Appendix J. Overview of Acoustic Modeling Report

J.1. Introduction and Short Project Description

This appendix is focused on providing an overview of the methods, assumptions, and results of the technical acoustic modeling report prepared for the Project (COP Appendix Z; Dominion Energy 2022) and the accompanying exposure assessment included in the Letter of Authorization (LOA) application submitted to the National Marine Fisheries Service (NMFS) for incidental take authorization under the Marine Mammal Protection Act (MMPA) (Tetra Tech 2022a, 2022b). The Project would consist of up to 205 wind turbine generators (WTGs), up to three offshore substations (OSS), inter-array and export cables, and onshore components (interconnection cables, switching station[s] and substation). The Project would be on the OCS offshore Virginia in BOEM Lease Area OCS-A 0483. Primary noise-generating activities which have the potential to expose marine mammals to noise above recommended permanent threshold shift (PTS) and behavioral thresholds (NMFS 2018) include impact and vibratory pile driving during WTG and OSS foundation installation; impact pile driving during installation of goal post piles to support trenchless installation of the export cable offshore at the cable landing location; vibratory pile driving during cofferdam installation; and high-resolution geophysical (HRG) survey activities.

For the installation of the WTG and OSS foundations and installation of the cofferdam, underwater sound propagation modeling was completed using dBSea, a software developed by Marshall Day Acoustics for the prediction of underwater noise in a variety of environments. The three-dimensional model was built by importing bathymetry data and placing noise sources in the environment. Noise levels were calculated throughout the entire Offshore Project area and displayed in three dimensions (COP Appendix Z; Dominion Energy 2022). Noise associated with installation of the goal post piles and HRG surveys was modeled using guidance from NMFS which involved updates to their User Spreadsheet tool (NMFS 2018) to incorporate new adjustment factors in the spreadsheets which account for the accumulation of noise using the source characteristics (duty cycle and speed) following work by Silve et al. (2014) for PTS (i.e., Level A) thresholds; and a simple spreading loss calculation to estimate the distance to the behavioral (i.e., Level B) threshold (Tetra Tech 2022a).

Noise associated with vessel activity related to cable laying and WTG operation is also qualitatively discussed in COP Appendix Z (Dominion Energy 2022). However, these activities are not expected to result in harassment which could jeopardize the continued existence of any marine mammal populations due to the characteristics of these sound sources. Cable laying would be accomplished using a jet trencher or plow towed by a vessel equipped with dynamic positioning (DP) thrusters to maintain the vessel position. DP thruster sound source levels may vary, in part due to technologies employed and are not necessarily dependent on either vessel size, propulsion power, or the activity engaged. However, DP thruster noise is non-impulsive and continuous in nature reducing the risk of effect on marine mammal species. Tougaard et al. (2020) summarized available monitoring data on wind farm operational noise, including both older-generation, geared turbine designs and quieter, modern, direct-drive systems like those proposed for this Project. They determined that operating WTGs produces underwater noise on the order of 110 to 125 dB re 1 µPa SPL at a reference distance of 50 m, occasionally reaching as high as 128 dB re 1 µPa SPL, in the 10-Hz to 8-kHz range. This is consistent with the noise levels observed at the Block Island Wind Farm (Elliot et al. 2019) and the range of values observed at European wind farms. More recently, Stöber and Thomsen (2021) used monitoring data and modeling to estimate operational noise from larger (10-Megawatt), current-generation, direct-drive WTGs and concluded that these designs could generate higher operational noise levels than those reported in earlier research. This suggests that operational noise effects on marine mammals could be more intense and extensive than those considered herein; however, due to the relatively low source levels of operational WTGs, injury-level impacts are not considered likely. For these reasons, a detailed acoustic modeling analysis was not conducted for these sound sources and they will not be discussed further.

J.2. Acoustic Models and Assumptions

As mentioned above, the acoustic assessment for pile driving activities associated with installation of the WTG and OSS foundations and installation of the cofferdams relied on dBSea software developed by Marshall Day Acoustics for the prediction of underwater noise. Noise levels were calculated throughout the entire Offshore Project area and displayed in three dimensions. Levels were calculated in third octave bands. For the Project, two different solvers were used for the low and high-frequency ranges:

- dBSeaPE (Parabolic Equation Method): The dBSeaPE solver makes use of the parabolic equation method, a versatile and robust method of marching the sound field out in range from the sound source. This method is one of the most widely used in the underwater acoustics community and offers excellent performance in terms of speed and accuracy in a range of challenging scenarios.
- dBSeaRay (Ray Tracing Method): The dBSeaRay solver forms a solution by tracing rays from the source to the receiver. Many rays leave the source covering a range of angles, and the sound level at each point in the receiving field is calculated by coherently summing the components from each ray. This is currently the only computationally efficient method at high frequencies.

The underwater acoustic modeling analysis used a split solver, with dBSeaPE evaluating the 12.5 Hz to 200 Hz and dBSeaRay addressing 250 Hz to 20,000 Hz. Additional assumptions and information pertaining to pile driving sound source development and sound propagation modeling can be found in the acoustic modeling report (COP Appendix Z; Dominion Energy 2022).

For the installation of the goal post piles and HRG survey activities, distances to the PTS thresholds were calculated using the NMFS User Spreadsheet tool with adjustments to account for accumulation using the Safe Distance Methodology outlined by Silve et al. (2014) and source characteristics such as duty cycle and speed (e.g., pile strike rate for goal post installation, pulse rate for HRG survey equipment). Distances to the behavioral disturbance thresholds were calculated using the following formula:

SPL(r) = SL - PL(r)

Where SPL is the root-mean-square sound pressure level (in units of dB re 1 μ Pa) at a given range, r (in meters). SL is the estimated source level 1 meter from the source, and PL is the propagation loss calculated as:

 $PL(r) = 20log_{10}(r) + a(f) \times r/1,000$

Where a is an attenuation factor at a given frequency, f (Tetra Tech 2022a).

J.2.1 Physical Environment

The bathymetry information used in the modeling was obtained from the National Geophysical Data Center (NGDC) and the U.S. Coastal Relief Model (COP Appendix Z, citing NOAA and Information Service 2020; Dominion Energy 2022). The bathymetric data were sampled by creating a fan of radials at a given angular spacing. This grid was then used to determine depth points along each modeling radial transect. The underwater acoustic modeling was conducted over these radial planes in set increments depending on the acoustic wavelength and the sampled depth. These radial transects were used for modeling acoustic impacts during both the construction and operation of the Project, with each radial centered on the given Project sound source or activity (COP Appendix Z; Dominion Energy 2022) The water column properties change seasonally. Because the construction timeframe for WTGs and OSSs is expected from May to October, the June sound speed profile was selected as is exhibited maximum case characteristics for long-range noise propagation effects (Dominion Energy 2022).

The sediment layers used in the modeling and the main geoacoustic properties are defined in Table J-1 and J-2 for the WTG and OSS installation scenarios and the cofferdam installation scenarios, respectively. The term "compressional" refers to the fact that particle motion of the sound wave is in the same direction as propagation. The term "compressional sound speed" refers to the speed of sound in the sediment along the direction of acoustic propagation. The term "compressional attenuation" refers to how much sound (in dB) is lost per wavelength (λ) of the signal. Finally, density is the physical density (ρ) of the sediment. Ranges are provided for the different geoacoustic properties because the values vary depending on the location specifically being modeled for a given scenario (COP Appendix Z; Dominion Energy 2022).

Seabed Layer Material (meters)		Geoacoustic Properties
0 to 12	Sand	Cp = 1650 m/s
		as $(dB/\lambda) = 0.8 dB/\lambda$
		ho = 1900 kg/m ³
12 to 15	Clay	Cp = 1500 m/s
		as $(dB/\lambda) = 0.2 dB/\lambda$
		ho = 1500 kg/m ³
15 to 22	Dense Silty and	Cp = 1650 m/s
		as $(dB/\lambda) = 1.1 dB/\lambda$
		ho = 1800 kg/m ³
22 to 31	Stiff Sandy Clay	Cp = 1560 m/s
		as $(dB/\lambda) = 0.2 dB/\lambda$
		ho = 1600 kg/m ³
31 to 37	Clay	Cp = 1500 m/s
		as $(dB/\lambda) = 0.2 dB/\lambda$
		ho = 1500 kg/m ³
37 to 42	Silty Sand	Cp = 1650 m/s
		as $(dB/\lambda) = 1.1 dB/\lambda$
		ho = 1800 kg/m ³
42 to 53	Clay, Fine Sand	Cp = 1598 m/s
		as $(dB/\lambda) = 0.5 dB/\lambda$
		$ ho$ = 1575 kg/m 3
53 to 87	Sandy Silt	Cp = 1605 m/s
		as $(dB/\lambda) = 1.0 dB/\lambda$
		ho = 1700 kg/m ³
>87	Dense Sand	Cp = 1800 m/s
		as (dB/ λ) = 0.9 dB/ λ
		ho = 2000 kg/m ³

Table J-1Geoacoustic Properties of Sub-bottom Sediments as a Function of Depth for the
WTG and OSS Modeling Scenarios

Source: COP Appendix Z, Table Z-5; Dominion Energy 2022.

Seabed Layer (meters)	Material	Geoacoustic Properties
0 to 2	Silty Sand	Cp = 1650 m/s
		α s (dB/ λ) = 1.1 dB/ λ
		ho = 1800 kg/m ³
2 to 6	Medium Dense Sand	Cp = 1725 m/s
		as $(dB/\lambda) = 0.8 dB/\lambda$
		ho = 1950 kg/m ³
6 to 9	Lean Clay	Cp = 1485 m/s
		as $(dB/\lambda) = 0.1 dB/\lambda$
		ho = 1300 kg/m ³
9 to 15	Silty Sand	Cp = 1650 m/s
		as $(dB/\lambda) = 1.1 dB/\lambda$
		ρ = 1800 kg/m ³
15 to 26	Sandy Lean Clay	Cp = 1560 m/s
		as $(dB/\lambda) = 0.2 dB/\lambda$
		ho = 1600 kg/m ³
26 to 32	Medium Dense Sand	Cp = 1725 m/s
		as (dB/ λ) = 0.8 dB/ λ
		ho = 1950 kg/m ³

Table J-2Geoacoustic Properties of Sub-bottom Sediments as a Function of Depth for the
Cofferdam Installation Modeling Scenario

Source: COP Appendix Z, Table Z-6; Dominion Energy 2022.

