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Abstract

The identification and quantification of marine mammals is crucial for understanding their abundance, ecology and supporting
their conservation efforts. Traditional methods for detecting cetaceans, however, are often labor-intensive and limited in
their accuracy. To overcome these challenges, this work explores the use of convolutional neural networks (CNNs) as a
tool for automating the detection of cetaceans through aerial images from unmanned aerial vehicles (UAVs). Additionally,
the study proposes the use of Long-Short-Term-Memory (LSTM)-based models for video detection using a CNN-LSTM
architecture. Models were trained on a selected dataset of dolphin examples acquired from 138 online videos with the aim
of testing methods that hold potential for practical field monitoring. The approach was effectively validated on field data,
suggesting that the method shows potential for further applications for operational settings. The results show that image-
based detection methods are effective in the detection of dolphins from aerial UAV images, with the best-performing model,
based on a ConvNext architecture, achieving high accuracy and fl-score values of 83.9% and 82.0%, respectively, within
field observations conducted. However, video-based methods showed more difficulties in the detection task, as LSTM-based
models struggled with generalization beyond their training environments, achieving a top accuracy of 68%. By reducing the
labor required for cetacean detection, thus improving monitoring efficiency, this research provides a scalable approach that
can support ongoing conservation efforts by enabling more robust data collection on cetacean populations.

Keywords Unmanned aerial vehicles - Convolutional neural networks - Long-short-term-memory - Machine learning -
Marine mammals detection - Photo identification

1 Introduction

Luana Clementino, André Cid, Joana Castro, Inés Machado and Susana

Vieira have authors contributed equally to this work. Cetaceans play a key role in maintaining ecosystem stability,

acting as sentinel or indicator species that reflect the overall
state of the ocean’s health [1, 2]. Monitoring and safeguard-
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tus (GES) in European waters is a key objective under the
Marine Strategy Framework Directive (MSFD), which was
adopted by the European Union to evaluate and maintain the
health of the marine environment. GES is defined by eleven
descriptors that assess various aspects of marine ecosystems,
enabling a comprehensive evaluation of marine conditions
and the pressures from human activities. This approach
aligns with similar international conventions, such as the
United Nations Sustainable Development Goal 14, which
targets the conservation and sustainable use of oceans, seas,
and marine resources, as well as the OSPAR Convention,
which focuses on the protection of the North-East Atlantic
marine environment. These frameworks collectively con-
tribute to a more resilient and sustainably-managed global
marine ecosystem. Monitoring and assessing the achieve-
ment of GES is particularly challenging given that cetaceans
are highly mobile species, distributed over large areas, and
moving across various marine habitats subject to diverse
anthropogenic pressures. These pressures include incidental
by-catch in fishing gear, bioaccumulation of pathogens and
toxins, harmful algal blooms, collisions with ships, under-
water noise and climate change [4-7]. More recently, the
advancement of offshore renewable energy further intensi-
fied these challenges. Such projects often target large marine
areas, commonly overlapping with cetacean habitats, thereby
escalating the pressure between conservation needs and
energy exploitation [8]. The vulnerability of these species
and exploitation of their habitats underscores the impor-
tance of their conservation, thus, it is imperative to improve
our current understanding of cetacean distribution patterns.
However, such studies are excessively costly, posing a sig-
nificant barrier to advancing conservation efforts. Traditional
methods to study and monitor marine mammal populations
involve visual surveys from a defined platform (e.g., aerial,
ship-based, or land-based), acoustic surveys [10, 11], obser-
vation of Very High Resolution (VHR) satellite images [12,
13], and observation methods that allow a more thorough
understanding (e.g., capture-recapture) [14]. Furthermore,
emerging methodologies, such as remote sensing through
photo detection and identification, present a promising tool
for complementing such methods while reducing associated
costs and risks [15-18].

Unmanned Aerial Vehicles (UAVs) are equipped with
imaging sensors that can collect extremely high-resolution
data, thus becoming an increasingly used tool for researchers
to observe marine wildlife and study cetaceans. UAVs are a
non-invasive method [19] that allows the detectability of ani-
mals in subsurface waters, thus increasing the time available
for detection [20]. UAVs have an increasing number of appli-
cations, such as monitoring abundance and distribution [21],
photo identification [22], behavioral studies [23], among oth-
ers [20].
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Nonetheless, this new technology still presents limitations
and challenges, particularly associated with data manage-
ment. The high volume of data generated requires efficient
processing solutions, as manual inspection is often impracti-
cal and prone to human error [24, 25]. As machine learning
and computer vision advance rapidly, automated computer
vision models present a promising solution for automating
the inspection process. Since the scientific developments by
Krizhevsky et al. [26] proving the efficacy of deep learn-
ing algorithms in image recognition, Convolutional Neural
Networks (CNNs) have become the model of choice for
image detection and identification, achieving results on par
with human performance in detection and identification tasks
[27]. These models have been successfully applied to individ-
ual identification of whales [28-30] and dolphins, [31] with
methods that can be adapted to other cetacean species [29].
There have also been applications for whale counting through
satellite VHR images [32], where combining the usual count-
ing procedure with an initial detection of whale presence has
improved model accuracy and computational efficiency [32].
However, these are limited to species of larger size due to the
spatial resolution of images and are difficult to develop due
to the lack of open VHR image datasets.

