel, indicating some affinity for coarser sediments un-
der higher particulate conditions. Epi_D1 (red) and Epi_D2b
(orange) remain near the centre, suggesting mixed environ-
mental influences without a strong association with any single
variable.

Discussion

By integrating disparate but comparable datasets, this study
demonstrates that a big data approach can produce large-
scale maps of epifaunal assemblage structure, which have the
potential to inform management decisions. Notable regions
of elevated epifaunal taxon richness (measured as number of
taxa per sample) were identified in the northern North Sea
and the English Channel, with significantly higher densities in
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Figure 6. Distance-based redundancy analysis (dbRDA) ordination of epifaunal assemblage samples (points) constrained by environmental variables.
Points are coloured by predicted assemblage type. Vectors indicate the direction and strength of environmental gradients (salinity mean, winter SPM,
gravel, rel. slope pos. and mud) associated with variation in assemblage structure. The axes (CAP1 and CAP2) represent the primary canonical axes
derived from principal coordinates analysis, showing the greatest proportion of variation in assemblage structure explained by the environmental
predictors. The plot shows separation among assemblage types along environmental gradients, with notable influences of sediment composition and

water column properties on assemblage differentiation.

the Irish Sea, southern North Sea, and along the Norwegian
coast. The study distinguished five broad assemblage types
(labelled A-E), each characteristic of distinct large areas of
the study region, with three of these groups (B, D, and E) ex-
hibiting more subtle internal variation that is further resolved
into a total of 11 assemblage clusters. Clear structural differ-
ences were evident among assemblages inhabiting the north-
ern North Sea, southern North Sea, Celtic Sea, eastern English
Channel, and western English Channel. These differences ap-
pear to be driven by a combination of bed sediment particle
size (e.g. estimated percentage contribution of gravel and mud
content) and water column characteristics (e.g. salinity mean
and winter SPM). Notably, the observed negative relation-
ship between wave velocity and taxon richness suggests that
higher wave energy may reduce habitat suitability or stabil-
ity for diverse epifaunal communities, likely due to increased
physical disturbance or sediment mobility in high-energy en-
vironments (Kaiser et al. 1999; Reiss et al. 2010). The gener-
ally positive relationship observed between current speed and
taxon richness is also noteworthy. While higher current speeds
might be expected to reduce local larval recruitment due to in-
creased dispersal, they may also enhance connectivity and the
influx of species from other areas. This increased exchange can

support higher local richness, as sites are more frequently re-
plenished by a wider pool of taxa, potentially increasing biodi-
versity at both local and regional scales. The resulting maps of-
fer valuable information on the presence and variation of epi-
faunal assemblages, supporting environmental management
and decision-making. This can help guide activities such as
offshore construction, sediment disposal, and marine aggre-
gate extraction to avoid areas of high biodiversity or partic-
ular assemblage types, thereby reducing the risk of adverse
impacts.

Over recent decades, there has been increasing recognition
of the value of reliable maps of habitats, species distribu-
tions, and community-structure metrics, both for understand-
ing the processes shaping marine spatial patterns and for man-
aging human activities and conservation (Davies and Guinotte
2011; Harris and Baker 2012; Lecours 2017; Fraschetti et
al. 2024). This expansion in mapping has been facilitated by
improved data acquisition capacity—both observational and
environmental predictors (Costa et al. 2009; Heyman and
Wright 2011)—greater computational power, and the grow-
ing body of evidence on cumulative anthropogenic impacts
(Halpern et al. 2008). In the marine environment, most map-
ping efforts have focused on habitats (areas defined by spe-
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cific physical, chemical, or biological characteristics) because
of their utility as management units (Lecours et al. 2015).
Maps of marine biological assemblage distributions have re-
ceived less attention, partly because they require large, stan-
dardised biological datasets collected across broad spatial ex-
tents. Cooper and Barry (2017) demonstrated that large-scale
maps of macroinfaunal taxonomic structure and univariate
community metrics could be produced by integrating multi-
ple datasets with careful harmonisation of metadata to ensure
comparability. This study extends that approach to the epifau-
nal component of benthic ecosystems, providing new insights
into the large-scale spatial patterns of epifaunal taxonomic
structure across the UK shelf and North Sea, and into the key
environmental drivers of those patterns.

Epifaunal taxon richness in the North Sea shows a clear
south-north gradient, with significantly higher values in the
north—a pattern consistent with previous studies (Jennings et
al. 1999; Neumann et al. 2008; Reiss et al. 2010). This gra-
dient, which is particularly marked near the 50 m depth con-
tour, is often attributed to differences in water temperature
and thermal stratification in deeper northern waters. However,
the broader UK-shelf coverage of this study demonstrates that
the northern North Sea is not the sole region of high epifau-
nal richness; comparably elevated richness also occurs in the
English Channel, where environmental conditions differ sub-
stantially. These two regions also support distinct assemblage
types (e.g. Epi_E1b in the northern North Sea and Epi_B1b in
the mid-English Channel).

