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Executive Summary 

Collision risk models form a key part of the environmental impact assessments for offshore 

wind farms. These models require inputs on species behaviour including flight speed, flight 

heights and nocturnal activity rates. At present, these are largely based on generic estimates 

from the literature, some of which are largely qualitative rather than quantitative. However, 

the rapid expansion of GPS tracking offers a valuable source of data for information on 

these parameters.  

We collated GPS data from gannet, kittiwake and lesser black-backed gull, three species of 

key concern in relation to collision risk, from across multiple colonies. As a first step, we use 

Expectation-Maximisation Binary Clustering (EMbC) to classify GPS tracks as relating to 

foraging or commuting behaviour. These data were used to estimate the proportion of time 

birds were active during the night (e.g., classified as foraging or commuting) relative to the 

proportion of time birds were active during the day in order to quantify nocturnal activity 

rates. This parameter is difficult to estimate using other methods for collecting collision risk 

model parameter information, e.g. visual records. For all three species, nocturnal activity 

levels (e.g., the proportion of time birds were active at night, relative to the proportion of 

time birds were active during the day) varied between sites and years. However, the 

proportion of time birds were active during the night remained relatively constant, 

suggesting that this variation was driven by activity levels during the day.  

Flight speeds were estimated separately for foraging and commuting flight. We used two 

different approaches to estimate flight speed – instantaneous speeds measured directly by 

the GPS tags using the Doppler effect, and trajectory speeds based on the distance travelled 

between fixes. In both cases, data were highly autocorrelated and had to be sub-sampled to 

one point every hour. Trajectory and instantaneous speeds were highly correlated with one 

another; however, the trajectory speeds were consistently an underestimate, compared 

with instantaneous speeds, an effect which became more pronounced as the sampling 

interval of the tags increased. Regardless of the approach used, foraging flight speeds were 

consistently lower than commuting flight speeds, and all speeds were lower than the 

current generic estimates of flight speeds recommended for use in the Band Collision Risk 

Model.    

Flight heights were also estimated separately for foraging and commuting flight. Of the 

species considered, lesser black-backed gulls typically flew higher, and spent a greater 

proportion of time at collision risk height, than was the case for either gannets or kittiwakes. 

Commuting flights typically took place at greater heights than foraging flights. For lesser 

black-backed gulls, whilst there was consistency in foraging flight heights, there was 

evidence of differences in commuting flight heights among colonies.  

GPS tracking provides a valuable source of data for parameterising collision risk models. 

However, there are clear differences in flight heights and speeds between areas used for 

foraging and commuting behaviour, which are likely to have implications for collision risk. 

The greater heights and faster speeds of commuting birds are likely to lead to greater 

estimates of collision risk than is the case for foraging birds. Furthermore, colony-specific 



 
 

differences in both nocturnal activity rates and flight heights suggest that some degree of 

site-specific data may be required for reliable parameterisation of collision risk models in 

ornithological impact assessments.   
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1. Introduction

Offshore wind farm developments play a key role in strategies to reduce our reliance on 
energy generated using fossil fuels (Toke 2011). However, there are also concerns about the 
potential for offshore wind farms to negatively impact the environment, with the risk to 
seabirds receiving particular attention (Furness et al. 2013). Consequently, Environmental 
Impact Assessments (EIAs) must be carried out as part of the consenting process for 
proposed offshore wind farms. In relation to seabird populations, the key potential effects 
are perceived to be collisions with turbines, the loss of habitat as a result of displacement 
and barrier effects resulting in elevated energy expenditure costs. 

Collision risk is assessed as part of the EIA process using a Collision Risk Model (CRM) such 
as the Band model ( Band et al., 2007). The Band (2007) model was originally developed for 
use onshore, but refined in order to better reflect data collection methodologies in the 
offshore environment ( Band, 2012). In common with most CRMs, the Band (2012) model 
requires reliable estimates of behavioural parameters, including estimates of species-
specific flight heights, flight speeds and levels of nocturnal activity (Masden & Cook, 2016). 
However, these parameters are subject to significant uncertainty and variability, and how 
this is accounted for within the Band (2012) model has not always been clear. Consequently, 
Masden (2015) updated the Band (2012) model to incorporate stochasticity by enabling 
users to input parameters as distributions rather than point estimates. This was 
subsequently updated and made available as a more user-friendly web application 
(McGregor et al., 2018).  

At present, estimates of species flight heights have typically been based on boat or digital 
aerial survey data (Johnston & Cook, 2016; Johnston et al. 2014). Similarly, estimates of 
other key parameters such as flight speed and levels of nocturnal activity have been drawn 
from studies with limited sample sizes or have been based on reviews inferred from our 
understanding of the ecology of the species concerned (Alerstam et al. 2007; Garthe & 
Huppop, 2004). However, ongoing analyses have highlighted how using data in this way may 
give a mis-leading impression of collision risk (Masden et al., 2021). Analysis of Lesser Black-
backed Gull flight heights has shown that they differ between day and night (Ross-Smith et 
al., 2016). Other recent analysis of bird flight speeds and nocturnal activity also reveal 
disparities with the generic values incorporated in collision risk models (Fijn & Gyimesi, 
2018; Furness et al., 2018). These parameters may also be influenced by other factors 
including wind speed and direction, time of day and distance from the breeding colony 
(Thaxter et al., 2019). Given the sensitivity of collision risk models to these parameters 
(Masden, 2015), getting better estimates for these parameters and an improved 
understanding of factors influencing their spatial and temporal variation will be a key step 
for reducing the uncertainty associated with assessments of collision risk.  

We collate GPS tracking data collected from lesser black-backed gull Larus fuscus, kittiwake 

Rissa tridactyla and gannet Morus bassanus and analyse these to generate estimates of 

flight height, flight speed and nocturnal activity for these species. Drawing on previous 

analyses (Thaxter et al., 2019), we investigate how flight height and speed vary between 

foraging and commuting behaviours. For lesser black-backed gull we also consider how 
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levels of nocturnal activity vary over the course of the breeding season. Finally, we consider 

the implications of our results for the assessment of collision risk.  

2. Methods 

2.1. Data sets 

Building on the analyses carried out in Thaxter et al. (2019), we estimate nocturnal activity, 

defined as the period from sunrise to sunset as per Band (2000) and Forsythe et al. (1995), 

from GPS tagging data, and estimate behaviour-specific flight heights and flight speeds.  In 

addition to the data considered in Thaxter et al. (2019), data were also available for 36 

kittiwakes and 10 gannets fitted with University of Amsterdam (UvA) GPS tags by RSPB 

within the Flamborough Head and Bempton Cliffs SPA. Analysis of nocturnal activity levels 

considered data collected using both IGotU GT-120 (Mobile Action Technology, Taipei, 

Taiwan) and UvA GPS tags (Table 1).  

Given the data recording capabilities of the different tags, analyses of flight height and flight 

speed were restricted to the UvA tags (Table 1). For lesser black-backed gulls, analyses of 

flight heights were based on GPS estimates, for gannets and kittiwakes flight height 

estimates were based on altimeter data analysed by RSPB as part of ongoing work (Babcock 

et al., 2018). A summary of the data sets and analyses considered in this report is presented 

in Table 1.  

Table 1 Species and colonies for which data relating to nocturnal activity, flight speed and 

flight height were analysed as part of this project. 

Species Colony Tag Sample 
Size 

Nocturnal 
Activity 

Flight 
Speed 

Flight 
Height 

Kittiwake Isle of May IGotU 50 ✓   

Orkney IGotU 86 ✓   

Colonsay IGotU 84 ✓   

Bempton 
Cliffs 

IGotU 104 ✓   

Bempton 
Cliffs 

UvA 16 ✓ ✓* ✓** 

Lesser 
Black-
backed 
Gull 

Walney UvA 37 ✓ ✓ ✓ 

Orfordness UvA 24 ✓ ✓ ✓ 

Skokholm UvA 24 ✓ ✓ ✓ 

Gannet Bass Rock IGotU 133 ✓   

Alderney IGotU 61 ✓   

Bempton 
Cliffs 

UvA 10 ✓ ✓* ✓** 

*Analyses undertaken by RSPB as part of ongoing work prior to award of contract; 

**Analysis of altimeter data undertaken by RSPB as part of ongoing work.  

Initially, we hoped to carry out similar analyses for herring gulls. However, examination of 

available GPS tracking data for this species suggested that, due to movements largely being 
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restricted to onshore areas, there were insufficient data for analysis of offshore behaviour 

(e.g., Figure 1). 

 

Figure 1 Example of area use by Herring Gulls from Walney with 95% (blue), 75% (yellow) 

and 50% (red) usage kernels indicated.  

2.2. Behavioural classification 

Previous analyses were based on Hidden Markov Models (HMMs) (Thaxter et al., 2019). A 

Hidden Markov Model (HMM) is a state-space continuous time movement approach that 

includes a ‘hidden’ component modelled as a Markov process, that allows states to be 

estimated informed by the relationships to an ‘observed component’ of the model (in this 

case, based on the step length between GPS fixes and turning angle). As a pre-requisite, this 

analysis required that time steps between consecutive GPS fixes were at a constant 

‘regularised’ sampling rate, such that time steps were precisely the same for all points. Data 

were regularised to a constant spatial and temporal spacing using R packages 

‘crawl’ (Johnson et al., 2008) and ‘momentuHMM’ (McClintock & Michelot, 2018). The 

‘crawl’ model was used to fit a correlated random walk-through locations (Johnson et al., 

2008), and further allowed interpolative prediction of points at five-minute intervals. Initial 

analyses suggested that this approach posed particular problems for the analysis of 

nocturnal activity.  

The HMM analyses (Thaxter et al., 2019) classified points as floating, foraging or commuting 

behaviour, with an additional perching classification for lesser black-backed gull. In assessing 
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activity levels, it is necessary to consider the proportion of time spent foraging and 

commuting in relation to the proportion of time spent perching or floating. However, these 

classifications are based on data collected away from the breeding colonies. Consequently, 

it is necessary to account for time spent at the colony in addition to time spent in perching 

or floating behaviour when classifying birds as not active. However, for a number of 

reasons, there may be biases associated with GPS points recorded when birds are at their 

colony. These include the use of GPS fences to preserve battery life by recording data at a 

lower temporal resolution when birds are at their breeding colonies, and the potential for 

the surrounding habitat (e.g., cliffs) to impair the ability of GPS tags to communicate with 

satellites and/or, in the case of the UvA tags, for solar panels to receive sufficient light to 

recharge tag batteries. Regardless of the cause, if birds spend more time at the colonies at 

night than during the day, as seems likely, these biases are likely to produce an over-

estimate of nocturnal activity levels. The need for regularised time steps in HMMs means 

that adding time spent at colonies back into the data, in order to overcome these biases, is 

not straightforward. 

A second approach was also used to identify the same four-level behavioural states described 
above for the HMM. Expectation-Maximisation Binary Clustering (EMbC) is a further state-
space approach that uses a Gaussian mixture model (see Garriga et al., 2016 for more details). 
Unlike the HMM, the EMbC approach does not strictly need a regularised interpolated 
dataset, as it is based on GPS speed and turning angle, rather than distance within a constant 
time period. The EMbC model by default allows classification of four states grouped by: low 
speed, low turn (‘LL’, = floating); low speed, high turn (‘LH’ = stopped); high speed, low turn 
(‘HL’ = commuting); and high speed, high turn (‘HH’ = potential foraging/searching) (Figure 2). 
Whilst the definitions of most of these categories are fairly clear, the LH category is less 
obvious.  The low speed indicates that birds are not altering their locations, while the high 
turning angle indicates birds are altering their orientation regularly, implying that they are 
active. This category is likely to reflect a combination of maintenance behaviour and foraging 
from the sea surface. For simplicity, in this report the behaviour is referred to as “stopped” 
however, it is important to acknowledge that it may also include aspects of foraging 
behaviour.  
 
By using the expectation maximisation algorithm, the EMbC approach seeks the most 
optimised split in the data but does not require prior information for perceived delineations 
for each category as with HMMs above. The EMbC approach can handle temporal data "gaps" 
in the dataset. However, it is generally best applied on a reasonably regular dataset, i.e., 
without excessively variable sampling resolutions, and so the data were filtered to a rate of 
five minutes, for a comparable assessment to the HMMs above. The resulting classifications 
of foraging and commuting behaviour were broadly consistent with those obtained from 
HMM.  
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Figure 2 EMbC classification of behavioural states for Gannets from Alderney, states indicate 

high speed, high turning angle (HH), high speed, low turning angle (HL), low speed, high 

turning angle (LH) and low speed, low turning angle (LL).  
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2.3. Nocturnal activity 

 

We follow the approach of (Furness et al., 2018) in assigning the timing of GPS points to 

dawn, daylight, dusk and night using the ‘sunriset’ and ‘crepuscule’ functions in the R 

package “maptools” (Bivand & Lewin-Koh, 2021). We then analyse activity levels using a 

Generalized Linear Mixed Model (GLMM) with a binomial error distribution and a logit-link. 

Using this approach, we analyse the proportion of time active (behavioural states HL and 

HH) in relation to the light level classifications above. For each species and colony 

combination, we fitted a model for each year in which data were collected. For our models, 

we include light levels (dawn, day, dusk, night) as a categorical fixed effect and, bird 

identification as a random effect. The model was parameterised as follows: 

 Activity ~ light level + (1|TagID) [1] 

The outputs from these models are used to quantify the proportion of time birds are active 

in relation to each light level. For the purposes of collision risk modelling, nocturnal activity 

levels are the proportion of time birds are active at night relative to their activity during the 

day. Consequently, to estimate nocturnal activity levels for use in collision risk models, we 

divided the proportion of time active at night by the proportion of time active during the 

day. We then compared nocturnal activity levels between species, sites, and colonies.  
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2.4. Flight speed 

 

2.4.1. Instantaneous speed estimates for foraging and commuting flight 

 

In Thaxter et al. (2019), estimates of flight speed were obtained for foraging and commuting 

flight based on the straight line distance travelled between sampling intervals. However, 

concern was raised that the temporal resolution of the fixes meant that estimates based on 

this approach may under-estimate true speed if birds were not travelling in a straight line at 

the time. However, UvA tags also collect vector-based instantaneous speed measures, taken 

over a short period for each GPS fix, resulting in x, y, and z speeds in m/s. These can be 

combined into a “3D” vector-based instantaneous speed for each GPS fix (i) through the 

following equation: 

 

speed_3di = sqrt (x_speedi^2 + y_speedi^2 + z_speedi^2) [2] 

 

Using the EMbC classifications of behaviour, these speeds were then summarised for points 

classified as foraging and commuting flight for lesser black-backed gull, gannet and 

kittiwake. 

 

2.4.2. Comparison of instantaneous and trajectory speed 

 

The EMbC model was assessed for each species at a 300 s rate (t), reflecting the overall 

“base” rate of GPS sampling protocols for each project (Table 1). A trajectory speed was also 

estimated, based on the distance travelled (d) between sampling intervals, measured as: 

 

traj_speedi = di→i+1 / ti→i+1 [3] 

 

For the lesser black-backed gull data from Walney, Skokholm and Orfordness, instantaneous 

and trajectory speeds were considered in more detail. The subsampling regime removed 

often faster rates (up to 5s) that had been collected for finer-scale investigations into 

movements within wind farms. Thus, although trajectory speeds were sometimes available 

for these “bursts” of activity, the ones used for comparison to instantaneous speeds were 

the sub-sampled re-calculated ones at the base rates described above, enabling a fairer 

comparison across the rest of the dataset. 