Models developed for image detection, however, are lim-
ited to the events occurring in one single frame, potentially
missing important information and context from the video
sequences obtained with UAVs. That said, algorithms capa-
ble of handling video frames, such as Recurrent Neural
Networks (RNNs), leverage the temporal continuity and
contextual information provided by video sequences while
reducing information missed, thus improving detection capa-
bility. Still, the development of such models represents a
higher degree of complexity, and studies exploring their
efficacy on marine mammal detection are relatively limited
[33-35].

The main objective of this study is to develop machine
learning models capable of automating the detection of
cetaceans, specifically delphinids, using UAV data. The
present work explores the implementation of well-documented
CNN architectures directed to image detection, while also
proposing the use of a Deep Fake detection algorithm based
on Guera and Delp’s “Deepfake video detection using recur-
rent neural networks” [36], applied to the detection of marine
mammals in video sequences. This approach builds upon cur-
rent methodologies, but also explores new avenues through
the use of a Long-Short-Term-Memory (LSTM) network, a
specific RNN model, seeking to harness the additional infor-
mation provided through video analysis.

This study explores the synergies between deep learning
and marine science, focusing on the potential to enhance
environmental monitoring and impact assessment strategies
in offshore environments, particularly for the conservation
of dolphin populations. These findings provide a method-
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ological basis for improving data quality, which can support
future efforts aimed at advancing sustainable management
and conservation efforts in marine ecosystems.

2 Data acquisition

In-situ collection of a sufficient volume of remote sensing
data suitable for the development of an efficient identification
model is challenging due to the high cost of equipment and
logistical constraints associated with ocean surveys. Further-
more, datasets on species with broad distribution ranges, such
as cetaceans, are scarce, and publicly available datasets tai-
lored for aerial detection are largely non-existent. As a result,
the data used to build the models were obtained by collect-
ing scraped video files sourced from various online sources
(e.g., YouTube, Pexels, Dailymotion, etc). Given the chal-
lenging nature of developing such datasets, data gathered for
this study were limited to species of the family Delphinidae,
as they are among the most accessible cetaceans in publicly
available footage, and with the intent of gathering as much
data as possible, no pre-selection criteria such as location or
time period were applied during collection.

2.1 Training dataset

The videos obtained were recorded in diverse locations and
under varying conditions, leading to significant variability in
water characteristics such as hue, brightness, and foam, as
well as differences among delphinid species. This diversity
enhances the model’s ability to generalize across different
environmental settings. Furthermore, to achieve representa-
tive samples where no dolphins are present, the videos also
include objects or subjects such as boats, boards, and swim-
mers which served as potential confounding elements for the
model.

The resulting data consisted of 138 aerial videos of varying
durations and settings. Some videos exclusively contain-
ing cetacean footage, others solely featuring water scenes,
and some combining both elements. These 138 videos were
then processed to create two distinct collections of data: one
tailored for image classification and the other for video clas-
sification. For image classification, individual frames were
extracted from the videos, providing static samples. For video
classification, the original video segments were retained to
capture dynamic features. While data for both methodolo-
gies were derived from the same set of videos, these were
processed to suit the specific requirements of each classifi-
cation type.

2.1.1 Image data

Image data were generated by deconstructing the original
138 raw videos into images by extracting frames at a specified
rate of one frame every three seconds using the open software
FFmpeg. This rate can be adjusted based on user needs and
the source of extraction, as some videos may include more
or less irrelevant data. In this study, images were categorized
into two distinct classes, based on the presence or absence
of cetaceans: “Cetacean” and “No Cetacean”. Images were
initially filtered to exclude the frames that were poor repre-
sentatives of their class, such as cases where subjects were
obstructed or not in the frame. Additional manual selection
was also conducted on frames that were good representa-
tives. The resulting set of data consisted of 2451 images,
divided into its respective classes. The “No Cetacean” class
included images where no cetaceans were present, as well as
images with other surface or subsurface artifacts that could
lead the model to incorrectly label them as containing a
cetacean. Including these artifacts within the “No Cetacean”
class helps to correct for potential false positives by expos-
ing the model to non-cetacean images that may resemble
cetaceans. The “Cetacean” class included images where at
least one cetacean was present. The classification process
resulted in 776 images (approximately 31.1%) representing
the “No Cetacean” class, and 1720 images (about 68.9%)
representing the “Cetacean” class.

The notable imbalance in the number of images per class
is due to the limited variation in water surface patterns over
time. Frames extracted within a few seconds of each other are
often nearly identical, providing minimal additional value.
On the other hand, a dataset heavily composed of cetacean
images could bias model predictions, increasing the rate of
false positives. To mitigate this, the number of images in the
“No Cetacean” class was increased by artificially generat-
ing new sea images from existing ones. This was achieved
by introducing random variations in brightness, hue, and
saturation to all newly generated samples. Additionally, fur-
ther transformations were applied with varying probabilities:
sharpness enhancement (25%), random mirroring (25%),
blurring (25%), random rotations (15%), and random crop-
ping (30%).

The described set of transformations was applied a total
of 944 times on randomly selected samples from the “No
Cetacean” class, generating an additional 944 images. This
augmentation was performed to equalize the number of sam-
ples with that of the “Cetacean” class. The resulting balanced
data were composed of a total of 3420 images, with an equal
distribution of 1720 (50%) images per class.
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2.1.2 Video data

Video data were generated by deconstructing the same 138
raw videos into several smaller videos (clips) of eight sec-
onds each and subsequently extracting a total of 64 frames
from each of these smaller videos. The initial fragmentation
process of the original videos was performed using the soft-
ware Adobe Premiere Pro 2020, version 14.0 (Adobe Inc.,
San Jose, California). Firstly, intervals of eight seconds were
manually selected to accurately represent each class. Sim-
ple transformations, such as mirroring, cropping, varying
brightness, and hue, were applied to some of the samples
to introduce variation. Each segment was then exported to
create new video samples.

