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Abstract

1. Many countries are developing offshore wind farms to provide renewable energy,
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yet such developments can harm biodiversity. Seabirds are a highly threatened
group of birds and can be impacted by wind farms through lethal collisions and
via sub-lethal displacement effects. However, we do not have a comprehensive
understanding of the impacts of offshore wind farms on seabird populations,

particularly outside of the breeding season.

. We developed an individual-based model to predict the non-breeding season

impacts of offshore wind farms on seabirds. We used long-term tracking data
obtained from geolocation-immersion loggers to estimate population-level
distributions and activity budgets. We simulated individual behaviour, movement,
wind farm interactions (collision and displacement) and any resulting lethal or

sub-lethal effects.

. We demonstrated our model by assessing the impact of 10 simulated offshore

wind farms on two populations that breed in Norway: common guillemots Uria
aalge (Sklinna) and black-legged kittiwakes Rissa tridactyla (Alesund). We quantified
collision risk in kittiwakes and sub-lethal displacement effects in guillemots and
converted these effects into a change in survival or end of season body mass as a

proxy for condition.

. We predicted that 49.6% of guillemots breeding at Sklinna would experience

displacement effects during the non-breeding season. As the energetic impact of
displacement is relatively unknown, we modelled a range of possible displacement
costs and present several impact scenarios, with adult mortality levels ranging
from 0% to 5.32% and end of season body masses of 97.12%-99.84% compared
to those resulting from an unimpacted scenario. Despite 98.9% of kittiwakes
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of kittiwakes.
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1 | INTRODUCTION

Many countries are transitioning to alternative energy technologies
to reduce carbon emissions and tackle the climate crisis (International
Energy Agency, 2021). Offshore wind farms (OWFs) are a useful
source of renewable energy for coastal countries, providing reliable
energy without taking up land space (Kaldellis & Kapsali, 2013).
However, OWFs can have negative impacts on biodiversity
through habitat degradation and fragmentation, and by causing
disturbance and direct harm to wildlife (Gasparatos et al., 2017).
As technology advances, OWF development is expanding further
offshore and turbine structures are becoming larger and more
powerful (Enevoldsen & Xydis, 2019), yet we do not know how
this development will impact biodiversity and bioabundance. In
addition, the oceans are already heavily industrialised through
activities such as fishing, shipping and fuel and mineral extraction
(Cinner et al., 2020; Venegas-Li et al., 2019), thus renewable
energy development presents an additional threat to biodiversity.
Repeated interaction with marine threats can result in cumulative
effects, which are difficult to appropriately assess using traditional
impact assessments (Maxwell et al., 2013). Given the need for
rapid development, it is crucial to gain a holistic understanding
of how these developments will impact marine biodiversity and
bioabundance.

Most impact assessments focus on spatial overlap between
animals and threats (e.g. Goodale & Milman, 2019). However,
overlap analyses do not incorporate the cumulative sub-lethal ef-
fects that individuals experience due to interactions with multiple
threats or repeated exposure to a single threat. Sub-lethal effects
include a reduction in body condition, which can impact survival
likelihood or future breeding success and drive population change
(Searle et al., 2018). Individual-based models (IBMs) are a useful
tool for evaluating cumulative effects of anthropogenic change on
individuals, which we can subsequently scale up to the population
level. IBMs enable us to create a modelled world where simulated

flying through at least one wind farm footprint, we only predicted collisions in
0.055% of the population; this low mortality was primarily driven by low overlap

between the modelled height of the turbine rotors and the probable flight height

5. Practical implication: Our model provides a tool that can be used to assess
the non-breeding season impacts of OWFs on seabird populations, improving
sustainability when developing renewable energy infrastructure. We highlight
several key limitations as areas of research that are required to reduce uncertainty
when predicting impacts. Our model is reproducible and adaptable for use on

other species or for other marine threats.

agent-based model, black-legged kittiwake, collision, common guillemot, displacement,
renewable energy, vulnerability

individuals move and behave in ways approximating real-life indi-
viduals (Vincenot, 2018). When we change the environment of the
modelled world, we can observe how the behaviour of simulated
individuals changes and model the resulting impacts on body con-
dition and mortality rates (DeAngelis & Mooij, 2005). IBMs have
been used to predict the impacts of wind farms on a variety of taxa,
including bats (Ferreira et al., 2015), marine mammals (Gallagher
et al., 2021) and raptors (Eichhorn et al., 2012). IBMs also enable us
to assess the cumulative effects of multiple threats and determine
the timing of threat interaction, which is valuable when considering
mitigation efforts.