 

Point estimates of bird flight speeds are likely to be correlated with the immediately 

preceding estimates. These correlations can introduce bias into any subsequent analysis 

that influence the resulting parameter estimates. To avoid unduly biasing parameter 

estimates, an initial investigation was made into the autocorrelation within the data for 

both instantaneous and trajectory speed parameters. These assessments were carried out 

at the individual bird level through Auto-Correlation Function (ACF) plots, examining the ACF 

for the five-minute rate used in the EMbC, and subsequent data degradation to coarser 

rates of 600s, 900s, 1200s, 1800s and 3600s, with the ACF re-examined for each sub-

sampling rate level, and examined for each bird in each breeding season year.  
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We then used both simple linear regression to compare the pairwise point-level data for 

each speed type, and further fitted a Generalized Linear Mixed Effects Model to compare 

differences in the relationships between speed types over behavioural states; a model was 

therefore specified as: 

 

speed ~ speed_type*state*offshore + (1 | year | TagID) + ɛ [4] 

 

Given the focus of the work, a further model investigating just offshore was therefore 

considered further for behavioural states, simplifying the above model to remove the 

offshore three-way interaction, for which results are presented: 

 

speed offshore ~ speed_type*state + (1 | year | TagID) + ɛ [5] 

 

where speed_type is a factor of instantaneous or trajectory, offshore a factor of onshore or 

offshore, and random effects if TagID nested within year were specified and the error 

distribution (ɛ) being a log-transformed gaussian distribution (which gave superior residuals 

and quickest model run time). This model was specified using R package glmmTMB (Brooks 

et al., 2017) and further tests of autocorrelation were carried out with R package 

DHARMa(Hartig, 2022). The slope and significance of the relationship was then examined 

for each interaction for all factor levels of state. Estimates from the above model were 

examined using estimated marginal means (R package emmeans, Lenth, 2022).  

 

For each EMbC state (1-4), we further visualised the two types of speed measures. The 

approach for comparison was one of a distribution comparison and summary of basic 

statistics of error around the measures, being histograms, and non-parametric boxplot 

statistics. 
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2.5. Flight Heights 

 

2.5.1. Bias in GPS altitudes 

 

For lesser black-backed gull at Orfordness (but not Skokholm or Walney), and gannet and 

kittiwake at Flamborough Head and Bempton Cliffs, the bulk of the distribution of raw GPS 

altitudes was negative (Fig. 3). This suggests that the GPS altitude measurements are 

negatively biased in the southern North Sea. An ecological cause for this bias was explored: 

that birds are preferentially going out at low tide. If this was a cause of the altitude bias, it 

was not the sole cause: lesser black-backed gull altitude while stopped on land was also 

biased below the Digital Elevation Model (DEM) for birds tagged at Orfordness (not shown), 

and the bulk of GPS altitudes from a test tag left at the shoreline at Orfordness in 2011 were 

negative (Fig. 3f). 

 

It could instead be that there was error in the calculation of altitude over mean sea level 

from altitude over the ellipsoid: perhaps due to spatially variable error in the geoid. There 

was some evidence that the altitude bias varied smoothly across the study areas, suggesting 

there are issues with the model of mean sea level used. Furthermore, a recent test tag at 

Havergate (near Orfordness) had no altitude bias. However, the error in the height of true 

mean sea level relative to the geoid is almost entirely less than 1m, considerably less than 

the average bias in our dataset. Whilst the bulk of the GPS altitude distribution is below 

zero, the modal GPS altitude for kittiwake and gannet is zero. Consequently, the cause of 

the altitude bias is unclear.  

 

We applied a correction to account for this based on the median altitude estimate of birds 

classified as floating on the sea surface. Assuming that instances of floating behaviour are 

distributed evenly across the tidal cycle, the median estimated flight height should reflect 

sea-level, and this value can be subtracted from GPS estimated flight heights to correct for 

biases in these estimates. This will only be an informal solution to the problem, for two 

reasons. Firstly, the altitude bias varied smoothly within the study areas: so, the median 

altitude of birds floating on water is only a useful estimate of altitude bias on average at a 

colony, and any uncertainty in the average bias is not propagated into the remainder of the 

analysis. Secondly, although the bulk of the GPS altitudes for kittiwake, gannet and 

Orfordness lesser black-backed gulls are below zero, an unknown process in the data-

generating process results in the modal GPS altitude for kittiwake and gannet being zero; 

after adjustment this is above zero. If the zero-metre mode of the GPS altitudes has an 

ecological cause (rather than being caused by observation processes), then this aspect of 

the distribution is distorted by our adjustment. 

 

Where a high proportion of GPS altitudes are negatively biased, this may influence flight 

height distributions because the lognormal distribution used to model imperfectly observed 

true flight heights only has support over the set of positive numbers. Any negative flight 

height observations will be classified as measurement errors by the model and may lead to 

estimates of very small positive true altitudes (highly negative values on the log scale). Even 
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after corrections based on measurements of birds classified as floating on the sea surface, a 

high proportion of altitude measurements for kittiwake and gannet remained below zero. 

Consequently, GPS measurements of flight heights from gannet and kittiwake were not 

considered as part of further analyses.  
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 3 Raw GPS altitudes (only shown between -50m and 50m) for: lesser black-backed 

gulls at a) Orfordness, b) Skokholm, and c) Walney; d) gannets at Bempton; e) kittiwakes at 

Bempton; f) test tag at Orfordness. Red dashed line shows zero. Blue dashed line (a-e only) 

shows median GPS altitude of birds classified as floating on the sea surface by the 

behavioural model. 
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2.5.2. Lesser black-backed gull 

 

GPS altitude measurements are subject to error arising from various processes (Péron et al. 

2020). The hierarchical model framework, separating observation error from process error, 

is ideal for properly accounting for GPS error when estimating species’ flight height 

distributions. Here we adapt a hierarchical model developed by Ross-Smith et al. (2016) to 

estimate the flight height distributions of lesser black-backed gulls. 

 

Analyses were restricted to GPS points classified by EMbC as commuting or foraging. Points 

with uncertain classification (probability < 0.9) were excluded from analysis. To account for 

autocorrelation, and following Ross-Smith et al. (2016), data were sub-sampled to one point 

every 60 minutes. To focus solely on flight height over sea, onshore fixes were removed. 

After cleaning this left a dataset of 10,461 altitude measurements for lesser black-backed 

gulls.  

 

The model structure we use for our two research questions is simpler than that of Ross-

Smith et al. (2016), in that we do not discretize flight height by ‘location’ 

(terrestrial/coastal/marine) or by light-level. For the first research question, we discretize 

flight height by behaviour; for the second we discretize flight height by behaviour and 

colony. To help separate observation error from process error, we used the number of 

satellites associated with each flight height measurement (specifically, the number of 

satellites used for a given fix subtracted from 14, the maximum number of satellites used for 

any fix) as a covariate of observation error.  

 

We assume that the observed altitude data obs are drawn from a normal distribution with 

mean alt and variance γ2. alt represents the true unobserved altitude, and γ is the sum of an 

intercept δ and a linear effect (slope θ) of the number of satellites nsat (see above). For 

observation i, 

 

𝑜𝑏𝑠𝑖 ~ 𝑁(𝑎𝑙𝑡𝑖, 𝛾𝑖
2) [6]  

 

𝛾𝑖 =  𝛿 +  𝜃 ∙ 𝑛𝑠𝑎𝑡𝑖  [7]   

 

On the log scale, we assume that the logarithm of the latent true altitude alt is drawn from a 

normal distribution with mean μ and variance σ2. μ is the sum of an intercept α and an 

individual random effect β. In the first models α and σ are estimated separately for each 

behavioural state. In the second model α and σ are estimated separately for each 

behavioural state and by colony. For observation i and individual j (structure of first model 

only), 

 

log(𝑎𝑙𝑡𝑖,𝑗) ~ 𝑁(𝜇𝑖,𝑗 , 𝜎𝑠𝑡𝑎𝑡𝑒𝑖,𝑗

2 )  [8] 

 

𝜇𝑖,𝑗  ~ 𝛼𝑠𝑡𝑎𝑡𝑒𝑖,𝑗
+ 𝛽𝑗     [9] 
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Model parameters were estimated in a Bayesian framework using Markov Chain Monte 

Carlo (MCMC) sampling for inference and with vague priors. Parameter estimation was 

implemented in “Just Another Gibbs Sampler” (JAGS) (Plummer 2003), accessed using the 

runjags package (Denwood 2016) in R (R Core Team 2020). To minimize autocorrelation in 

the chains only one in every 10 iterations was retained. The first 30,000 iterations were 

discarded as burn-in, and the following 200,000 iterations were used for estimating the 

posterior probability distributions of the parameters.  

 

Model convergence was assessed by visual inspection of MCMC trace plots and the Gelman-

Rubin statistic R-hat. Models were considered to have converged on the posterior 

probability distribution if the MCMC chain plots were well-mixed and if R-hat was less than 

1.1, for all parameters. Correlation between the MCMC traces was also examined to give 

indications of interdependencies among parameters. 

 

2.5.3. Kittiwake and Gannet 

As the GPS estimates of flight height for kittiwake and gannet were not considered reliable 

for the purposes of these analyses, we considered estimates that were collected using 

altimeters deployed concurrently with the GPS tags. These data were collected and analysed 

by RSPB as part of ongoing work (Wischnewski, McCluskie, et al., in prep.; Wischnewski, 

Sansom, et al., in prep.).   

Atmospheric pressure declines with altitude and, consequently, the pressure measurements 

recorded using altimeters can be used as a proxy for the flight altitude of birds. This requires 

a baseline estimate of local atmospheric pressure at a known altitude. This can be compared 

to the pressure recorded by the altimeter which is then converted into an estimate of flight 

altitude using established relationships between air pressure and altitude. For the purposes 

of this study, estimates of air pressure were obtained from a local weather station in 

Bridlington, close to the study site.  

The data considered in these analyses were collected from 10 gannets and 16 kittiwakes. As 

above, GPS data collected alongside the altimeter data were used to partition points into 

resting, stopped, foraging, and commuting behaviour using EMbC with sampling intervals of 

5 minutes. The altimeter estimates of flight altitude for foraging and commuting birds were 

then compared. In contrast to the flight heights estimated using GPS, the observation error 

process for altimeter flight height estimates has not been modelled as this is part of ongoing 

work. Consequently, a small proportion of flight height estimates for both species are below 

sea level.  
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3. Results 

3.1. Nocturnal activity 

3.1.1. Lesser Black-backed Gull 

 

Nocturnal activity levels in lesser black-backed gulls were assessed using data from UvA GPS 

tags deployed across the breeding season as a whole at Walney, Skokholm and Orfordness 

(Figure 4). There was substantial variation in activity levels both between years and 

between colonies. Nocturnal activity levels were greatest at Walney, where they ranged 

from 28 – 40% of daytime activity, and lowest at Skokholm, where they ranged from 5 – 

17% of daytime activity (Tables 2-4). This in part reflects differences in daytime activity 

levels between colonies, potentially as a result of differences in foraging behaviour between 

colonies. Whilst birds were active for less than 5% of the time at night, birds were active for 

6-19% of the time during the day (Figure 5).   

In contrast to gannets and kittiwakes, the attachment methodology used for lesser black-

backed gulls meant data were collected across the breeding season as a whole. However, 

there were no clear trends in nocturnal activity over the course of the breeding season.  

 

Figure 4 Estimated nocturnal activity levels in lesser black-backed gulls at Walney, Skokholm 

and Orfordness 
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Figure 5 Day and night activity levels, as a proportion of time available, for Lesser Black-

backed Gulls at Walney, Skokholm and Orfordness 

Table 2 Activity levels at dawn, during daylight (sunrise – sunset), dusk and at night (sunset-

sunrise) in lesser black-backed gulls at Walney between 2014 & 2019 recorded using 

University of Amsterdam tags. Nocturnal activity is defined as activity at night as a 

proportion of activity during daylight (i.e., Night/Day, note calculations may not match due 

to rounding).  

Year Month Dawn Day Dusk  Night Nocturnal 
activity 

2014 

All 0.19 (0.17 
- 0.21) 

0.13 (0.12 
- 0.14) 

0.11 (0.10 
- 0.118) 

0.05 (0.05 
- 0.056) 

0.41 (0.40 
- 0.41) 

5 0.07 (0.06 
- 0.09) 

0.05 (0.04 
- 0.06) 

0.04 (0.03 
- 0.05) 

0.03 (0.02 
- 0.03) 

0.48 (0.47 
- 0.49) 

6 0.21 (0.18 
- 0.23) 

0.15 (0.14 
- 0.16) 

0.10 (0.09 
- 0.12) 

0.04 (0.04 
- 0.05) 

0.28 (0.27 
- 0.29) 

7 0.22 (0.2-0 
- 0.25) 

0.14 (0.12 
- 0.14) 

0.16 (0.14 
- 0.18) 

0.08 (0.07 
- 0.09) 

0.57 (0.56 
- 0.58) 

8 0.22 (0.16 
- 0.30) 

0.10 (0.07 
- 0.13) 

0.11 (0.07 
- 0.16) 

0.05 (0.04 
- 0.07) 

0.52 (0.50 
- 0.54) 

2015 

All 0.236 
(0.216 - 
0.258) 

0.12 (0.11 
- 0.13) 

0.09 (0.08 
- 0.11) 

0.05 (0.04 
- 0.05) 

0.40 (0.39 
- 0.40) 

3 0.043 
(0.02 - 
0.10) 

0.03(0.01 - 
0.07) 

0.01 (0.00- 
0.03) 

0.02 (0.01 
- 0.05) 

0.61 (0.60 
- 0.62) 

4 0.08 (0.06 
- 0.11) 

0.05 (0.04 
- 0.07) 

0.02 (0.02 
- 0.03) 

0.03 (0.03 
- 0.04) 

0.63 (0.62 
- 0.64) 
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Year Month Dawn Day Dusk  Night Nocturnal 
activity 

5 0.16 (0.14 
- 0.19) 

0.09 (0.08 
- 0.10) 

0.06 (0.05 
- 0.07) 

0.01 (0.01 
- 0.01) 

0.13 (0.12 
- 0.13) 

6 0.28 (0.25 
- 0.31) 

0.14 (0.13 
- 0.16) 

0.11 (0.10 
- 0.131) 

0.04 (0.04 
- 0.05) 

0.28 (0.27 
- 0.29) 

7 0.36 (0.32 
- 0.39) 

0.14 (0.13 
- 0.16) 

0.18 (0.16 
- 0.21) 

0.11 (0.10 
- 0.12) 

0.78 (0.77 
- 0.79) 

2016 

All 0.12 (0.10 
- 0.14) 

0.07 (0.06 
- 0.08) 

0.05 (0.04 
- 0.06) 

0.02 (0.02 
- 0.03) 

0.34 (0.34 
- 0.34) 

5 0.13 (0.10 
- 0.16) 

0.07 (0.06 
- 0.09) 

0.05 (0.04 
- 0.07) 

0.02 (0.02 
- 0.03) 

0.28 (0.28 
- 0.29) 

6 0.12 (0.10 
- 0.15) 

0.07 (0.06 
- 0.09) 

0.06 (0.05 
- 0.08) 

0.03 (0.02 
- 0.03) 

0.38 (0.37 
- 0.38) 

7 0.03 (0.02 
- 0.04) 

0.01(0.01 - 
0.02) 

0.01 (0.00 
- 0.01) 

0.01 (0.00 
- 0.01) 

0.42 (0.41 
- 0.42) 

2017 

All 0.16 (0.14 
- 0.19) 

0.09 (0.08 
- 0.11) 

0.08 (0.07 
- 0.09) 

0.03 (0.03 
- 0.04) 

0.34 (0.34 
- 0.35) 

4 0.08 (0.05 
- 0.12) 

0.05 (0.03 
- 0.08) 