This video length was selected based on careful analysis
of initial data acquired, balancing the goal of capturing com-
prehensive information on dolphin behavior and movement
within a concise timeframe. This interval proved effective
for segmenting original videos with frequent transitions and
various added content such as overlays, logos, or artifacts
that could otherwise cause unwanted model responses. A
longer interval would have significantly reduced the num-
ber of usable samples, while a shorter window risked losing
contextual details, as many segments showed minimal move-
ment over brief durations. The eight-second length, therefore,
provided an optimal compromise, enabling ample sample
quantity while retaining sufficient information for model
training.

After this segmentation, each clip is processed using
Python’s OpenCV library to extract frames at a rate of eight
frames per second, resulting in a batch of images containing
a total of 64 frames per clip. The choice of frame extraction
rate allowed for capturing as much information on dolphin
behavior variations over time, while minimizing the number
of images.

The resulting data post-processing operations consisted
of 1216 videos, of which 622 belong to the “Cetacean”
class (approximately 51.2%), while the remaining 594 videos
belong to the “No Cetacean” class (approximately 48.8%).
This equates to 1216 batches of 64 images each, totaling
77824 images spanning both classes.

2.2 Test dataset

To monitor and understand model performance over the
course of training, models are tested on data not involved
in their learning process. This practice provides insights into
expected performance and generalization by evaluating sam-
ples the model’s parameters were not directly adjusted to,
providing a general understanding of model progress and
anticipated behavior within similar data samples.

In this study, the test data was derived from the original
dataset outlined in Sect. 2.1, from which a small portion was
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retracted. This division creates two distinct subsets: training
data, comprising 80% of the original dataset, used to teach the
model to recognize class patterns, and test data, making up
the remaining 20%, to verify the state of models. Empirical
studies suggest optimal results when reserving 20-30% of
data for testing while using 70-80% for training [37]. This
separation was done randomly from all available samples
while keeping a proportional number of samples from each
class, resulting in 688 (20%) test and 2752 (80%) training
samples for image classification, and 244 (20%) test and 972
(80%) training samples for video classification.

2.3 Validation dataset

The validation data for this study were provided by Associ-
acdo para a Investigacdo do Meio Marinho (AIMM), which
supported the research by supplying UAV data from previ-
ous expeditions. Data were acquired on the coastal region in
south Portugal within the Faro district. Specifically, the study
area is located approximately 12 km offshore from the coast-
line of Albufeira, extending into the Atlantic Ocean. This
region is a significant habitat for various cetacean species,
especially delphinids such as common dolphins (Delphinus
delphis) and bottlenose dolphins (Tursiops truncatus) [38—
40].

A total of seven campaigns conducted between 2022 and
2023 were analyzed. One campaign was included in the train-
ing data to better adapt to local environmental conditions and
UAV settings, while the remaining six campaigns were used
for evaluation. These surveys were conducted in the morn-
ing, between 10:30 and 12:00, under favorable sea conditions
defined by a sea state of < 3 according to the Beaufort scale,
swells < 1.5 m, good visibility (> 5km), and no precipi-
tation. Figure 1 offers a comprehensive view of the region
under study, providing information on various expeditions,
including dates, times, and the precise locations of dolphin
sightings.

The UAV-based remote sensing data used in this study
were collected using a Mavic 2 Pro multi-rotor UAV (DJI,
Shenzhen, China). The UAV captured videos at a resolution
of 3840 x 2160 pixels using a 1-inch CMOS RGB imaging
sensor with a maximum resolution of 20-megapixel, coupled
with a 3-axis gimbal and a 28 mm equivalent, f/2.8-f/11 lens,
providing a field of view of approximately 77°.

The drone missions were conducted at different flight alti-
tudes, depending on several factors. These factors included
whether there were any dolphin sightings at the time and the
size of the group of dolphins, with higher flights preferably
used for greater sea coverage when no sightings were present,
and lower flights for a more detailed view when a group was
located. Figure?2 presents a box plot of the flight altitudes
recorded by the UAV during the different expeditions. Of the
six flights, three were conducted at a maximum altitude of



International Journal of Data Science and Analytics (2025) 20:3965-3979

3969

10.139°W
[}\\‘] Vigo

B
AL

Porto
o

5.949°W  9.126°W

42.454°N

Aveiro:
0

Coimbra
o

Z Portugal
<
©
«©
@
()
Lisbon
©
E1: 8/5/2022 - 11h15
sa| [ E2: 31/5/2022 - 11h15
9 W E3: 10/8/2022 - 11h40
z E4: 19/8/2022 - 10h40
0 0 E5: 22/9/2022 - 11h30
2 —° E6: 3/10/2023 - 11h
L]
10.139°W 5.949°W 9.126°W

Fig.1 Overview of the study area for acquiring data

: |
T

o
3

IS
8

w
S

Height (meters)

N
S

=
15

T |

E1 E2 E3 E4 ES E6
Field expeditions

o

Fig.2 Box plot: flight altitude distribution for each expedition

nearly 80 m, while the remaining three were flown below 50
m. In general, the UAV was observed to operate at an alti-
tude of around 20 m, except for the second campaign, where
flights predominantly occurred at higher altitudes.