J.2.2 Vibratory Driving Source Details

The WTG monopile and OSS jacket foundations were both modeled using a vertical array of eight point sources for the deep location and five point sources for the shallow location, distributing the sound emissions from pile driving throughout the water column. The vertical array was assigned third-octave band sound characteristics adjusted for site-specific parameters discussed above, including expected hammer energy and number of blows. Third octave band center frequencies from 12.5 Hz up to 20 kHz were used in the modeling. In addition, a constant 15 dB/decade roll-off was applied to the modeled spectra after the second spectral peak. A roll-off is a filter, which can be imposed on a signal at either the low- or high-frequency range in order to more closely match expected sound propagation characteristics of that signal indicated by modeling or measurement results. Applying the 15 dB/decade roll-off is a conservative measure, which was based on guidance from NOAA Fisheries regarding the representation of pile-driving sound source characteristics in the high-frequency range (COP Appendix Z; Dominion Energy 2022).

If required, the temporary offshore cofferdams will be constructed by installing steel sheet piles in a tight configuration around an area of approximately 20 by 50 feet (6.1 by 15 meters). For estimating source levels and frequency spectra, the vibratory pile driver was estimated assuming an 1,800 kN vibratory force. Modeling was accomplished using adjusted one-third-octave band vibratory pile-driving source levels from measurements of a similar offshore construction activity and adjusted to account for the estimated force necessary for driving Project cofferdam sheet piles. The assumed sound source level for vibratory pile driving corresponded to and SEL of 195 dB re 1 μ Pa²m² s (COP Appendix Z; Dominion Energy 2022).

J.3. Noise Attenuation

A range of potential sound reduction was applied to the modeled sound fields associated with impact pile driving. Attenuation factors of 6 dB and 10 dB were applied to all impact pile-driving scenarios to evaluate potential mitigated underwater noise impacts (COP Appendix Z; Dominion Energy 2022).

The main energy associated with vibratory pile driving is radiated at lower frequencies compared to impact piling, and sound waves below a lower cut-off frequency do not propagate in shallow waters. As a result, high peak levels can be avoided and continuous sound levels can be kept low. Noise emissions from vibratory pile driving are on the order of 10 to 20 dB below mitigated impact pile driving at identical monopiles (COP Appendix Z, citing Koschinski and Lüdemann 2020; Dominion Energy 2022). To date, there is very limited information available regarding the use, effectiveness, and noise emissions produced using vibratory pile driving for installation of larger pile diameters consistent with those proposed for the Project; therefore, further investigation is required. Correspondingly, the lower frequencies radiated by vibratory pile driving may restrict the ability of a bubble curtain to allow for a further 6 to 10 dB reduction in noise level. For the purposes of the Project underwater acoustic assessment, a 6 and 10 dB reduction was still applied for consistency. From a feasibility standpoint, it is unlikely that another noise mitigation measure (e.g., isolation casing, cofferdam) along with a bubble curtain would be implemented in the field. As indicated previously, use of vibratory pile driving is considered a somewhat mitigative activity, and unmitigated vibratory pile driving modeling results shown in COP Appendix Z, Section Z.6.2 suggest that vibratory pile driving, when compared to impact pile driving results, will likely not dictate noise mitigation measures used for the Project (COP Appendix Z; Dominion Energy 2022).

J.4. Methodology

Underwater acoustic model simulations were conducted for primary noise-generating activities occurring during Project construction and operation. The following subsections summarize the modeling calculations approach, modeled scenarios, and model input values contained in COP Appendix Z (Dominion Energy 2021).

J.4.1 Acoustic Modeling Scenarios

A summary of construction and operational scenarios included in the underwater acoustic modeling analysis is provided in Table J-3. Model scenarios included locations where potential underwater noise impacts of marine species were anticipated including impact and vibratory pile driving associated with WTG and OSS foundation installation; impact pile driving of the goal post piles; vibratory pile driving during cofferdam installation associated with nearshore trenchless installation activities; and HRG survey activity (COP Appendix Z; Dominion Energy 2022; Tetra Tech 2022a). The modeling scenarios for the WTG foundation installation occur at representative foundation locations; one at a shallow water depth of 69 feet (21 meters) (Universal Transverse Mercator [UTM] Coordinates: 459846 m, 4075324 m) within the Lease Area and another at a deep-water depth of 121 feet (37 meters) (UTM Coordinates: 48066 m, 4089018 m) within the Lease Area. These two locations were selected so that the effects of sound propagation at the range of water column depths occurring within the Lease Area could be observed. Sound fields for the OSS foundations were modeled at the location where the greatest sound propagation was expected out of the three proposed OSS locations. Installation of the goal post piles was modeled at one representative location, and the central cofferdam location was used as the representative location for this activity in the model (COP Appendix Z; Dominion Energy 2022). The source level for the vibratory hammer was developed using an empirical model similar to the model used for the impact hammer. Further details pertaining to the underwater sound propagation modeling analysis, pile driving sound

source development, vibratory hammer sound source development, and a model verification completed for the CVOW Pilot Project is provided in COP Appendix Z (COP Appendix Z; Dominion Energy 2022).

The model accommodates for differences in hammer energy, number of strikes, installation duration, sound source level, and pile progression as appropriate for the jacket pin piles and/or monopiles. This analysis also assumes a conservative duration for the use of the vibratory hammer. The pile diameters selected for the impact pile-driving modeling scenarios were based on maximum Project Design Envelope considerations provided by Dominion Energy. Scenarios 1 through 8 occur at representative WTG locations while Scenario 9 occurs at the cofferdam locations at the Nearshore Trenchless Installation Area. Several of the scenarios (1, 2, 3, 4, and 5) include monopile foundation impact pile driving using the maximum rated hammer energy of 4,000 kilojoules (kJ); however, that hammer energy assumption is considered conservative. The actual transferred energy to the pile during installation will be less than the maximum rated hammer energy, with losses in energy from sources such as heat and friction. Scenarios 6, 7, and 8 represent activities associated with pin pile installation and Scenarios 4, 5, 7, and 8 represent activities that involve a combination of impact and vibratory pile driving to achieve installation (COP Appendix Z: Dominion Energy 2021). Propagation modeling was conducted using the maximum projected blow energy as applicable for the various scenarios; however, a soft start and pile progression were also incorporated into the model for each pile (see COP Appendix Z, Table Z-6; Dominion Energy 2021).

Scenario	Activity Description	Maximum Hammer Energy (kilojoules)	Duration of Single Pile Installation (minutes)	Total Hammer Blows	Location (UTM Coordinates)	Sound Source Level ¹
1: Standard Driving Installation	Monopile Foundation (includes 1 pile per day) Diameter: 9.5 m	Impact Pile Driving: 4,000 ²	85	3,240	Deep: 480,666 m, 4,089,018 m Shallow: 459,846 m, 4,075,324 m	Lpk: 249 dB re 1 μPa m SEL _{1s} : 226 dB re 1 μPa ² m ² s SPL: 236 dB re 1 μPa m
		Vibratory Pile Driving	60	N/A		SEL _{1s} : 202 dB re 1 µPa²m² s
2: Hard-to- Drive Installation	Monopile Foundation (includes 1 pile per day) Diameter: 9.5 m	Impact Pile Driving: 4,000 ²	99	3,720	Deep: 480,666 m, 4,089,018 m Shallow: 459,846 m, 4,075,324 m	Lpk: 249 dB re 1 μ Pa m SEL _{1s} : 226 dB re 1 μ Pa ² m ² s SPL: 236 dB re 1 μ Pa m
		Vibratory Pile Driving	30	N/A		SEL _{1s} : 202 dB re 1 µPa ² m ² s
3: One Standard and One Hard-to- Drive Installation	Monopile Foundation (includes 2 piles per day) Diameter: 9.5 m	Impact Pile Driving: 4,000 ²	184	6,960	Deep: 480,666 m, 4,089,018 m 471,303 m, 4,085,595 m Shallow: 459,846 m, 4,075,324 m 467,653 m, 4,080,459 m	Lpk: 249 dB re 1 μ Pa m SEL _{1s} : 226 dB re 1 μ Pa ² m ² s SPL: 236 dB re 1 μ Pa m

 Table J-3
 Underwater Acoustic Modeling Scenarios

Scenario	Activity Description	Maximum Hammer Energy (kilojoules)	Duration of Single Pile Installation (minutes)	Total Hammer Blows	Location (UTM Coordinates)	Sound Source Level ¹
		Vibratory Pile Driving	90	N/A		SEL _{1s} : 202 dB re 1 µPa²m² s
4: OSS Foundation	Pile Jacket Foundation (includes 2 piles per day) Diameter: 2.8 m	Impact Pile Driving: 3,000	410	15,120	Deep: 480,666 m, 4,089,018 m Shallow: 459,846 m, 4,075,324 m	Lpk: 240 dB re 1 μ Pa m SEL _{1s} : 214 dB re 1 μ Pa ² m ² s SPL: 224 dB re 1 μ Pa m
		Vibratory Pile Driving	120	N/A		SEL _{1s} : 194 dB re 1 µPa²m² s
5: Cofferdam Installation	Cofferdam, Vibratory Pile Driving	Vibratory Pile Driving	60	NA	414,213 m, 4,074,917 m	SEL _{1s} : 195 dB re 1 µPa²m² s
6: Goal Post Pile Installation	Goal Post Piles (includes 2 piles per day) Diameter: 1.07 m	Impact Pile Driving	130	260	414,396 m 4,074,917 m	Lpk: 210 dB re 1 μPa m SEL _{1s} : 183 dB re 1 μPa ² m ² s

Source: COP Appendix Z, Table Z-7; Dominion Energy 2022

m = meter; $kJ = kilojoule SEL_{1s} = sound exposure level over 1 second; Lpk= peak sound pressure; SPL = root-mean-square sound pressure level$

¹ Source levels are based on the SERO Pile Driving Noise Data Spreadsheet – Humboldt Bay Bridges (CALTRANS 2015). N/A s included in the table for vibratory pile driving because this activity is not quantified in terms of hammer blows.

² 4,000 kJ corresponds to the maximum rated hammer energy; however, actual hammer energy transferred to the pile during installation will be less.

J.4.2 Threshold Range Calculations

To determine the ranges to the defined threshold isopleths, a maximum received level-over-depth approach was used. This approach uses the maximum received level that occurs within the water column at each sampling point. Both the R_{max} and the R_{95%} ranges were calculated for each of the regulatory thresholds. The R_{max} is the maximum range in the model at which the sound level was calculated. The R_{95%} is the maximum range at which a sound level was calculated excluding 5 percent of the R_{max}. The R_{95%} excludes major outliers or protruding areas associated with the underwater acoustic modeling environment. Regardless of shape of the calculated isopleths, the predicted range encompasses at least 95 percent of the area that would be exposed to sound at or above the specified level. All distances to injury thresholds presented in this Underwater Acoustic Assessment Report are presented in terms of the R_{95%} range (COP Appendix Z; Dominion Energy 2022).

