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Abstract: Understanding the environmental effects of marine energy (ME) devices is fundamental for
their sustainable development and efficient regulation. However, measuring effects is difficult given
the limited number of operational devices currently deployed. Numerical modeling is a powerful
tool for estimating environmental effects and quantifying risks. It is most effective when informed by
empirical data and coordinated with the development and implementation of monitoring protocols.
We reviewed modeling techniques and information needs for six environmental stressor–receptor
interactions related to ME: changes in oceanographic systems, underwater noise, electromagnetic
fields (EMFs), changes in habitat, collision risk, and displacement of marine animals. This review
considers the effects of tidal, wave, and ocean current energy converters. We summarized the
availability and maturity of models for each stressor–receptor interaction and provide examples
involving ME devices when available and analogous examples otherwise. Models for oceanographic
systems and underwater noise were widely available and sometimes applied to ME, but need
validation in real-world settings. Many methods are available for modeling habitat change and
displacement of marine animals, but few examples related to ME exist. Models of collision risk and
species response to EMFs are still in stages of theory development and need more observational data,
particularly about species behavior near devices, to be effective. We conclude by synthesizing model
status, commonalities between models, and overlapping monitoring needs that can be exploited to
develop a coordinated and efficient set of protocols for predicting and monitoring the environmental
effects of ME.

Keywords: marine energy; modeling; oceanographic systems; collision risk; underwater noise;
displacement; electromagnetic fields; changes in habitat

1. Introduction

The use of marine energy (ME) from tides, waves, or ocean currents as a sustainable
source of power generation is of broad international interest, but the magnitudes of potential
benefits and risks remain only partially understood [1–3]. ME devices (stressors) may
interact with and affect elements of the environment and/or ecosystem (receptors) during
their installation, presence, or operation [4]. Receptors of interest are marine animals,
habitats, and ecosystem processes. The species or habitats of primary concern are those
with special conservation and/or commercial status, triggering more scrutiny from a
legislative or regulatory standpoint [2]. In most jurisdictions, ME development requires
an assessment of environmental effects, but accurate measurement of stressor–receptor
interactions is difficult because of the limited number of operating devices available to
observe. Monitoring of ME devices has not always resulted in useful information [2,5,6]
and, because environmental assessments cost time and money, the need for focused and
effective monitoring is significant. Regulators can accelerate permitting (consenting) of
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future device deployments, reduce time and resources needed for new project development,
and facilitate the comparison of technologies by establishing assessment and monitoring
standards [2,7–9]. Uncertainty about environmental effects and the diversity of existing
and proposed devices to be evaluated has hindered that process [10].

Receptors of ME effects include species, habitats, ecosystem functions, and abiotic
features such as seabed and shoreline morphology [1,4]. ME stressors are the parts of
devices, cables, and their emissions that interact with receptors, resulting in effects that in-
clude changes in oceanographic systems, underwater noise, electromagnetic fields (EMFs),
changes in habitats, collision risk, and displacement [1]. The diversity of the stressor–
receptor interactions requires complex monitoring. Observations must be extensive enough
to, for example, measure the temporal and spatial variability of currents and waves in
the presence of a device or to quantify animal behaviors and estimate probabilities of
individuals encountering a device e.g., [11]. Often, large amounts of data need to be stored,
processed, and evaluated to detect relatively rare events, e.g., acoustic and/or video moni-
toring or telemetry of animal movement relative to turbines [12,13]. From these data, the
effects of stressors must be distinguished from natural variability, and cumulative effects of
multiple stressor–receptor interactions must be estimated [2]. Efficient monitoring requires
understanding which data are most necessary, when and where to monitor, and how to
synthesize disparate information to make informed judgments [5].

Numerical modeling is a powerful tool for improving environmental assessment and
monitoring programs, especially when multiple stressor–receptor interactions are present,
and therefore is becoming increasingly relevant for evaluating ME effects [8]. Models
can both predict future environmental and species conditions and evaluate previously
observed conditions in the context of broader populations and ecosystems. By synthesizing
information, models can be used to quantify information gaps, estimate the effects of
uncertainties on decisions, identify proxy metrics that are easier to monitor, and estimate
the value of additional research and monitoring. Close coordination between monitoring
and modeling improves the efficiency and accuracy of both [14–16].

Modeling ME environmental effects involves disciplines ranging from physics to
animal behavior, and thus a diversity of modeling approaches. Model suitability varies by
location, scale, device, receptor, and the type(s) of existing data (if any), such that there is
no single best set of models that could be applied to all projects. However, coordinating
models for multiple stressor-receptor interactions related to a project creates efficiencies for
both modeling and monitoring.

Models of ME stressor-receptor interactions have been reviewed briefly [17] or for
individual interactions [18–20], with little attention given to the commonalities among
models across interactions. Copping and Hemery [1] reviewed the state of the science for
each stressor-receptor interaction (except displacement, addressed in [21]), focusing on the
scientific findings of field research and modeling studies and the remaining uncertainties.
They reviewed modeling studies with an emphasis on their contribution to the body of
evidence but did not discuss the methods and techniques involved in each model, the data
needs, or the information gaps. Buenau et al. [22] reviewed details of models available for
ME environmental stressors with minimal synthesis.

This paper reviews modeling studies for ME environmental effects to identify the
predominant modeling approaches and common techniques and data used across the
range of stressor–receptor interactions. We organize this review around six categories of
interactions, defined in [1,4,21]: changes in oceanographic systems, EMFs, underwater
noise, changes in habitat, collision risk, and displacement of marine animals. In the present
review, we synthesize model availability and maturity and key considerations for selecting
models when evaluating multiple stressor–receptor interactions. We do not report the
scientific conclusions of the modeling studies, which have been addressed by others [1,23].
We emphasize the relationship between monitoring and modeling throughout model
development, parameterization, and validation.
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2. Materials and Methods

For this review, we followed the definitions of ocean energy by the International
Energy Agency (IEA)’s Technology Collaboration Programme on Ocean Energy Systems
(OES)1, and of marine and hydrokinetic energy by the U.S. Department of Energy2. Using
these definitions, the review concentrates on studies specific to wave, tidal, and current
energy referred to herein as ME. In cases where few or no ME-specific studies were available,
we reviewed models of analogous systems, including offshore wind (OSW), that could be
adapted for ME.

We located modeling studies by searching the Tethys Knowledge Base [24], search-
ing keywords on the Web of Science database (Clarivate Analytics; keywords listed in
Table A1 in Appendix A), references in Annex IV 2016 State of the Science Report [23] and
OES-Environmental 2020 State of the Science report [1], and references in other reviewed
studies. We attempted to include one or more representative studies using every model
approach that has been employed; for stressor-receptor interactions with a larger number
of modeling studies we did not review every use of those models, but rather provided
examples of the application of each. We focused on peer-reviewed journal articles but also
included technical reports that demonstrated unique approaches. We referenced books
for background material and theory. A full list of reviewed studies specific to ME and the
stressor(s), receptor(s), device, and model(s) used in each is provided in Table A2.

This review includes analytical and numerical models. Generally, analytical models
consist of one or more equations for which mathematical solutions can be directly evaluated;
they usually require simplifications such as homogenous environments for such solutions
to be available. Numerical models allow for greater complexity and heterogeneity, but
require iterative calculation for each initial condition, nearly always via computational
simulation. Numerical models may include elements of randomness, and results are
more complex to characterize and generalize. Validation (or sometimes, verification) is
the assessment the accuracy of either model type, which is important for establishing
confidence in model output. The term “validation” has been used differently among
disciplines. For our purpose, we use the definition of validation as the comparison of
model output with independent observational data from laboratory or field studies that
were not used to create, parameterize, or calibrate the model. Calibration is an iterative
process of comparing observations to predictions to tune models and improve accuracy
before validating the model against a separate set of observations. Validation results may be
presented qualitatively (e.g., as a graphical comparison) or, more rigorously, quantitatively
using statistical methods [25–28]. Model “skill” may be used to refer to a specific accuracy
metric or validation more generally [28–30].

The nearfield and farfield regions are distinguished in parts of this review because
the model selection and data necessary to evaluate stressor–receptor interactions can differ
based on distance from a device. We adopt the OES-Environmental definitions [1]. The
nearfield is the area in close proximity of the stressor (i.e., ME device), roughly within five
device diameters. The farfield is the area beyond the nearfield where the stressors affect
the environment.

This review is organized by the stressor–receptor interaction categories. Each section
includes the definition and scope of each interaction; the available models and software,
their level of development, and their limitations; and the types and extent of information
needed to develop and validate the models. The discussion summarizes model status,
selection consideration, monitoring needs, and validation with a focus on commonalities
between models.

3. Results
3.1. Changes in Oceanographic Systems

By harvesting energy, operating ME devices may modify the direction and magnitude
of currents [31], water surface elevations (WSEs) [32,33], turbulence [34,35], and wave
height and direction [36] near and downstream of the devices. The nature of the changes
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varies by device and placement within the environment. These changes affect the distri-
butions of temperature, salinity, nutrients, and the suspension and transport of sediment.
Oceanographic effects may be of interest in themselves while also contributing to changes
in other stressors.

There are two main categories of oceanographic models used for ME. Hydrodynamic
models designed for specific scales and conditions simulate ocean currents, WSE, and
water quality metrics. Waves are simulated by propagation and evolution models and
are specialized to scale, depth gradients, and device type. Model outputs are used as
inputs to some models of other stressors. This section includes examples of the methods
used to apply oceanographic models to ME in the context of the effects of devices on the
environment. Theoretical resource characterization and modeling focused on the effects
of the environment on device mechanics, power generation, and array design are beyond
the scope of this review. Because several studies apply the same models in similar ways,
this section does not represent an exhaustive list of the published modeling studies, but it
includes references to more detailed reviews when available.

3.1.1. Hydrodynamic Models

Hydrodynamic models solve the equations that describe fluid motion. The many
hydrodynamic models are differentiated by the averaging scales of the equations of motion
(which determine the processes that cannot be solved directly), approximations of nonlinear
behavior, and the numerical techniques employed to solve them. We divide these models
between computational fluid dynamics (CFD) models, used to directly model a fuller set of
processes in the nearfield (range of meters). Coastal hydrodynamic (CHD) models include
simplifying assumptions so that they can be employed effectively for farfield effects (range
of kilometers).

CFD models include finely detailed interactions, often using the specific geometry
of devices to resolve the characteristics of flows in the immediate vicinity. By doing so,
CFD models estimate nearfield effects such as changes in turbulence and the distance in
the wake of the turbine at which water velocity and pressure are no longer affected (wake
recovery) [19,37]. The models can be used to parameterize approximations of devices for
use in larger-scale models [38–40]. Most applications solve fully three-dimensional (3D)
models at high spatial resolutions, though two-dimensional (2D) implementations are
possible. The level of detail and included processes require intensive computation, which
is practical only at smaller scales given current computational resources.