The UAV-based imagery collected resulted in 35 min and
40s of footage. Similar to previously acquired data, this
footage was processed to create two datasets from the same
source, this time for validation. The first, tailored for the val-
idation of image-based models, was obtained by extracting
and labeling frames from the original raw video data at a
rate of one frame every five seconds, effectively processing
the entire footage. Each sample was labeled as belonging
to either the “Cetacean” or “No Cetacean” class based on
inference from the original video imagery captured, allow-
ing to discern the presence of dolphins on samples that
would otherwise be challenging to identify correctly. The

8.304°W 7.481°W
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36.664°N

8.304°W

resulting data comprises a total of 428 image samples, with
247 (approximately 57.7%) classified as “Cetacean” and 181
(approximately 42.3%) as “No Cetacean”. These samples
capture a variety of dolphin positions, camera angles, and dis-
tances, providing sufficient variation to support a robust and
comprehensive assessment. The second dataset, designed for
the validation of video-based models, was obtained by manu-
ally dividing the original video data into smaller eight-second
clips, extracting them and subsequently converting them into
64 images. The resulting video data consists of 232 videos,
120 of which were classified as belonging to the “Cetacean”
class (approximately 51.7%), and 112 classified as belonging
to the “No Cetacean” class (approximately 48.3%).

Table 1 provides a summary of the sample distribution
across the training, testing, and evaluation datasets for both
image and video data. Each dataset is divided into “Dol-
phin” and “Ocean” samples, corresponding to the “Cetacean”
and “No Cetacean” classes, with the training and testing sets
holding 80% and 20% of the original data, respectively. The
evaluation dataset includes an additional set of samples that
covers 100% of its allocated data, ensuring comprehensive
assessment of the models. This division maintains a balanced
class representation within each subset, with a near-equal dis-
tribution between “Dolphin” and “Ocean’ samples across the
datasets, facilitating robust training and performance evalu-
ation.

While the evaluation dataset was enriched with cetacean
images to ensure sufficient data for testing the model, it is
acknowledged that in real-world applications, ocean-only
images are likely to be far more prevalent than cetacean sight-
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ings. Consequently, this enrichment may slightly underesti-
mate the rate of false positives under operational conditions.
However, by maintaining a balanced dataset for evaluation,
the accuracy metric becomes more representative of the
model’s true performance.

3 Implementation

The models and pipelines employed in this study were devel-
oped within the research platform Google Colab Pro, taking
advantage of its cloud computing capabilities. The primary
programming language used was Python version 3.9 with
PyTorch’s library as the foundation of this project’s machine
learning framework, which allowed for an easy implementa-
tion of state-of-the-art deep learning techniques.

3.1 Image-based models

In order to analyze distinct image identification models, the
following CNN architectures were individually employed, as
outlined in Table 2. The selected models have a track record in
the field and known performance in image classification [41—
45]. It is worth noting that while certain models may display
superior performance on average, real-world outcomes can
vary significantly based on the specific nature of the problems
being addressed. Alongside the model names, specifications
such as the number of parameters and the top accuracies
achieved when these architectures were trained on ImageNet
are also provided.

Initially, these models were set up according to their pre-
defined architectures and initialized with random parameters,
making them essentially empty frameworks incapable of
making meaningful predictions. However, through transfer
learning, parameters from models with identical architec-
tures that have been trained on extensive datasets, such as
ImageNet, can be transferred to these models. ImageNet,
for example, comprises over a million samples and covers
a wide range of classes, including animals like gray whales,
dugongs, orcas, and sea lions. While it does not encompass
the specific “dolphin” class, the features that distinguish these
related classes can be invaluable for the identification of dol-
phins.

The models presented are structured in two sections, the
first being the feature extractor, mainly consisting of the
input layer and a series of hidden layers. It constitutes the
majority of the network and is designed to identify spe-
cific features within the input data through its convolutional
layers. These layers have been previously trained on the Ima-
geNet dataset, therefore, they already possess the ability to
effectively recognize a wide range of characteristics from
a thousand different classes. Consequently, their parame-
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ters are “frozen” during further training to ensure that the
extracted features remain consistent.

The second section of the model comprises the classi-
fier, typically a fully connected linear layer with a softmax
activation function at the end of the network. This classi-
fier interprets the features obtained from the hidden layers
and assigns a class label to each data sample. The classifier,
originally designed to classify 1000 classes, was adapted to
identify only two classes. This was achieved by replacing
the final linear layer, which initially had 1000 output nodes,
with a new linear layer containing only two output nodes,
corresponding to the two target classes.

In addition to the individual architectures, a combined
model was developed to leverage multiple feature extractors
concurrently. In this approach, the feature extraction layers
from VGG16, ConvNext, and a straightforward set of convo-
lutional layers were merged into a unified feature extractor.
The simple convolutional model implemented along VGG16
and ConvNext consists of three convolutional layers and three
max-pooling layers, complemented by certain Rectified Lin-
ear Unit (ReLU) layers in between as activation functions.
The intent behind this design was to tailor the model to
identify dolphin-specific features from the training dataset,
instead of those that represent other subjects as in the case of
transfer learning.

Ultimately, a shared classifier with two layers and 1024
nodes in its middle layer was employed to receive and effec-
tively process the features extracted from all architectures,
resulting in a collective prediction. Notably, this implemen-
tation was carried out in two instances: one that omitted the
Convolutional Layers, CombinedModel (1), while the other
used all three architectures as explained CombinedModel (2).
Figure 3 provides a general overview of this combined model
implementation and how data were shaped through it.

3.2 Video-based models

A video-based identification approach incorporating modern
deepfake detection techniques was also adopted to leverage
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Table 1 Dataset train-test split

Image dataset

Video dataset

Train samples Test samples Eval samples

2752 (80%) 688 (20%) 428 (100%)
Dolphin Ocean Dolphin Ocean Dolphin Ocean
1376 1367 194 194 247 181
(50%) (50%) (50%) (50%) (57.7%) (42.3%)

Train samples Test samples Eval samples

972 (80%) 244 (20%) 232 (100%)
Dolphin Ocean Dolphin Ocean Dolphin Ocean
497 475 125 119 120 112
(51.1%) (48.9%)  (51.2%) (48.8%)  (51.7%) (48.3%)

Table2 Common CNN

architectures and respective Model Top-1 Acc (%) Top-5 Acc (%) Parameters (M)

performances on ImageNet ResNet50 80.858 95.434 25.6

dataset InceptionV3 77.294 93.450 272
VGG16_bn 73.360 91.516 138.4
ConvNext_Base 84.062 96.870 88.6
EfficientNet_V0 77.692 93.532 5.3

the unique temporal continuity feature of videos. Unlike
images, videos are composed of a sequence containing
numerous frames, where adjacent frames display a sub-
stantial correlation and temporal continuity. The method
implemented, based on the work by Guera and Delp [36],
involves using a CNN without a classifier to extract features
from individual video frames and feed the resulting sequence
of features into an LSTM to analyze patterns in their temporal
evolution.

Two CNN architectures were used for this purpose:
InceptionV4 and ConvNext. InceptionV3 architecture was
replicated from the original work, while the ConvNext model
architecture was selected based on results from the image-
based classification methodology counterpart. In line with the
previous approach, models were established based on their
respective architectures, initialized with random parameters,
and subsequently refined by transferring parameters from
pre-trained models on ImageNet. Since the CNNs within
this CNN-LSTM pipeline are used exclusively for feature
extraction, their parameters were “frozen” to maintain the
consistency of the extracted features. Simultaneously, the
classifiers were removed, enabling direct passage of the fea-
tures identified from the hidden layers to the LSTM. Different
CNN architectures have specific input size requirements:
InceptionV3 and ConvNext have input sizes of 299 x 299
and 224 x 224 pixels, respectively, and extract 2048 and
1024 features, respectively.

To accommodate the distinct feature structures obtained
from each CNN architecture, two distinct LSTM architec-
tures were developed. Each was designed to handle a specific
input size for the transferred features, aligned with its corre-
sponding CNN. Both models were created with two recurrent
layers of 256 nodes each. This means that for each model,
two LSTMs were stacked together to form a stacked LSTM,

with the second taking in the outputs from the first to com-
pute a new output at each time step. This setup enabled the
LSTMs to iteratively produce 256 values, representing their
hidden states, for every frame in the video sequence.

To conclude the CNN-LSTM pipeline, a classifier was
introduced to process the output produced by the LSTM cell
and make predictions. The classifier implemented features a
linear layer with 16384 nodes on its input side. At each time
step, the LSTM processes a frame from the input video, thus
generating 256 values, which correspond to the 256 nodes in
its hidden layers, representing the hidden state at that specific
time step.

To maximize the amount of information used within the
classifier, all the hidden states produced by the LSTM cell
were aggregated. This aggregation results in a total of 16,384
nodes on the classifier’s input side since all input videos are
pre-processed to consist of 64 frames. Furthermore, its output
layer consists of two nodes representing the two available
classes and utilizes a softmax activation to convert the raw
output values into probabilities.

Figure 4 provides a general overview of the pipeline cre-
ated, its inner workings, and how the data were shaped
through this system.

3.3 Pre-processing data

Effective pre-processing is essential for preparing the train-
ing and testing datasets. Key steps include organizing data
into manageable batches and applying transformations com-
patible with pre-trained models, which optimize learning and
enhance model performance.

To maximize computational efficiency and improve learn-
ing precision, all data samples within the training and testing
datasets were grouped into batches of 64 samples each. This
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aggregation allows the simultaneous processing of multiple
samples, providing a more stable gradient during backprop-
agation by combining losses from diverse samples within
each batch. A batch size of 64, in particular, is a commonly
employed choice that often works well for various deep learn-
ing tasks.

Further transformations were applied to leverage the pat-
terns learned from pre-trained models. Given that weights
from these were trained on data with a specific distribution,
it is essential to normalize the input data accordingly. This
normalization involves subtracting the mean and dividing
by the standard deviation values of the dataset used to pre-
train the models. For ImageNet-trained models, these values
are (0.485, 0.456, 0.406) for the mean and (0.229, 0.224,
0.225) for the standard deviation across the three color chan-
nels. Following normalization, the input data are resized and
cropped to match the dimensions required by each CNN
architecture, with most models accepting (224 x 224) input,
except InceptionV3, which requires (299 x 299).