J.5. Animal Movement Model Methodology

To estimate the number of animals expected to receive sound levels above established thresholds, Marine Acoustics, Inc. (MAI) conducted exposure modeling which combines animal movement modeling with the sound fields produced by each pile type and scenario using their Acoustic Integration Model© (AIM) (Tetra Tech 2022a). Different simulations were run in AIM for each species, modeling scenario, and modeled location in which simulated animals (i.e., animats) were randomly distributed throughout the

modeling environment and the predicted received level was recorded every 30 seconds for each animat to create a sound exposure history. Animats move throughout the simulated environment following known behavioral rules for each species based on available studies (Tetra Tech 2022a). The sound exposure histories are then subsampled based on the expected duration of the activity (e.g., a monopile foundation may take up to 3 hours to install so 3 hour exposure histories were extracted from each scenario for each species), and then normalized using the ratio of real-world density estimates to the animat simulation densities for each species modeled (Tetra Tech 2022a).

J.6. Marine Species Present in the Project Area

J.6.1 Marine Mammal Presence and Seasonality for the Project Duration

Several sources of data, reports, and studies were reviewed by Dominion Energy to identify which marine mammals are expected to be present in the study area and their seasonal occurrence including: the most recent stock assessment reports from NMFS (Hayes et al. 2022); and Protected Species Observer (PSO) sighting data (and some Passive Acoustic Monitoring [PAM] data), which were also collected during Project-related vessel-based survey activities conducted in 2018–2019 which are provided in the PSO report sightings report (Milne 2018 as cited in COP Section 4.2; Dominion Energy 2022). The most recent 2020-2021 PSO sighting data made available since the Milne (2018) report was published are summarized below in Table J-4. Marine mammals known to occur in the marine waters of coastal and offshore Virginia are listed in Table J-5.

Table J-4	PSO Sighting Data Summary
-----------	---------------------------

PSO Sightings in 2020–2021 by Month																		
Spacios					2020					2021 ¹								
Species	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Atlantic spotted dolphin	5	34	77	260	112	44	53						20	36	68			
Common bottlenose dolphin	10	59	102	107	303	377	150	124	27	3	20	6	11	126	46	362	130	
Common dolphin			27	46	16				224	840	366	620	945					
False killer whale						4												
Fin whale				1							13							
Humpback whale		1					7	1	23	10	25							
Minke whale									1					1				
North Atlantic right whale									3		3	1						
Pantropical spotted dolphin			72		7									10	10			
Pilot whale spp.					5											3		
Pygmy sperm whale								1										
Sperm whale					1													
Spinner dolphin			1															

Source: COP, Section 4.2, Table 4.2-19; Dominion Energy 2022. ¹ Data for 2021 are preliminary and will undergo additional review before reports are finalized.

Table J-5 Marine Maninals Known to Occur in the Marine Waters of Coastal and Onshore Virgin	Table J-5	Marine Mammals Known to Occur in the Marine Waters of Coastal and Offshore Virginia
---	-----------	---

Common Name	Scientific Name	Stock	Estimated Abundance	Known Offshore Project Area Distribution	Occurrence/Seasonality ¹	Federal Status	Virginia Status
High-Frequency Ce	taceans	·			·		
Harbor Porpoise	Phocoena	Gulf of Maine/Bay of Fundy	95,543	Shallow, inshore and nearshore, estuarine and coastal waters	Common/Winter/Spring	MMPA— non- strategic	_
Mid-Frequency Ceta	aceans	1			1		1
Atlantic Spotted Dolphin	Stenella frontalis	Western North Atlantic	39,921	Continental shelf and slope	Common/Year-round	MMPA— non- strategic	_
Atlantic White- Sided Dolphin	Lagenorhynchus acutus	Western North Atlantic	93,233	Continental shelf and slope	Uncommon/Fall/ Winter/Spring	MMPA— non- strategic	_
		Western North Atlantic	62,851	Deeper, offshore waters	Common/Year-round	MMPA— non- strategic	_
Common Bottlenose Dolphin	Tursiops truncatus	Southern Migratory Coastal	3,751	Shallow, inshore, and nearshore, estuarine and coastal waters	Common/Year-round	MMPA— strategic	_
Clymene Dolphin	Stenella clymene	Western North Atlantic	unknown	Deeper, offshore waters	Extralimital/Summer	MMPA— non- strategic	_
Dwarf Sperm Whale	Kogia sima	Western North Atlantic	7,750	Continental shelf and deeper, offshore waters	Uncommon/Variable	MMPA— non- strategic	_
False Killer Whale	Pseudorca crassidens	Western North Atlantic	1,791	Continental shelf and deeper, offshore waters	Uncommon/Variable	MMPA— non- strategic	_
Fraser's Dolphin	Lagenorhynchus hosei	Western North Atlantic	unknown	Deeper, offshore waters	Uncommon/Variable	MMPA— non- strategic	_
Killer Whale	Orcinus orca	Western North Atlantic	unknown	Continental shelf and deeper, offshore waters	Uncommon/Year-round	MMPA— non- strategic	_
Long-finned Pilot Whale	Globicephala melas	Western North Atlantic	39,493	Continental shelf	Common/Year-round	MMPA— non- strategic	_

Common Name	Scientific Name	Stock	Estimated Abundance	Known Offshore Project Area Distribution	Occurrence/Seasonality ¹	Federal Status	Virginia Status
Short-finned pilot whale	Globicephala macrorhynchus	Western North Atlantic	28,924	Continental shelf	Uncommon/Year-round	MMPA— non- strategic	_
Pan-tropical Spotted Dolphin	Stenella attenuata	Western North Atlantic	6,593	Deeper, offshore waters	Uncommon /Summer	MMPA— non- strategic	_
Melon-headed whale	Peponocephala electra	Western North Atlantic	unknown	Continental shelf and deeper, offshore waters	Uncommon/Variable	MMPA— non- strategic	_
Pygmy Killer Whale	Feresa attenuata	Western North Atlantic	unknown	Deeper, offshore waters	Uncommon/Variable	MMPA— non- strategic	_
Pygmy Sperm Whale	Kogia breviceps	Western North Atlantic	7,750	Continental shelf and deeper, offshore waters	Uncommon/Year-round	MMPA— non- strategic	_
Risso's Dolphin	Grampus griseus	Western North Atlantic	35,493	Continental shelf	Common/Year-round	MMPA— non- strategic	_
Rough Toothed Dolphin	Steno bredanensis	Western North Atlantic	136	Continental shelf and deeper, offshore waters	Uncommon/Year-round	MMPA— non- strategic	_
Common Dolphin	Delphinus delphis	Western North Atlantic	172,974	Continental shelf and slope	Common/Year-round	MMPA— non- strategic	_
Sperm Whale	Physeter macrocephalus	North Atlantic	4,349	Deeper, offshore waters and slope	Uncommon/Year-round	MMPA—strategic; Endangered ESA	Endangered
Spinner Dolphin	Stenellalongirostris orientalis	Western North Atlantic	4,102	Deeper, offshore waters and slope	Uncommon/Year-round	MMPA— non- strategic	_
Striped Dolphin	Stenella coeruleoalba	Western North Atlantic	67,036	Deeper, offshore waters and slope	Uncommon/Year-round	MMPA— non- strategic	_
White Beaked Dolphin	Lagenorhynchus albirostris	Western North Atlantic	536,016	Continental shelf	Uncommon/Variable	MMPA— non- strategic	_
Blainville's Beaked Whale	Mesoplodon densirostris	Western North Atlantic	10,107	Deeper, offshore waters	Uncommon/Spring/Summer	MMPA— non- strategic	_

Common Name	Scientific Name	Stock	Estimated Abundance	Known Offshore Project Area Distribution	Occurrence/Seasonality ¹	Federal Status	Virginia Status
Cuvier's Beaked Whale	Ziphius cavirostris	Western North Atlantic	5,744	Deeper, offshore waters	Uncommon/Variable	MMPA— non- strategic	_
Gervais' Beaked Whale	Mesoplodon europaeus	Western North Atlantic	10,107	Deeper, offshore waters	Uncommon/Spring/Summer	MMPA— non- strategic	_
Sowerby's Beaked Whale	Mesoplodon bidens	Western North Atlantic	10,107	Deeper, offshore waters	Uncommon/Variable	MMPA— non- strategic	_
True's Beaked Whale	Mesoplodon mirus	Western North Atlantic	10,107	Deeper, offshore waters	Uncommon/Spring/Summer	MMPA— non- strategic	_
Low-Frequency Cet	aceans						
Blue Whale	Balaenoptera musculus	Western North Atlantic	unknown	Continental shelf and deeper, offshore waters	Uncommon/Year-round	MMPA—strategic; Endangered ESA	Endangered
Fin Whale	Balaenoptera physalus	Western North Atlantic	6,802	Continental shelf and deeper, offshore waters	Common/Year-round	MMPA—strategic; Endangered ESA	Endangered
Humpback Whale (West Indies DPS)	Megaptera novaeangliae	Gulf of Maine	1,396	Continental shelf and coastal waters	Common/Fall/Winter/Spring	MMPA— non- strategic ²	Endangered
Minke Whale	Balaenoptera acutorostrata	Canadian East Coast	21,960	Continental shelf	Common/Year-round	MMPA— non- strategic	_
Sei Whale	Balaenoptera borealis	Nova Scotia	6,292	Continental Shelf	Uncommon/Winter/Spring/ Summer	MMPA—strategic; Endangered ESA	Endangered
North Atlantic Right Whale	Eubalaena glacialis	Western Atlantic	412	Continental shelf and coastal waters	Common/Year-round	MMPA—strategic; Endangered ESA	Endangered
Sirenians							
West Indian Manatee	Trichechus manatus	Florida	unknown	Coastal, bays, estuaries, and inlets	Extralimital/Variable	MMPA—strategic; Threatened ESA	Endangered
Phocid Pinnipeds in	n Water						
Gray Seal	Halichoerus grypus	Western North Atlantic	27,131	Coastal, bays, estuaries, and inlets	Uncommon/Fall/Winter/ Spring	MMPA— non- strategic	_
Harbor Seal	Phoca vitulina	Western North Atlantic	75,834	Coastal, bays, estuaries, and inlets	Common/Fall/Winter/Spring	MMPA— non- strategic	_

Common Name	Scientific Name	Stock	Estimated Abundance	Known Offshore Project Area Distribution	Occurrence/Seasonality ¹	Federal Status	Virginia Status
Harp Seal	Pagophilus groenlandicus	Western North Atlantic	unknown	Coastal, bays, estuaries, and inlets	Uncommon/Winter/Spring	MMPA— non- strategic	_
Hooded Seal	Cystophora cristata	Western North Atlantic	unknown	Coastal, bays, estuaries, and inlets	Extralimital/Summer/Fall	MMPA— non- strategic	_

Source: COP, Section 4.2, Table 4.2-20; Dominion Energy 2022.

Notes:

Marine Mammal Protection Act (MMPA)

¹ Occurrence defined as:

Common: occurrences are regularly documented, and the study area is generally considered within the typical range of the species. Uncommon: occurrences are occasionally documented, and the study area is generally considered within the typical range of the species.

Extralimital: few occurrences have been documented and the study area is generally considered outside the typical range of the species; any occurrences would likely be of incidental individuals.

² Note that the humpback whale (Megaptera novaeangliae) was previously federally listed as endangered; however, based on the revised listing completed by NOAA Fisheries in 2016, the Distinct Population Segment (DPS) of humpback whales that occurs along the East Coast of the U.S., the West Indies DPS, is no longer considered endangered or threatened. The Commonwealth of Virginia has retained the endangered state listing status for the humpback whale.

Status denoted as (--) indicates no regulatory status for that species under Federal or Virginia authority.

J.6.2 Marine Mammal Densities

The marine mammal species potentially occurring in the Project modeling areas were determined by Tetra Tech (2022b) based on habitat-based marine mammal density models developed by Roberts et al. (2022). Density estimates are a necessary part of the analysis process to determine acoustic exposure for each potentially occurring marine mammal in an area. Density estimates for each marine mammal species or species group by season were derived from the best available scientific information (Table J-6). As per Dominion Energy's commitment to seasonal restrictions from November through April, no WTG or OSS foundation installation activities are planned for winter, so modeling was conducted for the remaining three seasons, with spring including the months of March through May, summer ranging from the months of June to August, and fall extending from September through November. Construction activities, however, are not planned to occur for the entirety of spring through fall. Monopile and OSS construction is planned for only part of spring (May) and part of fall (September through October) annually. Using the Roberts et al. (2022) density data (which are delineated by grid cell), the densities for all of the grid cells within the modeling area were averaged for each month to provide a monthly average density. The three seasonal densities were calculated as the average of the months within each of the three seasons when construction is expected to occur.

Some marine mammal species were modeled as representative groups rather than individual species. For instance, members of the same genus that inhabit the same type of habitat and have similar dive and swim behaviors, such as the two pilot whale species, were modeled as an inclusive generic group (pilot whales) rather than by their individual species (long- and short-finned pilot whales). The two potentially occurring species of phocid seals, the harbor and gray seals, were also modeled as a representative group (seals). A summer density for the seals is given as 0.00001 animals/km² which is not the density derived from Roberts et al. (2022). A higher density estimate, 0.0004 animals /km², was derived for the summer season for this species group from Roberts et al. (2022). However, the Roberts et al. (2022) derived density estimate is unrealistic given that neither seal species is expected to occur in the waters of the Project area during summer (Hayes et al. 2022). For harbor seals, Hayes et al. (2022) estimates the occurrence in mid-Atlantic waters to range only from September through May, not during summer. The summer distribution of both species is well documented in more northern waters. To reconcile the known distribution of these species with the need for a density estimate, the conservative density estimate of 0.00001 animals/km² was used to represent the summer density of both seal species.

Two bottlenose dolphin stocks are present within the Project area, but density values are only available in the Roberts et al. density data for the species. Hayes et al. (2022) defines the boundary between the Western North Atlantic, Southern Coastal Migratory stock and the Western North Atlantic, offshore stock of bottlenose dolphins as the 20 m isobath north of Cape Hatteras, North Carolina. The 20 m isobath was used with the Roberts et al. (2022) to differentiate the two stocks and derive densities for the bottlenose dolphins in the Project area less than 20 m for the Southern Coastal Migratory stock and more than 20 m for the offshore stock.

The modeled marine mammal animats were set to populate each of the model areas with representative nominal densities. In some cases, the modeled animat density was higher than the real-world density estimate. This "over population" ensures that the result of the animat model simulation is not unduly influenced by the chance placement of a few simulated marine mammals and provides statistical robustness without overestimating risk. To obtain final exposure estimates, the modeled results are normalized by the ratio of the modeled animat density to the real-world (Roberts et al. 2022) marine mammal seasonal density estimates. Density estimates for all species considered common in Table J-5, or have confirmed sightings within the Lease Area based on PSO data in Table J-4 are provided in Table J-6.

Table J-6Mean Seasonal Density Estimates (animals/km²) for the Potentially Occurring
Marine Mammal Species in the Project Area

Marine Mammal Species or Model Group	Spring (May)	Summer (June to August)	Fall (September to October)
Atlantic spotted dolphin	0.00507	0.05873	0.03822
Common bottlenose dolphin Western North Atlantic Southern Coastal Migratory Stock ¹	0.13098	0.13509	0.13852
Common bottlenose dolphin Western North Atlantic Offshore Stock ¹	0.07352	0.07415	0.06439
Common dolphin	0.05355	0.00559	0.00103
Minke whale	0.00519	0.00028	0.00011
Fin whale ²	0.00069	0.00036	0.00019
Harbor porpoise	0.00315	0.00000	0.00000
Humpback whale	0.00136	0.00023	0.00040
North Atlantic right whale ²	0.00015	0.00004	0.00005
Pantropical spotted dolphin ³	0.00008	0.00008	0.00008
Pilot whale <i>spp</i> . (long- and short-finned pilot whales) ⁴	0.00098	0.00098	0.00098
Risso's dolphin	0.00084	0.00042	0.00021
Seals⁵	0.01828	0.00001	0.00047
Sei whale ²	0.00021	0.00001	0.00004
Sperm whale ²	0.00003	0.00000	0.00000

Source: Table 24, Tetra Tech 2022b.

¹ Common bottlenose dolphin density values from Duke University (Roberts et al. 2016b, 2017, 2018, 2020) are reported as "bottlenose" and not identified to stock. Given the foundation installation sound would be confined to beyond the 20 m isobath, where the offshore stock is anticipated to predominate, estimated Level B take for cofferdam installation was accrued to the offshore stock.

² Indicates species listed under the Endangered Species Act.

³ Pantropical spotted dolphins are included due to challenges with PSO identification of Atlantic spotted versus pantropical

spotted dolphins.

⁴ Pilot whale density values from Duke University (Roberts et al. 2016a, 2016b, 2017, 2018, 2020) are reported as "Kogia *spp*." and are not species-specific.

⁵ Seal density values from Duke University (Roberts et al. 2016a, 2016b, 2017, 2018, 2020) are reported as "seals" and not

species-specific; therefore, 50% were attributed to harbor seals and 50% to gray seals.

J.6.3 Sea Turtle Presence and Seasonality for the Project Duration

Five species of sea turtles have historically been reported to occur in mid-Atlantic waters off the coast of Virginia, all of which are listed as threatened or endangered under the Endangered Species Act (ESA). These species include the federally endangered Atlantic hawksbill (*Eretmochelys imbricata*), federally threatened green (*Chelonia mydas*), federally Endangered Kemp's ridley (*Lepidochelys kempii*), federally endangered leatherback (*Dermochelys coriacea*), and federally threatened loggerhead (*Caretta caretta*) (COP Section 4.2; Dominion Energy 2021). Table J-7 provides a summary of key information for these species and their known distribution within the study area.

Common Name	Scientific Name	Scientific Name Estimated Abundance Distribution		Occurrence ¹ Seasonality	Federal Status	State of Virginia Status
Leatherback Sea Turtle	Dermochelys coriacea	34,000– 94,000	Offshore, continental shelf and deeper	Uncommon/Year- round	Endangered	Endangered
Atlantic Hawksbill Sea Turtle	Eretmochelys imbricata	19,000 ²	N/A	Extralimital/Year- round	Endangered	Endangered
Green Sea Turtle (North Atlantic Distinct Population Segment)	Chelonia mydas	215,000 ²	Coastal, bays, estuaries, and inlets	Uncommon/Year- round	Threatened	Threatened
Kemp's Ridley Sea Turtle	Lepidochelys kempii	248,300	Coastal, bays, estuaries, and inlets	Common/Year-round	Endangered	Endangered
Loggerhead Sea Turtle (Northwest Atlantic Distinct Population Segment)	Caretta	588,000	Throughout: offshore, continental shelf and deeper; coastal, bays, estuaries, and inlets	Common/Year-round	Threatened	Threatened

 Table J-7
 Sea Turtles Known to Occur in the Marine Waters of Coastal and Offshore Virginia

Source: COP, Section 4.2, Table 4.2-28. Notes:

¹ Occurrence defined as:

Common: Occurrences are regularly documented, and the study area is generally considered within the typical range of the species. Uncommon: Occurrences are occasionally documented, and the study area is generally considered within the typical range of the species.

Extralimital: Few occurrences have been documented, and the study area is generally considered outside the typical range of the species; any occurrences would likely be of incidental individuals.

² Abundance estimates based on current nesting female and sex ratio estimates.

J.6.4 Sea Turtle Densities

Two sources of sea turtle densities represent the best available at-sea density data for sea turtles in the Project area: U.S. Department of the Navy (DON 2007) and Barco et al. (2018) (Tetra Tech 2022). The DON (2007) density estimates were prepared for the Navy's U.S. Atlantic operating areas, which include the CVOW-C Project area. More recent loggerhead turtle density estimates for the Project area are available in Barco et al. (2018); however, these densities are much higher than the older DON (2007) estimates for the loggerhead turtle. Additionally, Barco et al. (2018) included a seasonal availability correction factor. Instead of selecting one of these loggerhead density estimates to apply to the exposure modeling output, both the DON (2007) and Barco et al. (2018) density estimates for the loggerhead turtle have been included.

Though green sea turtles may occur seasonally in the Project area, no at-sea density estimates are available for this species. Rather, the only available data for green sea turtles are those grouped into the "hardshelled guild" in the DON (2007) dataset, so the seasonal estimates from this guild were used as surrogate densities for green sea turtles (Tetra Tech 2022). Densities for all sea turtle species likely to occur in the Project area are provided in Table J-8.

Table J-8 Mean Seasonal Density Estimates (animals km⁻²) for Sea Turtles Potentially Occurring in the Project Area

Common Name	Scientific Name	Spring (May)	Summer (June – August)	Fall (September and October)
Leatherback Sea Turtle	Dermochelys coriacea	0.00509	0.00427	0.00509
Green Sea Turtle 1	Chelonia mydas	0.04561	0.07241	0.04867
Kemp's Ridley Sea Turtle	Lepidochelys kempii	0.04687	0.04687	0.04687
Loggerhead Sea Turtle (DON 2007)	Caretta caretta	0.13534	0.13062	0.13475
Loggerhead Sea Turtle (Barco et al. 2018)	Caretta caretta	2.514	1.385	1.289

Source: Appendix D, Table 8; Tetra Tech 2022.

Notes:

¹ Population data were insufficient to determine an individual species density estimate for green sea turtles from the DON (2007) dataset; therefore the hardshelled guild densities were used as a surrogate for green sea turtles in the Project area.

J.6.5 Seasonal Restrictions

Portions of the study area fall within the Mid-Atlantic U.S. North Atlantic Right Whale Seasonal Management Area (SMA). Restrictions associated with these dynamic management areas are in effect between November 1 and April 30 annually. Vessels transiting these areas must comply with NMFS regulations and speed restrictions as applicable for North Atlantic right whales.

J.7. Acoustic Impact Criteria

NMFS (2018) defined acoustic threshold criteria at which PTS and temporary threshold shift (TTS) are predicted to occur for each hearing group for impulsive and non-impulsive signals (Table J-9), which are presented in terms of dual metrics; SEL_{24h} and Lpk. The Level B (behavioral) harassment thresholds are also provided in Table J-9.

			Sound S	Source Type					
Hearing		Impulsive		Non-Impulsive					
Croup	PTS-Onset	TTS-Onset	Behavior	PTS-Onset	TTS-Onset	Behavior			
Low- frequency cetaceans	Lpk: 219 dB re 1 µPa SEL _{24h} : 183 dB re 1 µPa ² s	Lpk: 213 dB re 1 µPa SEL _{24h:} 168 dB re 1 µPa ² s	SPL:160 dB re 1 µPa	SEL _{24h} : 199 dB re 1 µPa ² s	SEL _{24h:} 179 dB re 1 µPa ² s	SPL: 120 dB re 1 µPa (continuous) SPL: 160 dB			
Mid- frequency cetaceans	Lpk: 230 dB re 1 µPa SEL _{24h} :185 dB re 1 µPa ² s	Lpk: 224 dB re 1 µPa SEL _{24h:} 170 dB re 1 µPa ² s		SEL _{24h:} 198 dB re 1 µPa ² s	SEL _{24h:} 178 dB re 1 µPa ² s	re 1 μPa (intermittent)			
High- frequency cetaceans	Lpk: 202 dB re 1 µPa SEL _{24h} :155 dB re 1 µPa ² s	Lpk: 196 dB re 1 µPa SEL _{24h:} 140 dB re 1 µPa ² s		SEL _{24h:} 173 dB re 1 μPa ² s	SEL _{24h} : 153 dB re 1 µPa ² s				
Phocid pinnipeds underwater	Lpk: 218 dB re 1 µPa SEL _{24h} :185 dB re 1 µPa ² s	Lpk: 212 dB re 1 µPa SEL _{24h} : 170 dB re 1 µPa ² s		SEL _{24h:} 201 dB re 1 µPa ² s	SEL _{24h} : 181 dB re 1 µPa ² s				

 Table J-9
 Acoustic Threshold Criteria for Marine Mammals

Sources: NMFS 2018.

 μ Pa = micropascal; dB = decibel; PTS = permanent threshold shift; re = referenced to; SEL_{24h} = sound exposure level over 24 hours; Lpk = peak sound pressure level; SPL = root-mean-square sound pressure level; TTS = temporary threshold shift.

NOAA Fisheries anticipates behavioral response for sea turtles from impulsive sources such as impact pile driving to occur at SPL 175 dB re 1 μ Pa, which has elicited avoidance behavior of sea turtles (Blackstock et al. 2018). There is limited information available on the effects of noise on sea turtles, and the hearing capabilities of sea turtles are still poorly understood. In addition, the U.S. Navy introduced a weighting filter appropriate for sea turtle impact evaluation in their 2017 document titled "Criteria and Thresholds for U.S. Navy Acoustic and Explosive Effects Analysis (Phase III)" (Finneran et al. 2017). That weighting has been applied to both impulsive and non-impulsive criteria for PTS and TTS (Table J-10).

Fish noise injury thresholds have been established by the Fisheries Hydroacoustic Working Group, which was assembled by NOAA Fisheries with thresholds subsequently adopted by NOAA Fisheries. The NOAA Fisheries Greater Atlantic Regional Fisheries Office (GARFO) has applied these standards for assessing the potential effects of ESA-listed fish species and sea turtles exposed to elevated levels of underwater sound produced during pile driving, which were just recently updated (GARFO 2019) (COP Appendix Z; Dominion Energy 2022). These noise thresholds are based on sound levels that have the potential to produce injury or illicit a behavioral response from fishes (Table J-10).

A Working Group organized under the American National Standards Institute-Accredited Standards Committee S3, Subcommittee 1, Animal Bioacoustics, also developed sound exposure guidelines for fish and sea turtles (Table J-11 ; Popper et al. 2014) (COP Appendix Z; Dominion Energy 2022). They identified three types of fishes depending on how they might be affected by underwater sound. The categories include fishes with no swim bladder or other gas chamber (e.g., flounders, dab, and other flatfishes); fishes with swim bladders in which hearing does not involve the swim bladder or other gas volume (e.g., salmonids); and fishes with a swim bladder that is involved in hearing (e.g., channel catfish) (COP Appendix Z; Dominion Energy 2022).

	Impulsive	e Signals	Non-Impuls	ive Signals	Behavior
Hearing Group	PTS- Onset/Injury ¹	TTS-Onset	PTS- Onset/Injury ¹	TTS-Onset	(Impulsive and Non-Impulsive)
Fishes	Lpk: 206 dB re 1 µPa SEL _{24h} : 187 dB re 1 µPa ² s			-	SPL: 150 dB re 1 µPa
Sea turtles	Lpk: 232 dB re 1 µPa SEL _{24h} : 204 dB re 1 µPa ² s	Lpk: 226 dB re 1 µPa SEL _{24h} : 189 dB re 1 µPa ² s	SEL _{24h} : 200 dB re 1 μPa ² s	SEL _{24h} : 220 dB re 1 μPa ² s	SPL: 175 dB re 1 µPa

 Table J-10
 Acoustic Threshold Criteria for Fishes and Sea Turtles

Sources: Stadler and Woodbury (2009); GARFO 2019; Blackstock et al. 2018; Finneran et al. 2017.

-- = not applicable for fishes; µPa = micropascal; dB = decibel; PTS = permanent threshold shift; re = referenced to; SEL_{24h} = sound exposure level over 24 hours; Lpk = peak sound pressure level; SPL = root-mean-square sound pressure level; TTS = temporary threshold shift.

¹ PTS-onset thresholds are applicable for sea turtles based on work from Finneran et al. (2017), where GARFO (2019) only provides thresholds for acoustic injury in fish.

	Impulsive	Sounds	Non-	Impulsive Sour	nds
Hearing Group	Mortality and Potential Mortal Injury	Recoverable Injury	TTS	Recoverabl e Injury	TTS
Fishes without swim bladders	Lpk: >213 dB re 1 μPa SEL _{24h} : >219 dB re 1 μPa ² s	Lpk: >213 dB re 1 µPa SEL _{24h} : >216 dB re 1 µPa ² s	SEL _{24h} : >186 dB re 1 µPa ² s		
Fishes with swim bladder not involved in hearing	Lpk: 207 dB re 1 μPa SEL _{24h} : 210 dB re 1 μPa ² s	Lpk: 207 dB re 1 μPa SEL _{24h} : 203 dB re 1 μPa ² s	SEL _{24h} : >186 dB re 1 µPa ² s		
Fishes with swim bladder involved in hearing	Lpk: 207 dB re 1 μPa SEL _{24h} : 207 dB re 1 μPa ² s	Lpk: 207 dB re 1 μPa SEL _{24h} : 203 dB re 1 μPa ² s	SEL _{24h} : 186 dB re 1 µPa ² s	SPL: 170 dB re 1 µPa	SPL: 158 dB re 1 µPa
Eggs and larvae	Lpk: 207 dB re 1 μPa SEL _{24h} : 210 dB re 1 μPa ² s	(N) Moderate (I) Low (F) Low	(N) Moderate (I) Low (F) Low		

Table J-11 Acoustic Threshold Levels for Fishes

Sources: Popper et al. 2014.

 μ Pa = micropascal; dB = decibel; SEL_{24h} = sound exposure level over 24 hours; Lpk = peak sound pressure level; SPL = root-mean-square sound pressure level; TTS = temporary threshold shift., N = near (10s of meters), I = intermediate (100s of meters), and F = far (1000s of meters); -- = not applicable.

J.8. Results

J.8.1 WTG and OSS Foundation Installation

The complete dBSea acoustic modeling results to assess distances to the various acoustic threshold levels identified above in Sections J.4.2 and J.7 are provided in COP Appendix Z (Dominion Energy 2022). The modeling scenarios analyzed are described in Table J-3 and include monopile impact pile-driving activities for pile diameters of 31.2 feet (9.5 meters) using hammer energy of 4,000 kilojoules, and pin pile impact pile driving for 9.2-foot (2.8-meter) pile diameter. Modeling scenarios also include a combination of vibratory and impact pile-driving activities to achieve installation as described for Scenarios 1, 2, 3, and 4 (Table J-3). All those activities may occur at the two representative WTG

locations within the Lease Area, where one location is in the deepest region (121 feet [37 meters]) of the Lease Area while the other location is in the shallowest region (69 feet [21 meters]) of the Lease Area; and the one representative for the OSS where the greatest sound propagation ranges will occur.

The results for impact and vibratory pile driving for the representative WTG location at the deepest water depth and the representative OSS foundation location are shown in Table J-12. Table J-13, and Table J-14 for marine mammals, sea turtles, and fish, respectively. Results are presented without mitigation and with two different levels of mitigation: a 6-dB reduction and a 10-dB reduction. Noise mitigation requirements and methods have not been finalized at this stage of Project design; therefore, these two levels of reduction were applied to potentially mimic the use of noise mitigation options such as bubble curtains (COP Appendix Z; Dominion Energy 2022). The results in Table J-12 indicate that the unmitigated distances to the Lpk thresholds for marine mammals are generally below 1,640 feet (500 meters) except for results for the high-frequency cetaceans group. Thresholds to the SEL_{24h} PTS onset thresholds were larger for all marine mammal hearing groups (Table J-12). Similar results were seen for sea turtles (Table J-13) and fish (Table J-14), with ranges to applicable thresholds varying depending on the threshold value, installation method, and pile type. Expectedly, the largest ranges to thresholds are the ones for the marine mammal and fish behavioral response thresholds, which are and SPL of 160 and 120 dB re 1 μ Pa for marine mammals in response to impulsive and non-impulsive, continuous sound sources, respectively; and an SPL of 150 dB re 1 µPa for fish in response to all sound source types (Section J-7). Refer to COP Appendix Z, Figures Z-8 through Figure Z-31 for sound maps of unweighted and unmitigated underwater received sound pressure levels for deep and shallow modeling scenarios (Dominion Energy 2022).