In seabirds, OWFs can result in direct mortality, via collision
with rotor blades or through the sub-lethal effects of displace-
ment. Displacement effects can result in behavioural and en-
ergetic changes, including reduced access to foraging habitats
(Busch & Garthe, 2016); ‘barrier effects’, where seabirds have
to travel longer distances around a development area (Masden
et al., 2010); and disturbance, which can increase the frequency
of escape behaviours (Fliessbach et al., 2019). The sub-lethal
effects of displacement are difficult to quantify (Drewitt &
Langston, 2006) but can impact breeding success and survival
(Lane et al., 2020; Searle et al., 2014). As many seabird species
are migratory and use different areas throughout the year (e.g.
Deakin et al., 2019; Fayet et al., 2017), individuals can encounter
several OWFs over their annual cycle, potentially leading to sub-
stantial cumulative effects. IBMs have been used to predict the
impacts of OWFs on breeding populations of seabirds (i.e. groups
of individuals of the same species that breed in the same location)
during the breeding season (e.g. Pollock, 2022; Searle et al., 2018;
Warwick-Evans et al., 2018), but we are in the early stages of
developing such models for the non-breeding season (although
see Duckworth, 2023; Soudijn et al., 2025). During the breeding
season, seabirds exhibit central-place foraging and are therefore
more constrained to remain near their breeding colony to retain

their nesting sites, incubate their eggs and provision and protect
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their chicks (Orians & Pearson, 1979). In addition, data (e.g. track-
ing or observational data) are more readily available during the
breeding season, when individuals are more easily accessible and
observable, and short-term higher-resolution tracking devices can
be deployed. During the non-breeding season, seabirds are less
constrained to remain near the breeding colony, and often travel
far from their breeding sites. Therefore, data tend to be lower res-
olution and/or are more difficult to link to breeding populations,
which makes it more challenging to relate the impact of human ac-
tivities to population-level change. However, seabirds that breed
in temperate and polar environments typically experience their
highest levels of mortality during the non-breeding season (Acker
et al., 2021; Harris et al., 2007) and adult mortality is a crucial
driver of changes to seabird population size (Layton-Matthews,
Reiertsen, et al., 2023). We therefore require a transparent and
replicable modelling framework that can be applied to assess im-
pacts of OWFs on seabirds during the non-breeding season.

We developed an IBM to predict the impacts of OWFs on sea-
birds during the non-breeding season. To assess the lethal and
sub-lethal impacts of OWFs on individual seabirds during the non-
breeding season, we simulated individual behaviour, movement
and OWF interactions (collision and displacement effects). Our
approach enables us to highlight key periods of OWF interaction
and impact, which may be useful for mitigation approaches. Our
model is parameterised using individual-based tracking data from
geolocation-immersion loggers (‘geolocators’). Although geolo-
cators have lower spatial resolution than for example, GPS log-
gers, they are useful for understanding broad-scale distribution
patterns during the non-breeding season (e.g. Strgm et al., 2021).
These loggers also record salt-water immersion data, which can be
used to estimate activity budgets and energy expenditure (Burke
& Montevecchi, 2018; Fayet et al., 2017), enabling us to predict
the sub-lethal effects of displacement on behaviour and ener-
getics. Here, we describe our IBM framework and how it can be
applied to assess the non-breeding season impacts of OWFs on
seabird populations with geolocator or similar datasets available.
We demonstrate our model by simulating the non-breeding sea-
son impacts of 10 hypothetical OWFs on two seabird populations
in Norway: common guillemots Uria aalge (‘guillemots’) breeding
at Sklinna (65.2°N, 10.99°E; Figure 1) and black-legged Kkitti-
wakes Rissa tridactyla (‘kittiwakes’) breeding in Alesund (62.4°N,
5.63°E). Guillemots are considered vulnerable to displacement ef-
fects but, due to their low flight height (Cook et al., 2012), they are
thought to have low vulnerability to collision (Furness et al., 2013).
Kittiwakes are generally considered more vulnerable to collision
than displacement effects (Furness et al., 2013), but have shown
weak levels of avoidance (i.e. potential displacement) during the
non-breeding season (Peschko et al., 2020). Therefore, although
kittiwakes may be susceptible to displacement during the non-
breeding season, we chose to demonstrate the flexibility of our
approach by focusing on collision in kittiwakes and displacement
effects in guillemots.
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FIGURE 1 The location of the breeding colonies for common
guillemots (Sklinna) and black-legged kittiwakes (Alesund) are
shown as orange circles next to illustrations of the relevant study
species. The footprints for the hypothetical OWFs are shown in
blue.

2 | MATERIALS AND METHODS

We developed a model to simulate seabird movement, behaviour and
energetics during the non-breeding season to predict the lethal and
sub-lethal impacts OWFs. The model has three submodel: (1) behav-
iour and movement; (2) displacement and energetics; and (3) collision.
A visual overview of the model is provided in Figure 2. The model was
run separately for each species. We ran 1000 movement simulations
for each population, with each of these ‘super-individuals’ (Scheffer
et al., 1995) representing 100 individuals, for which we simulated
OWEF impact (resulting in 100,000 total simulated individuals for each
population). The Supporting Information contains a detailed model de-
scription, following the overview, design concepts and details (ODD)
protocol (Grimm et al., 2006, 2020). The model was built in R version
4.4.1 (R Core Team, 2024).