3.4 Model training

The process of adapting a neural network to fit a specific
problem involves iteratively assessing its performance on the
training dataset, and adjusting its parameters each time to
achieve predictions as close as possible to the desired values.
To accomplish this, a Cross-Entropy Loss function, com-
monly utilized in multiclass problems such as this one was
defined. This function serves as a guide to determine how
the model’s parameters should be updated. Subsequently, the
loss function is utilized to compute a loss value, produced
for each batch, which in turn is used to optimize the param-
eters of the model. This optimization is conducted through
an Adam optimizer with an initial learning rate of 0.001,
due to its adaptive learning rate and ease of use with fewer
hyperparameters.

Additionally, a dropout layer with a dropout probability
of 20% was added to the classifier at the end of each model
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during training, immediately before the final linear layer.
This allows to randomly delete activations from the nodes
carrying features before entering the classifier with a proba-
bility of 20% for each feature. This step proved to help the
learning process of all nodes in the classifier and reduce data
overfitting significantly by allowing nodes of undervalued
importance to suffer larger adjustments.

Finally, models underwent training by iteratively pro-
cessing the training dataset, one batch at a time, over
several iterations, continuously assessing predictions made
and adjusting their parameters accordingly. During this pro-
cess, the dataset is completely processed multiple times, and
models are stored for future use with their most up-to-date
parameters and key performance metrics after each iteration.

4 Results and discussion

The predictive performance of the trained models was ini-
tially evaluated using the test dataset, offering an early
indication of their effectiveness before validation on the
evaluation dataset. This assessment includes metrics such
as accuracy (Acc), precision (Prec), recall (Rec), fl-score
(F1), and loss, providing a preliminary baseline of each
model’s generalization capacity. Table 3 summarizes the
best-performing models, selected based on their f1-score,
reflecting the balance between precision and recall.

Figure 5 shows the training curves for the top two models
from each classification approach, highlighting the trends in
loss and accuracy over epochs. These visualizations help clar-
ify model stability and learning dynamics, setting the stage
for a more detailed validation using the evaluation dataset in
the subsequent section.

4.1 Model validation

To validate the effectiveness of the models studied and con-
firm the quality of their applicability, field observations were
simulated using data collected during fieldwork conducted by
AIMM. Subsequently, the performance of the pre-established
models in training was assessed within the evaluation dataset
detailed in Sect. 2.3. The quantitative results from this assess-
ment are presented in Table 4.

The results show a clear fall in the overall performance
of all models. This is to be expected since both training and
testing data share the same origin source, and therefore, bear
far more similarities. From the presented values it is possible
to infer that the image-based identification achieved better
performance than its video-based counterpart, establishing
it as the superior methodology for this task within applied
models.

Models based on the ConvNext architecture experienced
a smaller drop in performance. In particular, the ConvNext
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Table 3 Performance on test

Model Acc Rec Prec Fl1 Loss
dataset
EfficientNet 0.834 0.875 0.809 0.841 0.006
ConvNext 0.969 0.965 0.974 0.969 0.001
ResNet50 0.898 0.916 0.885 0.900 0.004
InceptionV3 0.923 0.930 0.917 0.924 0.003
VGG16_bn 0.924 0.945 0.908 0.926 0.005
ConvolutionslLayers 0.850 0.863 0.841 0.852 0.018
CombinedModel (1) 0.956 0.965 0.949 0.957 0.004
CombinedModel (2) 0.955 0.945 0.964 0.954 0.006
CNN-LSTM (Incep.V3) 0.898 0.950 0.856 0.900 0.453
CNN-LSTM (ConvNext) 0.939 0.924 0.948 0.936 0.628
Fig.5 Training curves from the ConvNext CombinedConvnextVGG (2)
most relevant models
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model stands out as the model of choice, achieving the high-
est accuracy and fl-score with values of 83.9% and 82.0%,
respectively. This model is expected to produce overall good
predictions, having achieved a better balance between recall
and precision. Even though a decrease in recall was observed,
the value of 86.7% still provides the model with a reduced
number of false negatives, while the precision value of 77.7%
leads to a reduced number of false positives compared to
the remaining image-based models, meaning that predictions
where the model finds the presence of dolphins are more
trustworthy.

10.0 125

o 4

2 4
Epochs

The notable performance of this model can be traced back
toits training and testing curves, represented in Fig. 5, which,
when compared to the curves of other models, display a
higher degree of similarity, to the extent that they overlap.
This suggests a great generalization ability by showing the
model’s capacity to obtain high accuracy values without over-
fitting training data.

Remaining ConvNext-based architectures have also demon-
strated good performance. Notably, the performance of Com-
binedModel (2) improved compared to CombinedModel
(1), achieving the highest recall value of 90.6%, which
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Table 4 Performance on

evaluation dataset Model Acc Rec Prec F1 Loss
EfficientNet 0.678 0.906 0.575 0.704 0.801
ConvNext 0.839 0.867 0.777 0.820 0.355
ResNet50 0.759 0.873 0.664 0.754 0.503
InceptionV3 0.666 0.768 0.579 0.660 0.821
VGG16_bn 0.797 0.890 0.706 0.787 0.691
ConvolutionalLayers 0.661 0.707 0.582 0.638 1.676
CombinedModel (1) 0.799 0.892 0.706 0.788 0.680
CombinedModel (2) 0.811 0.906 0.719 0.802 1.203
CNN-LSTM (Incep.V3) 0.685 0.438 0.831 0.573 0.870
CNN-LSTM (ConvNext) 0.685 0.446 0.820 0.578 0.482

significantly reduces the number of false negatives. This
improvement provides confidence that instances of dolphin
presence are less likely to be missed, making the model
more reliable for detecting such occurrences. This shift sug-
gests an improvement in efficacy, potentially attributed to the
convolutional layers specifically trained to identify dolphin
features, which likely contributed to enhancing generaliza-
tion capabilities in the model. Despite this, both models
were still unable to surpass the performance of base Con-
vNext architecture, suggesting that the additional features
from VGG16 and the extra trained convolutional layers did
not provide a significant enhancement over the already pro-
ficient model.