Octomoria	Noise Attenuation (dD)		Distance to PTS	Threshold (Lpk)			Distance to PTS T	hreshold (SEL _{24hr})		Distance to Behavioral Threshold (SPL)
Scenario	Noise Attenuation (db)	LFC	MFC	HFC	PPW	LFC	MFC	HFC	PPW	All Hearing Groups
Standard W/TC Driving Installation	0	344	116	1,621	371	11,325	598	5,686	3,405	15,010
Impact Pile Driving	6	182	67	927	213	6,020	320	2,946	1,852	8,700
ScenarioStandard WTG Driving Installation – Impact Pile DrivingStandard WTG Driving Installation – Vibratory Pile DrivingHard-to-Drive WTG Installation – Impact Pile DrivingHard-to-Drive WTG Installation – Impact Pile DrivingOne Standard and One Hard-to-Drive WTG Installation – Impact Pile DrivingOne Standard and One Hard-to-Drive WTG Installation – Impact Pile DrivingOne Standard and One Hard-to-Drive WTG Installation – Impact Pile DrivingOne Standard and One Hard-to-Drive WTG Installation – Vibratory Pile DrivingOss Piled Jacket – Impact Pile DrivingOss Piled Jacket – Vibratory Pile Driving	10	132	29	663	141	4,396	170	2,139	1,267	6,182
	0					414	0	367	104	21,404
Standard WTG Driving Installation – Vibratory Pile Driving	6					199	0	193	52	12,267
5	10					141	0	85	0	10,114
	0	344	116	1,621	371	12,423	664	6,273	3,809	15,010
Hard-to-Drive WTG Installation – Impact Pile Driving	6	182	67	927	213	6,738	354	3,230	1,987	8,700
5	10	132	29	663	141	4,980	187	2,304	1,358	6,182
	0					356	0	507	133	21,404
Hard-to-Drive WTG Installation – Vibratory Pile Driving	6					150	0	258	72	12,267
	10					113	0	120	31	10,114
	0	344	116	1,621	441	14,363	840	7,647	4,651	15,010
One Standard and One Hard-to-Drive WTG Installation – Impact Pile Driving	6	182	67	927	228	7,997	443	3,933	2,570	8,700
	10	132	29	663	158	5,663	226	2,884	1,756	6,182
	0					534	0	507	133	21,404
One Standard and One Hard-to-Drive WTG Installation – Vibratory Pile Driving	6					256	0	258	72	12,267
, ,	10					158	0	120	31	10,114
	0	35	0	508	55	6,807	258	3,485	3,188	5,530
OSS Piled Jacket – Impact Pile Driving	6	0	0	284	0	3,697	121	1,938	1,746	3,291
	10	0	0	197	0	2,680	48	1,435	1,283	2,172
	0					218	0	190	63	8,921
OSS Piled Jacket – Vibratory Pile Driving	6					130	0	112	35	5,272
5	10					75	0	68	0	3,601

Table J-12 Marine Mammal Permanent Threshold Shift Onset and Behavioral Criteria Threshold Distances (meters) During Impact and Vibratory Pile Driving for Installation of the Wind Turbine Generator and Offshore Substation Foundation Scenarios

Source: COP, Appendix Z; Dominion Energy 2022.

Scenario	Noise Attenuation (dB)	Distance to PTS Threshold (Lpk)	Distance to PTS Threshold (SEL _{24hr})	Distance to Behavioral Threshold (SPL)
	0	104	2,628	5,162
Standard Driving Installation – Impact Pile Driving	6	48	1,408	2,829
	10	10	1,044	2,146
Oten dead Driving heats lasting Vikasters Dile	0		65	189
Standard Driving Installation – Vibratory Pile	6	N/A	18	119
2.1.Ving	10		6	82
	0	104	2,918	5,162
Hard-to-Drive Installation – Impact Pile Driving	6	48	1,533	2,829
	10	10	1,142	2,146
	0		40	189
Hard-to-Drive Installation – Vibratory Pile Driving	6	N/A	0	119
	10		0	82
	0	104	3,685	5,162
Impact Pile Driving	6	48	2,053	2,829
	10	10	1,410	2,146
	0		78	189
One Standard and One Hard-to-Drive Installation – Vibratory Pile Driving	6	N/A	24	119
5	10		8	82
	0	0	1,695	2,041
OSS Piled Jacket – Impact Pile Driving	6	0	914	1,134
	10	0	653	742
	0		14	85
OSS Piled Jacket – Vibratory Pile Driving	6	N/A	0	38
	10		0	7

Table J-13 Sea Turtle Permanent Threshold Shift Onset and Behavioral Criteria Threshold Distances (meters) During Impact and Vibratory Pile Driving for Installation of the Wind Turbine Generator and Offshore Substation Foundation Scenarios

Source: COP, Appendix Z; Dominion Energy 2022.

OSS = offshore substation; PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 µPa² s); Lpk = peak sound pressure level (dB re 1 µPa); SPL = root-mean=square sound pressure level (dB re 1 µPa); WTG = wind turbine generator.

Scenario	Noise Attenuation	Fish with no \$	Swim Bladder	Fish with Swir Involved i	n Bladder Not n Hearing	Fish with S Involved	wim Bladder in Hearing	Eggs an	d Larvae	Fisl	h <2 g	Fisl	n ≥2 g	Behavioral (SPL)
	(dB)	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	All Fish
Standard Driving	0	605	810	1,007	1,729	1,007	2,348	1,007	1,729	1,105	14,940	1,105	11,907	36,030
Installation – Impact	6	344	489	605	1,021	605	1,301	605	1,021	663	8,653	663	6,131	20,512
Pile Driving	10	242	352	402	748	402	955	402	748	445	6,131	445	4,501	15,010
Standard Driving	0	-	-	-	-	-	-	-	-	-	3,188	-	2,199	2,528
Installation – Vibratory	6	-	-	-	-	-	-	-	-	-	1,831	-	1,216	1,359
Pile Driving	10	-	-	-	-	-	-	-	-	-	1,216	-	796	903
Hard-to-Drive	0	605	906	1,007	1,986	1,007	2,683	1,007	1,968	1,105	16,655	1,105	12,722	36,030
Installation – Impact	6	344	540	605	1,120	605	1,466	605	1,120	663	9,302	663	6,824	20,512
Pile Driving	10	242	389	402	829	402	1,041	402	829	445	6,824	445	5,085	15,010
Hard-to-Drive	0	-	-	-	-	-	-	-	-	-	2,476	-	1,641	2,528
Installation – Vibratory	6	-	-	-	-	-	-	-	-	-	1,338	-	886	1,359
Pile Driving	10	-	-	-	-	-	-	-	-	-	886	-	601	903
One Standard and One	0	605	1,121	1,007	2,439	1,007	3,315	1,007	2,439	1,105	20,786	1,105	14,787	36,030
Hard-to-Drive	6	344	672	605	1,386	605	1,860	605	1,386	663	11,508	663	8,291	20,512
Installation – Impact Pile Driving	10	242	477	402	1,042	402	1,266	402	1,042	445	8,291	445	5,880	15,010
One Standard and One	0	-	-	-	-	-	-	-	-	-	3,822	-	2,666	2,528
Hard-to-Drive	6	-	-	-	-	-	-	-	-	-	2,191	-	1,442	1,359
Installation – Vibratory Pile Driving	10	-	536-	-	-	-	-	-	-	-	1,442	-	961	903
	0	172	536	311	1,231	311	1,599	311	1,231	344	10,069	344	7,306	13,641
USS Piled Jacket –	6	35	310	172	696	172	907	172	696	197	5,959	197	4,000	8,243
Impact File Driving	10	0	213	74	488	74	633	74	488	94	4,000	94	2,959	5,530
	0	-	-	-	-	-	-	-	-	-	1,664	-	1,088	991
USS Piled Jacket –	6	-	-	-	-	-	-	-	-	-	887	-	569	540
vibratory File Driving	10	-	-	-	-	-	-	-	-	-	569	-	427	393

Table J-14 Fish Acoustic Injury and Behavioral Threshold Distances (meters) During Impact and Vibratory Pile Driving for Installation of the Wind Turbine Generator and Offshore Substation Foundation Scenarios

Source: COP, Appendix Z; Dominion Energy 2022.

OSS = offshore substation; PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 µPa² s); Lpk = peak sound pressure level (dB re 1 µPa); SPL = root-mean=square sound pressure level (dB re 1 µPa); WTG = wind turbine generator.

This page intentionally left blank.

J.8.2 Goal Post Pile Installation

Up to 12 goal posts consisting of nine 42-inch (1.07-meter) steel pipe piles for a total of 108 piles would be installed using impact pile driving (impulsive source) to support trenchless installation of the export cable offshore of the cable landing location. Sound fields were modeled at one representative location assuming two posts would be installed per day requiring up to 130 minutes to install both piles (COP Appendix Z; Dominion Energy 2022). For the goal posts, up to 260 strikes per pile were assumed for installation. All goal post piles would be installed between May 1 and October 31 in 2024 and would occur over a total of 24 days for all 108 piles, assuming up to two piles are installed per day. Similar to the WTG and OSS installation modeling, noise mitigation is also included assuming 0-, 6-, and 10-dB noise attenuation. Results of the modeling of the goal post pile installation are provided in Table J-15, Table J-16, and Table J-17 for marine mammals, sea turtles, and fish, respectively.

Table J-15Marine Mammal Permanent Threshold Shift Onset and Behavioral CriteriaThreshold Distances (meters) During Impact Pile Driving for Installation of the Goal Posts to
Support Trenchless Installation of the Export Cable

Scenario	Noise Attenuation	Distance to PTS Threshold (Lpk) (SEL _{24hr})						Threshold Distance to Behavioral hr) Threshold (SPL)		
	(ab)	LFC	MFC	HFC	PPW	LFC	MFC	HFC	PPW	All Hearing Groups
Goal Post Pile	0	2	0	31	3	591	21	704	316	1,450
Installation –	6	0	0	12	1	235	8	280	126	580
Driving	10	0	0	7	0	127	4.5	152	68	314

Source: COP, Appendix Z Dominion Energy 2022.

HFC = high-frequency cetacean; LFC = low-frequency cetacean; MFC = mid-frequency cetacean; PPW = phocid pinniped in water; PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 µPa² s); Lpk = peak sound pressure level (dB re 1 µPa); SPL = root-mean=square sound pressure level (dB re 1 µPa).

Table J-16Sea Turtle Permanent Threshold Shift Onset and Behavioral Criteria Threshold
Distances (meters) During Impact Pile Driving for Installation of the Goal Posts to Support
Trenchless Installation of the Export Cable

Scenario	Noise Attenuation (dB)	Distance to PTS Threshold (Lpk)	Distance to PTS Threshold (SEL _{24hr})	Distance to Behavioral Threshold (SPL)
Goal Post Pile	0	0	0	0
Installation -	6	0	0	0
Impact Pile Driving	10	0	0	0

Source: COP, Appendix Z Dominion Energy 2022.

PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 µPa² s); Lpk = peak sound pressure level (dB re 1 µPa); SPL = root-mean=square sound pressure level (dB re 1 µPa).

Table J-17Fish Acoustic Injury and Behavioral Criteria Threshold Distances (meters) During Impact Pile Driving for Installation of the Goal
Posts to Support Trenchless Installation of the Export Cable

Scenario	Noise Attenuation (dB)	Fish w Swim I	vith No Bladder	Fish wi Bladd Invol Hea	th Swim ler Not ved in rring	Fish wit Blac Involv Hea	Fish with Swim Bladder Eggs and Involved in Larvae Hearing		s and vae	Fish	<2 g	Fish	≥2 g	Behavioral (SPL)
		Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	All Fish
Goal Post	0	-	-	-	-	-	-	-	-	-	-	-	-	6,750
Pile	6	-	-	-	-	-	-	-	-	-	-	-	-	2,700
Installation – Impact Pile Driving	10	-	-	-	-	-	-	-	-	-	-	-	-	1,450

Source: COP, Appendix Z Dominion Energy 2022.

PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 μ Pa² s); Lpk = peak sound pressure level (dB re 1 μ Pa); SPL = root-mean=square sound pressure level (dB re 1 μ Pa).

J.8.3 Cofferdam Installation

Vibratory pile driving will be used to install up to nine temporary cofferdams at the Offshore and Nearshore Trenchless Installation Punch-Out. The nine proposed locations are within the same general area; therefore, the center cofferdam was used as the representative location in the model (COP Appendix Z; Dominion Energy 2022). The cofferdams will be constructed using 20-inch (0.51-meter) steel sheet piles surrounding a 20-by-50-foot (6.1-by-15-meter) area. The modeling assumed up to 1,800 kilonewton vibratory force for all sheet piles, and source levels and spectral levels were obtained by adjusting measurements from similar offshore construction activity. The modeling assumed up to 60 minutes to install each pile, and included 0-, 6-, and 10-dB noise attenuation (Dominion Energy 2022). Installation activities are anticipated to take approximately 9 to 12 months in 2024, but all installation activities would occur between May and October to avoid peak NARW presence.

Table J-18, Table J-19, and Table J-20 summarize the maximum distances to acoustic thresholds for marine mammals, sea turtles, and fish, respectively.

Table J-18Marine Mammal Permanent Threshold Shift Onset and Behavioral CriteriaThreshold Distances (meters) During Vibratory Pile Driving for Installation of Cofferdams to
Support Trenchless Installation of the Export Cable

Scenario	Noise Attenuation	Distance to PTS Threshold (Lpk) Distance to PTS Threshold (SEL _{24hr})						Distance to PTS Threshold Distance to PTS Threshold (Lpk) (SEL _{24hr}) (SPL)				Distance to Behavioral Threshold (SPL)
	(ab)	LFC	MFC	HFC	PPW	LFC	MFC	HFC	PPW	All Hearing Groups		
Cofferdam	0					108	0	0	0	3,097		
Installation – Vibratory Pile Driving	6					16	0	0	0	2,228		
	10					0	0	0	0	1,814		

Source: COP, Appendix Z Dominion Energy 2022.

HFC = high-frequency cetacean; LFC = low-frequency cetacean; MFC = mid-frequency cetacean; PPW = phocid pinniped in water; PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 µPa² s); Lpk = peak sound pressure level (dB re 1 µPa); SPL = root-mean=square sound pressure level (dB re 1 µPa).

Table J-19Sea Turtle Permanent Threshold Shift Onset and Behavioral Criteria Threshold
Distances (meters) During Vibratory Pile Driving for Installation of Cofferdams to Support
Trenchless Installation of the Export Cable

Scenario	Noise Attenuation (dB)	Distance to PTS Threshold (Lpk)	Distance to PTS Threshold (SEL _{24hr})	Distance to Behavioral Threshold (SPL)
Cofferdam	0		0	0
Installation –	6	N/A	0	0
Driving	10		0	0

Source: COP, Appendix Z Dominion Energy 2022.

PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 μ Pa² s); Lpk = peak sound pressure level (dB re 1 μ Pa); SPL = root-mean=square sound pressure level (dB re 1 μ Pa).

Table J-20Fish Acoustic Injury and Behavioral Criteria Threshold Distances (meters) During Vibratory Pile Driving for Installation of
Cofferdams to Support Trenchless Installation of the Export Cable

Scenario	Noise Attenuation (dB)	Fish with No Swim Bladder		Fish with Swim Bladder Not Involved in Hearing		Fish with Swim Bladder Involved in Hearing		Eggs and Larvae		Fish <2 g		Fish ≥2 g		Behavioral (SPL)
		Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	Lpk	SEL _{24hr}	All Fish
Cofferdam Installation – Vibratory Pile Driving	0	-	-	-	-	-	-	-	-	-	567	-	506	470
	6	-	-	-	-	-	-	-	-	-	389	-	317	349
	10	-	-	-	-	-	-	-	-	-	317	-	206	248

Source: COP, Appendix Z Dominion Energy 2022.

PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 μ Pa² s); Lpk = peak sound pressure level (dB re 1 μ Pa); SPL = root-mean=square sound pressure level (dB re 1 μ Pa).

J.8.4 HRG Surveys

HRG survey activities may be required pre-, during-, and post-construction site characterization surveys in the Lease Area and export cable route corridor. The types of equipment that will be used during the proposed HRG surveys with operational frequencies less than 180 kHz include both impulsive and nonimpulsive equipment such as parametric sub-bottom profilers; ultra-short baseline positioning equipment; compressed high-intensity radiated pulse (CHIRP) sonar; sparkers; and boomers (Tetra Tech 2022). Of these equipment types, only the CHIRP sonar, sparkers, and boomers have the potential to propagate sound to appreciable distances whereby marine mammals may be exposed to sound levels above established thresholds (Baker and Howsen 2021). Ranges to acoustic thresholds provided in Table J-21 for marine mammals were estimated using NMFS User Spreadsheets for PTS thresholds and interim guidance from NMFS (2019) for behavioral thresholds (Tetra Tech 2022). Only ranges to the SEL_{24h} PTS threshold for marine mammals are shown as these represent the maximum distances. Ranges to the acoustic thresholds for sea turtles and fish in Table J-21 were obtained from the Programmatic Biological Assessment conducted by BOEM (Baker and Howsen 2021).

Table J-21 Permanent Threshold Shift Onset and Behavioral Criteria Threshold Distances (meters) for Marine Mammals, Sea Turtles, and Fish During High-Resolution Geophysical Surveys

Equipment	Distance to PTS Threshold (SEL _{24hr})						Distance to Behavioral Threshold (SPL)		
Туре	LFC	MFC	HFC	PPW	Sea Turtles	Fish ≥2 g	All Marine Mammals	Sea Turtles	All Fish
CHIRP Sonar	0	0	0.4	0	NA	NA	10.2	2	708
Sparker	0.1	0	1.5	0.1	0	9	100	90	1,996
Boomer	5.9	0.2	54.2	3.5	0	3.2	21.9	40	32

Source: COP, Appendix Z Dominion Energy 2022; Baker and Howsen 2021.

HFC = high-frequency cetacean; LFC = low-frequency cetacean; MFC = mid-frequency cetacean; NA = not applicable due to sound source being outside the hearing range of the group; PPW = phocid pinniped in water; PTS = permanent threshold shift; SEL_{24h} = sound exposure level over 24 hours (dB re 1 μ Pa² s); SPL = root-mean=square sound pressure level (dB re 1 μ Pa).

J.8.5 Animal Exposure Estimates

The modeled ranges represent the total area over which noise produced by the Project activity may exceed a given threshold following a single impact hammer strike or 1 second of vibratory hammering (for Lpk and SPL metrics) and for 24-hours of pile driving activity based on pre-defined piling schedules (for SEL_{24h} metric). The ranges only account for source characteristics and environmental parameters within the Action Area which contribute to how sound may propagate through the water. They do not incorporate animal movement or behavior to account for how any animal may respond to noise or how their movement would influence their total duration of exposure to the noise. This is accomplished through estimates of exposure using the animal movement modeling methodology described in Section J.5. No behavioral or animal movement information is available for fish species, so exposures could not be calculated for that group.

To estimate the number of marine mammals and sea turtles likely to be exposed above the acoustic thresholds discussed in Section J.7, a conservative construction schedule included all possible WTG monopile and OSS jacket foundation installation scenarios, and all possible HRG survey days was assumed (Tetra Tech 2022). The construction schedule used to estimate the number of exposures throughout the entire construction period is provided in Table J-22.

Table J-22	Proposed Pile Driving and High-Resolution Geophysical Survey Schedule Used to
Estimate the	Number of Marine Mammals and Sea Turtles Potentially Exposed to Above-Threshold
	Noise during Project Activities

Year	Month	Total Number of Foundations Installed	Number Standard WTG Installations	Number Hard- to-Drive WTG Installations	Number of Days with Two WTG Installed	Number of Active HRG Survey Days
	May	18	5	13	1	
	June	25	6	19	6	
2024	July	26	7	19	6	
	August	2 WTG, 12 OSS	1	1	1	65
	September	13	3	10	0	
	October	11	1	10	0	
2	024 Total	95 WTG, 12 OSS	23	72	14	
	May	17	6	11	1	
	June	24	8	16	6	
2025	July	26	8	18	6	
	August	20	6	14	6	249
	September	5	2	3	0	
	October	3	1	2	0	
2	025 Total	95	31	64	19	
	May	3	0	3	0	
	June	5	0	4	0	
2026	July	5	0	4	0	
	August	4	0	3	0	58
	September	1	0	1	0	
	October	0	0	0	0	
2	026 Total	15	0	15	0	
2	027 Total	NA	NA	NA	NA	368
2	027 Total	NA	NA	NA	NA	368

Source: Tetra Tech 2022.

HRG = high-resolution geophysical; NA = not applicable for this activity as construction is assumed to be completed by 2026, whereas HRG surveys will continue after construction to ensure Project components are not in need of maintenance; OSS = offshore substation; WTG = wind turbine generator.

J.8.5.1. Marine Mammals

The total number of marine mammals exposed to above-threshold noise from all noise-producing activities under the Proposed Action is provided in Table J-23.