Studies modeling exact turbine geometry have used the commercial software Ansys
Fluent [37,38] and Ansys CFX [19], and the open-source software Code_Saturne [41] and
OpenFOAM [37,42] to assess the effects of turbines on surface waves, wakes, and turbulence.
Other studies used the Virtual Blade Model/Blade Element Momentum model [38,43] or
actuator disks or lines [40,44,45] to approximate turbines in varying degrees of detail,
often to enable modeling arrays of turbines at somewhat larger scales (see the review by
Salunkhe et al. [37]). Even when used at moderate scales or with device approximations,
CFD models retain non-hydrostatic equations, unlike the CHD models described below.
Non-hydrostatic formulations account for vertical changes in momentum and pressure
caused by turbine blades and can significantly improve model accuracy at the cost of
computational resources [46]. CFD models (COMSOL, OpenFOAM) have also been used to
study water motion within and very near wave energy converters (WECs) [47,48]. Further
review of CFD models of tidal turbines is given by Laín et al. [19] and Nachtane et al. [20].

CHD models use approximations and coarser resolutions to model farfield effects of
devices on currents, water properties, waves, and sediment transport. The approximations
typically include the use of hydrostatic equations (limiting the vertical effects of turbines
on water movement and pressure) and parameterization (rather than direct modeling)
of small-scale turbulence, both of which facilitate modeling at larger scales. Because of
the simplifying approximations and because mesh sizes are typically large relative to the
size of a device, CHD studies usually represent devices implicitly [45] as momentum
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sinks e.g., [31,49–51] or porous plates or discs e.g., [52,53] that reduce flow velocity. Device
approximations can be parameterized with information obtained from CFD models, field
measurements, or laboratory studies. The larger mesh size implemented in CHD models
allows for a larger integration time step and lower node density, resulting in faster runtimes
and smaller output files. Flexible meshes allow spatial resolutions to be adjusted for the
expected complexity at different locations in the model domain.

Software used in ME studies includes the Finite Volume Community Ocean Model
(FVCOM) [54], Delft3D [55], Mike 3 [56], TELEMAC [57], and Fluidity [58]. The software
models differ in their solution methods and approximations (e.g., turbulence closure mod-
els, domain discretization, numerical schemes to solve advection or pressure gradients),
boundary conditions, and treatment of energy dissipation. They have modules for bio-
geochemistry, sediment, or couplings to wave models, except TELEMAC, which does not
have surface gravity wave coupling capability at the time of this writing. The reviewed
studies used 3D implementations, except when using TELEMAC-2D, which averages over
depth. Yang et al. [50] used FVCOM to model a hypothetical bay with a turbine farm,
approximating turbines as momentum sinks, located in the tidal channel between the bay
and open water. They compared FVCOM estimates of bay flushing time to an analytical
solution (i.e., not simulated). De Dominicis et al. [31] used FVCOM to estimate farfield
effects on tides in the Pentland Firth, Scotland, from proposed commercial-scale tidal
arrays. Gallego et al. [59] and Waldman et al. [52] also modeled possible turbine array
configurations in the Pentland Firth and the neighboring Orkney waters; these studies
compared Delft3D-Flow and MIKE 3 model results. Although the representations of the
turbines in the models were different, the farfield effects were comparable.

Delft3D has also been used to evaluate device effects on sediment transport, such
as changes in deposition and erosion patterns [49,60]. Ashall et al. [49] approximated
high- and low-density turbine arrays as semi-porous plates to evaluate their effects on
sedimentation in the Minas Basin (Bay of Fundy, Canada). Jones et al. [60] evaluated wave
buoy effects on seabed elevation and shear stress on the Oregon, USA coast. Both used
Delft3D coupled with the Simulating Waves Nearshore (SWAN) model described below.
Two-dimensional models can be used in similar analyses of sediment and bed-shear stress
(e.g., [61]), and are simpler and faster to set up and run. However, studies using TELEMAC-
2D [62] and Fluidity [63] noted that models that average over depth can underestimate the
flow below turbines and therefore can underestimate the extent of sediment transport and
scouring that may occur.

Data needs are similar for CFD and CHD models, mainly differentiated by the scale
and resolution of environmental data required. Hydrodynamic models require bathymetry
at a fine enough resolution to represent the relevant features of the study area and detect
the changes the study is meant to evaluate. They may use information about bottom
friction, tides, river discharges, wind, waves, and in some cases precipitation and/or air
temperature. CFD models of devices include the geometry and motion of the device being
evaluated, while CHD models require some approximation of device effects. Sediment
transport models require spatial data about sediment composition and grain size. Inputs
representing boundary conditions, such as WSE and current velocity, can be taken from
observational data or larger-scale models.

3.1.2. Wave Propagation Models

Wave models estimate wave direction, energy, and frequency and can include the
effects of devices that interrupt wave patterns and absorb energy. They can be coupled
to CHD models to estimate the effects of waves on sediment transport, water levels, and
wave-induced currents. As with hydrodynamic models, waves have been modeled using
different combinations of equations and assumptions (Table 1), each having strengths and
weaknesses. Here we review wave models that are used in the context of ME.
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Table 1. Characteristics of models commonly used to evaluate the effects of marine energy devices
on waves, including in reviewed studies. Nearfield is defined as within approximately 5 device
diameters. This list is not exhaustive.

Name Type Scale Depth Diffraction Explicit Model
of Device

Coupled with (in
Reviewed Studies)

WAMIT Boundary element
method Nearfield Constant Yes Yes MILDwave

NEMOH Boundary element
method Nearfield Constant Yes Yes MILDwave

MILDwave Wave propagation,
time domain Farfield

Deep to
shallow, mild

slope
Yes Yes WAMIT, NEMOH

SWAN Spectral wave
action Farfield Deep to shallow Approximated No Delft3D

MIKE21 SW Spectral wave
action Farfield Deep to shallow Approximated No MIKE 3

The WAMIT model, like the CFD models described above, is only practical for small do-
mains because of, for instance, its relatively large computational expense and lack of wave
growth due to wind. However, it is the most comprehensive for wave-WEC interactions,
able to model reflection, absorption, radiation, and diffraction when WECs interact with
waves. Other models may exclude diffraction and/or wave radiation by WECs. WAMIT
has been coupled with other models such as MILDwave to model larger-scale effects with
feedback between models [64,65]. It has also been used to parameterize an abstraction of
wave devices for the MIKE 21 SW model, without feedback [59,66]. Results from WAMIT
have been compared with the results from the COMSOL Multiphysics CFD model to
characterize the effects of a wave buoy [47]. The open-source model NEMOH has similar
functionality and constraints as WAMIT, performs similarly for many applications [67],
and has also been coupled with large-scale models such as MILDwave [68].

SWAN is a spectral, phase-averaged model that allows waves to interact with each
other and the seabed, but it does not fully model diffraction around WECs or radiated
waves from oscillating devices. It is used to estimate farfield effects, often with abstractions
of WECs parameterized using other models or field or laboratory measurements. SWAN
and its derivatives are often coupled with Delft3D (e.g., Delf3D-FLOW-SNL-SWAN, [60]).
The coupling to Delft3D or other CHD models allows waves to interact with currents
and increase shear stress and turbulence, which affect sediment transport in the CHD
model [49]. SWAN has also been coupled with beach morphodynamic models to evaluate
WEC effects on coastal erosion [36,69]. SWAN has also been used to evaluate the effect of
wave energy converter arrays on nearshore wave forcing [70]. Additional applications of
SWAN have been reviewed by Ozkan et al. [18].

The model MILDwave includes diffraction and has been used at multiple scales, but
only models linear waves. It has been used to model overtopping WECs [64] and oscillating
surging WECs [71] at 2 km and 6 km scales, respectively. It is not able to simulate the
radiation of waves from heaving WECs, but it has been coupled with WAMIT [65] or
NEMOH [68,72], which include wave radiation.

Wave models require bathymetry along with observed or modeled WSE, wind, and
incoming wave spectra as forcing and boundary conditions. Current and tide inputs
may also be needed if their magnitudes are large enough to affect waves. Weather- and
bathymetry-driven variability in the frequency, direction, and magnitude of waves entering
the study area (i.e., the wave climate) may be difficult to characterize but important to
model accurately [60], requiring extended observation or large-scale modeling to provide
representative wave inputs. Guillou et al. [73] reviewed methods of characterizing the wave
climate and its spatiotemporal variability using in situ or satellite observations, hindcast
databases, and numerical simulation.
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3.1.3. Monitoring and Model Validation

Data for forcing, calibrating, and validating hydrodynamic and wave models may be
available from past surveys, land- or ocean-based monitoring, or existing large-scale mod-
els [28,73]. However, aside from well-studied areas or established ME test sites, available
data may not have a high enough resolution to address modeling objectives. Routine moni-
toring programs, e.g., those collecting data on weather or water quality, may not collect
adequate data in the nearshore to capture the high spatiotemporal variability regularly
observed near coasts [73,74]. While baseline input data (without devices) are relatively
prevalent, data collected near operating devices remain scarce. As with any model, esti-
mates of measurement error and bias in monitoring data are important for understanding
the uncertainty inherent in the model and how it might propagate. Sensitivity analysis is
useful for determining the effects of numerical error on model output, especially when
small errors (e.g., in water depth and bed shear stress) can lead to large errors (e.g., in
sediment transport) [28].

CHD models (e.g., TELEMAC-2D, Delft3D) have been validated for ME project sites
prior to installation [60,62] and CFD models (e.g., Ansys Fluent, OpenFOAM) have been
validated with data from devices in laboratory conditions [37,43]. A small number of CFD
large-eddy simulation models were validated for operating devices in the field [41,75],
otherwise, field validation has been lacking. For wave modeling, Contardo et al. [76]
validated a SWAN model of a two-device WEC array in the field, but for only one month
of operation. Sjökvist et al. [47] compared WAMIT estimates to 30 min of nearfield data
from a full-scale prototype WEC. Because single devices are usually not expected to have
farfield oceanographic effects, most modeling studies have involved large arrays, and
often in simplified environments that do not have physical analogs. Large arrays have not
yet been deployed, so even models in realistic settings cannot be calibrated or validated.
Comparisons of results between different models have been used in the absence of em-
pirical data [59] or in addition to field measurements [37,47,52]. Visual comparisons of
model results (e.g., [49]) and statistical validation (e.g., [48,52,60,70]) have been employed.
Detailed monitoring of conditions upstream and downstream of devices is needed for
validating hydrodynamic models. Calibration, validation (and input) data should include
multiple seasons, at minimum, to evaluate the accuracy of the models under different
conditions. This is especially true for wave models and for locations where current or
temperature variability is high [73,76].

3.2. Underwater Noise

Anthropogenic noise can affect marine species physiologically and/or behaviorally [77].
Hearing loss can take the form of a temporary or permanent threshold shift (TTS or PTS) in
hearing ability. Noise levels from the operation of ME devices are generally not anticipated
to be high enough to cause injury or hearing loss in marine mammals [1]. Behavioral
responses such as avoidance are possible [78–80]; this is especially relevant for device
arrays, where population-scale effects could occur if noise originates in or near foraging,
breeding, or migratory areas [81]. Masking of intraspecific communication or signals of
predators or prey is another way in which anthropogenic noise can alter behavior [82].

Underwater noise modeling, in general, is a well-established field [83,84], but there
are only a few published ME-specific models. Noise models can be grouped into four
categories: (1) transmission loss, (2) nearfield propagation, (3) farfield propagation, and
(4) species effects (animal behavior and population dynamics). For this review, we focused
on ME device operations. More underwater noise and species-effects modeling studies
have been conducted for OSW farm construction and operation. Some OSW studies are
mentioned below because the modeling approaches also apply to ME.

3.2.1. Transmission Loss Models

Transmission loss (TL) models are the simplest means of estimating underwater noise
levels. They estimate sound loss as a function of distance using geometric models of
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spreading. They may also include attenuation from scattering, absorption, and leakage
from sound channels. Spreading models are based on the logarithm of distance from the
source (log R) with a coefficient of 10 for cylindrical spreading (in shallow water or surface
ducts) or 20 for spherical spreading (in deep water). Some applications use an intermediate
model, such as the 15 log R model for moderate depths (e.g., [85]). The spreading model
coefficient may be estimated based upon site depth or using field measurements of sound.
Attenuation components can be parameterized with field measurements, ideally at multiple
distances from the sound source [85,86], or estimated based upon the material properties
of the water and sediment [87,88].

We found two ME-specific TL models, both with playback of recorded sound rather
than operating devices. Pine et al. [86] measured sound levels from underwater playback
of sound generated by one or two operating tidal turbines and demonstrated that simple
geometric models underestimated observed sound levels. Robertson et al. [89] used a TL
model to estimate sound levels corresponding with locations of harbor seals and harbor
porpoises exposed to playback of turbine noise. Environmental assessments have used
spreading models because of their simplicity, e.g., [87,90–92] for OSW pile driving, but could
improve accuracy by using empirically estimated spreading coefficients and attenuation
and absorption coefficients from measurements or literature [86,93].

TL models are single equations rather than simulations and can be implemented in a
spreadsheet. The most basic form of a TL model requires only the water depth to determine
the spreading coefficient. TL models do not allow spatial variation in bathymetry or water
properties by distance or direction from the source. These simplifications can lead to errors
in estimated sound levels with unknown bias [94]. Therefore, TL models are best suited
for open water, flat bathymetry, and relatively homogeneous temperature and salinity,
as opposed to in channels or along coastlines where sound propagation will vary with
topology [86,95].

3.2.2. Nearfield Propagation Models

Sound propagation models predict the movement of sound waves through variable
media. The speed of sound changes with pressure (depth), salinity, and temperature
in water and the sediment composition in the seabed. As the speed of sound changes,
sound waves refract, either concentrating or spreading. They reflect or scatter upon
contacting the seabed, water surface, or objects. These processes, represented by wave
equations, can be solved directly using finite element, finite-difference, or boundary element
models implemented in software such as COMSOL Multiphysics (e.g., [96,97]) or Abaqus
(e.g., [98]). Like CFD models, nearfield propagation models require fine spatial resolutions
and therefore are computationally intensive and best suited for ranges on the order of 10s
of meters. They model interactions between outgoing and reflected sound waves, which
means they can accurately model propagation in complex environments, including near
coastlines or over irregular bathymetry where reflection is significant.

A finite element model (FEM; COMSOL) was used to demonstrate how sound from a
WEC would be amplified in the nearfield by reverberations from the seabed [97]. FEMs have
also been used to estimate sound levels produced by a device to use as an input to a farfield
model. This has been more commonly done for OSW, e.g., for pile-driving [98] or wind
turbine operation [96]. A finite-difference model, Paracousti, was used to model generic ME
sound sources over larger areas than other nearfield models by using parallel processing
to reduce computation time [99]. Paracousti can model low-frequency sound generated
by ME devices on a scale of kilometers in reasonable computational time. CFD models
(see Section 3.1.1, Hydrodynamic Models) can be applied to inform noise modeling. For
example, Lloyd et al. [42] used OpenFOAM to model turbulence generated by a tidal turbine
and inform the development of an acoustic analogy model to estimate hydrodynamic noise
produced by the turbine blades.

Other than the work by Lloyd et al. [42], which studied a specific test-scale turbine,
we found no ME studies that estimated nearfield noise from specific devices or locations.
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Additionally, the reviewed studies did not include all types of complexity allowed by the
software, such as the roughness of the water surface or seabed.

Information required for these models is similar to that required for modeling oceano-
graphic systems: bathymetry, water properties (especially temperature and salinity), and
sediment properties. Input data needs to be extensive enough to include realistic temporal
variability in water conditions, especially seasonal differences. Spatiotemporal water prop-
erty input data could be observed or generated by a hydrodynamic model, which is likely
to provide higher resolution.

3.2.3. Farfield Propagation Models

Sound propagation over farfield scales has been modeled using a wide variety of
approximations. Many models remove the time element and do not allow interactions
between outgoing and reflected sound, and therefore predict propagation reasonably well
in more open spaces but are less accurate in complex or enclosed areas. Five categories
of models have been used in general noise modeling: parabolic equation (PE), ray/beam
theory, normal mode, multipath expansion, and fast field (Table 2) [100]. The models are dif-
ferently suited for shallow or deep water and low (<500 Hz) or high frequencies (>500 Hz).
A model’s structure determines whether it is range-dependent—includes variable envi-
ronments in three dimensions—or range-independent, allowing only vertical variation.
Normal mode, fast-field, and PE models are most suitable for the lower frequency sounds
expected for ME devices. PE models are the most effective at accommodating spatial het-
erogeneity with distance and direction and are relatively accurate for low frequencies over
long distances [101]. Farcas et al. [95] reviewed considerations for applying ray, normal
mode, and parabolic models for environmental impact assessment, including the choice of
model, data needs, consequences of uncertainty, and model validation.

Table 2. Domains of frequently used farfield propagation models adapted from Etter [100], marine
energy applications, and software used. ++ indicates that the model approach is applicable and
practical in that domain; + indicates limitations in accuracy or execution speed; and blank cells
indicate the model is not applicable. Low frequency <500 Hz, high frequencies >500 Hz. RI =
range-independent (environment does not change with horizontal distance from source); RD =
range-dependent (horizontally heterogeneous environment).

Model Type

Shallow Water Deep Water
Published Marine Energy

Applications and
Software Used

Low
Frequency

High
Frequency Low Frequency High

Frequency

RI RD RI RD RI RD RI RD

Fast-field/wavenumber
integration ++ + ++ + ++ + + + Lloyd et al. [102] SCOOTER

Parabolic equation + ++ + ++ + + Pine et al. [82] RAMGeo
Ray/Gaussian beam

tracing + ++ + + ++ ++ Pine et al. [82]
Bellhop

Normal mode ++ + ++ + ++ + +
Multipath expansion + + + + ++ +

We identified two ME-specific farfield studies. Lloyd et al. [102] used the fast-field
model SCOOTER, implemented in AcTUP [103], to evaluate sound propagation from
three turbines. Fast-field models explicitly include multiple water and seabed layers
(vertical heterogeneity). They are suitable for stratified water and sediment but do not
include heterogeneity in horizontal directions. Pine et al. [82] used the RAMGeo PE
model to estimate sound propagation from a stationary tidal turbine and a tidal kite for
frequencies below 1.6 kHz, then used the Bellhop Gaussian beam-tracing model for higher
frequencies. Farfield models have been applied more often for OSW operation [96,104]
and pile-driving [78,98,105–107]. Most research for environmental impact assessments has
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focused on the louder, impulsive noise of pile-driving rather than device operation because
of the former’s greater potential for causing injury.

The information needs of farfield models depend largely on whether the model is
range-dependent. If not, vertical stratification data for both water and sediment layers are
required. Range-dependent models require spatially explicit water temperature, salinity,
and bathymetry/sediment data. Variability in water depth may be important to consider
in some cases [107]. Water property input can be provided by observations or by a hydro-
dynamic model, with the necessary data resolution depending on the complexity of the
area being modeled.

3.2.4. Species-Effects Models

The effects of noise on species have not yet been modeled for ME devices. However,
the frameworks and methods used for pile-driving, wind farm operation, or other noise
sources could be used for ME. Differences in the nature of sound—such as between louder,
impulsive pile-driving and quieter, continuous ME device operation—should be considered,
but the overall modeling approach is broadly applicable.

The simplest estimate of the effects of noise is the maximum distance or distance
by direction from the source(s) to sound impact thresholds for species of interest, using
any sound model. Studies specify thresholds using regulations [108] and/or audiograms
or observations of species or taxa of interest: e.g., audibility [97]; audibility, behavioral
response, and injury [96]; or TTS [102]. Studies have used broadband sound levels [85] or
specific frequencies based on species audiograms [109,110] or for similar species [78]. The
choice of auditory weighting functions can have significant effects on impact assessment
results [107]. For fish and invertebrates that detect sound via particle motion, sound
pressure levels must be converted to particle motion and additional adjustments may be
necessary for shallow areas or low-frequency sound [111]. Sound from devices can be
combined with ambient noise levels to estimate the effects on “listening space”, i.e., the
ability to hear predators, prey, or conspecifics. Estimating listening space requires fewer
species-specific details of hearing ability [82].

Maps of predicted sound intensity may be combined with observed or modeled
species distribution or movement patterns to estimate impacts. Hastie et al. [78] and Whyte
et al. [107] evaluated the exposure of harbor seals to pile-driving noise using observations
of movement from a Global Positioning System/Global System for Mobile Communica-
tions (GPS/GSM) tracking system. Agent-based models simulate behavior in response to
noise, e.g., for cod [106] and gray seals and harbor porpoises [112]. Agent-based models
require detailed information about both general behaviors (e.g., swimming, diving, for-
aging) and responses to noise. Information about the latter is relatively scarce; passive
acoustic monitoring of harbor porpoises and satellite telemetry of harbor seals have shown
reduced density of individuals within the audibility range of operating turbines [79,80],
but determining the specific cause of behaviors is complex.

At the population level, the long-term or multi-generational effects of hearing damage
or behavioral changes are of primary interest. The Population Consequences of Disturbance
(PCoD) framework [113] evaluates the population effects of sublethal effects from a stressor,
initially pile-driving for OSW [114], and has been applied for a number of species and
stressors as reviewed by Pirotta et al. [115]. The framework explicitly links disturbance to
physiological and behavioral changes that have chronic or acute effects on health and vital
rates such as survival, fecundity, and individual growth. The PCoD model has been demon-
strated for harbor porpoises exposed to pile-driving noise [116,117] or OSW operation [81].
Population models can be informed by observed species distribution, e.g., via satellite
tracking [81,118]. In those studies, changes in distribution were assumed to affect foraging
and, consequently, to reduce species reproduction and survival. Another study applied
a similar model, SAFESIMM, to gray seal and harbor porpoise populations exposed to a
nonspecific sound source similar to construction or other industrial activities [112]. No
application to ME projects was identified in this review.
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Noise modeling for species effects has relied strongly on assumptions about the rela-
tionships between behavioral/physiological responses to sound and vital rates [115]. A
simplified “interim PCoD” framework (iPCoD) was used on harbor porpoises to estimate
“disturbance days” and the “potentially disappeared fraction of species” [91]. This sim-
plification avoided the need to estimate cumulative effects on vital rates and population
dynamics. A coupling of the iPCoD framework with dynamic energy budget models,
which relate how changes in energy intake affect survival and reproduction, has been
proposed as a method for addressing information gaps regarding the effects of noise or
other stressors on vital rates [119].