In contrast, models like EfficientNet and InceptionV3
experienced significant drops in accuracy when tested on
real-world settings, indicating a struggle with generalization,
while models such as VGG16 and ResNet, though facing
a moderate decrease in accuracy, still maintained relatively
solid performance.

Additionally, the generalizability of models is shown to be
likely connected to the number of parameters they contain,
as larger models with more features appear to be less sus-
ceptible to overfitting in smaller datasets like the one used
for training. In such a scenario, it is possible that the per-
formance of the other architectures could be improved by
utilizing their upscaled versions, which typically have more
parameters and features, potentially enhancing their gen-
eralization capabilities. This is apparent when comparing
Tables 2 and 5, where architectures with more parameters
consistently outperformed the others. Even in the case of the
VGG16 and ResNet50 models, where VGG16 which was
initially expected to perform worse based on its ImageNet
results, still outperformed ResNet50.

Regarding the video-based approach, CNN-LSTM mod-
els showed a significant drop in performance and displayed
considerable bias toward the “No Cetacean” class, as can be
observed by their recall values, indicating their struggles with
generalization outside the environment they were trained.
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Consequently, although the 68.5% accuracy achieved might
seem reasonable at first, this value does not provide an accu-
rate representation of this methodology’s efficacy in the
study, as the performance of these models appears to be
inversely proportional to their training. Figure 6 demonstrates
the evolution in performance of the CNN-LSTM (Incep-
tionV3) in the evaluation dataset as it trains further in the
training set. From this, it is possible to observe that the model
achieved a far better performance on its firstiteration, and as it
trains further there is a consistent decrease in accuracy, recall,
and an increase in loss. These results show that the model is
overfitting just after its first passage on the training dataset.
This is also suggested by its training curves, presented in
Fig. 5, which shows a clear and increasingly pronounced dif-
ference in training and testing loss. These models appear to
be highly sensitive to variations in the evaluation dataset and
may require further investigation and fine-tuning.

The causes of such overfitting are uncertain, nonetheless,
a few reasons can be pointed out. As LSTMs are more com-
plex than regular RNNs and tend to require a larger amount
of training data to learn effectively, it is possible that a dataset
containing only 972 training samples (refer to Table 1) may
not suffice. Another possibility could be related to the struc-
ture of the model, which due to its propensity to memorize
long-term dependencies that might not generalize well and
overfit, may simply require further tuning. Finally, the use of
individual, unbatched videos for training was done because
each video already constitutes a batch of 64 frames, however,
this could also be a contributing factor to overfitting on each
sample.

4.2 Model applicability

This section presents practical examples of model perfor-
mance when applied to evaluation data, and inspecting
individual samples. The model of choice for this evaluation is
ConvNext, having achieved superior performance compared
to the remaining implementations. These examples reveal the
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Table 5 Distribution of predictions across the evaluation dataset

Samples Beaufort Dolphin Ocean Accuracy
El 2 6/6 11/18 1.00 | 0.61
E2 3 4/15 45/46 0.2710.98
E3 3 86/96 17/26 0.90 | 0.65
E4 1 0/0 11/11 —| 1.00
E5 0 0/0 37/38 -10.97
E6 1 106/130 36/42 0.8210.86
Total - 202/247 157/181 0.8210.87

model’s behavior in real-world scenarios, showcasing both
its strengths and weaknesses, along with contextual factors
affecting its performance.

Table 5 provides a comprehensive overview of the sam-
ple distribution, and the predictions generated by the model
across various evaluation samples collected from differ-
ent field expeditions. Additionally, the sea conditions, as
described by the Beaufort scale, are included to offer insights
into how environmental factors may have influenced the
model’s performance. The overall distribution of correct pre-
dictions, as well as respective accuracy levels, are presented
at the bottom of the table for both classes, with the model
having only missed 45 Dolphin and 24 Ocean samples, rep-
resenting a total of 69 failed predictions out of 428 samples.

Ocean predictions remained consistent across the varying
conditions of each expedition, with the largest performance
drops occurring in the first and third expeditions. Dolphin
predictions, however, struggled particularly during the sec-
ond expedition, where the model missed 11 out of 15 dolphin
samples, accounting for most of the false negatives propor-
tionally. This trend confirms a correlation between model
performance and sea conditions, as samples with a Beaufort
value of 2 or above presented greater challenges for detec-
tion.

Another highly important factor when discussing aerial
imagery is the resolution of data, as the amount of infor-
mation within each pixel will vary significantly depending

Epochs

on factors such as camera angle and flight altitude. Figure 7
showecases the effect of this resolution on evaluated samples,
displaying predictions and their confidence level based on
their estimated Ground Sampling Distance (GSD), acommon
metric to evaluate the physical resolution of a pixel. Dolphin
samples are represented by an “X” marking, with green indi-
cating a correct prediction and red indicating an incorrect
prediction. Similarly, Ocean samples are represented by a
circle, with green and red denoting correct and incorrect pre-
dictions, respectively.

From this can be observed that the model displays a
greater tendency toward false negatives for GSD values above
11 mm/pixel, with the model showing an accuracy and recall
value of 86.4% and 82.6%, respectively, for GSD below this
threshold, and only accuracy and recall values of 79.6%
and 72.7%, respectively, for higher GSD values. This cor-
responds to a flight altitude of approximately 80 m with the
camera pointing directly downward for the equipment used.
However, this setup was not commonly employed in most of
the data collection, as it generated excessive glare during the
time of day when the surveys took place. Additionally, the
model failed to correctly identify any dolphin samples for
GSD values exceeding 20 mm/pixel, missing all 8 dolphin
samples under these conditions.

Additional challenges, typically related to sea state, in
the identification process, include the presence of signifi-
cant reflections on the water surface and lack of brightness.
Significant reflection may induce models in error, biasing
predictions toward the “Cetacean” class, as observed by
results from the first and third excursions which had a con-
siderable amount of glare. Moreover, the overall results
presented may overestimate the true predictive accuracy of
the model due to the nature of the validation data, as evi-
denced by the lower observed precision value.

Human observers, however, face notable challenges in
detecting animals during surveys. Factors such as fatigue
during extended observation periods [46], restricted field of
view, and difficulties in detecting submerged animals [47]
significantly hinder detection rates. Observers often under-
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Fig.7 Impact of ground sampling distance (GSD) on model predictions

estimate group sizes due to asynchronous diving behaviors
[48], and perception bias can lead to misidentified sightings,
as noted in studies reporting up to 5% detection errors [46].

In contrast, UAV methods, such as the one proposed here,
demonstrate superior performance. According to Fettermann
et al. (2022), UAVs identified larger group sizes in 71.4% of
cases and detected 26.4% more individuals on average com-
pared to human efforts [47]. Similarly, the model presented
exhibits strong performance, offering significant reductions
in manpower requirements while improving consistency and
accuracy in wildlife monitoring.

5 Further developments

Future developments in image-based methods may also
investigate different methodologies. One such approach
involves exploring upscaled versions of the models used,
as scalability proved to be a notable factor in model per-
formance. Future investigations could try to improve upon
current performance measurements and assess the potential
trade-off between computing speed and model performance
for different use cases such as real-time detection.

Further research aims to develop and improve object
detection models, such as You Only Look Once (YOLO)
combined with a tracking head such as Simple Online and
Real-time Tracking (SORT), to enable tracking and count-
ing of individuals. These developments could ultimately fit
into a comprehensive pipeline capable of determining cru-
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cial information for marine researchers such as group sizes,
distinguishing between juveniles and adults, and, at a later
stage, aiding in species identification.

Finally, one of the primary limitations in this study is the
size of the dataset, a potential reason for the suboptimal per-
formance of some models, particularly video-based models.
The datasets used in similar studies are often considerably
larger, allowing for more thorough training. This challenge
was addressed by enriching the dataset, to achieve a more
balanced number of samples from the two classes, as well as
increasing the dataset. It is worth noting that there is a poten-
tial risk of increasing the rate of false positives in enriched
datasets, however, the models from the present study per-
formed well and were able to achieve high accuracy in images
without dolphin presence. Therefore, future efforts should
focus on expanding the available data resources to enhance
model performance and robustness. This will enable more
comprehensive training and better generalization, ultimately
improving the effectiveness of the models. Additionally,
there were limitations associated with obtaining the dataset
from online resources, namely the lack of detailed infor-
mation on flight altitude and camera positioning. These
factors directly impact image resolution and, consequently,
model performance. In this study, these limitations were
partially addressed through pre-processing techniques and
model adjustments aimed at increasing robustness under var-
ied conditions. However, future model developments will
involve collecting a dataset with new imagery that documents
altitude, camera positioning, and other relevant parameters.
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This approach will ensure a robust and representative training
dataset, allowing the model’s performance to be effectively
assessed and improved, reducing potential biases related to
altitude and operational variability.

6 Conclusion

This research successfully investigated the use of machine
learning models in the task of automatically detecting dol-
phins through aerial imagery.

The evaluation of the models demonstrated several key
findings. Notably, image-based models developed from a
training dataset created from data collected from a wide
range of internet sources proved to be capable of yielding
good results in classifying the presence of dolphins. Further-
more, models based on the ConvNext architecture exhibited
a more robust performance compared to other architec-
tures on all datasets and consistently demonstrated superior
performance across all metrics. Particularly, the combined
model CombinedModel (2), boasting additional convolu-
tional layers trained to specifically identify dolphin features,
outperformed its counterpart, suggesting an improvement in
generalizability provided by these layers. On the other hand,
suboptimal performance was observed from CNN-LSTM-
based models in terms of generalization beyond their training
environments. This sensitivity to variations in the evalua-
tion dataset highlights the need for further investigation and
fine-tuning. Ultimately, the ConvNext model emerged as a
standout performer with 83.9% accuracy, 86.7% recall, and
77.7 precision.

A critical observation was on Filming conditions and
sea states, which proved crucial to model performance.
Results indicate that resolution values below 11 mm/pixel
consistently improve performance within the given data.
Additionally, surveys conducted under a Beaufort state of
2 yielded significantly better results. Factors such as glare
on the water surface and the presence of boats were also
observed to bias model predictions.

Overall, the results obtained provide practical insights that
can guide the development of more robust and versatile mod-
els for the conservation of marine life, offering a promising
direction for the future of aerial monitoring in marine envi-
ronments.
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