Recognising structural variation in epifaunal assemblages
has important implications for managing human impacts. As-
semblages with high biodiversity or limited spatial extent rep-
resent areas of greater ecological risk from activities that dam-
age benthic invertebrates. Under current UK licensing frame-
works for offshore activities (e.g. renewables, aggregate ex-
traction, dredged material disposal), assessment of benthic
impacts is primarily, though not exclusively, based on infau-
nal assemblages sampled using grabs or corers. While appro-
priate, this approach does not necessarily consider the eco-
logical significance of the epifaunal component of sediment
habitats, creating the risk that activities may be permitted in
areas of high epifaunal ecological value (Chen et al. 2021).
This study identifies regions where epifaunal assemblages ex-
hibit relatively high taxon richness and densities, or where as-
semblage composition is limited to small, isolated areas. For
example, Epi_Al—the most abundant and among the most
taxon-rich assemblages in the study region—is predicted to
occur in only a small area off the inshore east coast of Eng-
land (0.1% of the study area). Similarly, Epi_B1la, occupying
0.5% of the area, is highly abundant and diverse but restricted
to parts of the mid-English Channel. Such assemblages merit
explicit consideration in environmental assessments to avoid
irreversible loss. Consistent with the biodiversity—ecosystem
function paradigm (Ali 2023), prioritising protection of bio-
diverse assemblages is also likely to safeguard those that are
functionally important.

It should be noted that the sediment environmental rasters
used in our modelling assume the presence of unconsolidated
sediments throughout the study area. As a result, model pre-
dictions may be less reliable in regions where rocky substrates
occur, since these assumptions do not hold. This represents a
limitation in the spatial applicability of our results and should
be considered when interpreting the model outputs. In addi-
tion to these data-related limitations, the modelling frame-

Cooper et al.

work itself warrants consideration. While this study focused
on random forest (RF) models, we acknowledge that other
approaches—such as GLMs, MaxEnt, INLA, joint species dis-
tribution models, and neural networks—are available. RF was
chosen for its flexibility, ability to model complex nonlin-
ear relationships, and strong performance with large, hetero-
geneous ecological datasets. Correlated predictors generally
do not reduce RF’s predictive accuracy, but can bias vari-
able importance metrics (Strobl et al. 2007), so we addressed
collinearity during variable selection.

Our predictions for richness, square-root abundance, and
assemblage clusters include spatial confidence maps. For rich-
ness and square-root abundance, CV values were gener-
ally low, indicating consistent predictions across model runs.
However, R? values were moderate for richness (0.37) and
lower for square-root abundance (0.13), highlighting limited
explanatory power, particularly for abundance. This demon-
strates that high model confidence (i.e. consistency) does
not necessarily equate to high predictive accuracy, and both
should be considered when interpreting results (McAlexander
& Mentch 2020). Additionally, while RF offers strong predic-
tive performance, it can be less interpretable than some para-
metric approaches. Although model comparison was not the
aim of this study, future work could explore alternative ap-
proaches and further evaluation of model uncertainty to im-
prove predictive performance and interpretability.

Future work should also address limitations in our ap-
proach to measuring taxon richness, which relied on simple
counts of taxa per sample without incorporating taxon abun-
dance information. This method does not adjust for varia-
tion in sampling effort, evenness, or spatial turnover. Apply-
ing statistical techniques such as rarefaction (which estimates
the expected number of taxa in a standardized subsample,
thereby accounting for differences in sampling effort; Gotelli
and Colwell 2001; Chao and Jost 2012), as well as diversity
metrics like Hill numbers (Hill 1973; Chao et al. 2014), and
the Whittaker framework for partitioning diversity into al-
pha, beta, and gamma components (Whittaker 1960), would
improve comparability and robustness of biodiversity assess-
ments across space (see Cooper et al., in press).

To better support management of pressures and enable
informed decisions about the ecological acceptability of ac-
tivities affecting epifaunal assemblages, there is an urgent
need to understand how assemblages differ in their sensitiv-
ity and response to anthropogenic pressures. Future research
should focus on quantifying sensitivity using biological “re-
sponse” traits and describing functional potential using “ef-
fect” traits. Trait-based approaches have been developed for
infaunal benthic communities to assess sensitivity to activities
such as trawling and dredged material disposal (Bolam et al.
2014, 2016, 2021); applying similar frameworks to epifauna
would facilitate more effective protection of these communi-
ties (Lambert et al. 2014; Hewitt et al. 2018).

Finally, a more holistic understanding of the spatial vari-
ability in marine invertebrate assemblages will require inte-
gration of both infaunal and epifaunal components. The maps
presented here can be used alongside existing maps for in-
fauna (Cooper and Barry 2017; Cooper et al. 2019; Bolam
et al. 2023, Cooper et al., in press; Bolam et al., in press)
to identify regions of elevated ecological risk from human
activities, reveal unique spatial patterns, and explore poten-
tial ecological interactions between infaunal and epifaunal
communities.
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