0.04 (0.02 
- 0.06) 

0.01 (0.01 
- 0.02) 

0.25 (0.25 
- 0.26) 

5 0.14 (0.12 
- 0.16) 

0.08 (0.07 
- 0.093) 

0.05 (0.04 
- 0.07) 

0.02 (0.02 
- 0.03) 

0.29 (0.28 
- 0.29) 

6 0.22 (0.19 
- 0.26) 

0.11 (0.10 
- 0.13) 

0.13 (0.11 
- 0.16) 

0.06 (0.05 
- 0.07) 

0.50 (0.48 
- 0.51) 

8 0.14 (0.12 
- 0.19) 

0.09 (0.07 
- 0.12) 

0.07 (0.05 
- 0.10) 

0.03 (0.02 
- 0.04) 

0.28 (0.27 
- 0.30) 

2018 

All 0.19 (0.16 
- 0.22) 

0.12 (0.10 
- 0.14) 

0.09 (0.07 
- 0.11) 

0.03 (0.03 
- 0.04) 

0.29 (0.28 
- 0.29) 

5 0.14 (0.10 
- 0.19) 

0.09 (0.07 
- 0.12) 

0.07 (0.05 
- 0.10) 

0.03 (0.02 
- 0.04) 

0.28 (0.27 
- 0.30) 

6 0.25 (0.21 
- 0.30) 

0.17(0.14 - 
0.20) 

0.12 (0.09 
- 0.15) 

0.05 (0.04 
- 0.07) 

0.31 (0.29 
- 0.32) 

7 0.50 (0.43 
- 0.57) 

0.33 (0.31 
- 0.35) 

0.14 (0.09 
- 0.20) 

0.05 (0.04 
- 0.07) 

0.15 (0.12 
- 0.19) 

2019 

All 
0.28 (0.24 
- 0.33) 

0.15 (0.13 
- 0.17) 

0.12 
(0.105 - 
0.15) 

0.06 (0.05 
- 0.07) 

0.38 (0.37 
- 0.39) 

5 0.25 (0.20 
- 0.31) 

0.15 (0.13 
- 0.18) 

0.13 (0.10 
- 0.16) 

0.05 (0.04 
- 0.06) 

0.34 (0.32 
- 0.35) 

6 0.32 (0.26 
- 0.39) 

0.12 (0.10 
- 0.15) 

0.10(0.07 - 
0.14) 

0.06 (0.05 
- 0.08) 

0.49 (0.46 
- 0.52) 
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Table 3 Activity levels at dawn, during daylight (sunrise – sunset), dusk and at night (sunset-

sunrise) in lesser black-backed gulls at Skokholm between 2014 & 2019 recorded using 

University of Amsterdam tags. Nocturnal activity is defined as activity at night as a 

proportion of activity during daylight (i.e., Night/Day, note calculations may not match due 

to rounding). 

Year Month Dawn Day Dusk  Night Nocturnal 
activity 

2014 

All 0.21 (0.19 
- 0.23) 

0.19(0.18 - 
0.21) 

0.13 (0.12 
- 0.15) 

0.03 (0.03 
- 0.04) 

0.17 (0.17 
- 0.18) 

5 0.15 (0.13 
- 0.18) 

0.14 (0.13 
- 0.15) 

0.09 (0.08 
- 0.11) 

0.01 (0.01 
- 0.01) 

0.08 (0.07 
- 0.08) 

6 0.28 (0.25 
- 0.32) 

0.24 (0.22 
- 0.27) 

0.17 (0.15 
- 0.19) 

0.05 (0.04 
- 0.06) 

0.21 (0.20 
- 0.22) 

7 0.11 (0.10 
- 0.13) 

0.14 (0.13 
- 0.15) 

0.09 (0.08 
- 0.11) 

0.03 (0.03 
- 0.03) 

0.21 (0.21 
- 0.22) 

8 0.11 (0.08 
- 0.16) 

0.14 (0.11 
- 0.17) 

0.08 (0.05 
- 0.11) 

0.02 (0.01- 
0.02) 

0.11 (0.10 
- 0.12) 

2015 

All 0.18 (0.17 
- 0.19) 

0.14 (0.14 
- 0.15) 

0.10 (0.09 
- 0.11) 

0.01 (0.01 
- 0.01) 

0.07 (0.07 
- 0.08) 

5 0.13 (0.11 
- 0.15) 

0.12 (0.11 
- 0.13) 

0.09 (0.08 
- 0.11) 

0.01 (0.01 
- 0.01) 

0.07 (0.06 
- 0.07) 

6 0.26 (0.23 
- 0.30) 

0.17 (0.15 
- 0.20) 

0.16 (0.14 
- 0.19) 

0.04 (0.03 
- 0.04) 

0.21 (0.20 
- 0.22) 

7 0.20 (0.18 
- 0.23) 

0.16 (0.15 
- 0.18) 

0.14 (0.12 
- 0.17) 

0.02 (0.01 
- 0.02) 

0.10 (0.01 
- 0.11) 

2016 

All 0.10 (0.09 
- 0.12) 

0.10 (0.09 
- 0.11) 

0.07 (0.06 
- 0.09) 

0.01 (0.00 
- 0.01) 

0.05 (0.05 
- 0.05) 

5 

0.16 (0.13 
- 0.19) 

0.15 (0.13 
- 0.16) 

0.14 (0.12 
- 0.17) 

0.0216 
(0.01 - 
0.02) 

0.11 (0.01 
- 0.11) 

6 0.21 (0.18 
- 0.26) 

0.15 (0.13 
- 0.17) 

0.18 (0.15 
- 0.23) 

0.02 (0.02 
- 0.03) 

0.16 (0.15 
- 0.18) 
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Table 4 Activity levels at dawn, during daylight (sunrise – sunset), dusk and at night (sunset-

sunrise) in lesser black-backed gulls at Orford in 2010 & 2011 recorded using University of 

Amsterdam tags. Nocturnal activity is defined as activity at night as a proportion of activity 

during daylight (i.e., Night/Day, note calculations may not match due to rounding). 

Year Month Dawn Day Dusk  Night Nocturnal 
activity 

2010 

All 
0.06 (0.04 
- 0.11) 

0.06 (0.04 
- 0.10) 

0.04 
(0.022 - 
0.07) 

0.01 (0.01 
- 0.02) 

0.14 (0.14 
- 0.15) 

6 0.05 (0.02 
- 0.09) 

0.04 (0.02 
- 0.08) 

0.03 (0.01 
- 0.06) 

0.01 (0.00 
- 0.01) 

0.15 (0.14 
- 0.15) 

7 0.14 (0.10 
- 0.21) 

0.16 (0.12 
- 0.20) 

0.08 (0.05 
- 0.13) 

0.02 (0.01 
- 0.03) 

0.13 (0.12 
- 0.16) 

2011 

All 0.09 (0.07 
- 0.14) 

0.08 (0.05 
- 0.11) 

0.05 (0.03 
- 0.07) 

0.02 (0.01 
- 0.02) 

0.22 (0.21 
- 0.22) 

5 0.04 (0.03 
- 0.05) 

0.04 (0.03 
- 0.06) 

0.03 (0.02 
- 0.04) 

0.01 (0.01 
- 0.01) 

0.20 (0.19 
- 0.20) 

6 0.13 (0.09 
- 0.19) 

0.11 (0.08 
- 0.16) 

0.08 (0.05 
- 0.11) 

0.03 (0.02 
- 0.04) 

0.23 (0.22 
- 0.24) 

7 0.12 (0.08 
- 0.18) 

0.07 (0.05 
- 0.10) 

0.04 (0.03 
- 0.07) 

0.01 (0.01 
- 0.02) 

0.20 (0.19 
- 0.21) 
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3.1.2. Kittiwake 

 

Nocturnal activity in kittiwakes was collected using IGotU GPS tags deployed on birds at 

Colonsay, Isle of May, Orkney, Flamborough Head and Bempton Cliffs, and from UvA tags 

deployed birds at Flamborough Head and Bempton Cliffs. Levels of nocturnal activity 

showed substantial variation between colonies and years, from 27 – 63 % of daytime activity 

(Figure 6, Tables 5 & 6). However, understanding these differences is challenging due to the 

different tag types used. The longer-term deployment of the UvA tags means it is possible to 

get a clearer picture of nocturnal activity over the breeding season as a whole, in 

comparison to the IGotU tags which were shorter term deployments, typically focussed on 

the period around early chick rearing. Possibly reflecting this, overall activity levels 

estimated from the UvA tags were lower than those estimated using IGotU tags (Figure 7). 

However, estimates of nocturnal activity as a proportion of daytime activity obtained from 

UvA tags also showed variation between years, at 20% in 2017 and 33% in 2018 (Table 6).  

 

 

Figure 6 Estimated nocturnal activity levels in kittiwake at Isle of May, Flamborough Head 

and Bempton Cliffs, Colonsay and Orkney.   
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Figure 7 Day and night activity levels for Kittiwake at the Isle of May, Colonsay, Orkney and 

Flamborough Head and Bempton Cliffs.  

Table 5 Activity levels at dawn, during daylight (sunrise – sunset), dusk and at night (sunset-

sunrise) in kittiwake recorded using IGotU. Nocturnal activity is defined as activity at night 

as a proportion of activity during daylight (i.e., Night/Day, note calculations may not match 

due to rounding). 

Site Year Dawn Day Dusk Night Nocturnal 
Activity 

Isle of May 

2012 

0.10 
(0.06 - 
0.16) 

0.36 
(0.33 - 
0.39) 

0.29 
(0.22 - 
0.38) 

0.13 (0.1 
- 0.16) 

0.36 (0.30 – 
0.41) 

2013 0.2 (0.15 
- 0.26) 

0.36 
(0.34 - 
0.38) 

0.42 
(0.35 - 
0.48) 

0.14 
(0.12 - 
0.17) 

0.38 (0.35 – 
0.45) 

2014 

0.06 
(0.03 - 
0.11) 

0.36 
(0.32 - 
0.39) 

0.41 
(0.32 - 
0.50) 

0.18 
(0.15 - 
0.22) 

0.5 (0.46 – 
0.56) 

Flamborough Head 
and Bempton Cliffs 

2010 

0.21 
(0.15 - 
0.28) 

0.45 
(0.42 - 
0.49) 

0.45 
(0.38 - 
0.53) 

0.15 
(0.12 - 
0.17) 

0.33 (0.28 – 
0.34) 

2011 

0.17 
(0.11 - 
0.25) 

0.39 
(0.35 - 
0.43) 

0.26 
(0.18 - 
0.35) 

0.13 (0.1 
- 0.16) 

0.33 (0.28 – 
0.37) 

2012 0.15 (0.1 
- 0.22) 

0.48 
(0.44 - 
0.51) 

0.45 
(0.36 - 
0.54) 

0.13 
(0.11 - 
0.16) 

0.27 (0.25 – 
0.31) 
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Site Year Dawn Day Dusk Night Nocturnal 
Activity 

2013 

0.22 
(0.16 - 
0.29) 

0.41 
(0.38 - 
0.43) 

0.43 
(0.36 - 
0.51) 

0.25 
(0.22 - 
0.28) 

0.61 (0.57 – 
0.65) 

2014 

0.21 
(0.16 - 
0.27) 

0.53 
(0.51 - 
0.55) 

0.33 
(0.27 - 
0.38) 

0.16 
(0.14 - 
0.18) 

0.30 (0.27 – 
0.32) 

2015 

0.22 
(0.16 - 
0.30) 

0.43 
(0.39 - 
0.47) 

0.37 
(0.29 - 
0.46) 

0.13 (0.1 
- 0.15) 

0.30 (0.25 – 
0.32) 

Colonsay 

2010 

0.28 
(0.17 - 
0.42) 

0.42 
(0.36 - 
0.47) 

0.58 
(0.44 - 
0.7) 

0.21 
(0.16 - 
0.27) 

0.5 (0.44 – 
0.57) 

2011 

0.17 
(0.13 - 
0.22) 

0.35 
(0.33 - 
0.38) 

0.35 
(0.29 - 
0.4) 

0.16 
(0.14 - 
0.18) 

0.45 (0.42 – 
0.47) 

2012 

0.21 
(0.17 - 
0.25) 

0.38 
(0.36 - 
0.4) 

0.35 (0.3 
- 0.39) 

0.13 
(0.12 - 
0.15) 

0.34 (0.33 – 
0.37) 

2013 

0.23 
(0.17 - 
0.31) 

0.37 
(0.33 - 
0.41) 

0.44 
(0.35 - 
0.52) 

0.2 (0.17 
- 0.24) 

0.54 (0.51 – 
0.58) 

2014 

0.23 
(0.17 - 
0.30) 

0.41 
(0.39 - 
0.44) 

0.42 
(0.34 - 
0.49) 

0.17 
(0.15 - 
0.20) 

0.41 (0.38 – 
0.45) 

Orkney 

2010 

0.37 
(0.28 - 
0.48) 

0.41 
(0.35 - 
0.48) 

0.34 
(0.25 - 
0.44) 

0.26 (0.2 
- 0.33) 

0.63 (0.57 – 
0.68) 

2011 0.2 (0.14 
- 0.26) 

0.26 
(0.22 - 
0.3) 

0.19 
(0.14 - 
0.26) 

0.15 
(0.12 - 
0.2) 

0.57 (0.54 – 
0.66) 

2012 

0.11 
(0.08 - 
0.15) 

0.36 
(0.33 - 
0.39) 

0.3 (0.26 
- 0.35) 

0.13 
(0.11 - 
0.16) 

0.36 (0.33 – 
0.41) 

2013 

0.25 
(0.17 - 
0.36) 

0.34 
(0.32 - 
0.37) 

0.35 
(0.26 - 
0.45) 

0.15 
(0.12 - 
0.2) 

0.44 (0.37 – 
0.54) 

2014 

0.13 
(0.09 - 
0.19) 

0.37 
(0.35 - 
0.38) 

0.32 
(0.25 - 
0.38) 

0.19 
(0.16 - 
0.22) 

0.51 (0.45 – 
0.57) 

 

Table 6 Activity levels at dawn, during daylight (sunrise – sunset), dusk and at night (sunset-

sunrise) in kittiwake at Flamborough Head and Bempton Cliffs in 2017 & 2018 recorded 

using University of Amsterdam tags. Nocturnal activity is defined as activity at night as a 
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proportion of activity during daylight (i.e., Night/Day, note calculations may not match due 

to rounding). 

Year Month Dawn Day Dusk  Night Nocturnal 
activity 

2017 

All 0.38 (0.34 
– 0.4326) 

0.34 (0.32 
– 0.35) 

0.17 (0.14 
– 0.20) 

0.07 (0.06 
– 0.08) 

0.20 (0.19 – 
0.21) 

June 0.40 (0.34 
– 0.46) 

0.33 (0.31 
– 0.35) 

0.20 (0.16 
– 0.24) 

0.07 (0.06 
– 0.08) 

0.22 (0.19 – 
0.24) 

July 0.36 (0.30 
– 0.42) 

0.34 (0.31 
– 0.37) 

0.10 (0.07 
– 0.14) 

0.06 (0.48 
– 0.07) 

0.17 (0.16 – 
0.20) 

2018 

All 0.22 (0.17 
– 0.28) 

0.34 (0.32 
– 0.36) 

0.31 (0.27 
– 0.36) 

0.11 (0.10 
– 0.13) 

0.34 (0.31 – 
0.37) 

June 0.11 (0.05 
– 0.25) 

0.28 (0.25 
– 0.30) 

0.20 (0.13 
– 0.30) 

0.10 (0.07 
– 0.13) 

0.35 (0.30 – 
0.44) 

July 0.26 (0.19 
– 0.33) 

0.36 (0.34 
– 0.39) 

0.35 (0.30 
– 0.41) 

0.12 (0.10 
- 0.15) 

0.34 (0.30 – 
0.37) 
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3.1.3.  Gannet 

Nocturnal activity in gannets was collected using IGotU GPS tags deployed on birds at the 

Bass Rock and Alderney, and from UvA tags deployed birds at Flamborough Head and 

Bempton Cliffs. Levels of nocturnal activity showed substantial variation between colonies 

and years, from 4 – 31 % of daytime activity (Figure 8, Tables 7 & 8). However, 

understanding these differences is challenging due to the different tag types used. The 

longer-term deployment of the UvA tags means it is possible to get a clearer picture of 

nocturnal activity over the breeding season as whole, in comparison to the IGotU tags which 

were shorter term deployments, typically focussed on the period around early chick rearing. 

This may be reflected in the lower levels of activity estimated at night for birds from 

Flamborough Head and Bempton Cliffs (Figure 9).  

 

 

Figure 8 Estimated nocturnal activity levels in gannets at Alderney, Bass Rock and 

Flamborough Head and Bempton Cliffs 
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Figure 9 Day and night activity levels for gannet at Alderney, Bass Rock and Flamborough 

Head and Bempton Cliffs. 

 

 

 

  



30 
 

Table 7 Activity levels at dawn, during daylight (sunrise – sunset), dusk and at night (sunset-

sunrise) in Gannets recorded using IGotU tags. Nocturnal activity is defined as activity at 

night as a proportion of activity during daylight (i.e., Night/Day, note calculations may not 

match due to rounding). 

Site Year Dawn Day Dusk Night Nocturnal 
Activity 

Alderney 

2011 
0.08 (0.05 – 
0.12) 

0.32 (0.31- 
0.34) 

0.31 (0.26 – 
0.37) 

0.1 (0.09-
0.12) 

0.31 (0.29 – 
0.35) 

2013 
0.31 (0.27 - 
0.36) 

0.33 (0.32 - 
0.35) 

0.23 (0.2 - 
0.27) 

0.08 (0.07 - 
0.09) 

0.24 (0.22 – 
0.26) 

2014 
0.51 (0.46 - 
0.56) 

0.31 (0.3 - 
0.32) 

0.4 (0.36 - 
0.45) 

0.09 (0.08 - 
0.1) 

0.29 (0.27 – 
0.31) 

2015 
0.06 (0.04 - 
0.12) 

0.31 (0.29 - 
0.34) 

0.29 (0.26 - 
0.37) 

0.07 (0.06 - 
0.12) 

0.22 (0.2 – 
0.35) 

Bass 
Rock 

2010 
0.13 (0.1 - 
0.16) 

0.44 (0.42 - 
0.45) 

0.45 (0.41 - 
0.49) 

0.08 (0.07 - 
0.09) 

0.18 (0.16 – 
0.2) 

2011 
0.36 (0.32 - 
0.4) 

0.39 (0.37 - 
0.42) 

0.26 (0.22 - 
0.3) 

0.04 (0.03 - 
0.05) 

0.10 (0.08 – 
0.12) 

2012 
0.43 (0.39 - 
0.46) 

0.41 (0.4 - 
0.42) 

0.21 (0.19 - 
0.24) 

0.05 (0.05 - 
0.06) 

0.13 (0.12 – 
0.14) 

2015 
0.35 (0.31 - 
0.15) 

0.42 (0.4 - 
0.45) 

0.22 (0.19 - 
0.49) 

0.03 (0.03 - 
0.09) 

0.07 (0.07 – 
0.2) 

 

Table 8 Activity levels at dawn, during daylight (sunrise – sunset), dusk and at night (sunset-

sunrise) in gannets at Flamborough Head and Bempton Cliffs in 2018 recorded using 

University of Amsterdam tags. Nocturnal activity is defined as activity at night as a 

proportion of activity during daylight (i.e., Night/Day, note calculations may not match due 

to rounding). 

Month Dawn Day Dusk  Night Nocturnal 
activity 

All 0.19 (0.17-
0.22) 

0.27 (0.26 – 
0.28) 

0.21 (0.19 – 
0.23) 

0.01 (0.01 – 
0.01) 

0.04 (0.03 – 
0.05) 

July 0.13 (0.10 – 
0.17) 

0.26 (0.25 – 
0.27) 

0.19 (0.16 – 
0.22) 

0.01 (0.01 
0.02) 

0.05 (0.04 – 
0.06) 

August 0.27 (0.22 – 
0.33) 

0.31 (0.28 – 
0.33) 

0.27 (0.23 – 
0.32) 

0.01 (0.01 – 
0.02) 

0.05 (0.048 – 
0.05) 

September 0.20 (0.15 – 
0.28) 

0.24 (0.22 – 
0.26) 

0.12 (0.07 – 
0.18) 

0.01 (0.00 – 
0.01) 

0.03 (0.01 – 
0.04) 
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3.2. Flight speed 

 

3.2.1.  Autocorrelation assessment 

 

ACF comparisons were carried out for the full dataset including onshore data. 

Autocorrelation can be assessed visually with reference to an ACF plot (figures 10-12). These 

plots highlight the significance of any correlation between an estimated flight speed and 

subsequent estimates of flight speed. The blue lines on these plots indicate significance at p 

= 0.05 and, ideally, all vertical lines except the first should be between these. Overall, the 

temporal autocorrelation was very evident in the data at 300s-900s thereafter improving 

greatly, with best results (i.e., least autocorrelation) at 3,600s (Figs. 10-12). Consequently, 

the full dataset for all sites was sub-sampled at 3,600s for further comparisons and 

subsetted for the offshore environment only. An example is shown in figures 10-12 for 

lesser black-backed gulls from Walney, Skokholm and Orfordness. 
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(a) Instantaneous speed 
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(b) Trajectory speed 

 

 
 

Figure 10 Examples of autocorrelation ACF plots for (a) instantaneous speed and (b) 

trajectory speed for two individuals in two different years of tracking at Walney 
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(a) Instantaneous speed 
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(b) Trajectory speed 

 

 
 

Figure 11 Examples of autocorrelation ACF plots for (a) instantaneous speed and (b) 

trajectory speed for two individuals in two different years of tracking at Skokholm 
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(a) Instantaneous speed 
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(b) Trajectory speed 

      

                             

 
Figure 12 Examples of autocorrelation ACF plots for (a) instantaneous speed and (b) 

trajectory speed for two individuals in two different years of tracking at Orfordness 
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3.2.2.  Lesser Black-backed Gull Walney 

 

A minimum of five data points were specified for each individual to remove birds with too 

few data following sub-sampling within the offshore environment at the hourly rate. The 

resulting offshore dataset was therefore reduced to 1,345 data points for 31 individuals that 

crossed the offshore environment, from the original offshore dataset at five-minute rates 

containing 25,432 data points and 37 individuals. 

3.2.2.1.  Overall statistical comparison between speeds 

 

For South Walney (as was the case at all other colonies), the full GLMM confirmed 

significantly faster overall speeds offshore than onshore (offshore (1,0) across states: ß = 

0.646±0.055, χ2 = 360.61, df = 1, P < 0.001). For Walney offshore movements alone, there 

was a significant difference between trajectory and instantaneous speeds (χ2 = 312.5, df = 1, 

P < 0.001) that also varied with state (full two-way interaction: χ2 = 521.52, df = 3, P < 

0.001). When assessing the significance of these differences per state through estimated 

marginal means (Fig 13), there was greatest difference between slower inactive states of 

stopped and floating on the sea; for commuting (state 3) there was a marginal result with 

trajectory speed being lower than that of instantaneous, although confidence limits 

overlapped; for foraging/searching offshore, there was no significant difference between 

instantaneous and trajectory speeds, although trajectory speeds were again lower than 

instantaneous. Fastest movements were for commuting for both instantaneous and 

trajectory speeds. 
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Figure 13. Estimated marginal means of instantaneous and trajectory speeds by EMbC state 

with significance indicated by red arrows, and confidence limits by grey bars; mean 

estimates are given as black circles. 

3.2.2.2.  Summary of distributions 

 

The above analysis by state for each speed type deals with a direct comparison of mean 

estimates between distributions. However, closer inspection revealed some subtle 

differences in the distributions that would be overlooked in a direct mean comparison. The 

distribution of foraging for example, was no different in speed-by-speed type, yet the 

instantaneous trajectory for Walney showed a double peak in the distribution, one at ca 2 

m/s and one at ca 9 m/s, whereas the trajectory speed showed a main peak at about 3 m/s 

(Fig 14).  
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Figure 14 Walney histograms of instantaneous (blue) and trajectory (red) speed; top, all 

states with density curves; bottom, full histograms, breaks = 25, with overlain density curves 
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Overall, there was a general bias in underestimating the speed of offshore movement using 

trajectory speed in comparison to instantaneous velocity (test as above, traj_speed ß = -

0.998±0.055 SE, from above full model). These differences were apparent in a direct xy 

regression (Fig 15), with points biased to the upper left of the 1:1 relationship for all states 

(as also found by Klaassen et al., 2011 for LBBG during the non-breeding season), and 

steeper best fit coefficients for commuting and foraging (1.15 and 1.19, respectively). In 

keeping with the above statistical comparison, the below regressions per state showed 

much closer relationships for commuting and foraging states than resting ones (Figure 15).  

 

(a) 3600s sub-sample 
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(b) Original 300s EMbC-classified data 

 
Figure 15 Linear regression of instantaneous speed and trajectory speed, with adjusted R2 

shown per state, the coefficient relationship (red line) and the 1:1 relationship for a perfect 

fit shown by the blue line (slope 1, intercept zero) for data (a) sub-sampled to a 3,600s rate, 

and (b) the original 300s dataset. 
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(a) Sub-sample to 1 hour  
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(b) Original five minute rate

 

 
Figure 16 Walney boxplots using the (a) sub-sampled data investigated for formal analysis 

and (b) the original data at five-minute intervals. 
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Table 10 Summary of speeds per state (m/s), as obtained through classification of tracking 
data using a four-state EMbC model, given as median (plus interquartile range in parentheses) 

Colony (n birds) Data grain Speed type 1 (floating) 2 (stop) 3 (commuting) 4 

(forage/search) 

Walney (n = 33) 3600s Instantaneous 1.30 (0.76,1.94) 1.69 (0.77,2.66) 9.53 (6.85,11.82) 6.87 (1.82,10.57) 

  Trajectory 0.43 (0.26,0.59) 0.23 (0.08,0.50) 7.49 (4.19,9.97) 4.25 (2.06,7.11) 

Walney (n = 37) 300s Instantaneous 1.32 (0.77,2.05) 1.51 (0.76,2.61) 9.51 (7.12,11.88) 7.94 (2.59,10.79) 

  Trajectory 0.42 (0.27,0.60) 0.26 (0.08,0.51) 8.15 (5.51,10.54) 5.25 (2.39,8.59) 

 

Note, the boxplots above (Figure 16) are based on all the data at five minute rates for 

comparison to Thaxter et al. (2019). By sub-sampling to hourly rates, we lose about 1 m/s 

from the commuting mean, so fewer points (and some different birds) meant it was not a 

fair comparison. Full examination is therefore also required using the 300s data. Comparing 

to the HMM states, the small steps of states 1 and 2 are comparable. However, the 

difference lies in where the boundary is drawn between commuting and foraging. EMbC 

draws the line in a slightly different place, with some foraging points classified as 

commuting by HMM being classified as foraging by EMbC. This results in slightly different 

speed distributions by method using the original 300s data. For Thaxter et al. (2019), for 

example, the median commuting and foraging speeds were 9.2 and 3.6 m/s, whereas for 

EMBC they are 8.2 and 5.3 m/s. 
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3.2.3.  Lesser Black-backed Gull Skokholm 

 

The original dataset for five-minute rates contained 67,761 rows of offshore data for 24 

birds that was further subsampled to 5,486 rows for 24 birds at a rate of 3,600s. Given the 

offshore location of the colony, no birds were dropped from the analysis in the sub-

sampling routine. 

 

3.2.3.1.  Overall statistical comparison between speeds 

 

For Skokholm offshore movements, as with Walney, speeds offshore were faster than 

onshore (ß = 1.882±0.039, P < 0.001) and there was a significant difference between 

trajectory and instantaneous speeds (χ2 = 676.37 df = 1, P < 0.001) that also varied with 

state (full two-way interaction: χ2 = 1744.70, df = 3, P < 0.001).  

 

The results for instantaneous vs trajectory speed were the same as for Walney, with the 

greatest difference between slower inactive states of stopped and floating on the sea and 

no significant difference for faster states of commuting and foraging.   

 

3.2.3.2. Summary of distributions 

 

As with Walney, closer inspection revealed subtle differences in the distributions. However, 

comparison of trajectory and instantaneous speeds showed distributions were similar in 

overall shape (Fig 17). However, there was a general bias in underestimating the speed of 

offshore movement using trajectory speed in comparison to instantaneous speed (test as 

above, traj_speed ß = -0.671±0.025 SE, from above full model). As with Walney, these 

differences were apparent in a direct xy regression (Fig 18), with points biased to the upper 

left of the 1:1 relationship for all states, and steeper best fit coefficients for commuting and 

foraging (1.10 and 1.11, respectively). In keeping with the above statistical comparison, the 

below regression per state showed much closer relationships for commuting and foraging 

states than resting ones.  
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Figure 17 Skokholm histograms of speed; (top) all states with density curves; (bottom) full 

histograms, breaks = 25, with overlain density curves 
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(a) 3600s sub-sample 

 
 

(b) Original 300s EMbC-classified data 
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Figure 18 Linear regression of instantaneous speed and trajectory speed for Skokholm, with 

adjusted R2 shown per state, the coefficient relationship (red line) and the 1:1 relationship 

for a perfect fit shown by the blue line (slope 1, intercept zero) for data (a) sub-sampled to a 

3600s rate, and (b) the original 300s dataset. 
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(a) sub-sample to 1 hour      
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(b) Original five minute rate

 

 
Figure 19 Skokholm boxplots using the (a) sub-sampled data investigated for formal analysis 

and (b) the original data at five-minute intervals. 
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Table 11 Summary of speeds per state (m/s) for Skokholm, as obtained through classification 
of tracking data using a four-state EMbC model, given as median (plus interquartile range in 
parentheses) 

Colony (n birds) Data grain Speed type 1 (floating) 2 (perching) 3 (commuting) 4 

(forage/search) 

Skok (n = 24) 3600s Instantaneous 1.62 (1.1,2.43) 1.45 (0.96,2.17) 10.05 

(7.61,12.79) 

7.03 (1.74,10.6) 

  Trajectory 0.54 (0.3,1.37) 0.24 (0.13,0.39) 8.58 (6.13,11.21) 4.64 (1.97,7.84) 

Skok (n = 24) 300s Instantaneous 1.66 (1.14,2.41) 1.47 (0.95,2.19) 10.14 

(7.85,12.84) 

7.06 (1.81,10.83) 

  Trajectory 0.52 (0.3,1.35) 0.24 (0.14,0.39) 8.76 (6.28,11.06) 4.53 (1.99,7.92) 

 

As with Walney, when comparing to the HMM states from Thaxter et al., (2019) for 

Skokholm, the small steps of states 1 and 2 are comparable but again the boundary 

between commuting and foraging was slightly different, thus reducing the median speed of 

commuting and increasing foraging. Previous HMM trajectory estimates for Skokholm were 

9.43 m/s for commuting and 1.49 for foraging, whereas (using 300s data for equal 

comparison, Table 11), EMbC estimates were 8.76 and 4.53 m/s. The variation between 

methods (i.e., HMMs, EMbC) at Skokholm, as shown previously for work at Walney (Thaxter 

et al. in prep) was therefore greatest for foraging. 
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3.2.4.  Lesser Black-backed Gull Orfordness 

The original dataset for five-minute rates contained 21,841 rows of offshore data for 24 

birds that was further subsampled to 1,624 rows for 17 birds at a rate of 3,600s. Thus, seven 

birds were dropped from formal statistical analysis that had fewer than five data points 

offshore when subsampled to rates of 3,600s.  