Models that include behavior and/or vital rates have high information needs, as
reviewed by Booth et al. [120]. Baseline species distribution—collected prior to device
installation and/or while devices are not operating—is typically required, along with prey
distribution if foraging is to be evaluated. Modeling studies that included prey distribution
to calculate energetic costs lacked prey data and used baseline species distribution as a
proxy for food availability. They did not evaluate whether prey would also be affected
by noise [81,117]. Behavioral data and vital rates do not have to be site-specific, but care
should be taken to ensure that data from other locations apply to the site of interest and
that within-population variability is considered [107]. Behavioral data from other species
have been used for some studies (e.g., [118]). Data from surrogate species and locations
introduce uncertainty that should be explicitly accounted for in models [115].

3.2.5. Monitoring and Model Validation

Ambient and source noise measurements in the field are required for parameterizing
some TL models and validating all models. For validation, measurements are needed
with and without device operation to control for variable background noise. Most field
data collection for models reviewed here included only a small number of measurements,
with limited spatiotemporal extent. We did not find examples in the context of ME or
OSW for modeling noise as part of a longer-term monitoring effort, only for pre-project
environmental assessment. Ideally, noise monitoring should be conducted during multiple
tidal cycles, seasons, directions, and distances to account for spatiotemporal variability in
water properties and background noise [85,95,105]. There are specific considerations for
accurately measuring sound from tidal turbines [121], tidal kites [122], and WECs [123].
Playback of recorded sound, in the absence of an operating device, has frequently been
used to parameterize or validate models prior to implementing a project, but there are
strengths and weaknesses to this approach as discussed by Robertson et al. [89].

Farcas et al. [95] reviewed considerations for data collection, model calibration, and
model validation. Pine et al. [86] provided the only validation of an ME-specific model,
using recordings of a tidal turbine rather than an operating device. Study authors ac-
knowledged the shortfalls inherent in using limited measurements to validate models:
Hastie et al. [78] modeled pile-driving noise over a 200 km domain but only validated the
model to 9.5 km, and Lin et al. [105] measured test noise over a single transect that did
not represent the complexity of the study area. Whyte et al. [107] noted that the depth
at which observations are taken affects model validation results, e.g., better model ac-
curacy for sound recorded at moderate depths than that recorded on the surface. Some
studies have validated models from pile-driving data previously collected for the location
(e.g., [87,107,118]). Models can be validated against a simplified, generic benchmark model
with a known solution [87,124], but generic cases do not assure that models adequately
handle spatial complexity.

Marine mammal behavioral responses to pile-driving noise have been monitored using
satellite telemetry [78,118] or monitoring of communication such as porpoise clicks [117,125].
More recently, telemetry and acoustic monitoring have been used to monitor movement
relative to tidal turbines [13,79,80]. Tagging or other monitoring protocols requiring direct
interactions or extensive observations with marine mammals can be resource-intensive and
may be regulated [13,120]. Such monitoring may not be feasible for individual ME projects,
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though some data may be collected by other projects or agencies, e.g., for species of con-
servation concern [118,126]. Monitoring population dynamics and vital rates is a lengthy
process, especially for longer-lived mammals, and impractical for some taxa [2,120]. The
reviewed studies generally parameterized models with existing data [112,118], typically
collected in the absence of ME devices or expert opinion [118,125]. Researchers may err on
the side of caution when defining criteria for adverse effects under high uncertainty [85].

Studies in this review did not discuss the validation of population and behavior mod-
els, which would require data about species response (e.g., distribution, demographics) to
an operating device or array. The lack of validation in the population and behavior studies
corresponds to the status of these models, which are in exploratory or demonstration stages.
Validating species models in the absence of a device is useful but not sufficient. If an
operating device or array is present, behavioral models can be validated using data set
aside during model parameterization, but data limitations driven by resource and time
requirements may preclude this approach. Validation of individual-based models may
be best addressed by comparing model results with both independent observations of
individuals and validation of aggregated (i.e., population or community level) dynam-
ics [26]. Adequately representing uncertainty in the models and applying results in that
context—e.g., by using relative rather than absolute results when comparing scenarios—is
critical until models can be validated.

3.3. Electromagnetic Fields

EMFs from generators and cables associated with ME devices may be detected by
some marine species, but significant uncertainty remains about their effects on species
physiology [127–129] and behavior [127,130]. The physics of EMFs is well understood and
can be modeled using analytical equations or numerical simulations, but so far applications
have been constrained to simplified settings. A relatively small number of modeling studies
have evaluated marine EMFs, mostly for submarine electrical transmission cables. We
found only one study specific to ME [131], and no models of species effects.

3.3.1. Analytical Models

Slater et al. [131] modeled the electric, magnetic, and induced electric fields generated
by a WEC device and multiple configurations of alternating current (AC) and direct current
(DC) transmission cables using analytical models based on fundamental physics. The
analytical predictions for cables were compared to simulation results from Maxwell 2D,
and the transmission line model was validated qualitatively with measurements from
an underwater AC cable. Lucca [132] developed an analytical model for a generic AC
cable that predicts both the magnetic and induced electrical field, comparing results to a
numerical simulation [133] and the transmission line model from Slater et al. [131]. Two
studies used the Biot-Savart equation to describe the magnetic field induced by a DC cable
and compared predictions to observations [134,135].

These approaches require information about the internal cable geometry, cable depth
if buried, and the seabed and water resistivity. They apply to straight cables in homoge-
neous environments and do not accommodate complexities such as interacting fields from
multiple sources.

3.3.2. Numerical Simulations

Gill et al. [136] modeled magnetic and induced electric fields from a buried high-
voltage AC cable at an OSW farm using Maxwell 2D, a FEM that simulates EMFs at cable
cross-sections. Hutchison et al. [137] used a COMSOL FEM model of the magnetic fields
of DC transmission cable cross-sections and validated results with field measurements.
These models require the material characteristics of the cable components, seawater, and
sediment; internal geometry of the cable and its burial depth; boundary conditions; and the
background EMF. Simulations accommodate more complexity than analytical models, but
these applications were 2D and did not explicitly allow for environmental variability along
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the cable. Hutchison et al. [137] modeled multiple cross-sections to account for changes in
depth along the cable, using a numerical approximation based on the COMSOL results to
reduce computation time. We found no examples of modeled interactions between cables
and/or other EMF-generating ME devices.

3.3.3. Monitoring and Model Validation

While measuring EMFs is conceptually straightforward, accurately measuring and model-
ing EMFs at depth in the marine environment has been addressed only recently [135,137–139].
Kavet et al. [135] provided quantitative model validation using their measurements for a high-
voltage DC cable. Hutchinson et al. [137] measured both DC and AC cables, but modeled and
qualitatively validated only the DC cable magnetic fields and did not model the AC-induced
electric fields.

Short-term field and laboratory observations have been made of behavioral and physi-
ological responses to EMFs [127,137]. Findings of behavioral studies have been variable
and inconclusive as a whole [127] and there are no models to validate yet. Laboratory
studies must take care to match the intensities, frequencies, and temporal patterns of EMF
exposure that animals might encounter in the field. Field studies of behavior have been
challenging given the range of species, habitats, and behavior to address, coupled with the
difficulty of measuring EMF intensity without disruption of the nearby organisms. As with
any behavioral study, it can be difficult to determine the causes of behavior, and adequate
replication and randomization are necessary but rare [127].

3.4. Changes in Habitat

Like any other marine development, ME devices can alter marine habitats. Cable
burial and sediment scouring near devices are primary sources of disruption to benthic
habitats. Devices can attract organisms (biofouling by sessile species and artificial reef
effects for mobile species) or facilitate dispersal (stepping-stone effect). Zones excluding
fishing and/or other activities near devices may create refugia from additional disturbance.
These effects can be positive if they support native species but negative if they promote
invasive species or disrupt trophic structures.

Statistical models predict species distributions from environmental conditions and
estimate the biotic consequences of physical changes. Spatial ecosystem and trophic models
evaluate and predict changes in community structure and/or overall biomass. Biophysical
models simulate larval movements and the effect of devices on species ranges. These
models are well-described and have many ecological applications [140,141], but only a few
ME studies have been published, and are only related to the effects of tidal turbines.

3.4.1. Statistical Species Distribution Models

Species distribution and habitat suitability models can be used to select ME sites
that minimize species impacts. Simple linear regression models estimate the association
between species observations and a relatively small number of environmental parameters
(see [142] for an example involving fish at a tidal energy site). Ecologists have developed
more sophisticated methods that include a larger number of environmental variables and
identify which are most relevant [143,144], though the ability of a habitat model to predict
species distribution does not guarantee that the relationships in the model are biologically
meaningful [145]. Model results can be used to predict changes in species distribution if ME
development alters habitat, with different models variously suited to detecting, quantifying,
forecasting, and evaluating the mean and variance of change for normal and non-normal
data [143,144].

Numerous available methods include the maximum entropy (MaxEnt) model [146]
and Ecological Niche Factor Analysis [147], both of which compare characteristics of oc-
cupied habitat to a broad set of available habitat conditions, using presence-only species
data as input. These methods estimate the probability of species occurrence for each pixel
on a map and provide information about the species’ response to each variable. Another
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approach uses machine learning to generate decision-tree ensemble models [148,149], also
known as classification and regression trees. This method is nonparametric and does
not require assumptions about the structure of the statistical model, thereby allowing
for nonlinear interactions between variables. Common applications are random forest
(RF; [148,150]) and boosted regression trees. Other statistical approaches, such as gener-
alized linear (mixed) models (GLM or GLMM) and generalized additive (mixed) models
(GAM or GAMM) also estimate species distribution from environmental parameters, but
require assumptions about model structure. GL(M)Ms model linear effects for non-normal
data distributions, while GA(M)Ms accommodate non-linear effects of environmental pa-
rameters [143,144]. Species distribution probability maps can be generated to visualize the
outputs from all of these models.

As an example related to ME, a study used MaxEnt with five environmental variables
to estimate the response of brown crabs (Cancer pagurus) and acorn barnacles (Balanus
creatus) to changes in bed-shear stress from tidal turbine arrays [151]. Another study
used MaxEnt to examine the potential impacts of a tidal barrage on the distribution of
suitable habitat for 14 fish and invertebrate species linked by predator-prey relationships,
including the prey distributions relative to the variables for modeling the predators’ dis-
tributions [152]. Linder et al. [144] used RF to estimate changes in nekton density and
patchiness in a tidal inlet being evaluated for tidal turbines. They compared the model
results to other statistical approaches, including support vector regressions, state-space
models, and GAMMs. A GAMM was also used to model the presence and abundance of
terns (Sterna spp.) in relation to tidal states at a tidal turbine site [153].

The most user-friendly species distribution models use presence-only species data,
which are easier to reliably collect than presence/absence or abundance data. Models can
use different environmental variables depending on species, but most include information
about currents and properties of the water, seabed, and sediment. Outputs from hydro-
graphic or hydrodynamic models can be used as inputs for water properties, currents, and
shear stresses in lieu of field measurements and to predict the effects of future devices.