The model contains three types of entities: super-individuals,
which are made up of individual seabirds, environmental grid cells,
and OWFs. Seabirds are characterised by their species, breeding col-
ony location, dates of leaving the breeding colony and arriving back
the following year, grid cell location, behavioural budget, mean flight
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[Winitialisation ™ Submodels  Observations

Super-individuals (n = 1,000)

Species Submodel 2:
Breeding colony

Daily activity budget

Start and end dates

Location at the breeding colony

Each represents 100 individuals

Energetic consequences
Impacts mass & survival

Individuals

If running submodel 2:
Start and end mass
Starvation mass threshold

Submodel 1:
Behaviour & movement

Environment

Population density
Sea surface temperature
Offshore wind farms

Extent:
78°W-80°E & 35°N-85°N 6°E T7E 8E 9E 10°E 11°E
Resolution: 0.25° Probabilty

Displacement & energetics \ Impacts survival

— 2\ 2

Submodel 3: Interactions
Collision Submodel 2:
Days overlapping
= — Days displaced
/
Submodel 3:
Daily time in flight in wind
farm

Transits through a turbine

Impacts

Submodel 2 and 3:
Dead/alive
Date of death (if dead)

Submodel 2:
End mass (if alive)

Stop after one non-breeding season

FIGURE 2 Model visualisation using the vODD format (Szangolies et al., 2024). The model's purpose is to predict the impacts of offshore
wind farms on seabird populations during the non-breeding season. During model initialisation, super-individuals (each representing

100 individuals) and individuals are initialised, and the landscape is generated. Time steps are 1day, during which each super-individual

is relocated and offshore wind farm interaction submodels run. The simulation ends after one non-breeding season when outputs are
generated. The simulations run in two scenarios: with and without offshore wind farms. Detailed submodel processes are visualised in the

Supporting Information. Turbine icons are from Freepik.

speed and for guillemots only, mean swim speed, mass and starvation
mass. The environment is constructed of 0.25° grid cells (200x 632
cells) covering the North Atlantic (Supporting Information), with
each grid cell characterised by modelled seabird population density
and sea surface temperature (SST). These environmental data are
updated daily. OWFs are spatial polygons characterised by area cov-
ered (km?), number of turbines, energy output of each turbine (MW),
number of blades on each turbine, turbine rotor radius (m), air gap
(distance from the sea to the rotor swept area; m), maximum rotor
blade width (m), rotation speed (rpm) and blade pitch (°).

Simulation time steps are 1day long and follow this order: (1) an ac-
tivity budget is assigned to each super-individual; (2) super-individuals
move and interact with OWFs; (3) for guillemots only, energy expendi-
ture is calculated and individual mass is updated, then, for all individuals
within each super-individual and for both species, mortality is assessed.

2.1 | Behaviour and movement submodel

We used a large database of seabird tracking data, collected as part
of the SEATRACK programme (Strgm et al., 2021), to parameterise

our behaviour and movement submodel. SEATRACK has been
coordinating wide-scale deployments of leg-mounted geolocators
on seabirds across the North-East Atlantic since 2014, with loggers
measuring light, salt-water immersion and temperature. Permits to
work at Sklinna and Alesund were obtained from the Local County
Governors, with permissions to handle birds and equip them with
loggers granted by the Environmental Agency and the Norwegian
Food Safety Authority (FOTS IDs: 6291, 8482, 15603, 23259).

2.1.1 | Parameterisation

The SEATRACK database has previously been used to calcu-
late monthly density maps for each of our study populations
(Fauchald et al., 2021). Briefly, the maps were created using raw
light data to derive locations, following the methods described in
Brathen et al. (2021). These locations were used to develop spe-
cies distribution models, which were combined with count data
to model monthly population density (mean density within each
0.25°x0.25° grid cell; Fauchald et al., 2021). A summary of the
predictor variables used in the species distribution models is
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contained in the Supporting Information but refer to Fauchald
et al. (2021) for the full details. We ran a linear interpolation on
these monthly population density maps to estimate daily density
per grid cell, using a moving window of 30days. Densities were
projected using North Pole Lambert azimuthal equal area Atlantic
(EPSG:3574).

We used raw salt-water immersion data to estimate time-in-
activity budgets for the population for each day of the non-breeding
season. These activity budgets were used to inform the time spent
in ‘travelling’ behaviours each day (kittiwakes: flight only; guillemots:
flight and active on water), and thereby the distance that could be
travelled in one time step. In guillemots, these budgets were also
used to inform daily energy expenditure (DEE). For guillemots, activ-
ity budgets were assigned following Buckingham et al. (2025). Each

10-min sampling period was allocated to the following:

e Active on water if the geolocator was 292% wet, which included
time foraging, pauses between foraging bouts and swimming and
preening behaviours. We ensured that there was at least 10 min-
utes of time active per day.

o Flight if the geolocator was completely dry for <30 min during the
day (Dunn et al., 2020).

e Resting on land if the geolocator was completely dry for >30 min-
utes during the day (Dunn et al., 2020) or for the entire night
(Sinclair et al., 2017).

e Resting on water if the geolocator was between 0% and 92% wet,
indicating that the geolocator-equipped leg was tucked into the
plumage while resting on the water. As we could only measure
this behaviour when one leg was tucked (the geolocator-equipped
one), we accounted for this by subsequently multiplying the time
spent in this behaviour by 1.8 (Buckingham et al., 2025) and re-
duced time active accordingly.

For kittiwakes, activity budgets were allocated following McKnight

etal. (2011):

o Flight if the geolocator was completely dry.

e Resting on water if the geolocator was 297.5% wet.

e Foraging if the geolocator was between 0 and 97.5% wet, as kitti-
wakes tend to forage by a flighted search followed by a drop into
water, leading to a mixed immersion level.

For each population, we extracted the daily mean and 95% confidence

interval (Cl) for time spent in each behaviour.

2.1.2 | Simulation

We assigned each super-individual a date for leaving and arriving
back at the breeding colony by sampling a range of fledging dates
(guillemots: 18 July +10days; kittiwakes: 28 July +16days) and lay
dates (guillemots: 24 May +10days; kittiwakes: 20 May +16days)
(Supporting Information). Super-individuals were also assigned a daily
activity budget by sampling values of each relevant behaviour from
within their 95% Cl for that day, with the remaining time making up the

50f15
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final behaviour. Using the simulated activity budgets, we determined
the maximum distance that each super-individual could have travelled
during that day based on their mean flight speed (guillemot: 16.6 ms%,
Elliott et al., 2014 kittiwake: 13.41 ms™%, Davies et al., 2024) and swim
speed (guillemot: 1.15ms ™%, Merkel & Strgm, 2023) or foraging speed
(kittiwake: 6.07 ms™, Cook et al., 2023).

Subsequently, we assigned each super-individual a daily lo-
cation, based on the daily density per grid cell and the maximum
distance they could travel each day. To constrain movements to
areas of predictable consistent use, avoid super-individuals getting
‘stuck’ in less-frequented outlier areas, and following a sensitivity
analysis, we constrained the daily densities to a proportion of the
total range (80% for guillemots and 90% for kittiwakes; that is, the
area in which 80% and 90% of the population of guillemots and kit-
tiwakes respectively can be found; Supporting Information). On the
first day of the non-breeding season, we assigned the location of
each super-individual to the grid cell of the daily densities that the
breeding colony was located in. We then drew a buffer around the
first location, equal to the maximum distance the super-individual
could have travelled in that day. We subsequently used the ‘mask’
function in the ‘terra’ package in R (Hijmans et al., 2022) to extract
the gridded daily densities that were within the maximum possible
distance travelled. We then converted the gridded daily densities to
probability of occurrence for each grid cell within this maximum dis-
tance and used these probabilities to assign the super-individuals to
the central point of a new grid cell. If a super-individual got ‘stuck’ in
an area with no grid cells within the maximum distance for that day,
we assigned it to the nearest grid cell. We repeated this process for
each day of the non-breeding season, assigning a new grid cell and
activity budget each day.

2.2 | Displacement effects submodel
2.21 | OWEF interaction

We assessed overlap between each guillemot super-individual's
location with seasonal displacement categories (Table 1; Peschko
et al.,, 2020, 2024). For each day that a location overlapped with
an area where displacement was possible (displacement zone), we
selected a displacement probability from within the confidence in-
terval for the relevant displacement category, assuming a uniform
distribution. As there was a significant area where displacement
effects could occur in guillemots, we did not account for barrier
effects (i.e. displacement along the movement path) within the
guillemot model. If displacement occurred, we relocated the super-
individual to another location within the maximum possible distance
travelled for that day, using the probabilities of the grid cells within
this distance, but outside all displacement zones. If all grid cells that
were within the maximum distance travelled were within an OWF
displacement zone, we relocated the super-individual to the nearest
grid cell that was outside all displacement zones. We assigned ‘dis-
placement = true’ for that day.
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Probability of displacement

TABLE 1 Probability of displacement at
varying distances from an OWF footprint

Distance from OWF
Season Dates boundary (km) Mean
Autumn 16 July-30 <1 0.91
September <5 08
<10 0.76
<19.5° 0.79
Winter 1 October-29 <1 0.67
February <5 0.54
<10 0.5
<16.5° 0.51
Spring 1 March®-6 May <3 0.63
<9 0.49

95% confidence boundary.
interval

Lower Upper
0.84 0.94
0.74 0.84
0.71 0.81
0.74 0.83
0.53 0.77
0.45 0.62
0.41 0.57
0.42 0.58
0.47 0.74
0.33¢ 0.60°

Note: Spring probabilities were extracted from Peschko et al. (2020) and autumn and winter were
extracted from Peschko et al. (2024). The smallest distances indicate the distance covered from the

OWEF boundary but also include the OWF footprint itself.

*The start of spring is 21 February in Peschko et al. (2020), but as this overlapped with the winter
season from Peschko et al. (2024), we have used the dates for autumn and winter from the most

recent publication.

bThese distances were provided as a range of 18-21km (autumn) and 15-18 km (winter) in Peschko

et al. (2024). Here, we have extracted the mean of this range.

°As there was no uncertainty provided for displacement for spring <9 km, we used the range of
error from the <3km zone to inform this range, resulting in a confidence interval of 0.33-0.60.

2.2.2 | Energetics

Energetics were modelled using the daily activity budgets assigned to
each super-individual and SST. We assigned a value of SST for each
guillemot super-individual's daily location to inform DEE. Values were
randomly selected from the 95% Cl of SST during the period of data
collection (2006-2021) for the closest value of satellite-derived SST
(0.25° resolution, Reynolds et al., 2007). For each individual guillemot
within each super-individual, we assigned a mass for the first and last
days of the non-breeding season. We used these masses to model an
unimpacted mass change throughout the non-breeding season, which
we could then compare with disturbance-impacted masses. A linear
model of mass change during the breeding season was used to calculate
the median and 95% confidence intervals (Cls) for the start and end of
the non-breeding season (Supporting Information). We assigned each
individual guillemot a mass for the start (i.e. at chick fledging; Massy)
and end of the non-breeding season (i.e. at egg laying; Mass ) by
sampling from a multivariate normal distribution centred around the
median masses at fledging and laying and with a correlation between
the two of 0.9. In doing this, we assumed that in an unimpacted
scenario, the individual would return to the breeding colony with the
mass it had during egg-laying the previous year. Finally, we calculated
DEE (kJ) for each individual guillemot using the following equations,
which were developed by Elliott and Gaston (2014) and are widely
used for these types of datasets. Here, we used an updated version
based on Patterson et al. (2022), which corrected an error in the
original equation, and Buckingham et al. (2025), based on validation

using time depth recorders and which also incorporated a temperature
constraint to ensure that the cost of resting at sea never falls beneath
the cost of resting at the nest (i.e. the basal metabolic rate):

(a) when the daily mean SST <14°C

DEE =508 X Trjigne +(118 = 2.75 X SST) X Tactve + 33X Trestiat nest
+ (72 —2.75x% SST) X TRest:at sea

(b) when the daily mean SST >14°C
DEE =508 X Tgjgne + (118 = 275X SST) X Tpiye + 33

X (TRest:at nest + TRest:at sea)

Here, the value of 14°C represents the lower critical temperature;
when the SST is below this temperature, individuals must expend en-

ergy on thermoregulation.

2.2.3 | Mass

To calculate mass (g) on any given day, we used the following equation
adapted from Green et al. (2007, 2009) and further informed by
Dunn et al. (2022):

Tactive Day n X FSXEF X AE-DEEp,, , a

Massp,y i1 =Massp,, , + BT

x (Mass; —Massp,, )

where T, =time spent active (min); FS=foraging success (gmin™);

Active
EF =energetic density of food (ng'l); AE =assimilation efficiency
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(%; DEE=daily energy expenditure [kJ]; ET=energetic density of
body tissue [kJg™!]). We added a pull (a) of 0.012+0.003 towards
the mass during egg laying (Mass ), to ensure that daily mass change
was within the expected range and that mass did not become im-
possibly large or small within the unimpacted scenario due to un-
certainty within the other variables in this equation (Supporting
Information). This approach was similar to Dunn et al's (2022)
method, which applied a constraint to the minimum and maximum
masses that individuals could reach; however, as our main aim was
to create a reproducible and simple model of non-breeding season
mass, where individuals could also experience sub-lethal effects that
resulted in mortality, we could not limit mass in the same way. In
addition, the incorporation of this parameter allowed individuals to
compensate for lost foraging time following displacement, enabling
them to regain body mass lost resulting from displacement effects
that occurred earlier in the season.

As there is limited information on guillemot diet during the non-
breeding season, we followed Dunn et al. (2022) and assumed their
main prey source was lesser sandeels Ammodytes marinus, which
is a reasonable assumption for this study species, season, and re-
gion. We therefore used the energetic density of lesser sandeels
(5.8+0.5kJg™!, Wanless et al., 2005), the assimilation efficiency of
guillemots (77.52 + 1.60%, Hilton et al., 2000), and assumed that all
tissue compositional changes affected fat, thus assigning the ener-
getic density of tissue as 39.3kJ g'l; allasin Dunn et al. (2022). As we
had no information on foraging success, we first calculated a daily
value of FS assuming that energy intake and expenditure balanced
between consecutive days by using the mean values for EF and AE
in the following equation:

DEEp,, »
TActive Day n x EF x AE

FSDay n=

Subsequently, when calculating daily mass, we accounted for un-
certainty by sampling values of EF and AE from their error ranges
and assuming a uniform distribution. To account for uncertainty
within ET, we assigned it a gamma prior distribution with a mean
of 39.3 and a standard deviation of 0.001, similar to the process in
Dunn et al. (2022). This process resulted in a mean daily mass change
of +2.50g (SD=1.56g) within the unimpacted scenario, which was
comparable to mass change during the breeding season (-2.5gday™*
during incubation; -1.5gday ™ during brooding, Harris et al., 2000).

2.2.4 | Displacement cost and mortality

There is limited understanding of the mechanism and severity
of displacement effects from OWTFs in guillemots, particularly
during the non-breeding season, yet it is generally considered
that guillemots are primarily impacted via habitat loss, resulting in
reduced food intake (Dierschke et al., 2016). Therefore, for each day
that displacement occurred, we represented a displacement cost
(DC) of reduced food intake by applying a proportionate reduction
to foraging success for that day. To account for the uncertainty
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surrounding displacement effects on guillemots, we created a range
of displacement impact scenarios where we reduced daily foraging
success by a range of DCs (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 and
1—i.e. foraging success=0) when displacement occurred.

To model guillemot mortality during the non-breeding season,
we first had to determine the mass at which survival was unlikely.
We did not have mass data for guillemots breeding at Sklinna that
had died from starvation, yet guillemots are known to vary in body
mass both by breeding population (Barrett et al., 2008) and through-
out the annual cycle (Harris et al., 2000). We therefore calculated
the proportion of breeding season body mass at which mortality was
likely, by comparing data from individuals known to have died from
starvation with breeding season masses from the region where they
likely bred. We used masses of 7 adult guillemots that died from star-
vation in the North Sea during January-March 2022 (mean=659g;
SD=>51g; Christensen-Dalsgaard et al., 2022). As these individuals
likely bred at colonies in east Scotland (Buckingham et al., 2022;
Christensen-Dalsgaard et al., 2022), we compared these masses to
the breeding masses of guillemots on the Isle of May, east Scotland
(mean=947g; range=775-1130g; Harris et al., 2000). We created
normal distributions for the starvation masses and the breeding
season masses using these values, and sampled 1000 masses from
each distribution to create a simulated population distribution. We
then divided the breeding season mass distribution by the starva-
tion mass distribution and extracted the 95% CI from this result to
estimate the proportion of its breeding season mass at which an
adult guillemot would likely die (95% ClI=0.556-0.876). We sampled
a value from this range for each individual and assumed that mor-
tality occurred if a guillemot's mass fell beneath this proportion of
its fledging mass (Massy). Using this approach, we found that when
we constrained food intake for multiple days in a row (i.e. simulat-
ing starvation), it took on average 7.4+1.3days for an individual
to die (Supporting Information), which was in line with predictions
from Clairbaux, Mathewson, et al. (2021; October-December:
8.4 +0.5days; January-February: 6.3+0.7 days).

At the end of the simulations, we extracted the number of indi-
viduals displaced per day. We calculated the difference in mass be-
tween each displacement scenario and the unimpacted scenario for
each simulation each day and, where mortality occurred, extracted

the date of death for each scenario.

2.3 | Collision submodel

As time spent in flight within the OWF footprint was an impor-
tant metric for quantifying impact in kittiwakes, we extracted the
grid cells that super-individuals moved through between point lo-
cations, resulting in a ‘movement path’. We assumed that super-
individuals travelled in a straight line between the points, and that
any tortuosity took place within the grid cells along the move-
ment path, as we did not have information on fine-scale move-
ments between grid cells. Each day, for each movement path that
crossed an OWF, we sampled a value of the number of minutes
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spent in flight within any OWF footprint for each individual kit-
tiwake within each super-individual. This value was sampled from
a binomial distribution around the total number of minutes spent
in flight that day and the proportion of the day's movement path
that was within an OWF.

To inform likelihood of interacting with a turbine, we calculated
the proportionate turbine coverage of each OWF footprint using the

following equation:

2r x AD x nT

Turbine coverage =
& Areap

where 2r was twice the rotor radius (km), AD was the avoidance dis-
tance (km), nT was the number of turbines and Area was the total
area of the OWF footprint (km?). The avoidance distance was de-
fined as the distance at which an individual must detect the turbine
to avoid collision, estimated to be within 10s of collision (Martin
& Banks, 2023). Therefore, based on flight speeds from Davies
et al. (2024; 95% Cl: 3.75ms %, 35.76ms™Y), we sampled a value of
avoidance distance from the range: 0.0375-0.358 km. This value in-
formed the likelihood of a ‘transit’, that is, overlap in vertical space
between an individual and a wind turbine. One transit could occur
for each minute spent in flight within an OWF footprint for each
individual kittiwake. If a transit occurred, we selected a probability
of collision for a single transit (i.e. ‘pcoll’ in the Band model) from a
range of values, simulated using code extracted from the stochLAB
R package (Caneco et al., 2022) to run the stochastic Collision Risk
Model (sCRM) 1000 times (Band, 2012; Masden, 2015; McGregor
et al,, 2018). We used the standard values contained within the
sCRM for flight height distribution (which are modelled flight
heights based on observed data; Johnston et al., 2014; Supporting
Information) and kittiwake avoidance rates and gave an equal prob-
ability of upwind and downwind approaches. If the kittiwake col-
lided, we assumed mortality occurred. If there was no collision, we
repeated this process for each day of the non-breeding season, as-
signing a new grid cell each day.

At the end of the simulations, we extracted the time spent in
flight within an OWF footprint per day, the number of transits and
whether lethal collision occurred for each individual.

2.4 | Offshore wind farms

We demonstrate our model by assessing the impacts of 10
hypothetical OWFs distributed in Norwegian waters (Figure 1). We
used the turbine parameters in Table 2, which were taken from a
proposed development within our study area (Layton-Matthews,
Buckingham, et al., 2023).

3 | RESULTS

Our model predicted that 53.8% of the guillemot population
overlapped with an OWF displacement zone at least once during

TABLE 2 The following turbine parameters are those

expected to be used within our region, based on the plans for a
proposed development within our study area (Layton-Matthews,
Buckingham, et al., 2023) and discussions with developers. These
were used in the stochastic collision risk model. For a description of
these terms, see the Supporting Information.

Parameter Value
Number of turbines 50
Output of each turbine (MW) 20
Number of blades on each turbine 3
Turbine rotor radius (km) 0.135
Airgap (m) 23-24
Maximum rotor blade width (m) 7.5
Rotation speed (rpm) 6.6
Blade pitch (°) 5.8

the non-breeding season, resulting in displacement effects for
49.6% of the population (based on displacement probabilities
inferred from Peschko et al., 2020, 2024; Figure 3). The number of
displacement events per super-individual ranged from O to 17 across
the season. The number of super-individuals displaced per day
varied throughout the year, with peaks during August-September
and November-March. We estimated a lower and upper death
threshold of 0.556 and 0.876, from which we sampled a value for
each individual and multiplied by Mass,. Mortality rates and end of
non-breeding season mass varied with displacement cost (DC), with
population-level mortality rates ranging from 0% to 5.32% and end
of non-breeding season mass ranging from 97.12% to 99.84% of the
unimpacted scenario (Table 3). The model is therefore sensitive to
this parameter; yet it is challenging to validate these results because
in real populations empirical evidence is lacking for determining
the rates and effects of displacement from OWFs and subsequent
mortality. We therefore plotted daily mass as a proportion of Mass,
for three DCs, representing lower (0.1), medium (0.5) and higher (1)
displacement costs (Figure 4).

Almost all kittiwakes (98.9%) spent at least 1 min in flight within
an OWF footprint during the non-breeding season. Daily time spent
in flight within a wind farm footprint varied significantly across the
population, but was fairly low on average (Figure 5). Most individ-
uals (81.84%) made at least one transit through a turbine, and the
number of transits per individual varied from 1 to 39 across the
simulation period (Figure 5). However, the stochastic collision risk
model predicted a very low risk of collision from a single transit
(mean=0.000198; SD=0.000482), thus we predicted that only
0.055% of the population would collide with an OWF turbine.

4 | DISCUSSION

Extensive OWF development is expected throughout the north-east
Atlantic over the next 15years (GWEC, 2023). Previous IBMs that
have been developed to assess the non-breeding season impacts of
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FIGURE 3 Number of daily interactions with OWFs (overlaps
and displacements) per super-individual (n=1000) for adult
guillemots that breed at Sklinna.

TABLE 3 Mortality rates and end of non-breeding season mass
compared to the unimpacted scenario (% of 100,000 simulations)
for each modelled displacement costs (the proportionate reduction
of foraging success on any day that displacement occurred).

End mass

compared to

unimpacted

Deaths (% of scenario (%)

Displacement cost population) mean (SD)
1.0 5.32 97.12(6.82)
0.9 3.91 97.61 (5.92)
0.8 2.66 98.08 (4.94)
0.7 1.64 98.48 (3.97)
0.6 0.85 98.83(3.03)
0.5 0.35 99.11 (2.19)
0.4 0.08 99.33(1.49)
0.3 0 99.51 (1.03)
0.2 0 99.67 (0.68)
0.1 0 99.84 (0.34)

OWFs on seabirds have either incorporated individual-level ener-
getics, with no spatial component (Duckworth, 2023), or have been
parameterised using counts of seabirds at sea rather than data from
individuals of known breeding colonies (Soudijn et al., 2025). Here,
we have presented a spatial and energetic model that can predict
the cumulative effects of OWFs during the non-breeding season and
links these effects with breeding populations. This linkage is a crucial
step, as it provides the potential to combine changes in mortality
and body condition with demography data and predict the impact
on population trends over time (Layton-Matthews, Buckingham,
et al., 2023). The impacts of any additional developments will be
combined with the impact of OWFs that are already operational
(Masden et al., 2010), and of co-existing threats, such as fisheries
bycatch (Christensen-Dalsgaard et al., 2019), oil spills (O'Hanlon
et al., 2023), competition for prey with fisheries (Searle et al., 2023)
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or climate change (Reiertsen et al., 2021). Our model provides a
framework with the potential to incorporate the lethal and sub-
lethal effects of other threats, thereby providing a more realistic
analysis of the changes that further development may have on sea-
bird populations (Horswill et al., 2022). The approach we have devel-
oped could also be applied to compare options for planned OWFs,
for example to compare the impacts of various potential wind farm
locations or turbine parameters. Alternatively, the model could help
identify the areas where preventing future development would have
the most impact, and which may benefit from a protected status (e.g.
a marine protected area; MPA).

We predicted potentially significant impacts of displacement
effects on guillemots breeding at Sklinna. The energetic cost of
displacement is a key metric when predicting the effects of OWFs
on guillemots, yet the pathway and true value of this cost are
poorly known. Here, we assumed that displacement affected in-
dividuals via foraging success (Dierschke et al., 2016), rather than
through behavioural changes such as increased time in escape be-
haviours (i.e. flight or diving; Fliessbach et al., 2019) or reduced
time foraging or resting. The model could be readily adapted to
incorporate energetic impacts from behavioural changes, should
our understanding of displacement pathways improve, but here
we have accounted for the uncertainty within the energetic im-
pacts of displacement by presenting the potential impacts of a
range of displacement costs. Research into the energetic cost of
displacement is therefore urgently required to enable accurate cal-
culations of the impacts of displacement on guillemots and other
vulnerable seabird species (Soudijn et al., 2025), and our modelling
framework is designed to be adaptable as our knowledge on this
topic advances. Further research on this topic would also improve
our understanding of the impacts of displacement on individuals
that have not themselves been displaced but which experience
displacement effects indirectly, such as through an influx of dis-
placed individuals causing increased competition for food. This as-
pect is not currently included in our model but could be accounted
for if suitable information becomes available. Within our model,
we inferred displacement probability from studies of fixed-turbine
wind farms in the southern North Sea (Peschko et al., 2020, 2024);
however, most OWF developments in Norwegian waters are likely
to be floating (NVE, 2023). The impacts of floating OWFs are par-
ticularly poorly understood (Maxwell et al., 2022) and, as the tur-
bines used for floating OWFs are typically taller and more widely
spaced than for fixed OWFs, it is possible that the risk of displace-
ment from floating OWFs will be different to those estimated by
Peschko et al. (2020, 2024). Furthering our understanding of the
impacts of floating OWFs on seabirds (such as through pre- and
post-construction surveys) would therefore increase the reliability
of our model.

We used data from geolocators to estimate activity budgets and
energy expenditure in guillemots, which we then used to predict
OWEF interactions and displacement effects. Although these data
have relatively low spatial and temporal resolution, they provide a
reasonable comparison of activity budgets and energy expenditure
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FIGURE 4 Daily mass compared to the start of the non-breeding season (Mass) for individual guillemots (n=100,000). A selection of
displacement costs are plotted, representing lower (panel a), moderate (b) and higher (c) displacement costs. Light blue lines are daily mass
for each individual (ending at either death or the end of the non-breeding season), with the population-level mean unimpacted mass in dark
blue and the population-level mean impacted mass in orange. The grey box highlights the range within which mortality can occur.
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FIGURE 5 (a) Minutes spent in flight within a wind farm footprint per day (blue points) with the population-level mean in orange and (b)

total number of transits for each individual kittiwake (n=100,000).

between individuals and populations (e.g. Buckingham et al., 2023;
Dunn et al., 2020), and are the best source of data currently available
for our study species outside the breeding season. We then used ac-
tivity and energy expenditure to model mass change throughout the
non-breeding season. We were unable to validate our predictions with
measured values as there are limited mass data for healthy adult guil-
lemots of known breeding population at this time of year; however,
our predicted masses were within the expected range for our study
species and fit with measured masses of individuals from an unknown
breeding population within our study region (Harris et al., 2000) and
modelled masses using similar approaches (Dunn et al., 2022). