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Abstract

Wind energy offers substantial environmental benefits, but wind facilities can negatively

impact wildlife, including birds and bats. Researchers and managers have made major

efforts to chronicle bird and bat mortality associated with wind facilities, but few studies have

examined the patterns and underlying mechanisms of spatial patterns of fatalities at wind

facilities. Understanding the horizontal fall distance between a carcass and the nearest tur-

bine pole is important in designing effective search protocols and estimating total mortality.

We explored patterns in taxonomic composition and fall distance of bird and bat carcasses

at wind facilities in the Northeastern United States using publicly available data and data

submitted to the US Fish and Wildlife Service under scientific collecting and special purpose

utility permits for collection and study of migratory birds. Forty-four wind facilities reported

2,039 bird fatalities spanning 128 species and 22 facilities reported 418 bat fatalities span-

ning five species. Relative to long-distance migratory birds, short-distance migrants were

found farther from turbines. Body mass of birds and bats positively influenced fall distance.

Turbine size positively influenced fall distance of birds and bats when analyzed collectively

and of birds when analyzed separately from bats. This suggests that as turbines increase in

size, a greater search radius will be necessary to detect carcasses. Bird and bat fall distance

distributions were notably multimodal, but only birds exhibited a high peak near turbine

bases, a novel finding we attribute to collisions with turbine poles in addition to blades. This

phenomenon varied across bird species, with potential implications for the accuracy of mor-

tality estimates. Although pole collisions for birds is intuitive, this phenomenon has not been

formally recognized. This finding may warrant an updated view of turbines as a collision

threat to birds because they are a tall structure, and not strictly as a function of their motion.

Introduction

Despite environmental advantages of wind energy (e.g., renewable resource, near zero carbon

dioxide emissions and water requirements [1]) over more traditional, carbon-based energy
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sources, wind facilities can threaten wildlife directly (e.g., collision mortality) and indirectly

(e.g., displacement) [2–6]. The magnitude of indirect effects of wind facilities on wildlife are

variable. For example, the impacts on elk (Cervus elaphus [7]), pronghorn (Antilocapra ameri-
cana [8]), greater prairie chicken (Tympanuchus cupido [9]), and desert tortoise (Gopherus
agassizii [10]) appear limited or benign. However, some species, such as greater sage grouse

(Centrocercus urophasianus) respond negatively to turbine presence [11]. Negative impacts of

wind facilities on wildlife may intensify with the current rapid expansion of the wind industry

[12, 13]. For instance, United States (US) wind power has tripled in the past decade [14], and

is forecast to more than quadruple by 2050 [1, 15].

To date, the majority of research on the effects of wind facilities on wildlife has focused on

mortality of birds and bats (see Schuster et al. [6] for review). Turbine collision mortality in

the US has been reported for 300 bird species, with small passerines (Passeriformes) compris-

ing 57% of US fatalities [2]. Recent estimates of annual bird fatalities in North America have

ranged between 140,000 and 679,000 [5, 16, 17], though the number of US turbines has

increased by more than 35% since those estimates were provided [14]. There is particular con-

cern regarding raptors of low abundance [2, 18, 19], whose low reproductive rates and high

adult survival may hamper recovery from mortality at wind facilities [6, 20]. However, for

most bird species, wind turbines contribute a small amount to total anthropogenic mortality

[21] and may not significantly impact vital rates (e.g., annual survival probability) and state

variables (e.g., abundance, density, occupancy) at the population level.

Wind energy development may have greater implications for the conservation of bats. Mor-

tality by turbine collision has been recorded for 24 of North America’s 47 bat species, primarily

migratory tree-roosting bats [22]. Compared to many passerine birds, wind turbines may have

a more pronounced negative impact on migratory tree bats. At the majority of US wind facili-

ties that have been examined, bat mortality has been estimated to be higher than bird mortality

[2, 6]. Estimates of annual bat fatalities in North America have ranged between 600,000 and

949,000, but similar to birds, the number of US turbines has increased substantially since these

estimates were developed [14]. High bat mortality is of particular concern because basic demo-

graphic information is lacking for many species, making population-level inferences of the

impacts of wind facilities unfeasible [23, 24]. Further, since 2006, many bats species have been

severely impacted by white-nose syndrome and additional mortality from wind facilities could

impact recovery of species of special concern [25]. However, it should be noted that migratory

tree bats that experience the most mortality at wind facilities are not as affected by white-nose

syndrome [26]. Finally, because bats have longer life cycles and lower reproductive rates than

many bird species, populations may be less likely to remain stable when faced with additive

anthropogenic mortality [22].

Despite research to date, there remains a shortage of information on the spatial arrange-

ment and patterns of carcasses at wind facilities [27]. Understanding what influences fall dis-

tance, the horizontal distance between a carcass and the nearest turbine pole, is important in

designing effective carcass search protocols (e.g., specifying a minimum search plot radius)

[27, 28] and in accurately estimating total mortality [29, 30]. For example, large carcasses have

a greater possible fall distance [27] and hence a higher likelihood of being missed during sur-

veys with small search radii (e.g., because of nearby vegetation restrictions) [31]. Thus,

accounting for differences in detection probabilities of large and small carcasses is necessary in

reliably estimating mortality rates [31, 32]. Past studies have recognized that there may be

other factors that influence fall distance in a similar fashion to carcass size, but research

remains sparse [29, 30, 33]. For example, the effect of turbine height has been modeled [27]

but empirical studies and investigations of the effect of turbine rotor diameter on fall distance

are lacking. The effect of animal type (i.e., bird/bat) and carcass size has been both modeled
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[27] and empirically shown [22, 34] but these studies have used subjectively defined size cate-

gories (large/small) and could be improved upon by using finer size classifications. Fall dis-

tance may also vary according to migration behavior (e.g., long/short distance and nocturnal/

diurnal), which is known to influence collision risk [2, 29]. A better understanding of the fac-

tors affecting fall distance as well as the distribution of fall distances itself will lead to higher

quality mortality estimates and a clearer image of the impact of wind facilities on birds and

bats [29, 30].

Current estimates of bird and bat mortality at wind facilities are substantially variable due

to non-standardized survey methods [16, 32] and inconsistent sampling of wind facilities

across the North American continent [2]. Likewise, in some regions, information about car-

cass species composition is based on data from a relatively small number of wind facilities. For

example, Erickson et al. [17] and the American Wind Wildlife Institute (AWWI) [34] summa-

rized species composition for the eastern North American biome based on data from eight and

20 wind facilities, respectively. Each of these studies improved upon past knowledge, but more

extensive reviews have been called for to clarify and confirm findings of species composition

and collision risk [17, 34]. Many wind facilities report the results of carcass surveys to the US

Fish and Wildlife Service (USFWS) in accordance with federal permitting, but much of this

data has not been disseminated to the public [16]. In the Northeastern US, 44 wind facilities

have reported data to the USFWS, presenting the opportunity for a substantial improvement

in our understanding of regional species composition of bird and bat fatalities at wind

facilities.

Here, we investigated a dataset of bird and bat fatalities at wind facilities located in the

Northeastern US. Our objectives were to: 1) generally describe taxonomic patterns of bird and

bat mortality, and 2) examine whether animal type (bird/bat), body size, migration behavior,

or turbine size influence the fall distances of carcasses associated with turbines.

Methods

Between 2008 and 2017, the USFWS received records of individual bird and bat fatalities from

a subset of wind facilities in the Northeastern US (Fig 1). Facilities submitted these reports as a

condition of either a Migratory Bird Treaty Act special purpose utility permit or scientific col-

lecting permit, which allowed for collection, transport, or possession of migratory birds for

mortality monitoring or scientific research and educational purposes, respectively. Fifty per-

cent of permittees voluntarily reported bat fatalities. We are unsure how many of these facili-

ties may have also contributed data to studies such as those by AWWI [22, 34]. However, we

include 44 total wind facilities, compared to 20 in the eastern region of North America

included by AWWI [34]. Thus, the majority of wind facilities in our study contribute new data

in examining species composition.

We supplemented fatality records with classification information and model covariates. By

species, we added migration status (i.e., resident, migrant, partial migrant) and population

data [35], taxonomic classification information [36, 37], trophic guild information [38], timing

(nocturnal/diurnal) and distance (long/short) of migration [39], and body mass [37–39]. By

wind facility, we added turbine hub height (distance from the ground to the rotor center) and

rotor diameter [14]. We created a second dataset using only fatality records that included fall

distance and supplemented it with data from online, publicly available post-construction

reports for two additional Northeastern US wind facilities with large sample sizes, Criterion in

Maryland [40, 41] and Record Hill in Maine [42].

We used the lme4 package [43] in R [44] to create generalized linear mixed models for fall

distance (m) of 1) birds, 2) bats, and collectively, 3) birds and bats (hereafter referred to as the
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birds-only, bats-only, and all-taxa models). Our predictor variables in these models related to

turbine dimensions and animal characteristics (Table 1). All models featured a Poisson proba-

bility distribution with a log link and a random effect for wind facility. Prior to model con-

struction, we centered continuous predictors on their means and scaled them by two standard

deviations to assist model convergence [45] and enable later comparison of model coefficients

[46]. We also rounded fall distances to the nearest integer to meet the Poisson distribution’s

Fig 1. Cumulative number of bird and bat fatalities reported to the US Fish and Wildlife Service between 2008

and 2017 by 44 wind facilities in the Northeastern US. States in gray did not report any fatalities. Exact locations of

wind facilities that reported data are withheld due to privacy concerns. Black circles represent all wind facilities in the

Northeastern US and size indicates the number of wind turbines in each facility [14].

https://doi.org/10.1371/journal.pone.0238034.g001

Table 1. Predictor variables used in generalized linear mixed models of bird and bat fall distance.

Predictor Variable Description Source(s)

Massa,b,c For birds, species’ male body mass. For bats, mean of species’ minimum and

maximum body mass

37, 39,

48

Turbine hub heighta,b,c Distance from the ground to the rotor center 14

Turbine rotor

diametera,b,c
Sweep diameter of turbine blades 14

Turbine diameter:

heighta,b,c
Interaction term between turbine hub height and rotor diameter 14

Animal typea Bird or bat NA

Migration distanceb Long- or short-distance bird migrant 39

Migration timingb Nocturnal or diurnal bird migrant 39

aAll-taxa model predictor variable
bBirds-only model predictor variable
cBats-only model predictor variable

https://doi.org/10.1371/journal.pone.0238034.t001
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assumption of non-negative integer values. Where turbine dimensions varied within an indi-

vidual facility, we assigned to each record the most common hub height and rotor diameter

for that facility. We removed fatality records with fall distances greater than 100 m, assuming

from previous modeling [27] that these records were likely unrelated to turbine collision. We

also removed data that lacked species-specific mass values due to missing or unknown species

classification. Lastly, for the birds-only models, we removed records associated with non-

migratory species, which lacked migration distance and timing values, therefore violating

requirements for later model comparison [47].

Ranking models according to the Information-Theoretic approach [48], we first con-

structed global models containing all applicable predictor variables (Table 1). We then assessed

for multicollinearity among predictor variables, removing variables according to highest vari-

ance inflation factor (VIF) [49] until all VIFs were less than 3 [50]. Next, we measured the fit

of each global model (birds-only, bats-only, and all-taxa global models) by using the MuMIn

package [51] in R to calculate a marginal and conditional pseudo r-squared based on the Tri-

gamma-estimate method. We then calculated a dispersion parameter for each global model

using the ratio of residual deviance to the residual degrees of freedom. Where overdispersion

was evident (i.e., dispersion parameter > 1 [52]), we did not attempt an observation level ran-

dom effect [52], as this would have prevented meaningful interpretation of the marginal and

conditional pseudo r-squared values [45].

We then constructed candidate models from all combinations of the global models’ predic-

tor variables and ranked them using Akaike’s Information Criterion (AIC) or, if the global

model was overdispersed, Quasi-AIC (QAIC [53]). We considered candidate models with

ΔAIC < 6 as supported by the data [45, 54, 55]. Next, we removed models with uninformative

parameters from the model sets according to the procedure outlined by Leroux [56]. In this

process, we considered log likelihoods virtually identical when they differed by less than two.

We performed model-averaging when multiple models met the ΔAIC and informative param-

eter criteria. In averaging top model sets, we used the natural average method over the zero

method due to our general interest in all predictor variables and our expectation that some

effects might be weak [57]. We considered coefficients as affecting fall distance if their 95%

confidence intervals did not overlap zero.

During exploratory analysis, we noted possible multi-modality in the density distributions

of bird and bat fall distances. To verify this observation, we performed non-parametric tests

using the ACR method [58], as implemented by the multimode package [59] in R. We

included all bird and bat records with fall distance information and values of 100 m or less.

Our null hypothesis in these tests was unimodality, with α = 0.05. We set the lower limits for

these tests at 0 m (carcasses with a distance of 0 m were found directly next to the turbine

base) to reflect the non-negative nature of distance values. Although data ranged to 100 m, we

set our upper limit for testing to 60 m after observing that the ACR method tended to identify

modes at the location of single data points in the far right tail of the fall distance distribution

when allowed to search out to 100 m. We considered these far-right modes as reflecting noth-

ing more than the method’s computational limitations under sparse data conditions. We ran

all other function parameters at default values (see [52] and S1 Code). Following these tests, we

used the multimode package’s implementation of Chaudhuri and Marron’s [60] SiZer (SIgnifi-

cant ZERo crossings of derivatives) to map the location of significant (α = 0.05) increases and

decreases in density, and thereby gathered a sense of the potential number and location of

modes. Based on these impressions, we estimated the location of modes using the Hall and

York [61] method within the multimode package, again specifying the lower and upper limits

as 0 and 60 m, respectively.
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Results

Taxonomic and temporal patterns

Forty-four wind facilities reported 2,039 bird fatalities spanning 17 orders, 41 families, 128 spe-

cies, and 22 trophic guilds (for a complete list of reported bird species, see S1 Appendix).

Excluding unidentified fatalities, passerines were the most common order (78%), wood war-

blers (Parulidae) were the most common family (28%; Table 2), and red-eyed vireos (Vireo oli-
vaceus) were the most common species (18%; Table 3). Forty-nine percent of bird fatalities

were lower canopy, foliage-gleaning insectivores. Four species of hawks, two vultures, two

owls, and one falcon were reported totaling 96 fatalities (5%). One bald eagle (Halieetus leuco-
cephalus) was reported. Two upland game birds, wild turkey (Meleagris gallopavo) and ruffed

grouse (Bonasa umbellus), were reported totaling 75 fatalities (4%). Of the 128 species, 123

were protected under the Migratory Bird Treaty Act [62] and 103 were protected under the

Neotropical Migratory Bird Conservation Act [63]. Migrants accounted for 59% of fatalities,

partial migrants accounted for 34%, and residents accounted for 8%.

Forty-nine percent of all bird fatalities were composed of just eight species: red-eyed vireo,

golden-crowned kinglet (Regulus satrapa), magnolia warbler (Setophaga magnolia), black-

throated blue warbler (Setophaga caerulescens), ruffed grouse, yellow-rumped warbler (Seto-
phaga coronata), common yellowthroat (Geothlypis trichas), and turkey vulture (Cathartes
aura) (Table 3). Over half of all species were reported less than five times. Only three species

were reported at more than 50% of facilities (red-eyed vireo, golden-crowned kinglet, magno-

lia warbler) and only 19 species were reported at 25% or more of facilities. The most wide-

spread species was red-eyed vireo, reported at 89% of facilities. By proportion to each species’

total US population, black-throated blue warblers were most heavily impacted with 25 fatalities

per one million individuals. They were followed by sharp-shinned hawks (Accipiter striatus;

Table 2. Five most frequent families of bird mortality at wind turbines in the Northeastern US.

Family Common Name Number of Fatalities % of Total Fatalities % Population Change 1970–2017a % of Species in Declinea

Parulidae New World Warblers 576 28.25% -37.60% 64%

Vireonidae Vireos 440 21.58% 53.60% 17%

Regulidae Kinglets 145 7.11% -7.10% 50%

Phasianidae Grouse and Allies 75 3.68% 24.30% 33%

Turdidae Thrushes 74 3.63% -10.10% 55%

aRosenberg et al. [64]

https://doi.org/10.1371/journal.pone.0238034.t002

Table 3. Eight most frequent species of bird mortality at wind turbines in the Northeastern US.

Species Number of Fatalities % of Total Mortality Total Populationa Population Change 1970–2017a

Red-eyed Vireo 376 21.72% 130 million +43%

Golden-crowned Kinglet 122 7.05% 130 million -25%

Magnolia Warbler 99 5.72% 39 million +51%

Black-throated Blue Warbler 59 3.41% 2.4 million +163%

Ruffed Grouse 55 3.18% 18 million +31%

Yellow-rumped Warbler 51 2.95% 150 million 0%

Common Yellowthroat 49 2.83% 81 million -34%

Turkey Vulture 40 2.31% 6.7 million +186%

aRosenberg et al. [64]

https://doi.org/10.1371/journal.pone.0238034.t003
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23/1,000,000) and black-billed cuckoos (Coccyzus erthropthalmus; 21/1,000,000). In contrast,

only three red-eyed vireos per one million individuals were reported as fatalities.

Twenty-two wind facilities reported 418 bat fatalities, seven of which were unidentified.

Five species were identified and three species of migratory tree bats, hoary (Lasiurus cinereus),
silver-haired (Lasionycteris noctivagans), and eastern red (Lasiurus borealis), accounted for over

90% of bat fatalities (Table 4). These three were reported at more than 60% of facilities that

reported bat mortality, while the remaining two bats, big brown (Eptesicus fuscus) and little

brown (Myotis lucifugus), were reported at less than 25% of facilities that reported bat mortality.

Monthly mortality for birds appeared highest in September with a secondary peak in May,

while monthly mortality for bats had a single peak in August (Fig 2). Monthly mortality also varied

for some orders, migration types, and species (Fig 2). Three multiple mortality events with more

than 20 fatalities in a single night were reported. Reports indicated that the largest event (80 fatali-

ties) was associated with heavy fog. No bats were reported during any multiple mortality event.

Spatial patterns

Our secondary dataset of bird and bat fatalities with observed fall distance included 1,999 rec-

ords (birds = 984, bats = 1,015). We removed from our analyses nine bird fatality records with

fall distances greater than 100 m, and 136 bird fatality records and 9 bat fatality records lacking

species classification. For our construction of the birds-only models, we removed 16 records

associated with non-migratory species. Additionally, we were unable to find supplementary

information on migration timing in Birds of the World [65] for four bird species (each repre-

senting one record): least flycatcher (Empidonax minimus), purple finch (Haemorhous purpur-
eus), redhead (Aythya americana), and ring-billed gull (Larus delawarensis).

Our global models showed a range of performance in terms of fit (Table 5). The birds-only

global model’s predictor variables accounted for 31% of the variation in fall distance and the

bats-only global model’s predictors explained only 3%. In each of our global models, the ran-

dom effect of facility ID accounted for a substantial proportion of the variation explained, as

evidenced by the disparity between conditional and marginal pseudo R2 values. Among the

all-taxa (S1 Table), birds-only (S2 Table), and bats-only candidate models, we found support

for six, four, and three models, respectively (Tables 6–8).

Model averaging revealed varying support for the influence of turbine dimensions and ani-

mal characteristics on fall distance (Table 9). Turbine hub height, which we removed from the

bats-only model for collinearity, did not prove influential in either all-taxa or birds-only model

averages. However, when interacting with rotor diameter in the all-taxa dataset, hub height

did appear to influence fall distance; as rotor diameter and turbine hub height increased, so

did fall distance. Without interaction, rotor diameter also increased fall distance of birds-only

and all-taxa. The magnitude and confidence intervals of these coefficients indicated greater

Table 4. Species of bat mortality at wind turbines in the Northeastern US.

Species Fatalities

Big Brown Bat 21

Eastern Red Bat 87

Hoary Bat 188

Little Brown Bat 16

Silver-haired Bat 99

Unidentified Bat 7

Grand Total 418

https://doi.org/10.1371/journal.pone.0238034.t004
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Fig 2. Fatalities per month for birds and bats, Accipitriformes (hawks and eagles) and Galliformes (ruffed grouse

and wild turkey), golden-crowned kinglets and black-throated blue warblers, and silver-haired bats and eastern

red bats. For monthly fatality histograms of the 10 most frequent families, see S1–S10 Figs.

https://doi.org/10.1371/journal.pone.0238034.g002
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strength in these relationships in the birds-only model versus the all-taxa model. We also

found strong support within the birds-only model-averaged coefficients for the influence of

migration distance on fall distance. Short-distance migrants, those that traveled no more than

15 degrees in latitude [39], tended to fall farther from turbines following collision than long-

distance migrants. Additionally, within the all-taxa model-averaged coefficients, we found that

animal type (i.e., bird/bat) predicted fall distance, with birds associated with greater distances.

Species mass proved to be the one predictor variable influencing fall distance across all

three sets of model-averaged coefficients. We found that fall distance increased with species

body mass for birds-only, bats-only, and all-taxa. This result was most evident in birds-only

and least evident in all-taxa. However, the bats-only and all-taxa mass coefficients featured rel-

atively narrow confidence bands compared to the birds-only coefficient.

Examining the modality of fall distance distributions, we found bird (n = 975; p < 0.001)

and bat (n = 1015; p< 0.001) density distributions were significantly multi-modal. The SiZer

maps for both distributions suggested two peaks (i.e., bimodality). For bird fall distance, these

modes were located at 2.37 m and 30.64 m, with an antimode (i.e., trough) at 8.80 m (Fig 3).

Modes of bat fall distance showed less separation and were located at 17.00 m and 26.55 m,

with the intervening antimode at 23.25 m (Fig 3).

Discussion

Taxonomic and temporal patterns

To our knowledge, our dataset represents the largest sample size of bird mortality in the

Northeastern US. Generally, the species composition of our data confirm findings from

Table 5. For each global model, variables, random effect variance (RE Var) and standard deviation (RE SD) of the facility ID random effect, number of observa-

tions, number of wind facilities (n groups), dispersion parameter (ϕ), marginal pseudo R2 (R2m), and conditional pseudo R2 (R2c).

Model Variablesa RE Var RE SD n obs n groups ϕ R2m R2c

all-taxa A, D, H, M, D:H 0.02 0.15 1845 14 8.32 0.13 0.44

birds-only D, H, M, MD, MT, D:H 0.03 0.16 819 14 9.12 0.31 0.59

bats-only D, M, D:H 0.05 0.22 1006 9 7.27 0.03 0.52

aAnimal type (A), turbine rotor diameter (D), turbine hub height (H), mass (M), turbine diameter:height (D:H), migration distance (MD), migration timing (MT)

https://doi.org/10.1371/journal.pone.0238034.t005

Table 6. Variables, number of parameters (K), delta Quasi-AIC (ΔQAIC), log-likelihood (LL), and QAIC weights

for all-taxa top model set. Shaded rows represent models with uninformative parameters.

Variablesa K ΔQAIC LL wi

A, M 4 0.00 -12838.36 0.28

A 3 0.74 -12849.75 0.19

A, D, M 5 1.45 -12836.08 0.13

A, H, M 5 1.99 -12838.33 0.10

A, D 4 2.21 -12847.56 0.09

A, H 4 2.73 -12849.73 0.07

A, D, H, M 6 3.41 -12835.89 0.05

A, D, H 5 4.16 -12847.36 0.03

A, D, H, M, D:H 7 4.81 -12833.42 0.03

A, D, H, D:H 6 5.57 -12844.88 0.02

aAnimal type (A), turbine rotor diameter (D), turbine hub height (H), mass (M), turbine diameter:height (D:H),

migration distance (MD), migration timing (MT)

https://doi.org/10.1371/journal.pone.0238034.t006
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existing literature. Previously, the largest review of bird mortality at wind facilities was a tech-

nical report by the American Wind Wildlife Institute (AWWI) [34]. Though AWWI did not

specifically summarize data for the Northeastern US, their North (including southeastern Can-

ada) and East (including eastern Texas) regions include the extent of our data and serve as a

useful comparison.

Similar to other studies, species in our data were primarily passerines, and nearly half of all

fatalities comprised a small number of species (n� 8) [17, 34]. Species were also comparable

to other studies, predominantly red-eyed vireo, golden-crowned kinglet, and magnolia war-

bler. Raptors made up just 5% of fatalities, similar to other reports in the eastern US [34], but

Table 8. Variables, number of parameters (K), delta Quasi-AIC (ΔQAIC), log-likelihood (LL), and QAIC weights

(wi) for bats-only top model set. Because ΔQAIC was less than six for all models, the top model set is the same as the

full model set. Shaded rows represent models with uninformative parameters.

Variablesa K ΔQAIC LL wi

M 3 0.00 -6300.13 0.44

none 2 1.61 -6313.25 0.20

D, M 4 1.76 -6299.27 0.18

D 3 3.34 -6312.27 0.08

D, M, D:H 5 3.64 -6298.82 0.07

D, D:H 4 5.22 -6311.81 0.03

aAnimal type (A), turbine rotor diameter (D), turbine hub height (H), mass (M), turbine diameter:height (D:H),

migration distance (MD), migration timing (MT)

https://doi.org/10.1371/journal.pone.0238034.t008

Table 7. Variables, number of parameters (K), delta Quasi-AIC (ΔQAIC), log-likelihood (LL), and QAIC weights

(wi) for birds-only top model set. Shaded rows represent models with uninformative parameters.

Variablesa K ΔQAIC LL wi

M, MD 4 0.00 -6126.48 0.18

MD 3 0.49 -6137.83 0.14

D, M, MD 5 1.31 -6123.32 0.10

D, MD 4 1.79 -6134.63 0.07

M, MD, MT 5 1.95 -6126.25 0.07

H, M, MD 5 1.96 -6126.30 0.07

MD, MT 4 2.14 -6136.22 0.06

H, MD 4 2.46 -6137.68 0.05

D, M, MD, MT 6 3.26 -6123.09 0.04

D, H, M, MD 6 3.30 -6123.28 0.04

D, MD, MT 5 3.43 -6133.00 0.03

D, H, MD 5 3.77 -6134.55 0.03

H, M, MD, MT 6 3.91 -6126.06 0.03

H, MD, MT 5 4.10 -6136.05 0.02

D, H, M, MD, D:H 7 4.80 -6121.03 0.02

D, H, MD, D:H 6 5.13 -6131.66 0.01

D, H, M, MD, MT 7 5.25 -6123.05 0.01

D, H, MD, MT 6 5.42 -6132.94 0.01

aAnimal type (A), turbine rotor diameter (D), turbine hub height (H), mass (M), turbine diameter:height (D:H),

migration distance (MD), migration timing (MT)

https://doi.org/10.1371/journal.pone.0238034.t007
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lower than raptor mortality along the west coast of the US [34, 66]. Our records included one

bald eagle fatality, a species that has not been reported in the Northeastern US in other reviews

[19, 34].

Table 9. Model-averaging results for all-taxa, birds-only, and bats-only top model sets. Included are standardized coefficient estimates (Estimate), unconditional stan-

dard errors (SE), and 95% confidence intervals (CI) for each model set. Shaded rows represent variables with confidence intervals crossing zero.

Model Variablesc Estimate SE CI

Lower Upper

All-Taxa (Intercept) 3.12 0.06 3.00 3.25

Aa 0.15 0.01 0.13 0.18

M 0.04 0.01 0.02 0.06

D 0.19 0.08 0.03 0.36

H -0.04 0.04 -0.11 0.03

D:H 0.23 0.09 0.04 0.41

Birds-Only (Intercept) 3.23 0.06 3.10 3.35

M 0.24 0.05 0.14 0.34

MDb 0.21 0.02 0.17 0.25

D 0.30 0.11 0.09 0.51

Bats-Only (Intercept) 3.05 0.09 2.86 3.23

M 0.07 0.01 0.04 0.09

D -0.12 0.08 -0.29 0.05

aReference category bird
bReference category short-distance migrant
cAnimal type (A), turbine rotor diameter (D), turbine hub height (H), mass (M), turbine diameter:height (D:H), migration distance (MD)

https://doi.org/10.1371/journal.pone.0238034.t009

Fig 3. Density distributions for the fall distance of birds and bats at wind turbines in the Northeastern US. For

density distributions of the 10 most frequent families, see S11–S20 Figs.

https://doi.org/10.1371/journal.pone.0238034.g003
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Relative to population size, black-throated blue warbler, sharp-shinned hawk, and black-

billed cuckoo experienced the highest levels of mortality. At 25 or less fatalities per million

individuals, even these are likely too low to significantly impact population trajectories, but

this effect may intensify as the number of wind facilities increases. New world warblers, the

most common family in our data, have declined by 38% over the past 50 years (Table 2), but of

the species frequently observed in our data set, most populations are either stable or increasing

(Table 3). Though we make these population comparisons using raw counts, in actuality, not

all carcasses were recovered during carcass searchers. Detection probability is variable [31] but

is typically higher than 0.25 and often higher than 0.50 for birds [40–42, 67], suggesting that

population level impacts remain low.

Patterns of bat mortality in our data are generally consistent with those observed in previ-

ous studies. Three migratory tree bats (hoary bat, silver-haired bat, and eastern red bat) were

somewhat more common (90% of all bat fatalities in our data) than reported elsewhere [22,

68], but our data represent a slightly different geographic extent. Additionally, our sample size

is small, as relatively few facilities reported data for bats. Other bat species have been reported

in the Northeastern US, but make up a low proportion of total fatalities [22]. We are unable to

interpret the population-level impacts of our reported mortality because of the general lack of

published bat demographic data [24], though previous research has identified wind energy

mortality as a major potential driver of population declines in some species [23]. To under-

stand the conservation implications of bat mortality at wind facilities fully, a broad effort must

be made to expand and improve knowledge of bat species’ population sizes and trends.

For both birds and bats, our data showed expected patterns of magnitude and annual tim-

ing of mortality. The peaks in bird mortality in September and May are generally consistent

with other studies [17, 34], and presumably correspond to fall and spring migration activity

[69]. Similarly, the single peak in bat mortality in August has been previously noted [22] and

corresponds to migration timing of tree bats [70]. A global review reported that wind turbines

cause multiple mortality events for bats (greater than 10 bats at a given locality within a few

days [71]), but our data included none. This may be due to limited sample size, geographic dif-

ferences, or biased reporting.

Spatial patterns

Our analysis suggesting that fall distance increases with bird body mass represents a significant

improvement on previous studies. To our knowledge, ours is the first attempt to analyze the

relationship between bat body mass and fall distance. Though we acknowledge that our gener-

alized body mass values are crude estimates for the actual mass of individual carcasses, our use

of a continuous measure instead of a subjective categorical classification (e.g., large/small car-

casses [27]) creates greater certainty that mass positively influences fall distance, and opens the

possibility for easier comparison with future studies. To the extent that our findings on mass

can be compared to past studies, they appear to corroborate similar findings from models [27].

Moreover, while AWWI’s [34] distance distributions did not appear to differ between large

and small birds, this may have been the result of overly broad size bins. A practical implication

of these findings is that post-construction mortality studies concerned with large-bodied birds

(e.g., raptors) should consider implementing wider search radii [27] or adjusting their weight-

ing of area searched during analysis to reflect the increased potential of discovering larger spe-

cies farther from turbines. Proper understanding of the relationship between species mass and

fall distance can not only serve general understanding of wind turbine collisions, but also

guide wind industry efforts towards compliance with government protection of particular spe-

cies (e.g., eagle species in the US).
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The positive association we found between bird fall distance and turbine rotor diameter

and the additional finding that fall distance for birds and the all-taxa group increased with the

interaction of increasing rotor diameter and hub height validate prior models and experiments

suggesting that turbine height and blade length are positively related to fall distance [27, 33].

Given this general association, as the wind industry transitions to larger and more efficient tur-

bine models, there may be need for wider search radii in post-construction mortality monitor-

ing, or, alternatively, recalculation of typical fall distance distributions used to inform search

efforts. Past studies have reported that bat mortality increases with hub height [72] but have

been inconclusive concerning bird mortality, showing negative [16, 73], neutral [72], and posi-

tive [5] relationships between mortality and turbine height. Though collision mortality rates

and fall distances are not necessarily directly related, increases in mortality rates at larger tur-

bines may be harder to detect if carcasses are falling farther from the turbines as a result of

increased turbine size.

Exploring facility-specific factors is also clearly critical to understanding rates and patterns

of turbine collisions. In our models, the random effect of facility ID accounted for substantially

more variation in fall distance than species or turbine traits. Because topography [74, 75],

weather [76, 77]), and habitat [78, 79] influence bird flight, particularly during migration, we

hypothesize that such local factors may affect how far birds and bats fall from the turbines with

which they collide. Further, similar to collision rates, we expect patterns in fall distance may be

driven by the interaction of species-specific factors (e.g., sensorial perception, behavior, etc.)

and wind facility characteristics [18]. For example, spatial patterns may be different at wind

facilities with turbines arranged in a line (e.g., along a mountain ridge) than at those with tur-

bines more evenly spaced in a group (e.g., in agricultural fields). These facility-specific drivers

may be a fruitful area for future research. A second possible explanation is facility-to-facility

variation in survey technique and reporting culture, which, again, may be worthy of additional

research. Variation between individual turbines within a wind facility may also affect spatial

patterns of fall distance. For a few wind facilities that contained turbines of different sizes, we

used only the most common turbine dimensions in our analysis, and this may have contrib-

uted to the variation accounted for by the random effect of facility ID. Despite this variation,

managers can still expect findings such as the positive relationship between turbine size and

fall distance to be generally true at specific facilities.

In all our final models, there was a notable proportion of variation in fall distance left unex-

plained. In the case of bats, we attribute this observation at least partly to the chaotic dynamics

of falling carcasses [80]. However, we also speculate that a sizeable portion of this variation is

the result of temporary and event-specific factors such as wind velocity and direction, direc-

tion of the blade sweep (i.e. upswing or downswing), blade velocity, and bird or bat flight

velocity.

Differences between birds and bats

Examining birds and bats separately can improve understanding of patterns in fall distances.

As shown, birds tend to land farther from turbines than bats. This observation could theoreti-

cally be attributable to birds having a much higher range of masses, another influential variable

in our models. However, in our all-taxa global model, we found that animal type and body

mass had a low correlation (R = -0.09), which indicates the role of taxon-specific factors

beyond size. Likewise, the multimodal distributions of fall distances for birds and bats argue in

favor of different mechanisms. Though both distributions in our study were significantly

multi-modal, the location and intensity of their peaks differed notably. Bats displayed two

peaks, either side of 20 m, that were comparable in density and likely not biologically
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significant. In contrast, birds exhibited a primary peak near 30 m and a lesser peak around 2.5

m. Similar secondary peaks in bird carcasses near the turbine base have been sparsely reported

in other studies, but not rigorously analyzed or discussed [27, 34, 81].

We suggest this discrepancy in distance distribution between birds and bats is due to birds

colliding with turbines poles, in addition to the turbines blades. It is well established that birds

collide with stationary structures [82–84] and bird carcasses have been found beneath non-

operational wind turbines [28, 85]. However, bats have rarely been found under towers and

other structures [86, 87] and have not been found under non-operational turbines [68, 85].

Several investigations have shown that neither birds [18, 88, 89] nor bats [90, 91] are able to

avoid swift-moving turbine blades by reacting to their presence at close range. Thus, in the

absence of non-blade caused mortality, a similar distance distribution would be expected for

both birds and bats at active wind turbines. Nonetheless, we found that 10% of all bird car-

casses were located just 2 m away from the turbine base. Though most fatalities have been pre-

sumed to occur upon collision with moving turbine blades [29, 92], birds, especially nocturnal

migrants, likely also struggle to detect the presence of turbine poles, whereas bats are assum-

edly able to avoid static turbine poles using echolocation.

It is also likely that some species, based simply on life history, primarily collide with turbine

poles and rarely collide with blades themselves [6, 20, 93]. Carcasses of low-flying upland game

birds, which are unlikely to ever fly into the rotor zone, have been routinely found during car-

cass searches [34, 94–97] and Stokke et al. [98] found substantial evidence that willow ptarmi-

gan (Lagopus lagopus) frequently collide with turbine poles in Norway. Further, the distance

distribution for willow ptarmigan mirrored ours, showing a high peak directly next to the tur-

bine pole (Fig 3) [98]. However, though our dataset included 75 ruffed grouse and wild turkey,

upland gamebirds represented only a minority of the near-turbine carcasses.

Small migratory songbirds comprised the majority of carcasses within 2 m of turbine polls,

and may collide with poles at relatively high numbers. This has not been previously discussed,

despite this group of birds being commonly reported colliding with other stationary structures,

such as buildings [84] and communication towers [82, 83]. Our data suggested the phenome-

non of turbine pole collisions was variable among taxonomic families of small migratory song-

birds. For example, vireos show a pronounced peak in fall distance near turbines, new world

sparrows and new world warblers only minor peaks, and kinglets and thrushes none at all

(S12–S16 Figs). Because carcasses farther from turbines are less likely to be detected [30], this

could lead to inaccurate mortality estimates of different bird groups. For instance, vireos,

which showed a strongly right-skewed distance distribution, could be overestimated if this dis-

tribution was not incorporated into mortality estimates. We cannot presently explain these

discrepancies, but think this matter is worthy of further investigation.

The concept of turbine pole collisions is not novel, as bird collisions with other tall struc-

tures (e.g., communication towers, buildings) are very common [2]. However, apart from brief

discussion of collisions by upland gamebirds [6], pole collisions across avian taxa have received

very minor attention by either researchers or governing agencies. Instead, an implicit assump-

tion in studies examining wildlife mortality at wind facilities has been that mortality of both

bird and bat species is primarily attributable to collision with moving turbine blades [5, 16, 17,

27]. However, our findings suggest that static turbines and towers also pose a risk to birds sim-

ply because they are tall structures that are difficult for birds to detect and avoid. As such, man-

agers seeking to mitigate bird mortality at wind facilities should consider the application of

mitigation technologies and existing best practices for the siting of other vertical structures

(e.g., telecommunication and meteorological towers). Further, research and regulations

regarding bird collisions with turbines, especially small passerines, may benefit from an

expanded view of turbines as being very similar to other tall structures.
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Inference from our results is limited as our data were both spatially and temporally variable,

spanning nine years and multiple states. Additionally, the distance distribution we present is

based on various mortality survey procedures, surveyor expertise, curtailment regimes (pur-

poseful reduction in turbine operation and electricity generation), and turbine models and

sizes. Year to year, many individual wind facilities varied between reporting data from inciden-

tal findings and mortality surveys, and some also varied the intensity of mortality surveys and

their curtailment regimes. Because facilities voluntarily reported bat fatalities, fewer reported

bat mortality as thoroughly or consistently as bird mortality. Additionally, because this dataset

represents only 49% of Northeastern US turbines, there may be trends that were not observed.

For example, almost no turbines along the coast of the Great Lakes and Massachusetts are

included in this dataset, and trends may be different for shorebirds or seabirds in certain geo-

graphic areas and areas with different weather patterns.

Despite these limitations, our data represents the largest and most complete understanding

of bird mortality caused by wind facilities in the Northeastern US. Many of the mortality

reports submitted to the US Fish and Wildlife Service are not available elsewhere. Further,

large-scale studies of turbine-related mortality are lacking in peer-reviewed literature, and

large-scale summaries like we report here have been called for by wind-wildlife researchers

[99]. Though wind facilities in our data did not use a standard search radius, all studies in our

dataset searched to at least 20 m, so we are confident that, at a minimum, the distance distribu-

tion for both birds and bats within about 20 m, including the bimodal finding for birds, is an

accurate representation of the true distribution.

Implications

Our analysis of species composition supports the conclusion that collisions at wind facilities

do not currently present a significant threat to populations of many bird species. Our analysis

of fall distance provides important empirical evidence that bird fall distance increases with

body mass and that both bird and bat fall distance increase with turbine size. As wind turbines

increase in size, search plot radii and estimations of missed search areas will need to be

adjusted to account for a higher number of carcasses farther away from turbines. Because

some birds, especially small passerines, may collide regularly with turbine poles, it is possible

that some species-specific estimates of mortality may be overestimated. Finally, as wind energy

expands globally, we propose that policy-makers, managers, and researchers will benefit from

not only recognizing the collision risk of moving turbine blades, but also in viewing wind tur-

bines as presenting a threat similar to other tall structures.

Supporting information

S1 Appendix. Bird species and total fatalities from 44 wind facilities in the Northeastern

US. Data from reports submitted to the US Fish and Wildlife Service via either a special pur-

pose utility or scientific collecting permit between 2008 and 2017.

(DOCX)

S1 Fig. Monthly timing of fatalities of new world warblers (Parulidae) at wind turbines.

Data from reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the

Northeastern US. Sample size given in parentheses.

(PNG)

S2 Fig. Monthly timing of fatalities of vireos (Vireonidae) at wind turbines. Data from

reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the Northeastern
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US. Sample size given in parentheses.

(PNG)

S3 Fig. Monthly timing of fatalities of kinglets (Regulidae) at wind turbines. Data from

reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the Northeastern

US. Sample size given in parentheses.

(PNG)

S4 Fig. Monthly timing of fatalities of grouse and allies (Phasianidae) at wind turbines.

Data from reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the

Northeastern US. Sample size given in parentheses.

(PNG)

S5 Fig. Monthly timing of fatalities of new world sparrows (Passerellidae) at wind turbines.

Data from reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the

Northeastern US. Sample size given in parentheses.

(PNG)

S6 Fig. Monthly timing of fatalities of thrushes (Turdidae) at wind turbines. Data from

reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the Northeastern

US. Sample size given in parentheses.

(PNG)

S7 Fig. Monthly timing of fatalities of hawks and eagles (Accipitridae) at wind turbines.

Data from reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the

Northeastern US. Sample size given in parentheses.

(PNG)

S8 Fig. Monthly timing of fatalities of new world vultures (Cathartidae) at wind turbines.

Data from reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the

Northeastern US. Sample size given in parentheses.

(PNG)

S9 Fig. Monthly timing of fatalities of cuckoos (Cuculidae) at wind turbines. Data from

reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the Northeastern

US. Sample size given in parentheses.

(PNG)

S10 Fig. Monthly timing of fatalities of flycatchers (Tyrannidae) at wind turbines. Data

from reports submitted to the US Fish and Wildlife Service by 44 wind facilities in the North-

eastern US. Sample size given in parentheses.

(PNG)

S11 Fig. Density plot of distance from turbine of fatalities of new world warblers (Paruli-

dae) at wind turbines. Data from publicly available reports and from reports submitted to the

US Fish and Wildlife Service by 44 wind facilities in the Northeastern US. Sample size given in

parentheses.

(TIFF)

S12 Fig. Density plot of distance from turbine of fatalities of vireos (Vireonidae) at wind

turbines. Data from publicly available reports and from reports submitted to the US Fish and

Wildlife Service by 44 wind facilities in the Northeastern US. Sample size given in parentheses.

(TIFF)

PLOS ONE An evaluation of bird and bat mortality at wind turbines in the Northeastern United States

PLOS ONE | https://doi.org/10.1371/journal.pone.0238034 August 28, 2020 16 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238034.s013
https://doi.org/10.1371/journal.pone.0238034


S13 Fig. Density plot of distance from turbine of fatalities of kinglets (Regulidae) at wind

turbines. Data from publicly available reports and from reports submitted to the US Fish and

Wildlife Service by 44 wind facilities in the Northeastern US. Sample size given in parentheses.

(TIFF)

S14 Fig. Density plot of distance from turbine of fatalities of thrushes (Turdidae) at wind

turbines. Data from publicly available reports and from reports submitted to the US Fish and

Wildlife Service by 44 wind facilities in the Northeastern US. Sample size given in parentheses.

(TIFF)

S15 Fig. Density plot of distance from turbine of fatalities of new world sparrows (Passer-

ellidae) at wind turbines. Data from publicly available reports and from reports submitted to

the US Fish and Wildlife Service by 44 wind facilities in the Northeastern US. Sample size

given in parentheses.

(TIFF)

S16 Fig. Density plot of distance from turbine of fatalities of hawks and eagles (Accipitri-

dae) at wind turbines. Data from publicly available reports and from reports submitted to the

US Fish and Wildlife Service by 44 wind facilities in the Northeastern US. Sample size given in

parentheses.

(TIFF)

S17 Fig. Density plot of distance from turbine of fatalities of new world vultures (Catharti-

dae) at wind turbines. Data from publicly available reports and from reports submitted to the

US Fish and Wildlife Service by 44 wind facilities in the Northeastern US. Sample size given in

parentheses.

(TIFF)

S18 Fig. Density plot of distance from turbine of fatalities of cuckoos (Cuculidae) at wind

turbines. Data from publicly available reports and from reports submitted to the US Fish and

Wildlife Service by 44 wind facilities in the Northeastern US. Sample size given in parentheses.

(TIFF)

S19 Fig. Density plot of distance from turbine of fatalities of grouse and allies (Phasiani-

dae) at wind turbines. Data from publicly available reports and from reports submitted to the

US Fish and Wildlife Service by 44 wind facilities in the Northeastern US. Sample size given in

parentheses.

(TIFF)
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