3.4.2. Spatial Ecosystem and Trophic Models

Habitat change effects on individual species cascade throughout the food web to their
predators, prey, and competitors. Ecopath is a software application commonly used for
analyzing trophic structure and biomass within a mass-balanced food web. Changing a
species’ biomass or physiological parameters to reflect the addition or loss of habitat requires
adjusting the biomass of other species throughout the trophic structure to return to a balanced
state. Ecopath is frequently extended with Ecosim (then referred to as EwE) and Ecospace,
which add temporal and spatial components, respectively [154,155]. Alexander et al. [126]
used EwE to model the artificial reef and exclusion zone effects of ME and OSW installations,
as well as the benefits or drawbacks for the fishing industry. Raoux et al. [156] also applied
EwE to estimate the artificial reef effects created by OSW. The models were run over 25 and
30 years, respectively, and projected the final changes in biomass per grid cell. In the first
study, changes in catch value per fishery were also projected.

EwE models quickly become complex when species and relationships are added. Large
food webs require many parameters, including feeding, growth, survival, and dispersal
rates; ratios of production to biomass; and, sometimes, additional physiological parameters
for all species in the model. Parameter values may be available in the literature for species
of conservation or commercial interest and in areas that are well-studied (e.g., northern
European waters are the location for many ME studies). Informed assumptions may be
needed for some parameters, such as eco-physiological variables for less-studied species,
particularly for simulating the effects of habitat change on those parameters [126].

3.4.3. Biophysical Models

Biophysical models couple 2D or 3D hydrodynamic models with biological models—
often biogeochemical or agent-based—to estimate how changes in water movement and/or
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the addition of structures to the environment affect species’ biomass, distribution, dispersal,
or connectivity.

Schuchert et al. [157] used the MIKE21 hydrodynamic model with the biogeochemical
Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model to estimate the effects of
a tidal turbine array on phytoplankton concentration. They modeled a hypothetical tidal
channel and basin with and without the array to show that, even though there was an
increase in water residence time, natural variability had a greater effect on phytoplank-
ton concentrations. Coupled hydrodynamic and agent-based models have been used to
estimate the stepping-stone effect of offshore structures on the dispersal of planktonic
larvae that settle on structures, like mussels or sponges. Studies have evaluated oil and gas
infrastructure [158], OSW [159], or generalized offshore renewable energy devices [160],
and could be further adapted to realistic tidal or wave device configurations.

These models require, as inputs, outputs from hydrodynamic models (e.g., current
velocities, water properties) with and without devices. Biological parameters vary by
model. For example, the NPZD model includes growth and mortality for phytoplankton
and feeding, mortality, and excretion rates for zooplankton, among other parameters [157].
Biological parameters for larval dispersal models include spawning time, larval stage
duration, larval behavior, and larval growth rate [158].

3.4.4. Monitoring and Model Validation

Habitat monitoring before and after device installation is ideal for validating how
accurately the model predicts physical changes caused by the device before validating
species outputs to understand where errors originate [161]. Similarly, validation of hydro-
dynamic models that provide input is necessary to ensure that inputs to habitat models
are reasonable. Species monitoring needs depend on the details of the model application.
Presence-only data require the fewest resources to collect. The ability to collect presence-
absence or abundance data and the effort required depends on the species. The practicality
of collecting necessary species data should be considered when choosing a model. Trophic
and ecosystem models typically need abundance or biomass data for validation.

The reviewed studies were hypothetical or based on sites generally considered suit-
able for ME and not part of planning or managing specific projects. No monitoring was
conducted with operating ME devices for any of these studies, so models could not be vali-
dated with empirical data. However, the modeling methods are well-developed, validated
in other contexts, and expected to be reliable with good input data.

Ideally, model validation for habitat suitability, spatial ecosystems, or biophysical
models would use independent data sets (different from those used for parameterization),
but having insufficient biological data is common. Techniques such as cross-validation
maximize the use of limited data for both parameterization and validation [162–164]. Cross-
validation is not as valuable as acquiring additional empirical data for validation but can
provide an initial idea of the level of confidence in a model [161] until ground-truthing can
be performed. Considerations and methods for validating ecosystem models are detailed
by Hipsey et al. [25], and for validating larval dispersal models by Ross et al. [161].

3.5. Collision Risk

Collision risk and related models estimate the likelihood of animals being within
a few device lengths from a device (an “encounter”), or being in contact with a device
(a “collision”) [165]. The probabilities of encounter or collision depend upon the size and
location of the device (usually a turbine), the typical behavior of the animal (e.g., swimming
speed, depth, and frequency of dives), the ability of the animal to detect the device, and
its behavior in response to the device. Avoidance is defined as responding to and moving
away from a device at farfield distances, and evasion is defined as the animals changing
their behavior to escape contact with a device at nearfield distances (i.e., after the encounter,
but averting a collision) [166,167]. If a collision occurs, there is a risk of injury or fatality.
Because of inherent difficulties in observing animals in the nearfield of a device, collision
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outcomes have not been definitively measured and nearfield evasion behaviors are poorly
understood [165].

There are few analogs for modeling the risk of marine animals colliding with ME
devices, the nearest being modeling the risk of bird collisions with wind turbines [168,169].
Two related analytical approaches to estimating the interactions between animals and tidal
turbines based on wind turbine collision modeling are the encounter rate model (ERM)
and the collision risk model (CRM). A spatial simulation approach can also estimate the
probability of contact [170]. At the population level, the exposure time population model
(ETPM) estimates the fatal collision rate that leads to a specified negative effect on the
population. These models are described in more detail in the following sections.

3.5.1. Encounter Rate/Collision Risk Models

The ERM [166] is based on a predator-prey model that uses the volume of water swept
by a predator, the size of the prey, prey density, and the relative swimming speeds of
predator and prey to estimate the likelihood of the two coming into contact. A turbine
blade, viewed from the side, sweeps a certain volume of water in a unit of time that an
animal has some chance of occupying based on turbine and animal size, speed, and the
density of animals in the volume. The CRM is based on the area of the entire rotor, as
viewed from the front [171]. The probability of collision is determined by the size of the
animal, its transit time across the plane of the rotor, and the area covered by the rotor
during that time. An avoidance factor can be added to reduce collision probability and the
CRM can be extended to let animal density vary with depth [172].

Most ME model studies have used the CRM and variants for harbor seals around
turbines [173,174]; for harbor porpoises around a test turbine with comparison to the
ERM [175]; for orcas, harbor seals, and harbor porpoises for a hypothetical three-turbine
array [176]; and for fish [177–179]. Only some of these models included avoidance and/or
evasion behavior [175,178]. Hammar et al. [178] used behavioral observations of fish en-
countering other types of obstacles in a probabilistic model to simulate avoidance/evasion
failure, then applied those failure rates in a CRM. Copping and Grear [176] included injury
risk in a CRM based on the turbine’s blade speed, the part of the animal’s body that contacts
the rotor, and the part of the blade that strikes the animal.

Spatial simulations have also been developed to estimate collision probabilities in
more complex scenarios. A four-dimensional simulation model (3D representation of a
device and animal over time) was used to estimate the risk of a tidal kite colliding with
seals [180], accounting for the path of the tidal kite’s movement. Horne et al. [170] extended
this model to include more detail about the seals and their dive profile. Rossington and
Benson [181] developed an agent-based simulation of fish passing by a tidal turbine as
part of a biophysical model that included typical fish behavior in a flow and estimated
collision risks. Collisions were assumed to be fatal if the closing velocity (function of
both the velocities of the blade and the fish) exceeded a threshold. The model did not
include behavioral responses to the turbine, but it could be extended to do so. The study
demonstrated that differences in typical behavior, such as vertical migration in response to
daylight and flow field, affected collision risk and fatality rates. Such models can partly
compensate for limited behavioral observations and identify specific behaviors to prioritize.

All models require species-specific parameters such as dive frequency, the proportion
of time foraging, swimming speed, and body length. Response behaviors have been
included in only a few models because of the lack of observational data. Behavior can have
large effects on model outcomes: e.g., the CRM [171] is more sensitive to assumptions about
avoidance rate than the physical parameters [182], which creates significant uncertainty
when using behavior in the model with limited information.

3.5.2. Exposure Time Population Model

The ETPM framework [182] evaluates collision risk from the perspective of populations
rather than individuals. It was developed for diving birds but could be applied to any
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species. The framework uses a population model to estimate the amount of additional
mortality caused by collisions that can be accommodated while still meeting a specified
population growth rate. Any population model that estimates this rate could be used. The
exposure time model estimates collision probability based upon the amount of time animals
spend at the depth of the device(s) and the proportion of that depth occupied by turbines.
It does not require further assumptions about behavior; thus, the ETPM can be used for
species without detailed information about behavior. Together, the models provide the
threshold mortality rate and the risk of that mortality occurring. The framework assumes
collisions are fatal and that there is no avoidance/evasion behavior, but it could be adjusted
to include behavior and non-fatal collisions. Assuming all collisions result in mortality may
overestimate the effects of collision risk on the population.

The ETPM requires the durations the species spend at the depth occupied by a turbine
and population-level data about reproduction and survival. Additional information may
be required depending upon population model choice (e.g., age-specific vital rates).

3.5.3. Monitoring and Model Validation

Field observation of animal behavior near turbines has been a fundamental challenge
when estimating collision risk, and empirical parameterization of animals’ behavior and
density in models of collision risk remain rare [174]. Species such as harbor porpoises
can be tracked by hydrophone, but such monitoring is limited to species that produce
characteristic sounds and provides only partial information [2,79]. Logistical challenges
for monitoring many species include inadequate light for video monitoring and acoustic
blind spots near operating turbines for hydroacoustic monitoring. Species identity and the
outcome of a collision may be hard to determine. Only one model, to date, has estimated
injury risk based on where the animal is struck [176]. Including sublethal vs. lethal effects
of a collision in population models would allow better assessment of overall risks to
species [183].

Telemetry studies are necessary to measure swimming and diving behavior but can be
resource-intensive and require direct interaction with animals. Although studies observing
behavior near a turbine can characterize species behavior in a specific site (e.g., [184]), data
may not transfer between projects with different device types, array configuration, and site
characteristics. In the absence of turbine-specific data, Hammar et al.’s [178] example of
simulating avoidance and evasion behavior does not replace observations, but simulations
can provide interim information prior to monitoring.

None of the reviewed studies included validation. Monitoring operating devices is
necessary for parameterizing, validating, and refining the different models. Before that is
achieved, models can be used to assess how the configuration of device arrays may affect
the behavior needed to avoid collisions, and how the rates of different collision outcomes
affect populations.

3.6. Displacement of Marine Animals

Marine energy arrays may displace animals, fully or partially, from foraging or breed-
ing habitats if the arrays are located in those areas or are perceived as barriers to access [21].
Displacement could also lengthen migration routes, thereby increasing energetic costs and
changing access to prey; all of these factors could lead to population-level effects [9]. Under
this definition, displacement is caused by the presence of an array of devices as distin-
guished from related noise, EMF, or other stressors. Field observations of displacement
have been precluded by the lack of operating arrays larger than a few devices. The size
and placement of arrays that would create biologically significant displacement effects are
not known, but siting ME devices at sufficient distances from home ranges or migration
routes may mitigate the risk of displacement [185].

We did not find any models applied to displacement defined as large-scale avoidance
caused only by the presence of ME devices. This concept has rarely been considered as
distinct from general disturbance (e.g., [186,187]), habitat change, or noise. However, with
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minor adaptations, the models we have reviewed for other stressors could be used to
predict displacement. In the field, it may be difficult to distinguish displacement from other
stressors that affect behavior, so modeling multiple stressors in a coordinated way is im-
portant. Biophysical or agent-based models (also discussed under Section 3.4, Underwater
Noise, and Section 3.2, Changes in Habitat) and statistical habitat models (similar to those
described under Changes in Habitat) could be adapted to model displacement.

3.6.1. Biophysical and Agent-Based Models

As described in previous sections, biophysical models couple hydrodynamic and biologi-
cal models. Agent-based models include the movement of individuals or groups of individuals
in response to environmental conditions or stimuli such as noise. A biophysical model was
used to estimate turbine avoidance for fish at a larger scale (50–200 m) than that used in
collision risk models [188]. The model was for a single turbine and resulted in a relatively
small area of displacement, but the concept could be applied to arrays at larger scales.

Agent-based models of harbor porpoises, including the PCoD model [117] described
in Section 3.2, Underwater Noise, simulated species distributions with behavior depending
on prey distribution, noise levels, and water depth and flow [189–192]. Thresholds for
behavioral responses to noise can be replaced with or complemented by threshold dis-
tances at which animals avoid devices. These models could directly estimate the energetic
consequences of avoiding devices and/or inform a population model using the PCoD
framework. Alternatively, dynamic energy budget models estimate energetic consequences
of stressors like displacement causing loss of access to resources, extended migratory routes,
or predator avoidance [186,187].

As with other physiological and behavioral models, these approaches require in situ
data about species movement and behavior and physiological responses to stressors, in
addition to the physical data required for hydrodynamic or other models used to estimate
environmental conditions. Estimates of prey distribution may also be required.

3.6.2. Statistical Species Distribution Models

Under Section 3.4, Changes in Habitat, we described several methods for identifying
the most important environmental components of habitat and predicting species response
to habitat change. GLMMs and GAMs have been used to estimate species distribution and
thus the potential for displacement based on the siting of projects (prior to deployment).
GLMMs are used for linear relationships and distinguish between the effects of different
sources of variability, while GAMs use smoothing functions that allow relationships to be
nonlinear [143,144].

Waggitt et al. [193] used GLMMs to evaluate seabird use of an area where tidal turbines
are being tested. Gilles et al. [194] used GAMs to create seasonal distribution maps for harbor
porpoises to help identify low-impact locations for installations and seasonal timings for
device deployment. The devices have not been part of these models but could be included
by adding distance and direction from an array as explanatory variables. In the absence of
avoidance observations, hypothetical behavioral responses could be used to assess the range
of potential impacts. This information could be used in bioenergetic and/or population
models to estimate the consequences of displacement and relevant assumptions. These
applications are similar to those used for habitat change but focus on species distribution
directly affected by the presence of a project rather than changes in habitat.

3.6.3. Monitoring and Model Validation

Monitoring needs for displacement models overlap with those for oceanographic
systems, behavioral noise models, and habitat change, with specific data needs depending
upon the type of model. Monitoring behavior and distribution at a scale large enough to
detect displacement requires operating device arrays and may require extensive monitoring
of animal movement, especially for species with lower population densities [2]. Behavioral
variability among individuals adds uncertainty to population-scale estimates and increases
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the sample sizes needed [195]. Coordinated monitoring of species, habitat conditions, and
noise levels is necessary to help distinguish between displacement and these other drivers
of species behavior and distribution and to determine mitigation needs.

The lack of operating ME arrays large enough to induce biologically significant dis-
placement means that not only are there no data available but that studies cannot yet be
conducted. Similar to collision risk, this limits the ability to develop and validate models,
but frameworks can be developed.

4. Discussion

Published models of ME environmental effects vary from well-developed theory
applied to multiple ME device types, to established models without ME applications
to date, to theoretical models with little observational data. There are no model suites
universally appropriate for all projects, but there are broadly applicable technical and
resource considerations for selecting modeling approaches. Information availability also
varies widely among stressor-receptor interactions, which affects the ability to develop and
validate models given the limited number of operating devices. Coordinating modeling
and monitoring protocols facilitates the further development of both aspects of evaluating
environmental effects. These considerations and others are discussed below.

4.1. Availability and Maturity of Models

We have qualitatively sorted the relative availability and maturity of modeling ap-
proaches for potential ME stressor-receptor interactions along two axes: the level of de-
velopment in any context of models that have been or could be used, and the number of
published ME model applications (Figure 1). For this purpose, model maturity indicates
model refinement (including software availability) and the incorporation of empirical data
to parameterize and validate the models in any context. ME applications may be entirely
hypothetical or parameterized and validated for specific projects.

The most developed models are for oceanographic systems and underwater noise
propagation, which have software models considered reliable for their intended uses.
Hydrodynamic, wave, and sediment models have been applied to test sites and hypothetical
arrays. Validation of ME applications remains limited [47–50], but established methods
are available once data are collected [30,196,197]. There are fewer ME underwater noise
model studies than oceanographic models, but multiple available analytical and software
models are applicable [83]. Studies of OSW farm operation demonstrate noise modeling for
commercial-scale arrays [96,104]. Behavioral and population models of marine mammals
and fish have been applied for pile-driving [81,91,106,115] and generic noise sources [112],
but there is a lack of physiological and behavioral response data for ME noise, including
the effects of extended exposure.

Models of species-habitat relationships that evaluate habitat stressor-receptor inter-
actions have a robust ecological literature [140,198,199], as do trophic models used to
evaluate artificial reefs and exclusion zones and biophysical models used for simulating
stepping-stone effects on dispersal [154,200]. Only a few studies have modeled ME effects
on habitat [126,144,151], but information, not theory, is the barrier.

Displacement of marine animals avoiding ME installations has received very little
attention either in theory or in the field. Avoidance behaviors, however, are not unique,
and avoidance of device presence could be added to models of species responses to under-
water noise, changes in habitat, or non-ME stressors. As with all behavioral models, the
availability of empirical data is a limiting factor.

Two-dimensional models of EMFs generated by submarine cables have been applied
in simplified settings. We found no examples of realistic spatial variability (2D or 3D) or
interacting fields, and model validation has been rudimentary. Recent improvements in
underwater EMF monitoring [137] should facilitate model development. No models of
physiological and behavioral responses to underwater EMFs were published at the time of
this review, and findings of animal responses to EMFs are inconclusive [127].
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Figure 1. Relative maturity and availability of models for marine energy (ME) stressor-receptor
interactions, including the availability of model approaches from other contexts that can be adapted
for ME. The level of maturity and validation of modeling methods (for ME or analogous applications)
ranges from hypothetical or conceptual (no empirical data) to field-validated real-world applications;
ME-specific examples range from none to multiple and/or well-developed model approaches and
published examples. EMF = electromagnetic fields.

Collision risk is a specific field of study with few analogs, and behavioral differences
among birds, fish, and marine mammals affect how they should be modeled [182]. Most
model studies included swimming and diving characteristics while a few incorporate more
detailed behavior [178]. Avoidance or evasion probabilities can be included in most models,
but few studies have the necessary data. Comprehensive modeling of collision risk will
require research regarding responses to arrays and the effects of sublethal collisions on
populations [176].

The coverage of stressor-receptor interactions in modeling studies has been uneven
across device types. Tidal turbines, the focus of most reviewed studies, have been modeled
for all stressor-receptor interactions except EMF (for which transmission cables have been
the focus). WECs have been evaluated for effects on oceanographic systems, and once for
underwater noise [97]. We found no models of species responses to WECs.

Only a few of the reviewed studies modeled the effects of large tidal turbine ar-
rays [40,46,49,53,61,63,151] or WEC arrays [66,70] in realistic settings; they involved hypo-
thetical arrays without empirical data and most focused on oceanographic effects. Modeling
arrays increases complexity and may require either increasing the spatial scale without cor-
responding reductions in resolution or adding simplifying assumptions. Arrays introduce
interacting wakes and sound waves, dispersal connectivity, and other factors depending
on device type and array design. Animals encountering multiple devices may change their
behavior further or face additional risks, e.g., reduced ability to evade. In this case, the
barrier to understanding is the lack of both theory and information. Significant research
and modeling are needed to understand the compounding effects of arrays [3].
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4.2. Selecting Modeling Approaches

Progress in project planning and consenting can be accelerated if regulators, re-
searchers, and developers collaborate on modeling frameworks for environmental as-
sessments and monitoring. However, model suites must be chosen for specific projects
given the diversity of sites, devices, and receptors. Technical considerations for model
selection include the following:

• Device characteristics: Device type, number, and arrangement determine which phys-
ical and behavioral processes need to be available in the selected models and what
scale and resolution are required.

• Site characteristics: Model functionality needs to be appropriate for the conditions
of the site, i.e., water depth, bathymetric complexity, sediment dynamics, and/or
biotic interactions.

• Spatiotemporal scales: Computation time is determined by model scale and resolution.
It can be improved in some models using simplifications in exchange for specificity.
Modeling objectives may require the use of both near- and farfield modeling to estimate
both source levels and propagation of effects. The choice of physiological and behavioral
functions and parameters may also depend on the scale of the modeling objectives.

• Receptor species: Modeling approaches differ for benthic or pelagic species, mobile or
sessile organisms, and different life stages (e.g., adults vs. larvae).

• Existing data: If data of sufficient quality is available to be used in a model analysis, it
may constrain the choice of models. This is particularly a consideration if collecting
other types of data (in the necessary time frame) is not feasible.

Resources available for modeling must also be considered. Access to existing models
and their maturity, the time and budget that can be devoted to modeling, and the expertise
needed for development and application all affect model selection. Commercial software
has been more readily accepted by developers than research-oriented or customized soft-
ware [59] and requires less development and setup time. If resources allow, using multiple
models and comparing results can increase confidence in model results [52,59].

Using the same model(s) for multiple project types and/or sites reduces the overall
effort, enables comparison, and facilitates aggregation of model results for cumulative
impact assessments [8]. The transfer of hydrodynamic models and noise depends upon
the similarity between sites relative to depth, morphological complexity, and proximity
to coastlines. Transferring species models between locations is more straightforward, but
non-ME stressors or other site characteristics that affect populations may require changes
in mechanisms within the model (i.e., the shape of relationships between environmental
factors and species response) or parameters for vital rates or behaviors [201–203].

Nearly all reviewed studies focused on a single stressor–receptor interaction (Table A2).
Most studies that coupled hydrodynamic models to biological models focused on the bi-
ological outcomes, using the hydrodynamic models to provide input data rather than
fully exploring the oceanographic effects [106,160,193,204]. Van der Molen et al. [104] ap-
plied hydrodynamic/biogeochemical, wave, and acoustic models to evaluate the effects of
OSW operation, though only the biogeochemical model included an ecosystem component
(plankton and benthos) and the effects were not combined across models. For comprehen-
sive environmental assessments, multipurpose models could increase efficiency, simplify
communication, and more effectively estimate cumulative effects, the latter of which is
an important component of environmental impact assessments [8]. They can also be used
to distinguish between the effects of multiple stressor–receptor interactions on observed
population dynamics. For example, agent-based models developed for species responses to
noise [81,106,112,117] could be adapted to also include displacement or changes in habitat
as drivers of movement and distribution and compare the effects of these behaviors.

4.3. Model Information Requirements and Uncertainties

The broad range of information used in modeling environmental effects of ME, ranging
from physical to physiological and behavioral data (Table 3), creates challenges when
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developing and parameterizing models. Those designing monitoring protocols should
consider the overlaps in data needs among models and determine whether modeling
can reduce or refine monitoring. Existing data and monitoring required by regulation can
inform model selection. Coordinating the development of models and monitoring protocols
for multiple stressors, or multiple habitats or species of concern, could streamline data
collection. For example, bathymetry and water and sediment properties are common needs
among physical and habitat models, and many biological models use some combination of
swimming, diving, foraging, and/or dispersal behavior. It is important to ensure the correct
data are collected at the necessary resolution and extent to be used in all relevant models.
Errors in fundamental data, e.g., bathymetry, resulting from inadequate resolution or
measurement error can propagate within models and through multiple models, increasing
overall uncertainty [28]. Estimation of random error or bias that cannot be corrected can be
incorporated into models to understand the effects of uncertainty.

Hydrodynamics and water properties are highly variable and resource-intensive to
characterize. Seasonal, interannual, and spatial variability may require extended, site-
specific monitoring to accurately inform and validate a model, while also directly assessing
effects. Reliable regional ocean models may be adequate substitutes for detailed monitoring
data for use as initial conditions, boundary conditions, or forcing factors in oceanographic
models. Other physical data, such as bathymetry and seabed properties, are relatively
static and may require only one or a few surveys. In some reviewed studies, physical
data or regional model outputs were publicly available, but at a spatial resolution that
is too coarse [105,126,151]. Lack of data at sufficient resolution is a problem for physical
models, especially for habitat, and discrepancies in the resolution of data sources can affect
model results [205,206]. The optimal resolutions depend upon site characteristics, including
morphological complexity, variability in environmental factors, and the scales of effects
and responses relevant to the stressor(s) and receptor(s).

Species distribution data are site-specific and often vary by season and year for both
resident species at local scales and migratory species [2]. Data may already be available
for well-studied species or locations. Marine mammals and seabirds are more readily
observed on the surface than fish or invertebrates, which typically require more intensive
sampling methods, but mammal and seabird diving behavior is often poorly understood.
Tracking movements and behavior requires acoustic and/or video monitoring systems
near devices [207,208] or telemetry at larger scales [209–211]. Some studies used prey
distribution to model foraging behavior and energetic effects [81,106,117]. When prey
distribution was unavailable, authors used baseline distributions of the focal species as a
proxy for prey; this requires assuming that prey is not also responding to the ME stressors
or otherwise changing over time [212]. The validity of this assumption depends upon the
prey species and would require additional monitoring to confirm.

Information about response behavior is scarce because there have been few operating
ME devices, observing behavior near them is difficult, and observing behavior around
larger arrays has not yet been possible. Recent studies monitoring porpoises and seals
near small tidal turbine arrays have experienced limitations such as a lack of data before
turbine installation or during multiple seasons and the inability to distinguish between
individuals [79,80]. It is yet unknown how much device design and location affect behavior
and thus how much species response data can be generalized. Behavioral response data are
especially valuable for models of collision risk, displacement, and species effects of noise
or EMFs, because of the significant uncertainty involved and the sensitivity of models to
these behaviors [182]. Models of hypothesized mechanisms of behavior near devices help
refine information needs [178].
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Table 3. Summary of information needs by model type. Not all parameters are needed for all models of a stressor; parameters used less frequently are indicated by
parentheses. WSE = water surface elevation; EMF = electromagnetic field; TTS = temporary threshold shift; PTS = permanent threshold shift.

Device Morphology/Sediment Water Organism Abun-
dance/Distribution Animal Behavior Physiology and

Vital Rates Other

Changes in oceanographic systems

Hydrodynamic
models

Device geometry or
parameters for
approximation

Bathymetry,
sediment type, and
material properties,
bottom friction

Current velocity,
tides, WSE,
temperature, salinity,
river discharge

Wind, (precipitation,
air temperature)

Wave propagation
Device geometry or
parameters for
approximation

Bathymetry
WSE, incoming
waves, current
velocity, tides

Wind, air-sea
temperature
difference

Underwater noise

Transmission loss Source sound level
Depth, (material
properties of
sediment)

Temperature, salinity
(Recorded sound at
distance from the
source)

Nearfield
propagation Device geometry

Bathymetry,
sediment type, and
material properties,
bottom roughness

WSE, temperature,
salinity, surface
roughness

Farfield propagation Source sound level

Bathymetry;
sediment type (by
layer), roughness,
material properties

WSE, temperature,
salinity, surface
roughness

Species effects Sound level maps Species distribution,
prey distribution

Swimming, diving,
noise response,
dispersal, migration

Audiograms,
TTS/PTS thresholds,
vital rates

EMF

Physical EMF
(analytical or
numerical)

Cable configuration,
burial depth

Sediment type and
resistivity Water resistivity

EMF behavioral
response * Species distribution

Movement, dispersal,
behavioral response
to EMF

Physiological
response to EMF,
feeding:growth,
vital rates
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Table 3. Cont.

Device Morphology/Sediment Water Organism Abun-
dance/Distribution Animal Behavior Physiology and

Vital Rates Other

Changes in habitat

Statistical species
distribution

Bathymetry, slope,
roughness,
sediment type

Current velocity,
shear stress,
temperature, salinity,
chlorophyll,
nutrients,
dissolved gases

Presence,
presence/absence,
abundance

Spatial ecosystem
and trophic Abundance, biomass Dispersal

Feeding, growth,
production:biomass,
vital rates

Habitat type

Biophysical

Current velocity,
(chlorophyll,
nutrients,
dissolved gases)

Swimming, diving,
(foraging, response to
devices)

Larval stage duration,
larval survival,
feeding, growth,
production:biomass

Collision risk

Encounter/
collision risk Device geometry Channel width

and depth Current velocity Distribution in the
water column

Swimming, diving,
foraging, avoidance,
evasion

Shape, size

Exposure time
population model Device geometry Distribution in the

water column Diving Reproduction,
survival

Displacement
Biophysical/
agent-based

Current velocity,
temperature, salinity

Species distribution,
prey distribution Swimming, diving

Statistical species
distribution

Current velocity,
shear stress,
temperature, salinity

Species distribution
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Physiological and demographic parameters may be available for species of concern or
commercial interest. Most reviewed studies used published data for their receptor species
or for similar species rather than collecting new data. Estimating the effects of stressors on
health and vital rates has been identified as a significant challenge when using the PCoD
approach [115], and the duration and intensity of sampling to detect changes in population
dynamics may not be feasible for individual projects. Booth et al. [120] identified metrics
that can indicate population-level changes more rapidly than the monitoring required to
measure demographic rates or trends in abundance.

In general, environmental and stressor differences, genetic distinctness of popula-
tions, and/or differences in food resources should be considered when using data from
other locations [202,203]. The age, sex, physical condition, and experience of individuals
may affect their physiology and behavior in response to devices, requiring larger sample
sizes [213–215]. The effects of individual-level variability on population responses, de-
tection probabilities, and the difficulty in estimating age and sex while observing species
should be also considered when transferring data or models between sites [216].

4.4. Validation and Feedback between Models and Monitoring

A small proportion of studies in this review, mostly physical models, reported model
validation. Studies employed both qualitative (visual) comparisons [49,118,134] and sta-
tistical comparisons with empirical data [48,60,86]. In some reviewed studies, results
were compared with results from previously validated or more computationally intensive
models [47,48,50,87,132]. Visual or otherwise unquantified assessments have been used in
oceanographic modeling, but quantitative validation provides objective results, enables
model comparison, and allows model accuracy to be tracked when new information is
incorporated [25,26,28,30]. Validation of models at one location or for one purpose does
not guarantee model accuracy for a new location or application [161].

The lack of data from operating devices, particularly arrays, has been an obstacle
for calibrating and validating most stressor-receptor interaction models. In such cases,
only baseline (without device) models may be validated [49,52]. Models based on abstract
or simplified environments cannot be calibrated or validated with empirical data except
perhaps in laboratory settings—an inherent limitation of many research-oriented ME
modeling studies. These studies can be used to develop model frameworks, identify
data sensitivities, and focus further modeling, but do not by themselves demonstrate the
effectiveness or accuracy of the models for environmental assessment.

The information needed for model validation is often the same as that needed for
model parameterization, calibration, and initial conditions, e.g., currents and water proper-
ties for oceanographic models or species distribution for changes in habitat, displacement,
or response to noise/EMFs. Exceptions include physical models of noise and EMFs, many
of which do not use measured sound levels or EMFs as inputs but do require them for
validating outputs. Species distribution studies have often used all the available obser-
vation data to parameterize a model and thus could not validate it with independent
data [152,217]. In such cases, cross-validation methods can be used to estimate model accu-
racy using subsets of the data [164,217,218]. Techniques are also available for validating
spatially explicit predictions and observations [164,197].

Discrepancies between model outputs and observations result from a combination of
model and observation errors [25,28,30,219]. Monitoring programs that estimate observation
errors are important for distinguishing whether discrepancies between model data and
observations arise from input or validation data or errors within the model. Accurate input
data and model validation are especially important for oceanographic modeling that provides
input for other models because the error will propagate from one model to the next [28,161].
Additionally, a biological model that includes only one stressor-receptor interaction may
appear to have errors relative to observations because the effects of other stressors on the
species are not included. Coordinated models and monitoring of the cumulative effects of
multiple stressors can help determine model accuracy and sources of error.
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Sensitivity analyses identify parameters or model mechanisms that have the great-
est effect on model outcomes but were only included in a small number of reviewed
models [52,94,112,118,178,182]. Quantifying uncertainties helps determine the amount,
resolution, and quality of data needed from monitoring and research. The value of addi-
tional information may differ by location based on local hydrodynamics, bathymetry, prey
and competitor species, and so forth, so it is beneficial to conduct a value of information
assessment for each project.

5. Conclusions

Modeling capabilities vary broadly across the six ME stressor-receptor interactions
in this review, and there is ample room for model improvement for all. For the physical
models, the primary needs are the inclusion of realistic spatial complexity and refinement
and validation of models with operating devices. Biological models, particularly those
including behavioral responses to devices, need further model development and adaptation
to inform the research and monitoring necessary for fully functional models. The ability to
collect empirical data is much higher for physical than biological components of models and
is necessary to improve both. Most ME modeling studies have focused on single stressor-
receptor interactions but considering the modeling process holistically can streamline
monitoring requirements.

Feedbacks between monitoring and modeling are key for improving environmental
assessment for ME devices. Most published studies have modeled abstract systems that
cannot be compared with observational data or have been part of a planning process only,
without continued use during monitoring of operating devices. Exploratory modeling helps
with identifying monitoring needs and refining protocols. Quantitative model validation
using observational data remains rare, and for some stressor-receptor interactions may not
be possible until more extensive device deployment has occurred. Despite the inherent
challenges, validation is vital for improving model performance and increasing developers’
and regulators’ confidence in the models.