N	larine Mammal Species	PTS	Behavioral					
WTG and OSS Foundation Installation (10 dB attenuation)								
	NARW	3	6					
LFC	Fin whale	9	45					
	Minke whale	18	113					
	Humpback whale	9	36					
	Sei whale	3	7					
	Sperm whale	0	3					
	Atlantic spotted dolphin	0	4,473					
MFC	Common bottlenose dolphin (southern migratory coastal and western North Atlantic offshore stocks)	0	8,809					
	Common dolphin	0	1,293					
	Pantropical spotted dolphin	0	9					
	Long- and Short-finned pilot whale	0	124					
	Risso's dolphin	0	54					
HFC	Harbor porpoise	3	49					
PPW	Gray seal	2.5	128.5					
	Harbor seal	2.5	128.5					
Goal Post	Pile Installation							
	NARW	0	0					
	Fin whale	0	0					
LFC	Minke whale	0	2					
	Humpback whale	0	0					
	Sei whale	0	0					
	Sperm whale	0	0					
	Atlantic spotted dolphin	0	6					
MEC	Common bottlenose dolphin (southern migratory coastal and western North Atlantic offshore stocks)	0	46					
	Common dolphin	0	6					
	Pantropical spotted dolphin	0	0					
	Long- and Short-finned pilot whale	0	0					
	Risso's dolphin	0	1					
HFC	Harbor porpoise	0	0					
	Gray seal	0	1					
	Harbor seal	0	1					

Table J-23Total Number of Marine Mammal Exposed to Sound Levels Above PTS and
Behavioral Thresholds from all Project Activities

Μ	larine Mammal Species	PTS	Behavioral				
Cofferdam Installation							
	NARW	0	1				
LFC	Fin whale	0	1				
	Minke whale	0	2				
	Humpback whale	0	1				
	Sei whale	0	0				
	Sperm whale	0	0				
	Atlantic spotted dolphin	0	37				
MFC	Common bottlenose dolphin (southern migratory coastal and western North Atlantic offshore stocks)	0	267				
	Common dolphin	0	28				
	Pantropical spotted dolphin	0	0				
	Long- and Short-finned pilot whale	0	1				
	Risso's dolphin	0	0				
HFC	Harbor porpoise	0	7				
	Gray seal	0	14				
FFVV	Harbor seal	0	14				
HRG Surve	HRG Surveys (5-Year Total)						
	NARW	0	5				
	Fin whale	0	5				
LFC	Minke whale	0	13				
	Humpback whale	0	8				
	Sei whale	0	3				
	Sperm whale	0	0				
	Atlantic spotted dolphin	0	22,160				
MEC	Common bottlenose dolphin (southern migratory coastal and western North Atlantic offshore stocks)	0	1,858				
	Common dolphin	0	22,160				
	Pantropical spotted dolphin	0	100				
	Long- and Short-finned pilot whale	0	125				
	Risso's dolphin	0	125				
HFC	Harbor porpoise	0	90				
	Gray seal	0	87				
PPVV	Harbor seal	0	87				

Source: Tetra Tech 2022b.

dB = decibels; HRG = high-resolution geophysical; LFC = low-frequency cetacean; MFC = mid-frequency cetacean; NARW = North Atlantic right whale; OSS = offshore substation; PTS = permanent threshold shift; WTG = wind turbine generator.

J.8.5.2. Sea Turtles

The total number of marine mammals exposed to above-threshold noise from all noise-producing activities under the Proposed Action is provided in Table J-24.

Table J-24Annual Estimated Number of Sea Turtles Exposed to Sound Levels Above PTS and
Behavioral Thresholds from Installation of the Wind Turbine Generator and Offshore Substation
Foundation Scenarios

Species	Construction Year	PTS Exposures	Behavioral Exposures
	2024	26	123
Green sea turtles	2025	25	118
	2026	4	19
٦	「otal	55	260
	2024	20	96
Kemp's ridley sea turtle	2025	18	84
	2026	3	14
1	Total	41	194
	2024	57	270
Leatherback sea turtle	2025	2	9
	2026	1	2
1	Fotal	60	281
	2024	657	3,134
Loggernead sea turtle	2025	597	2,829
(Darco et al. 2010)	2026	91	450
Total		1,345	6,413

Source: Tetra Tech 2022.

dB = decibels; PTS = permanent threshold shift.

¹ Exposures for the loggerhead sea turtles comprise the estimates scaled using densities from Barco et al. (2018) rather than the DON (2007) as these represent the maximum potential for exposure to above-threshold noise from the Proposed Action.

J.9. References

- Baker, K., and U. Howsen. 2021. Data Collection and Site Survey Activities for Renewable Energy on the Atlantic Outer Continental Shelf. Biological Assessment. U.S. Department of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs. October 2018, Revised February 2021. 152 p.
- Barco, S.G., M.L. Burt, R.A.D. Jr., W.M. Swingle, and A.S. Williard. 2018. Loggerhead Turtle *Caretta caretta* Density and Abundance in Chesapeake Bay and the Temperate Ocean Waters of the Southern Portion of the Mid-Atlantic Bight. *Endangered Species Research* 37:269-287.

- Blackstock, Sarah A., Joseph O. Fayton, Peter H. Hulton, Tara E. Moll, Keith K. Jenkins, Sarah Kotecki, Elizabeth Henderson, Sarh Rider, Cameron Martin, and Victoria Bowman. 2018. *Quantifying Acoustic Impacts on Marine Mammals and Sea Turtles: Methods and Analytical Approach for Phase III Training and Testing*. Naval Undersea Warfare Center Division, Newport United States. 51 p.
- California Department of Transportation (CALTRANS). 2015. Technical Guidance for Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish. Division of Environmental Analysis; Environmental Engineering; Hazardous Waste, Air, Noise, Paleontology Office. 532 p.
- Department of the Navy. 2007. Navy OPAREA Density Estimates (NODES) for the Northeast, Southeast, and Gulf of Mexico OPAREAs. Norfolk, Virginia: Naval Facilities Engineering Command, Atlantic Contract N62470-02-D-9997, Task Order 0046. Prepared by Geo-Marine, Inc., Hampton, Virginia. 163 p.
- Dominion Energy. 2022. Construction and Operations Plan, Coastal Virginia Offshore Wind Commercial Project. Prepared by Tetra Tech, Inc. Submitted to Bureau of Ocean Energy Management. May 2022. Revised July 2022.
- Elliot, J., A. A. Khan, L. Ying-Tsong, T. Mason, J. H. Miller, A. E. Newhall, G. R. Potty, and K
 J. Vigness-Raposa. 2019. *Field Observations During Wind Turbine Operations at the Block Island Wind Farm, Rhode Island*. Final Report to the U.S. Department of the Interior, Bureau of
 Ocean Energy Management, Office of Renewable Energy Programs. OCS Study BOEM
 2019-028. Available at: <u>https://espis.boem.gov/final%20reports/BOEM_2019-028.pdf</u>. Accessed
 June 20, 2022.
- Finneran, J., E. Henderson, D. Houser, K. Jenkins, S. Kotecki, and J. Mulsow. 2017. Criteria and Thresholds for US Navy Acoustic and Explosive Effects Analysis (Phase III). Technical report by Space and Naval Warfare Systems Center Pacific (SSC Pacific). 183 p.
- Greater Atlantic Regional Fisheries Office (GARFO). 2019. GARFO Acoustics Tool: Analyzing the Effects of Pile Driving on ESA-Listed Species in the Greater Atlantic Region.
- Hayes, S.A., E. Josephson, K. Maze-Foley, P.E. Rosel, and J. Turek. 2021. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments - 2020. NOAA Tech Memo NMFS-NE 271. 403 p.
- Hayes, S.A., E. Josephson, K. Maze-Foley, P.E. Rosel, and J.E. Wallace. 2022. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessment Reports 2021. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. May 2022. 386 p.
- Koschinski, S. and K. Lüdemann. 2020. Noise Mitigation for the Construction of Increasingly Large Offshore Wind Turbines. [German] Federal Agency for Nature Conservation.
- Milne, S. 2018. Protected Species Observer Report BEOM Lease No.: OCS-A 0497. Prepared for TerraSond on behalf of Ørsted and Dominion Energy, Virginia.
- National Marine Fisheries Service (NMFS). 2018. 2018 Revisions to: Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0): Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts. U.S. Dept. of Commer., NOAA. NOAA Technical Memorandum NMFSOPR- 59, 167 p.
- National Marine Fisheries Service (NMFS). 2019. Interim Recommendation for Sound Source Level and Propagation Analysis for High Resolution Geophysical Sources, 24 October 2019.

- NOAA Satellite and Information Service. 2020. U.S. Coastal Relief Model. 1999 to 2005. Available at: <u>https://www.ngdc.noaa.gov/mgg/coastal/crm.html</u>. Accessed September 2022.
- Popper, A., A. Hawkins, R. Fay, D. Mann, and S. Bartol. 2014. Sound Exposure Guidelines. In: ASA S3/SC1.4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI. pp. 33-51.
- Roberts, J. J., R.S. Schick, and P. N. Halpin. 2022. Habitat-based Marine Mammal Density Models for the U.S. Atlantic: Latest Versions (last updated 20 June 2022), provided by Duke University Marine Geospatial Ecology Laboratory. Retrieved from: <u>https://seamap.env.duke.edu/models/Duke/EC/</u>. Accessed November 14, 2022
- Silve, L.D., P.H. Kvadsheim, and M. A. Ainslie. 2014. Potential for Population-Level Disturbance by Active Sonar in Herring. *ICES Journal of Marine Science* 72:558-567.
- Stadler, J. H., and D.P. Woodbury. 2009. Assessing the Effects to Fish from Pile Driving: Application of New Hydroacoustic Criteria. 8 p.
- Stöber, U. and F. Thomsen. 2021. How Could Operational Underwater Sound from Future Offshore Wind Turbines Impact Marine Life? *Journal of the Acoustical Society of America* 149(3):1791–1795.
- Tetra Tech, Inc. (Tetra Tech). 2022a. Dominion Energy Coastal Virginia Offshore Wind Commercial Project, Request for Rulemaking and Letter of Authorization (LOA) for Taking of Marine Mammals Incidental to Construction Activities on the Outer Continental Shelf (OCS) within Lease OCS-A 0483 and the Associated Offshore Export Cable Route Corridor. Prepared for Dominion Energy, Submitted to NOAA National Marine Fisheries Service February 2022, Revised March, May, June, and July 2022. 311 p.
- Tetra Tech, Inc. (Tetra Tech). 2022b. Dominion Energy Coastal Virginia Offshore Wind Commercial Project. Request for Rulemaking and Letter of Authorization (LOA) for Taking of Marine Mammals Incidental to Construction Activities on the Outer Continental Shelf (OCS) within Lease OCS-A 0483 and the Associated Offshore Export Cable Route Corridor: Roberts et al. 2022 Revision Addendum. Prepared for Dominion Energy, Submitted to NOAA National Marine Fisheries Service September 2022. 88 p.
- Tougaard, J., L. Hermannsen, and P.T. Madsen. 2020. How Loud is the Underwater Noise from Operating Offshore Wind Turbines? *Journal of the Acoustical Society of America* 148(5):2885–2893.

This page intentionally left blank.