 

3.2.4.1.  Overall statistical comparison between speeds 

 

For Orfordness offshore movements, as with Walney and Skokholm, speeds offshore were 

faster than onshore (ß = 1.255±0.087, P < 0.001) and there was a significant difference 

between trajectory and instantaneous speeds (χ2 = 34.87, df = 1, P < 0.001) that also varied 

with state (full two-way interaction: χ2 = 146.29, df = 3, P < 0.001). The results for 

instantaneous vs trajectory speed were the same as for the other colonies with the greatest 

difference between slower inactive states of stopped and floating on the sea and no 

significant difference for faster states of commuting and foraging.   

 

 
Figure 20. Estimated marginal means of instantaneous and trajectory speeds by EMbC state 

with significance indicated by red arrows, and confidence limits by grey bars; mean 

estimates are given as black circles. 
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3.2.4.2.  Summary of distributions 

 

Similar to Walney and Skokholm, some subtle differences were notable in the distributions 

in comparison of trajectory and instantaneous speeds. Commuting speeds were quite 

similar in overall shape, and compared to other colonies, there was greater similarity for 

resting states 1 and 2, but foraging again showed differences in distribution, albeit hidden 

when comparing overall means statistically above (Fig 21).  

 

For Orfordness there was a general bias in underestimating the speed of offshore 

movement using trajectory speed in comparison to instantaneous velocity (test as above, 

traj_speed ß = -0.278±0.047 SE, from above full model), albeit the coefficient being the 

lowest of all three lesser black-backed gull colonies. As with other lesser black-backed gull 

colonies, these differences were apparent in a direct xy regression (Fig 22 below), with 

points biased to the upper left of the 1:1 relationship for all states, and steeper best fit 

coefficients for commuting and foraging (1.08 for both, respectively). In keeping with the 

above statistical comparison, the below regression per state showed much closer 

relationships for commuting and foraging states than resting ones and for Orfordness the 

coefficient was closest of all colonies to 1.0, but still representing a likely underestimate of 

speed through trajectory rather than the instantaneous measure.  
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Figure 21 Orfordness histograms of speed; (top) all states with density curves; (bottom) full 

histograms, breaks = 25, with overlain density curves 
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(a) 3,600s sub-sample 
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(b) Original 300s EMbC-classified data 

 
Figure 22 Linear regression of instantaneous speed and trajectory speed for Skokholm, with 

adjusted R2 shown per state, the coefficient relationship (red line) and the 1:1 relationship 

for a perfect fit shown by the blue line (slope 1, intercept zero) for data (a) sub-sampled to a 

3,600s rate, and (b) the original 300s dataset. 

 

 

 

 

 

 

 

 

 

 



58 
 

(a) sub-sample to 1 hour      

 
(b) Original five minute rate 

 
Figure 23 Orfordness boxplots using the (a) sub-sampled data investigated for formal 

analysis and (b) the original data at five-minute intervals. 
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Table 12 Summary of speeds per state (m/s) for Skokholm, as obtained through classification 
of tracking data using a four-state EMbC model, given as median (plus interquartile range in 
parentheses) 

Colony (n birds) Data grain Speed type 1 (floating) 2 (perching) 3 (commuting) 4 

(forage/search) 

Orf (n = 24) 3600s Instantaneous 0.87 (0.63,1.14) 0.89 (0.54,4.19) 9.37 (7.06,12.03) 7.98 (2.17,10.91) 

  Trajectory 0.75 (0.51,0.93) 0.65 (0.25,1.05) 8.07 (5.08,10.57) 5.67 (3.12,8.92) 

Orf (n = 17) 300s Instantaneous 0.85 (0.6,1.13) 0.95 (0.52,3.85) 9.7 (7.36,12.25) 7.69 (1.71,10.75) 

  Trajectory 0.74 (0.48,0.95) 0.63 (0.28,1) 8.59 (6.09,10.95) 5.67 (3.23,8.39) 

 

As with other colonies, comparing to the HMM states from Thaxter et al. (2019) for 

Orfordness, the small steps of states 1 and 2 are comparable but again the boundary 

between commuting and foraging was slightly different, thus reducing the median speed of 

commuting and increasing foraging. Previous HMM trajectory speed estimates for 

Orfordness were 9.65 m/s for commuting and 2.41 for foraging, whereas (using 300s data 

for equal comparison, Table 12), EMbC estimates were 8.59 and 5.67 m/s. The variation 

between methods (i.e., HMMs, EMbC) at Orfordness, as shown previously for work at 

Walney (Thaxter et al. in prep), and Skokholm above, was therefore greatest for foraging 

activity. 
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3.2.5. Kittiwake Flamborough Head and Bempton Cliffs SPA 

 

The dataset for kittiwake at Flamborough Head and Bempton Cliffs included 20,287 data 

points from 36 individuals on 305 foraging trips. Across all behaviours, speeds recorded for 

offshore movements using GPS ranged from 0.01 m/s to 127 m/s, with a median of 3.08 m/s 

(95% CIs 1.34 – 8.99) (Figure 24).  

 

Figure 24 Histogram of flight speeds measured for offshore movements of kittiwakes from 

Flamborough Head and Bempton Cliffs.  
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Following behavioural classification with EMbC, there were clear differences in flight speed 

between behaviours (Figure 24).  Commuting flight speeds were faster than foraging flight 

speeds (Table 13) at 9.73 m/s (95% CIs 6.93 – 12.33) in comparison to 6.07 m/s (95% CIs 

1.85 – 9.46). For both foraging and commuting flight, trajectory speeds derived from EMbC 

with reference to step length were noticeably slower than the instantaneous speeds 

measured using GPS.  

 

Figure 25 Boxplot of flight speeds for kittiwakes from Flamborough Head and Bempton Cliffs 

per state obtained from a four state EMbC model.  

Table 13 Summary of speeds per state (m/s) for kittiwake from Flamborough Head and 

Bempton Cliffs, as obtained through classification of tracking data using a four-state EMbC 

model, given as median (plus interquartile range in parentheses) 

Colony (n birds) Data grain Speed type 1 (floating) 2 (Stop) 3 (commuting) 4 

(forage/search) 

Flam (36) 300s Instantaneous 1.66 (1.01,2.57) 1.84 

(0.96,3.82) 

9.73 (6.93,12.33) 6.07 (1.85,9.46) 

Flam (36) 300s Trajectory 0.54 0.38 7.58 3.90 
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3.2.6.  Gannet Flamborough Head and Bempton Cliffs 

 

The dataset for gannets at Flamborough Head and Bempton Cliffs included 34,120 data 

points from 10 individuals on 301 foraging trips. Across all behaviours, speeds recorded for 

offshore movements using GPS ranged from 0.02 m/s to 42.60 m/s, with a median of 1.36 

m/s (95% CIs 0.71 – 12.79) (Figure 26). 

 

Figure 26 Histogram of flight speeds measured for offshore movements of gannets from 

Flamborough Head and Bempton Cliffs. 

Following behavioural classification with EMbC, there were clear differences in flight speed 

between behaviours (Figure 27).  Commuting flight speeds were faster than foraging flight 

speeds (Table 14) at 14.01 m/s (95% CIs 11.13 – 16.44) in comparison to 10.79 m/s (95% CIs 

1.41 – 14.51). 
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Figure 27 Boxplot of flight speeds for gannets from Flamborough Head and Bempton Cliffs 

per state obtained from a four state EMbC model.  

Table 14 Summary of speeds per state (m/s) for gannets from Flamborough Head and 

Bempton Cliffs, as obtained through classification of tracking data using a four-state EMbC 

model, given as median (plus interquartile range in parentheses) 

Colony (n birds) Data grain Speed type 1 (floating) 2 (Stop) 3 (commuting) 4 

(forage/search) 

Flam (10) 300s Instantaneous 0.80 (0.55, 

1.15) 

1.04 

(0.60,4.96) 

14.01 

(11.13,16.44) 

10.79 

(1.41,14.51) 

Flam (10) 300s Trajectory 0.46 0.50 10.80 6.29 
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3.2.7.  Flight speed summary 

 

Across all three species, commuting flight speeds were substantially faster than foraging 

flight speeds (Table 15). At present, recommended generic speeds for the three species 

considered here are 13.1 m/s for lesser black-backed gull and kittiwake (Alerstam et al., 

2007) and 14.9 m/s for gannet (Pennycuick, 1997). Regardless of the approach taken to 

estimate flight speed from GPS data, these generic flight speeds are substantially faster than 

those observed in the data presented here, with the exception of the commuting flight 

speed for gannet.  

 

Comparison of trajectory and instantaneous speeds highlighted that whilst the two are 

strongly correlated, the trajectory speeds are slower than instantaneous speeds. More 

detailed analysis of the lesser black-backed gulls revealed that these correlations were 

strongest for commuting speeds. Whilst a higher sampling rate resulted in trajectory speeds 

that more closely matched the instantaneous speeds, even at the fastest rate considered 

here (300s), a noticeable difference remained. This highlights the importance of using 

instantaneous rather than trajectory speeds.  

 

For lesser black-backed gulls, estimated speeds for each state were broadly consistent 

across all three sites, regardless of the method used to derive them. As might be expected, 

commuting flight speeds are noticeably faster than foraging flight speeds with both floating 

and perching speeds slower still. Generally, differences in sampling rate did not have a 

significant impact on the speed estimated. However, commuting speeds estimated using 

HMMs were a closer match to the instantaneous speeds than those estimated using EMBC. 

For foraging speeds, the reverse was true.  

 

Table 15 Flight speeds (median, plus interquartile range in parentheses) estimated from GPS 

data for lesser black-backed gull, kittiwake, and gannet.  

Species Colony State Trajectory Instantaneous 

HM
M 

EMBC 

300 3600 300 3600 

Lesser 
Black-
backed 
Gull 

Walney Floating 0.32 
(0.13-
0.59) 

0.42 
(0.27,0.60) 

0.43 
(0.26,0.59) 

1.32 
(0.77,2.05) 

1.30 
(0.76,1.94) 

Perching 0.45 
(0.31-
0.62) 

0.26 
(0.08,0.51) 

0.23 
(0.08,0.50) 

1.51 
(0.76,2.61) 

1.69 
(0.77,2.66) 

Commutin
g 

9.17 
(7.42-
11.26) 

8.15 
(5.51,10.54
) 

7.49 
(4.19,9.97) 

9.51 
(7.12,11.88) 

9.53 
(6.85,11.82
) 

Foraging 3.55 
(1.99-
5.39) 

5.25 
(2.39,8.59) 

4.25 
(2.06,7.11) 

7.94 
(2.59,10.79) 

6.87 
(1.82,10.57
) 

Skokholm Floating 0.34 
(0.22-
0.46) 

0.52 
(0.3,1.35) 

0.54 
(0.3,1.37) 

1.66 
(1.14,2.41) 

1.62 
(1.1,2.43) 
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Species Colony State Trajectory Instantaneous 

HM
M 

EMBC 

300 3600 300 3600 

Perching 1.49 
(1.23-
1.71) 

0.24 
(0.14,0.39) 

0.24 
(0.13,0.39) 

1.47 
(0.95,2.19) 

1.45 
(0.96,2.17) 

Commutin
g 

9.43 
(7.72-
11.67) 

8.76 
(6.28,11.06
) 

8.58 
(6.13,11.21
) 

10.14 
(7.85,12.84) 

10.05 
(7.61,12.79
) 

Foraging 1.49 
(0.44-
3.70) 

4.53 
(1.99,7.92) 

4.64 
(1.97,7.84) 

7.06 
(1.81,10.83) 

7.03 
(1.74,10.6) 

Orfordness Floating 0.26 
(0.15-
0.37) 

0.74 
(0.48,0.95) 

0.75 
(0.51,0.93) 

0.85 
(0.6,1.13) 

0.87 
(0.63,1.14) 

Perching 0.81 
(0.64-
0.99) 

0.63 
(0.28,1) 

0.65 
(0.25,1.05) 

0.95 
(0.52,3.85) 

0.89 
(0.54,4.19) 

Commutin
g 

9.65 
(7.94-
11.84) 

8.59 
(6.09,10.95
) 

8.07 
(5.08,10.57
) 

9.7 
(7.36,12.25) 

9.37 
(7.06,12.03
) 

Foraging 2.41 
(1.03-
4.48) 

5.67 
(3.23,8.39) 

5.67 
(3.12,8.92) 

7.69 
(1.71,10.75) 

7.98 
(2.17,10.91
) 

Kittiwak
e 
 

Flamboroug
h Head to 
Bempton 
Cliffs 

Floating  0.54  
1.66 
(1.01,2.57) 

 

Stop  0.38  
1.84 
(0.96,3.82) 

 

Commutin
g 

 7.58  
9.73 
(6.93,12.33) 

 

Foraging  3.9  
6.07 
(1.85,9.46) 

 

Gannet Flamboroug
h Head to 
Bempton 
Cliffs 

Floating  0.46  
0.80 (0.55, 
1.15) 

 

Stop  0.5  
1.04 
(0.60,4.96) 

 

Commutin
g 

 10.8  
14.01 
(11.13,16.44
) 

 

Foraging  6.29  
10.79 
(1.41,14.51) 
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3.3. Flight height 

 

3.3.1.   Lesser black-backed gull 

 

For lesser black-backed gull modelled flight height distributions, all parameters had R-hat 

values of <1.1 and chains had visually converged. There was correlation between the chains 

for mu and sd for each behavioural state or behavioural state:colony combination. There 

was a clear difference between modelled commuting and foraging/searching height 

distributions (Fig. 28). Whilst there was some overlap between these distributions, the bulk 

of foraging/searching flight was considerably lower than commuting flight.  

 

The fitted flight height distributions were generally similar in shape between behaviours. 

The distribution for foraging flight was characterized by a low estimated mean, resulting in a 

peak in probability density close to zero metres. For commuting flight, the peak was at 

9.2m. 

 

a) 
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b) 

 
Figure 28 Modelled lesser black-backed gull flight height distributions: a) commuting; b) 

foraging/searching. Solid black line is lognormal probability density function based on mean 

estimates for mean and SD; grey lines are lognormal probability density functions based on 

100 random paired draws of mean and SD from posterior distribution. Dashed lines 

delineate the 20-150m collision risk envelope. 

 

3.3.1.1.  Inter-colony similarities 

 

The modelled flight height distributions for lesser black-backed gull commuting height 

differed little between colonies (Figures 29 and 30; Table 16). Distributions had similar 

central tendency and overall shape. Individuals tagged at Orfordness typically had the 

lowest commuting flights, while individuals tagged at Skokholm had the highest.  

 

Likewise, the modelled flight height distributions for lesser black-backed gull 

foraging/searching height differed little in central tendency or shape between colonies 

(Figure 30; Table 16). However, the relative order of the foraging/searching flight height 

distributions for different colonies was different to that for commuting height: for 

foraging/searching flight, individuals tagged at Walney typically had the lowest flights, while 

individuals tagged at Orfordness typically had the highest. However, the foraging/searching 

flight height distribution for Orfordness was slightly narrower: the upper limit of the 95% 

credible interval was 13m and 35m lower than those for Walney and Skokholm, 

respectively. 
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The proportion of flight time at risk height followed the same patterns as for the modelled 

flight height distributions: they were generally similar among colonies (Table 17). For 

commuting flight, individuals tagged at Orfordness had the lowest proportion of flight time 

at risk height, while individuals from Skokholm had the highest. For foraging/searching 

flight, individuals tagged at Walney had the lowest proportion of flight time at risk height, 

while individuals from Orfordness had the lowest. For individuals tagged at Walney and 

Skokholm, the proportion of flight time at risk height was much greater for commuting flight 

than for foraging/searching flight; for individuals tagged at Orfordness the same pattern was 

evident, but the 95% credible interval for proportion of flight time at risk height overlapped 

between the behavioural states. 

 

a) 

 



69 
 

b) 

 
c) 

 
Figure 29 Modelled lesser black-backed gull commuting flight height distributions for: a) 

Orfordness; b) Skokholm; c) Walney. Black line is lognormal probability density function 

based on mean estimates for mean and SD; grey lines are lognormal probability density 

functions based on 100 random paired draws of mean and SD from posterior distribution. 

Dashed lines delineate the 20-150m risk envelope. 
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a) 

 
b) 
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c) 

 
Figure 30 Modelled lesser black-backed gull foraging/searching flight height distributions 

for: a) Orfordness; b) Skokholm; c) Walney. Black line is lognormal probability density 

function based on mean estimates for mean and SD; grey lines are lognormal probability 

density functions based on 100 random paired draws of mean and SD from posterior 

distribution. Dashed lines delineate the 20-150m risk envelope. 

 

 

Table 16 Modelled lesser black-backed gull flight height at the study colonies.  

Colony Median flight height (m) (& 95% CI) 

Commuting flight Foraging/searching 

Orfordness 17.5 (0.4-99.0) 10.4 (0.0-89.7) 

Skokholm 25.9 (1.1-114.9) 7.8 (0.0-124.7) 

Walney 21.7 (1.0-102.5) 7.3 (0.0-102.7) 

 

Table 17 Projected proportion of flight time in 20-150m collision risk envelope for lesser 

black-backed gull at the study colonies. 95% credible interval is calculated post-hoc, 

parameterizing the flight height cumulative density function with 100 paired draws of mean 

and SD from the posterior distribution. 

Colony Projected % in 20-150m risk envelope (& 95% CI) 

Commuting flight Foraging/searching 

Orfordness 42.5 (34.0-50.3) 28.5 (20.1-37.6) 

Skokholm 58.4 (49.9-65.8) 24.8 (20.4-28.1) 

Walney 51.7 (42.6-61.7) 23.1 (17.8-30.2) 
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3.3.2.  Kittiwake 

Estimates of kittiwake flight heights were obtained using altimeters from 16 individuals on 

117 foraging trips. In total, 4,790 data points were obtained. Analyses of these data are 

ongoing (Wischnewski, Sansom, et al., in prep.), consequently a small number of negative 

altitudes remain in the dataset, and it is important these data are included in any analyses 

of flight height to ensure all errors are accounted for in final modelled distributions (Péron 

et al., 2020). The maximum estimated flight height was 412 m above sea level, though most 

data were much closer to the sea surface with a median height estimate of 4.49 m above 

sea level (95% CIs 0 – 1.24), and 18% of flight activity within a theoretical 20-150m collision 

risk window (Wischnewski, Sansom, et al., in prep).  

 

Figure 31 Flight height estimates obtained from altimeters deployed on kittiwakes at 

Flamborough Head and Bempton Cliffs.  

Estimated flight heights during commuting were higher than those estimated during 

foraging (Figure 32, Table 18). Reflecting this, the proportion of flight activity at collision risk 
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height during commuting flight was more than double that of the proportion at collision risk 

height during foraging activity (Table 19). Whilst the overall patterns in these data are likely 

to reflect the true patterns in flight heights (e.g., commuting birds fly higher than foraging 

birds), the reported values should be treated with caution as the error surrounding these 

estimates has not been properly quantified and accounted for in the modelling process, 

resulting in the negative estimates in flight height (Figures 31 & 32).   

 

Figure 32 Flight height estimates for kittiwakes at Flamborough Head and Bempton Cliffs 

Table 18 Estimated kittiwake flight heights at Flamborough Head and Bempton Cliffs  

Colony Median flight height (m) (& 95% CI) 

Commuting flight Foraging/searching 

Flamborough Head and 
Bempton Cliffs 

12.49 (4.84, 23.90) 7.44 (0.18,19.40) 

 

Table 19 Projected proportion of flight time in 20-150m collision risk envelope for kittiwake 

at Flamborough Head and Bempton Cliffs.  

Colony Projected % in 20-150m risk envelope 

Commuting flight Foraging/searching 

Flamborough Head and 
Bempton Cliffs 

31 24 
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3.3.3.  Gannet 

 

Estimates of gannet flight heights were obtained using altimeters from 10 individuals on 278 

foraging trips. In total, 32,484 data points were obtained. Analyses of these data are 

ongoing (Wischnewski, Sansom, et al., in prep.), consequently a small number of negative 

altitudes remain in the dataset, and it is important these data are included in any analyses 

of flight height to ensure all errors are accounted for in final modelled distributions (Péron 

et al., 2020). The maximum estimated flight height was 280 m above sea level, though most 

data were much closer to the sea surface with a median height estimate of 2.76 m above 

sea level (95% CIs 0 – 12.63), and 15% of flight activity within a theoretical 20-150m collision 

risk window (Wischnewski, Sansom, et al., in prep). The inclusion of negative flight heights in 

the data is likely to lead to an under-estimate of the median flight height. However, in this 

context, the primary interest is in the proportion of birds at collision risk height. As negative 

flight height records are likely to relate to birds flying below a turbine rotor sweep (Péron et 

al., 2020), excluding these data may result in an over-estimate of the proportion of birds at 

collision risk height.  

 

Figure 33 Flight height estimates obtained from altimeters deployed on gannets at 

Flamborough Head and Bempton Cliffs. 
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Estimated median flight heights during commuting were slightly higher than those 

estimated during foraging (Figure 34, Table 20). However, there was greater variability in 

foraging flight height than was the case for commuting flight, meaning that a slightly higher 

proportion of foraging flight took place at collision risk height (Table 21). Whilst the overall 

patterns in these data are likely to reflect the true patterns in flight heights (e.g., commuting 

birds fly higher than foraging birds), the reported values should be treated with caution as 

the error surrounding these estimates has not been properly quantified and accounted for 

in the modelling process, resulting in the negative estimates in flight height (Figures 33 & 

34). 

 

Figure 34 Flight height estimates for gannets at Flamborough Head and Bempton Cliffs 

 

 

 



76 
 

Table 20 Estimated gannet flight heights at Flamborough Head and Bempton Cliffs  

Colony Median flight height (m) (& 95% CI) 

Commuting flight Foraging/searching 

Flamborough Head and 
Bempton Cliffs  

12.8 (5.97,22.77) 10.78 (1.07,26.57) 

 

Table 21 Projected proportion of flight time in 20-150m collision risk envelope for gannets at 

Flamborough Head and Bempton Cliffs.  

Colony Projected % in 20-150m risk envelope 

Commuting flight Foraging/searching 

Flamborough Head and 
Bempton Cliffs  

29 32 

  



77 
 

3.3.4.  Flight Height Summary 

 

For lesser black-backed gull and kittiwake, there were clear differences in the median flight 

heights estimated for commuting and foraging flight (Table 22). For gannet, there appeared 

to be greater overlap in foraging and commuting flight heights. Consistent with previous 

studies (A. Johnston et al., 2014), lesser black-backed gulls had higher flight heights than 

either gannet or kittiwake. Reflecting this, lesser black-backed gulls also spent a greater 

proportion of time within our projected 20-150m collision risk envelope than was the case 

for the other species (Table 23). Commuting flight heights were similar for gannet and 

kittiwake (Table 22). However, during foraging flight, gannets tended to fly higher than 

kittiwakes, spending a greater proportion of time at collision risk height.  

Table 22 Modelled flight height for the study species.  

Species Median flight height (m) (& 95% CI of flight height) 

Commuting flight Foraging/searching 

Lesser black-backed gull 22.1 (1.0-107.2) 8.2 (0.0-107.2) 

Kittiwake 12.5 (4.8,23.9) 7.44 (0.18,19.40) 

Gannet 12.8 (5.9, 22.7) 10.78 (1.07,26.57) 

 

Table 23 Modelled proportion of flight time in 20-150m collision risk envelope for the study 

species. 95% credible interval is calculated post-hoc, parameterizing the flight height 

cumulative distribution function with 100 paired draws of posterior mean and SD estimates. 

Species Projected % in 20-150m risk envelope (& 95% CI) 

Commuting flight Foraging/searching 

Lesser black-backed gull 52.1 (45.8-57.6) 25.2 (21.7-29.5) 

Kittiwake 31 24 

Gannet 29 32 
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4. Discussion 

At present, there are significant uncertainties surrounding input parameters for collision risk 

models (Masden et al., 2021), meaning that precautionary values must be used in 

assessments. The uncertainty, and resultant precaution, can be reduced through the 

collection of better data to parameterize these models. GPS data offer the potential to do 

this. Our analyses demonstrate how GPS data can be used to generate estimates of 

nocturnal activity, flight height and flight speed. However, these parameters vary among 

behavioural states, and can vary among colonies and through time.  

 

4.1. Nocturnal Activity 

 

At present, the recommended values for nocturnal activity are based on the rankings 

presented in Garthe & Hüppop (2004) with scores of 1-5 reflecting activity levels of 0, 25, 

50, 75 and 100% of day time activity (Band, 2012). Based on the rankings from Garthe & 

Hüppop(2004), nocturnal activity levels for lesser black-backed gull and kittiwake were 50% 

of daytime activity levels, and for gannet, it was 25% (Table 24).  

Table 24 Comparison of nocturnal activity levels estimated in the present study with those 

currently recommended for use in the Band (2012) model. 

 Current recommendation Estimate from GPS data 

Lesser black-backed gull 50% 7-41% 

Gannet 25% 4-31% 

Kittiwake 50% 17-63% 

 

Previous analysis of data from gannets suggests that actual levels of nocturnal activity may 

be lower than that recommended in current guidance (Furness et al., 2018). Of the datasets 

considered in Furness et al. (2018), the 2013 data from Alderney were also considered in 

our analysis. Our estimate of nocturnal activity from that dataset (24%) was higher than the 

value presented in Furness et al. (2018) from the same dataset (15.6%). This difference is 

likely to have arisen due to the fact that the classification in Furness et al. (2018) was based 

on flight speed only, whilst in our study classifications were based on behaviour inferred 

from EMbC and likely to be more reflective of activity estimates than those based on point 

estimates of speed.  

Nocturnal activity levels for all three species were found to vary among years and sites 

(Table 24; Figures 4,6 and 8). Understanding the reasons for these differences in gannets 

and kittiwakes is complicated by the fact that data were collected using both IGotU and UvA 

tags. The data from IGotU tags were collected over 2-3 days, typically around the start of 

chick-rearing, and consequently may not be representative of the breeding season as a 

whole. The UvA data are collected over a longer time period, so may be more 

representative of nocturnal activity over the breeding season as a whole. However, 

kittiwake data were collected from Flamborough Head and Bempton Cliffs using IGotU tags 

from 2010 – 2015 and using UvA tags in 2017 and 2018. Estimates of nocturnal activity from 
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the IGotU tags were not inconsistent with those obtained using UvA tags (Figure 6). This 

suggests that the data collected using the IGotU tags may be representative of the wider 

chick-rearing period. However, such a comparison is only possible for kittiwakes at 

Flamborough Head and Bempton Cliffs as this was the only species-site combination for 

which data from both tag types was available.  

For all three species, the proportion of time spent active at night was broadly consistent 

between sites and years, but there was more variation in the proportion of time spent 

active during the day (Figures 5, 7 and 9). This may reflect differences in foraging areas 

between years and colonies. For example, kittiwakes at Rathlin Island showed substantial 

differences in foraging ranges between 2009 and 2010 (Chivers et al., 2012). If foraging 

activity is concentrated in daylight hours, then in years when birds have to travel further in 

order to access sufficient resources to successfully fledge young, the proportion of time 

birds spend active at night relative to the proportion of time spent active during the day is 

likely to be reduced. This highlights the importance of considering wider environmental 

conditions when assessing the proportion of time birds spend active at night. Such an 

understanding is crucial to determining the potential transferability of estimates of 

nocturnal activity between sites.  
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4.2. Flight Speed 

 

Flight speed is used twice in the Band (2012) Collision Risk Model, firstly to estimate the flux 

rate, and secondly to estimate the probability of collision. Consequently, the model is 

sensitive to estimates used for flight speed, especially in relation to the flux rate (Masden et 

al., 2021). At present, recommended estimates for flight speed are based on generic values 

(e.g. Alerstam et al., 2007; Pennycuick, 1997) collected during a limited range of conditions, 

and often based on limited sample sizes. Our analysis suggests that typical flight speeds may 

be lower than those reported in these previous studies, which are often collected in areas 

which may not be representative of conditions experienced offshore (Alerstam et al., 2007; 

Pennycuick, 1997). Accounting for these differences can result in a substantial reduction in 

the predicted collision rate (Masden et al., 2021). 

For all three species, commuting speeds were faster than foraging speeds. In the context of 

the Band (2012) Collision Risk Model, this means that the estimated probability of collision 

will be higher for foraging birds, but the flux rate will be higher for commuting birds. 

However, whilst the impacts of flight speed on the probability of collision and flux rate act in 

opposite directions, these do not cancel one another out (Masden et al., 2021). 

Consequently, collision rates based on commuting speeds will be greater than those based 

on foraging speeds. At present, average speeds combining both commuting and foraging 

flight are used in collision modelling, but it may be possible to account for these differences 

through modifications to the model.  

In previous analyses, estimates of foraging and commuting speeds were derived from the 

step lengths estimated from Hidden Markov Models (Thaxter et al., 2019). Further analysis 

of data from lesser black-backed gulls demonstrates that there is strong correlation 

between the trajectory speeds estimated using EMbC and the instantaneous speeds 

estimated from GPS for both foraging and commuting flight (Figures 15, 18, 22). As might be 

expected, correlations were strongest for the fastest sampling rates. However, despite these 

strong correlations, there was a systematic bias, with the estimated trajectory speeds 

slower than the instantaneous speeds.  
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4.3. Flight Height 

4.3.1. Overall conclusions 

 

For lesser black-backed gull and kittiwake, we found that commuting flight tended to be 

higher than foraging flight (Table 22). This is consistent with previous findings for lesser 

black-backed gull (Corman & Garthe, 2014). For gannet, flight heights were similar for both 

foraging and commuting flights (Table 20). However, the “stop” behaviour may also reflect 

finer scale foraging as it is characterized by tracks with high tortuosity and low speed. Flight 

heights for the “stopped” behaviour were at, or close to the sea surface (Figure 34). The 

nuances of these different foraging behaviours, and their implications for collision risk, 

would benefit from further investigation.  

 

For lesser black-backed gulls, we found that estimated flight heights were broadly similar 

among colonies for foraging flight, but that there were greater differences among colonies 

in relation to commuting flight height (Tables 16 & 17). Birds from Orfordness had lower 

median flight heights and spent a lower proportion of their time at collision risk height 

during commuting flights than was the case for birds from Walney or Skokholm. Similarly, 

gannets considered in our analyses from Flamborough and Bempton Cliffs had lower 

estimated heights for both foraging and commuting flight than was the case for birds from 

the Bass Rock (Cleasby et al., 2015). These data highlight the potential for differences in 

flight heights among sites, especially in relation to commuting flight. 

 

Flight heights have previously been reported for these species measured using approaches 

including GPS (Corman & Garthe, 2014; Ross-Smith et al., 2016), altimeter (Cleasby et al., 

2015), laser rangefinder (Borkenhagen et al., 2018; Harwood et al., 2018) and LiDAR ( Cook 

et al., 2018). Analyses of these data have highlighted the potential for spatial and temporal 

variation in species flight heights. Our analyses highlight how some of this variation may be 

linked to behaviour in any given place at any given time. Where flight heights are estimated 

from survey data, it may be possible to use the outputs from our analyses to identify areas 

where birds are likely to be foraging or commuting. However, this must be done with 

caution. There are differences between flight heights estimated using different 

methodologies, although, it is unclear the extent to which these reflect genuine differences 

in flight heights as a result of spatial or temporal patterns, or differences in the bias, error, 

and precision with which these measurements are made, and further research is needed to 

properly understand this.  

 

4.3.2. Limitations 

We identified negative bias in GPS altitudes for lesser black-backed gulls tagged at North Sea 

colonies and addressed this by adjusting the data. However, it is not known whether the 

adjustments made fully resolved the bias. Most importantly, any uncertainty in the mean 

bias was not carried forward into the remainder of the analysis, and future studies should 

aim to explicitly model any potential GPS data biases within the observation error model. 

The modelled commuting heights for lesser black-backed gulls tagged at Orfordness were 

lower than those for individuals from colonies in the Irish Sea. By exploring precisely how 
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GPS altitudes were calculated, future work could determine whether there is any remaining 

altitude bias in the data, and whether any remaining apparent altitude bias has an ecological 

cause. 

 

4.4. Implications for assessment of collision risk 

 

Of the parameters considered here, flight speed appears to be reasonably consistent among 

colonies, at least in the case of lesser black-backed gulls (Table 15). However, there appears 

to be more variation in both nocturnal activity and flight height among colonies. 

Consequently, if GPS data are to be used to assess parameters used in collision risk 

modelling, this may need to be done on a site-specific basis, particularly in relation to the 

estimation of commuting flight heights.  

Estimates of collision risk based on GPS data are likely to be greater in areas used for 

commuting than those used for foraging. In part, this reflects the behaviour of the birds, 

with a higher proportion of commuting birds at collision risk height than is the case for 

foraging birds. However, it also reflects the model assumptions and is driven by the 

influence of flight speed in the estimation of the flux rate (Masden et al., 2021). This 

highlights a key challenge in the use of GPS data in the  Band (2012) Collision Risk Model. 

Avoidance rates are estimated by comparing observed collision rates to those predicted in 

the absence of any avoidance behaviour. Consequently, these account for both the 

behaviour of the birds and any errors in how collision rates are estimated. Flight speed 

strongly influences the estimation of the flux rate, and therefore predicted collision rate. At 

present, the predicted collision rate in the absence of avoidance behaviour is derived using 

generic estimates of flight speed (e.g. Alerstam et al., 2007), which are often substantially 

faster than those estimated using GPS for both foraging and commuting flight, regardless of 

whether these have been derived from instantaneous or trajectory speeds. This means that 

flux rates, and therefore collision rates, estimated using generic flight speed estimates will 

be higher than those estimated using GPS flight speed estimates for both foraging and 

commuting flights, and that the over-estimation will be greatest in areas used for foraging. 

As a result, avoidance rates (based on comparisons of predicted and observed collision 

rates) derived from generic flight speeds would be higher than those based on the GPS 

speeds. Given the difference between foraging and commuting flight speeds, and the 

difference in flight heights between the two behaviours, this is also likely to mean that 

incorporating behaviour into collision risk models may also require the estimation of 

different avoidance rates.  
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7. Appendix 1: Workshop Summaries 

 

Part 1: Data Collection 

Attendees: Aonghais Cook (BTO), Daniel Johnston (BTO), Gary Clewley (BTO), Liz Humphreys 

(BTO), Chris Thaxter (BTO), Jacob Davies (BTO), Philipp Boersch Supan (BTO), Aly McCluskie 

(RSPB), Lucy Wright (RSPB), Ian Cleasby (RSPB), Saskia Wischnewski (RSPB), Francis Daunt 

(UKCEH), Alex Robbins (NatureScot), Martin Perrow (ECON), Sean Sweeney (APEM), Tim 

Kasoar (APEM), Matt Hazleton (NIRAS), Ross MacGregor (MacArthur Green), Mark Trinder 

(MacArthur Green), Drew Milne (Marine Scotland), Tom Evans (Marine Scotland) 

 
Device attachment 
 
Before deploying a bird-mounted device such as a GPS tag, permission must be obtained 
from the Special Methods Technical Panel (SMTP) of the BTO Ringing Committee. To enable 
SMTP to properly evaluate proposals, and respond to any feedback, it is recommended that 
all applications are submitted at least three months prior to the deployment of any devices. 
A number of approaches to attach GPS tags, or other devices, to birds exist including, leg or 
ring mounting, tape mounting to a birds’ tail or back, glue mounting to a birds’ back and 
using a leg-loop or backpack harness (e.g. Clewley et al., 2021; Evans et al., 2020; Mallory & 
Gilbert, 2008; Seward et al., 2021). Attachment times for these methods vary from c. 5 
minutes for more simple methods to c. 10-20 minutes for more complex approaches (Figure 
1).  
 

 
Figure 1 Typical time required to deploy a bird-mounted device using different attachment 
methodologies. 
 
The most appropriate attachment methodology will depend on the species and objectives of 
any study. Attachment methodologies vary in their longevity (Figure 2). Generally, tape-
mounted devices will remain attached for the shortest duration (days-weeks), glue mounted 
devices will remain attached for a few weeks, while harness or ring-mounted devices can 
last for longer time periods (1 year +). However, it is important to note that weak-link 
harnesses, which are designed to fail after a given time period, have been developed in 
order to reduce impacts on birds (Clewley et al., 2021). Consequently, glue or tape mounted 
deployments may be most suitable for short-term collection of data on habitat use or 
behaviour during the breeding season, while harness or ring-mounted devices are required 
for the collection of year-round data, and data outside the breeding season. 
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Figure 2 Typical duration of attachment for bird-mounted devices fitted using different 
attachment methodologies. 
 
Generally, leg-mounted approaches are likely to be suitable for each of the key species of 
concern to the offshore wind industry at present (Table 1). However, these are limited to 
smaller devices such as geolocators or time-depth-recorders. Tape mounted devices have 
also been used successfully with the species considered here. However, these may be 
subject to relatively short deployments as they are vulnerable to removal by some species, 
particularly large gulls. In recent years, there have also been issues when using tape to 
mount devices on bird’s backs. These are thought to be linked to feather quality and 
structure (S. Wischnewski Pers. Comm.). Whilst glue mounted devices may be deployed over 
longer time periods than those deployed using tape, careful consideration must be made of 
species moult status. Birds in active moult are more prone to losing devices as they shed 
feathers. Careful consideration must also be given to the glue used to attach devices, 
particularly those that produce an exothermic reaction when exposed to an activator. 
Whilst, harnesses have previously been successfully used on large gulls but there may be 
adverse impacts on other species (Thaxter et al., 2014, 2016). In a recent trial on kittiwakes, 
backpack harnesses were found to be associated with an unacceptable level of abrasion and 
removed (Clewley et al. in prep.). Abrasion was also noted on birds fitted with leg-loop 
harnesses, whilst these devices were also removed, it was felt that a revised leg-loop design 
may prevent this, and a further trial using this approach is planned for the 2022 breeding 
season. It is considered unlikely that harness methodologies would be licensed for diving 
species (e.g., guillemot, razorbill and gannet) as a result of the potential for increased drag 
underwater from devices positioned in this way. Regardless of the attachment methodology 
selected, specialist training will be required by anyone deploying devices, particularly in 
relation to harnesses, which are associated with a greater risk to bird welfare.     
 
Table 1 Suitability of device attachment methodologies for UK seabirds. ✓ Suitable, ✓ may 
be suitable with further consideration,  not suitable, * not tested but unlikely to be 
suitable for diving species.  

 Leg-
mounted 

Tape 
mounted 

Glue 
Mounted 

Leg-loop 
harness 

Backpack 
harness 

Guillemot ✓ ✓  * * 

Razorbill ✓ ✓  * * 

Gannet ✓ ✓  * * 

Kittiwake ✓ ✓ ✓ ✓  

Lesser black-
backed Gull 

✓ ✓ ✓ ✓ ✓ 

Herring Gull ✓ ✓ ✓ ✓ ✓ 

Great Black-
backed Gull 

✓ ✓   ✓ 
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Device effects 
 
As part of any deployment, it is important to collect data on potential device effects. There 
are two reasons for this: 

1) To ensure that devices are not adversely effecting the birds. 
2) To understand the extent to which data from tagged individual may or may not 

be representative of the wider population. 
 
In any process in which a bird is captured, handled and fitted with a device, there will always 
be an effect. The key questions to consider are whether the process has an unacceptable 
impact on the individual concerned, and whether, as a result of this process, the recorded 
behaviour of the individual is no longer likely to reflect that of the population more widely.  
 
A range of data may be collected in order to assess potential device effects (Bodey et al., 
2018). This includes demographic data such as productivity and return rates the following 
breeding season, as well as behavioural data such as nest attendance rates and parental 
change-over rates. The data collected often varies on a study-by-study basis, and may 
reflect the visibility of the colony concerned, the accessibility of that colony and the 
potential for any disturbance effects if it is necessary to enter the colony. Where multiple 
devices have been deployed at a single colony, it is also possible to investigate how device 
weight, position and attachment methodology influences bird’s distribution at sea. 
However, it is noted that unpicking these factors may be challenging given the sample sizes 
involved.  
 
Data have typically been collected by comparing tagged birds to a control group of marked 
birds. However, there is growing interest in comparing data from a third group of birds that 
have not been handled (e.g. Seward et al., 2021). This would help us to understand whether 
any effects are the result of the device and attachment methodology or, the result of 
handling. Where a colony is easily observable, data on productivity can be collected by 
observing a subset of nests where neither parent has been captured. Where there is an 
existing cohort of marked individuals (e.g., with colour-rings) these nests can also be 
monitored to provide data on nest attendance and return rates for birds that have not been 
captured as part of the tagging study. If appropriate, data collected as part of monitoring 
(e.g., productivity rates) for tag effects should be added to the Seabird Monitoring 
Programme (SMP) database.  
 
For a well-designed tracking study, device effects should be small. Given the relatively small 
sample sizes involved in tracking studies, many will lack the statistical power to detect any 
device effects (Cleasby et al., 2021). Power to detect impacts may be increased by pooling 
results across multiple studies (e.g. Bodey et al., 2018). To facilitate this, there is a need for 
researchers working on the same species across multiple colonies to co-ordinate data 
collection and move towards more standardised assessments of tag effects. These 
standardised assessments are likely to vary on a species-by-species basis, with key 
considerations relating to the relative accessibility of different colonies and the potential for 
disturbance. However, these considerations should not be seen as a barrier to collecting 
additional data where circumstances allow.  
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Sampling rates  
 
Faster sampling rates allow for the collection of higher resolution tracks, and more accurate 
GPS estimates of altitude. However, there is a trade-off between sampling rate and battery 
life. As battery life is proportional to weight, this means that the size of the species being 
tracked can impose a limit on the sampling rate that can be maintained over the course of a 
study. Where batteries get drained too quickly, this can result in an incomplete record of a 
bird’s foraging movements and may not accurately reflects its true foraging distribution. 
This may pose challenges for analyses of species space use (e.g. Wakefield et al., 2017).  
 
Some tags offer the utility to apply geo-fences to data, whereby higher resolution data can 
be collected within a given area (e.g., a wind farm), with lower sampling rates to preserve 
battery life elsewhere. Ultimately, the choice of sampling rate will be influenced by the 
question being asked. If the aim of a study is to investigate the distribution and habitat 
usage of birds at sea (Thaxter et al., 2015), a lower sampling rate, with coarser resolution 
spatial information may be appropriate in order to minimize any potential data gaps and 
incomplete foraging trips. However, if the aim is to collect GPS flight height estimates (Ross-
Smith et al., 2016), or investigate fine-scale movements of birds in relation to wind farms (D. 
Johnston et al., 2021), higher resolution data will be required. However, this may come at a 
cost of a less complete understanding of species at sea distribution. This choice should be 
discussed and agreed with funders, and other stakeholders, at the outset of any study.  
 
GPS/Altimeter measurements of flight height 
 
Flight height estimates may be obtained directly from GPS data or, through recording 
pressure data using an altimeter.  
 
For GPS estimates of flight height are made relative to modelled estimates of mean sea-
level. There are often significant errors associated with flight heights estimated from GPS, 
these are related to the number of satellites used to record a bird’s position, cloud cover 
and sampling rate. It is important to account for these errors in the modelling process (e.g. 
Péron et al., 2020; Ross-Smith et al., 2016). There may also be error associated with the 
estimation of mean sea level. However, using behavioural classification, this error can be 
accounted for by calibrating flight height estimates derived from times at which birds were 
classified as floating on the sea surface.  
 
Altimeters are generally power-efficient, without the need for the high-resolution data 
required for GPS flight height estimates. This is valuable in relation to battery life, meaning 
distributional data can be collected alongside the flight height estimates. However, 
processing the data collected by altimeters to convert pressure measurements into altitude 
estimates is more computationally intensive than processing GPS flight height estimates.  
Altimeters measure pressure in bursts of 10 Hz, these are then converted to estimates of 
altitude as follows: 
 

ℎ =
𝐾𝑇

𝑚𝑔
 ln (

𝑃

𝑃0
) Eq. 1 
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where h is the altitude in meters, K is the universal gas constant for air, T is the temperature 
in Kelvins, m is the molar mass of air, g is acceleration due to gravity, P0 is the pressure at 
sea level and P is the pressure recorded by the altimeter. There are a number of potential 
sources of data for estimating P0 including local measurements from offshore buoys, 
modelled estimates from sources like ECMWF ERA 5 and measurements obtained from the 
altimeters when birds are known to be floating on the sea surface. Given that pressure is 
known to vary both spatially and temporally, there may be a need to combine data in order 
to obtain a calibrated estimate of pressure at sea level (Figure 3). These calibrated estimates 
of P0 can then be used in Eq. 1 to estimate the flight altitude of a bird at any given point. 
However, when using approaches such as this, it is important to note that broad-scale 
patterns in pressure can change quickly, and that there may be some drift in the calibration 
of tags. Consequently, there may be greater uncertainty in species which engage in less 
floating behaviour. In these circumstances, it would be valuable to consider other potential 
sources of local pressure data, for example that measured from LiDAR buoys, or met masts 
within windfarms.  
 

 
Figure 3 Combining modelled pressure estimates from ERA 5 dataset with estimates of 
pressure from floating birds, presumed to be at sea level, to obtain a calibrated estimate of 
pressure at sea level.  
 
Where the two methodologies have been combined, altimeter estimates of flight height are 
highly correlated with the GPS estimates. However, the estimates of flight height obtained 
using altimeters are generally higher, and have greater precision, than those obtained using 
GPS. Regardless of whether flight heights are estimated using GPS or altimeters, calibrating 
these estimates with reference to points at which birds have been identified as floating on 
the sea surface is a valuable step towards reducing uncertainty associated with the data.  
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Part 2: Use of data in Collision Risk Modelling 
 
Attendees: Aonghais Cook (BTO), Gary Clewley (BTO), Liz Humphreys (BTO), Chris Thaxter 
(BTO), Jacob Davies (BTO), Philipp Boersch Supan (BTO), Aly McCluskie (RSPB), Lucy Wright 
(RSPB), Saskia Wischnewski (RSPB), Francis Daunt (UKCEH), Alex Robbins (NatureScot), Sean 
Sweeney (APEM), Matt Boa (APEM), Matt Hazleton (NIRAS), Ross MacGregor (MacArthur 
Green), Mark Trinder (MacArthur Green), Tom Evans (Marine Scotland) 
 

Behavioural classification 

There may be pronounced differences in species flight heights and speeds in relation to 

different behavioural classifications (e.g. foraging or commuting flight) which have 

important implications for the assessment of collision risk (Cleasby et al., 2015; Masden et 

al., 2021; Thaxter et al., 2019). Classifications are typically based on the tortuosity of tracks 

and distance travelled between GPS points (Figure 4). In addition to potentially offering a 

means to deriving behaviour specific estimates of parameters for collision risk models, these 

approaches potentially also offer a means to better understand the consequences of 

displacement and barrier effects.  

 

 

Figure 4 Behavioural classifications are based on the step length between GPS points, akin 

to flight speed, and the tortuosity or tracks (measured by turning angle). 
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A variety of different approaches are available from simple rules-based methods (e.g., based 

on flight speed) to more complex approaches based on machine-learning and neural 

networks. At present, the most widely used methods are Hidden Markov Models (HMMs) 

(McClintock & Michelot, 2018) and Expectation-Maximisation Binary Clustering (EMbC) 

(Garriga et al., 2016). The choice of approach will depend both on the data available, and 

the objectives of the study. Generally, analysis is based on step lengths and turning angles 

estimated from GPS data (Figure 4). However, it is possible to incorporate other data, for 

example from accelerometers or time-depth-recorders, to refine these classifications 

further (Thaxter et al., 2019). Where the aim is to simply partition behaviour into foraging 

and commuting flight (e.g., to obtain behaviour-specific estimates of flight height and 

speed), approaches like EMbC offer a fast and robust means to do this. However, if the aim 

is to better understand drivers of behaviour (e.g., to investigate how collision risk may 

change in different conditions), alternative approaches which can incorporate covariates, 

such as HMMs are required. However, this can bring challenges as HMMs are more sensitive 

to gaps in data. If this is the aim of a study, it will have implications for sampling rates and 

battery life that will need to be considered at the outset of that study. Regardless of the 

approach taken for behavioural classification, careful ecological interpretation of the 

behavioural states identified is required, and the number of states identified may vary 

between species (Thaxter et al., 2019).  

It is important to consider the representativeness of any behavioural classifications. At 

present, data relate to the breeding season only, and only to breeding birds. There is a need 

to consider how representative data are of non-breeding birds, and birds outside the 

breeding season.  

Flight Speed 

Flight speed is used by the Band (2012) collision risk model twice. Firstly, to estimate the 

flux rate, and secondly to estimate the probability of collision. Consequently, flight speed is 

among the parameters that the model is most sensitive to (Masden et al., 2021). At present, 

estimates of flight speed are based on values presented in studies such as Alerstam et al. 

(2007), which are often derived from limited sample sizes and durations of observations. 

The rapid expansion of GPS tracking studies for seabirds offers a valuable source of data for 

flight speed estimates (Largey et al., 2021).  

Flight speed can be estimated from GPS tags in two ways: 1) by estimating the distance 

travelled between two GPS fixes with known time intervals (trajectory speed), and 2) using 

the Doppler effect referencing the time taken for the signal to travel between the tag and 

satellite(s) (e.g. Fijn & Gyimesi, 2018) to give an instantaneous measurement of speed. 

Whilst the two speeds are strongly correlated, the trajectory speed systematically under-

estimates flight speed, as measured instantaneously (Figure 5), though this effect decreases 

as sampling rate increases. At present, whilst the instantaneous speed is not routinely 

reported as part of the output from all tags, there should not be a technical barrier to 

enabling this, and it is recommended that this request is made to tag manufacturers when 

ordering tags.   
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Figure 5 Estimates of lesser black-backed gull flight instantaneous (derived using Doppler 

effect) and trajectory (derived by estimating distance travelled between fixes) speeds 

derived for different behavioural states. 

For both foraging and commuting flight, recorded speeds were lower than those reported 

by Alerstam et al. (2007). Foraging speeds were substantially slower than commuting speeds 

(Table 2). As data are restricted to birds at breeding colonies, there are concerns in relation 

to how representative these speeds may be for non-breeding birds, or birds outside the 

breeding season. However, it is also noted that similar criticisms could be applied to the 

speeds recommended in current guidance which were derived from more limited sample 

sizes in a more restricted set of conditions. To overcome some of the challenges related to 

understanding how representative data are, flight speed estimates could be obtained from 

birds with long-term GPS data collected outside the breeding season (e.g., Lesser black-

backed gulls). Recorded flight speeds could also be compared to those collected using other 

methodologies including radar (Tjomlov et al., 2021) and laser rangefinders (Skov et al., 

2018), with a view to integrating measurements across methodologies.  



97 
 

Table 2 Flight speeds from Alerstam et al. (2007) and for foraging and commuting flight 

estimated using instantaneous speed from GPS. 

Species Colony Alerstam et al. 
(2007) 

Foraging Commuting 

Lesser black-
backed gull 

Walney 

13.1 

7.94 9.51 

Lesser black-
backed gull 

Skokholm 
7.06 10.14 

Lesser black-
backed gull 

Orfordness 
7.69 9.70 

Kittiwake Flamborough 
Head and 
Bempton Cliffs 

13.1 6.06 9.70 

Gannet Flamborough 
Head and 
Bempton Cliffs 

14.9 10.79 14.08 

 

Using the lower flight speeds estimated from GPS in the Band (2012) model will result in 

lower predicted collision rates as a result of a reduction in the predicted flux rate (Masden 

et al., 2021). Following behavioural classification, these flight speeds can be refined further 

into estimates for foraging and commuting flight (Table 5). During the breeding season, 

where there is clear separation between areas used for foraging and those used for 

commuting, it may be straightforward to recommend the use of behaviour specific flight 

speeds for collision risk modelling, though noting concerns about the representativeness of 

these data for non-breeding individuals. However, where this delineation is less clear, if 

estimates of behaviour-specific flight speed are to be used, it may be necessary to combine 

these using a weighted average based on the proportion of time spent in foraging or 

commuting flight.  

Flight height 

Estimates of the proportion of birds at collision risk height are a key parameter for assessing 

collision risk in relation to offshore wind farms (Band, 2012; Johnston et al., 2014). Species 

flight heights may be estimated using a range of different technologies including radar, 

LiDAR, GPS, altimeters and laser rangefinders (Largey et al., 2021). However, estimates of 

species flight heights from different technologies may be subject to systematic bias, error 

and individual variation (Péron et al., 2020). Consequently, it is better to characterise the 

variation in species flight heights using a distribution, rather than relying on individual point 

estimates.  

GPS estimates of species flight heights are known to be subject to error (Ross-Smith et al., 

2016). Whilst this is mostly obviously manifested by a substantial proportion of birds flying 

below the sea surface, flight height estimates of birds flying above the sea surface will also 

be subject to this error. However, we know that this error is correlated with the number of 

satellites associated with each estimate, meaning that we can model this by partitioning out 
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the observation error and the true variation in species flight heights using a state-space 

model following Ross-Smith et al. (2016). Using this approach, we can see that the raw 

altitude data obscure a peak in the flight height distribution, and over-estimate the 

proportion of birds at higher altitudes (Figure 6).  

 

 

 

Figure 6 Raw GPS estimates of altitude for kittiwakes within the Buchan Ness to Collieston 

Coast SPA compared to altitudes estimated once the error in these measurements had been 

modelled.  
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Figure 7 Flight height distributions for foraging and commuting lesser black-backed gulls at 

Orford Ness, Skokholm and Walney Island.  

As with flight speed, we can partition GPS data into foraging and commuting behaviour and 

estimate flight height distributions for each (Figure 7). For lesser black-backed gulls, 

commuting flights were generally higher than foraging flights, with more time spent at 

collision risk height, indicating increased collision risk for commuting behaviour. As with 

flight speed, this offers the potential for behaviour-specific estimates of flight height to be 

used for collision risk modelling. 

Avoidance Rates  

Outputs from collision risk models are highly sensitive to the values assumed for avoidance 

(Chamberlain et al., 2006; Masden et al., 2021). At present, the avoidance rates used in 

collision risk models account for model error in addition to any behavioural avoidance 

(Masden et al., 2021). Avoidance rates are calculated by comparing observed collision rates 

to those predicted in the absence of avoidance (Cook et al., 2014; Cook et al., 2018). 

Consequently, whilst it is possible to estimate avoidance behaviour using GPS tracking data 

(Johnston et al., 2021), these values cannot be used as avoidance rates for the purposes of 

collision risk modelling.  

Integrating GPS data into assessments of collision risk 

There are two potential roles for GPS data in the assessment of collision risk. Firstly, data 

can be used to refine estimates of the values of parameters, such as flight height, flight 

speed and nocturnal activity, that are used in collision risk models (e.g. Cleasby et al., 2015; 

Fijn & Gyimesi, 2018; Furness et al., 2018; Masden et al., 2021; Ross-Smith et al., 2016). 

Secondly, GPS data could be used to refine existing models, or develop new models, to 

better account for the bird behaviour in the assessment of collision risk (e.g. Schaub et al., 

2019; Searle et al., n.d.).  
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At present, there is considerable uncertainty underpinning assessments of the impacts of 

offshore wind farms (Masden et al., 2015). In keeping with the precautionary principle, 

these means that conservative estimates must be used for the parameters used in collision 

risk models. This leads to concerns that precaution gets magnified through the assessment 

process, leading to assessments that are overly precautionary. As a result, this uncertainty 

contributes to a situation whereby several of the projects put forward as part of the 

ScotWind leasing round cannot proceed unless evidence can be put forward to release them 

from high levels of ornithological constraint.  

Recent analyses highlighted that basing collision estimates on flight speeds measured using 

GPS, rather than the current recommended values, could reduce predicted collision rates in 

lesser black-backed gulls at a wind farm cluster in North West England by 12% (Masden et 

al., 2021). Further refinements in model parameters, such as accounting for when birds are 

foraging or commuting, may also contribute to reductions in predicted collision rates. 

Refinements such as these enable us to reduce the precaution in assessments of collision 

risk by reducing uncertainty surrounding input parameters.  

It is important to consider the implications of refinements to model parameters for 

estimates of avoidance rates. At present, estimates of avoidance incorporate model error, 

which will, at least partially, include misspecification of input parameters. As highlighted by 

Masden et al. (2021), this is particularly true in relation to the impact of flight speed on the 

estimated flux rate. A reduced flight speed, as is the case for the GPS flight speed estimates 

considered here relative to current recommended values, will reduce the estimated flux 

rate, and consequently the number of collisions predicted in the absence of avoidance. As 

avoidance rates are estimated by comparing predicted and observed collision rates, this 

may mean that where lower flight speeds are used, revised, lower avoidance rates should 

be used as well. This highlights a key challenge in integrating GPS data into assessments of 

collision risk. Whilst the potential to reduce precaution through better estimation of input 

parameters is a positive, it is still unclear the extent to which this may improve (or 

otherwise) estimates of collision risk. The key to better understanding this will be to ensure 

that studies such as Skov et al. (2018), or that currently underway in Aberdeen Bay (Tjomlov 

et al., 2021), are carried out in such a way that they enable the validation of collision risk 

models.  
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Recommendations 

Tags 

The type of tag used for a study will have implications for the attachment methodology that 

is used, the data that are collected and the analyses that are possible. Consequently, the 

choice of tag should be discussed with project funders and other relevant stakeholders at 

the outset of a project. There will be a trade-off between battery life and sampling rate, 

which will have implications for the collection of distribution data, fine-scale movement 

data and flight height information (if using GPS). Where distribution data are key, lower 

sampling rates should be used in order to preserve battery life and limit data gaps and 

incomplete trips. If possible, altimeters should be prioritised for the collection of flight 

height data as these have a minimal impact on battery life. Where higher resolution data are 

required, it may be possible to preserve battery life through the use of geo-fences to limit 

the locations in which these data are collected (e.g., within a wind farm).  

Key considerations in relation to tag features: 

• Potential to include geo-fences for fast and slow sampling rates. 

• Altimeters for flight height measurements 

• Output instantaneous flight speeds as estimated using Doppler effect. 

 

Tag effects 

It should be acknowledged that in any tracking study, there will be tag effects. However, the 

key considerations should be whether these effects have an unacceptable impact, either on 

the birds, or on the quality of the data that is being collected. In many cases, these effects 

may be small and, given the sample sizes of tagged birds in any individual study, we may 

lack the statistical power to detect them. Differences in site accessibility and visibility mean 

that the data to assess tag effects will vary between colony. The exact set of parameters 

(e.g., productivity, return rates, attendance rates) that can be collected will vary between 

species and sites. In determining which parameters to collect, it is important to ensure any 

unnecessary disturbance to the breeding colony is avoided. Where a single species is 

tracked at multiple sites, it is important to ensure these studies are co-ordinated and that 

the data collected across these sites are standardised to help overcome any challenges 

associated with statistical power. This should not be seen as a barrier to collecting 

additional data at sites where circumstances allow.  

 Analyses of flight height 

Regardless of whether flight heights are estimated using GPS or altimeters, an important 

first step in the analysis is to calibrate these data based on points at which behavioural 

classification indicates birds are floating on the sea-surface. In the case of altimeters, this 

will provide an indication of pressure at the sea surface in any given location which can then 

be used to calibrate modelled estimates from elsewhere (e.g., ECMWF ERA5). In the case of 

GPS estimates, this will help determine whether there is any systematic error in the flight 
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height estimates due to errors in estimating mean sea level from the geoid. Regardless of 

the methodology used to estimate species flight heights, it should be recognised that there 

will be uncertainty around them due to error, bias, differences in precision and individual 

variability. Consequently, these data should be modelled to produce continuous flight 

height distributions, rather than presented as individual point estimates. Where 

appropriate, and data allow, distributions can be generated for different behaviours (e.g., 

foraging or commuting flight), locations or conditions.  

Analyses of flight speed 

Whilst instantaneous estimates of speed are not routinely reported in the output from all 

tag types, this should in theory be possible. Tag manufacturers may facilitate requests to 

record and output these data if researchers raise this prior to placing an order. Subsequent 

analyses of flight speed from tagging data should be based on these instantaneous 

measurements of speed, rather than estimated from distance travelled between fixes, an 

approach which may systematically under-estimate speed.  As with flight height, flight 

speed estimates can be partitioned for foraging and commuting flight and/or analysed in 

relation to location and local conditions.  

Integrating GPS data into assessments of collision risk 

GPS tags offer data on flight height, flight speed and levels of nocturnal activity, all of which 

are potentially of value in relation to assessing collision risk. Indeed, in many cases, these 

may reflect the best available data. However, integrating these data into collision risk 

models may not be straightforward.  

At present, avoidance rates used for the Band collision risk model are based on comparisons 

of observed and predicted collision rates. The predicted collision rates are generally based 

on generic data (e.g. Alerstam et al., 2007), meaning that these data contribute to the 

model error that is incorporated in the avoidance rates. Using GPS data, which may have 

been collected at a site-specific level, may alter the predicted collision rates used to 

estimate avoidance rates and account for some of this model error, with implications for the 

estimated avoidance rate.  

Before incorporating GPS data into collision risk models, there will need to a careful 

consideration of the implications for the avoidance rate. This could be investigated by 

comparing collision rates in the absence of avoidance predicted using site-specific GPS data 

and generic data. If there is a substantial difference between the two predicted collision 

rates, this may indicate a need for a more fundamental assessment of the model to enable it 

to incorporate data from sources such as GPS which were not widely available at the time it 

was developed.   
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