We reviewed modeling approaches useful for environmental assessment of the effects
of ME development with the intent of strengthening the relationship between modeling and
monitoring. While models may not be capable of fully predicting all environmental effects
of ME devices in the near term, particularly biological effects, the process of developing
and applying models is highly informative for synthesizing information and clarifying
research and monitoring needs. Many information gaps identified in this review may
be usefully addressed using multi-stressor approaches for research and device testing.
A comprehensive approach to stressor-receptor interaction research, monitoring, and
modeling can therefore advance the pace of ME development.
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Acronyms and Abbreviations

AC alternating current
CFD computation fluid dynamic
CHD coastal hydrodynamic
CRD collision risk model
DC direct current
EwE Ecopath with Ecosim
FVCOM finite volume community ocean model
GA(M)M generalized additive (mixed) model
GL(M)M generalized linear (mixed) model
IEA International Energy Agency
iPCoD interim population consequences of disturbance
EMF electromagnetic field
ERM encounter risk model
ETPM exposure time population model
FEM finite element model
GPS/GSM Global Positioning System/Global System for Mobile Communications
MaxEnt maximum entropy
ME marine energy
NPZD nutrient-phytoplankton-zooplankton-detritus
OES Ocean Energy Systems
OSW offshore wind
PCoD population consequences of disturbance
PE parabolic equation
PTS permanent threshold shift
RF random forest
TL transmission loss
TTS temporary threshold shift
SWAN simulating waves nearshore
WEC wave energy converter
WSE water surface elevation

Appendix A

Table A1. Summary of search terms used when locating modeling studies. Search queries consisted
of combinations of items in both columns.

Stressor Device

Hydrodynamic model, hydrogeomorphic
model, wave model, sediment model
Underwater noise model, underwater acoustic
model, marine noise model, marine acoustic
model, population consequences of
disturbance, population model
Collision risk model, encounter rate model,
collision model, avoidance, behavior, evasion
Biophysical model, agent-based model,
individual-based model, displacement,
migration, barrier effects, statistical models,
generalized linear models
Change in habitat, habitat change, benthic
habitat, pelagic habitat, species distribution,
habitat suitability, ecological niche, decision
tree, ensemble model, ecosystem model,
trophic model

Marine renewable energy, marine hydrokinetic
energy, ocean energy, offshore
renewable energy
Tidal turbine, wave energy converter, tidal kite,
tidal energy, wave energy, wake effect of
turbines, array
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Table A2. Summary of reviewed models that addressed marine energy devices. A “+” indicates the
coupling of models, if not already indicated by the model name. ME = marine energy, WEC = wave
energy converter.

Reference Stressor Receptor Device(s) Model Type Model Name

Abanades et al.,
2014

Oceanographic
systems Beach profile WEC Wave SWAN, Xbeach

Ahmed et al., 2017 Oceanographic
systems Nearfield, wake Tidal turbine Computational

fluid dynamics Code_Saturne

Ashall et al., 2016 Oceanographic
systems

Suspended
sediment Tidal turbine array Hydrodynamic +

wave Delft-3D-SWAN

Balitsky et al., 2019 Oceanographic
systems

Nearfield and
farfield wave
effects

WEC array Wave NEMOH +
MILDwave

Beels et al., 2010 Oceanographic
systems Wave heights WEC array Wave MILDwave

Bergillos et al.,
2018

Oceanographic
systems Beach profile WEC Hydrodynamic,

wave
Delft3D-Wave,
Xbeach-G

Chatzirodou et al.,
2019

Oceanographic
systems Offshore sandbank Tidal turbine array Hydrodynamic Delft3D

Churchfield et al.,
2013

Oceanographic
systems Wake propagation Tidal turbine array Computational

fluid dynamics OpenFOAM

Contardo et al.,
2018

Oceanographic
systems Wave height WEC Wave SNL-SWAN

de Dominicis et al.,
2017

Oceanographic
systems Hydrodynamics Tidal turbine array Coastal

Hydrodynamic FVCOM

Gallego et al., 2017 Oceanographic
systems

Hydrodynamics,
suspended
sediment, seabed

Tidal turbine
array/WEC Array

Hydrodynamic,
wave

MIKE3,
Delft3D-Flow,
MIKE21

Haverson et al.,
2018

Oceanographic
systems Seabed shear stress Tidal turbine array Hydrodynamic Telemac2D

Iglesias and
Carballo 2014

Oceanographic
systems Hydrodynamics WEC Array Wave SWAN

Jones et al., 2018 Oceanographic
systems

Seabed elevation,
near-bed-shear
stress

WEC array Hydrodynamic +
wave

Delft3D-FLOW-
SNL-SWAN

Kang et al., 2012 Oceanographic
systems Turbine wake Tidal turbine Computational

fluid dynamics N/A

Li et al., 2019 Oceanographic
systems Surface waves Tidal turbine Computational

fluid dynamics
Ansys Fluent,
FVCOM

Martin-Short et al.,
2015

Oceanographic
systems

Flow regime,
sediment transport Tidal turbine array Hydrodynamic Fluidity

O’Dea et al., 2018 Oceanographic
systems

Nearshore waves
and currents WEC array Wave SWAN

Robins et al., 2014 Oceanographic
systems

Sediment
dynamics

Tidal turbine
arrays

Hydrodynamic +
morphological,
wave

TELEMAC-2D-
SISYPHE,
SWAN

Salunkhe et al.,
2019

Oceanographic
systems Turbine wake Tidal turbine Computational

fluid dynamics
Ansys Fluent,
OpenFOAM

Sjökvist et al., 2017 Oceanographic
systems

Device buoy
response WEC Computational

fluid dynamics WAMIT, COMSOL

Sufian et al., 2017 Oceanographic
systems

Wake and wave
effects Tidal turbine Computation fluid

dynamics Ansys Fluent

Stratigaki et al.,
2019

Oceanographic
systems Wave field WEC Wave WAMIT +

MILDwave
Thiebot et al., 2016,
2020

Oceanographic
systems Wakes Tidal turbine Hydrodynamic Telemac-3D

Verao Fernandez
et al., 2019

Oceanographic
systems

Wake and wave
effects WEC Wave NEMOH +

MILDwave
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Table A2. Cont.

Reference Stressor Receptor Device(s) Model Type Model Name

Venugopal et al.,
2017

Oceanographic
systems Wave height WEC arrays Wave MIKE 21 SW,

WAMIT
Waldman et al.,
2017

Oceanographic
systems

Bed stress, current
speed

Tidal turbine
arrays Hydrodynamic MIKE 3, Delft3D

Xu et al., 2019 Oceanographic
systems

Nearfield, device
effects WEC Computation fluid

dynamics OpenFOAM

Yang et al., 2013 Oceanographic
systems

Water velocity,
volume flux,
flushing time

Tidal turbine array Hydrodynamic FVCOM

Hafla et al., 2018 Noise N/A Generic ME array
(3)

Velocity-pressure
wave propagation Paracousti

Ikpekha et al., 2014 Noise Harbor seal Wave energy
converter

Finite element
method

COMSOL
Multiphysics

Lloyd et al., 2011 Noise Atlantic cod Tidal turbine array
(3) Fast field SCOOTER in

AcTUP
Lloyd et al., 2014 Noise Nearfield/source Tidal turbine Acoustic analogy OpenFOAM
Pine et al., 2014 Noise N/A Tidal turbines (1–2) Transmission loss N/A

Pine et al., 2019 Noise Harbor porpoise,
harbor seal

Tidal turbine, tidal
kite

Parabolic equation,
Gaussian beam
trace, listening
space reduction

RAMGeo, Bellhop

Robertson et al.,
2018 Noise Harbor porpoise,

harbor seal Tidal turbine Transmission loss N/A

Adams et al., 2014 Changes in habitat Generic species Generic ME arrays Biophysical model
of larval dispersal N/A

Alexander et al.,
2016 Changes in habitat 41 functional

groups Generic ME arrays Spatial ecosystem
model

Ecopath with
Ecosim and
Ecospace

Baker et al., 2020 Changes in habitat 14 species Tidal barrage Hydrodynamic,
maximum entropy Tethys, MaxEnt

du Feu et al., 2019 Changes in habitat Barnacle, crab Tidal turbine
arrays

Hydrodynamic,
maximum entropy

OpenTidalFarm,
MaxEnt

Lieber et al., 2019 Changes in habitat Terns Tidal turbine General-additive
mixed model

Linder et al., 2017;
Linder & Horne
2018

Changes in habitat Nekton Tidal turbine

Generalized
regressions,
time series,
nonparametric
models

linear, GLS, GLM,
GLMM, GAM,
GAMM
SSM, Reg-ARMA,
Reg-ARMA-
GARCH
RF, SVR

Schuchert et al.,
2018 Changes in habitat Phytoplankton,

zooplankton Tidal turbine array

Coupled 2D
hydrodynamic
biogeochemical
model

MIKE 21 FM

van der Molen
et al., 2016 Changes in habitat 18 functional

groups Tidal turbine array

3D
hydrodynamics-
biogeochemistry
model

GETM-
ERSEMBFM

Band 2016 Collision
Marine mammals,
fish, diving
seabirds

Tidal turbine

Collision risk
model, encounter
rate model,
exposure time
population model

N/A

Bevelhimer et al.,
2016 Collision

Shortnose
sturgeon, Atlantic
sturgeon

Tidal turbine array Collision risk
model

KFIM (KHPS-Fish
interaction model)
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Table A2. Cont.

Reference Stressor Receptor Device(s) Model Type Model Name

Copping and Grear
2018 Collision

Killer whale,
harbor seal, harbor
porpoise

Tidal turbine array Collision risk
model N/A

Grant et al., 2014 Collision Bird Tidal turbine Exposure time
population model N/A

Hammar et al.,
2015 Collision Fish Tidal turbine Collision risk

model N/A

Horne et al., 2021 Collision Seal Tidal kite
Simulation-based
approach collision
risk model

N/A

Joy et al., 2018 Collision Harbor seal Tidal turbine Encounter rate
model N/A

Rossington and
Benson 2020 Collision Silver eel Tidal turbine

Agent-based
model and
collision risk
model

N/A

Schmitt et al., 2017 Collision Seal Tidal kite 4D collision risk
model N/A

Thompson et al.,
2016; Wood et al.,
2016

Collision Harbor seal Tidal turbine Collision risk
model N/A

Wilson et al., 2007 Collision Herring, harbor
porpoise Tidal turbine Encounter rate

model N/A

Xodus Group 2016 Collision Atlantic salmon Tidal turbine array Collision risk
model N/A

Grippo et al., 2017 Displacement Fish Tidal turbine Biophysical model N/A
Croft et al., 2013;
Lake et al., 2015;
Lake et al., 2017;
Lake 2017

Displacement Harbor porpoise Tidal turbine Agent-based
model N/A

Waggit et al., 2016 Displacement Seabirds Tidal turbine Generalized linear
mixed models N/A

Notes
1 Available online: https://www.ocean-energy-systems.org/ocean-energy/what-is-ocean-energy/ (accessed on 24 November

2021).
2 Available online: https://www.energy.gov/eere/water/marine-and-hydrokinetic-energy-basics (accessed on 24 November

2021).
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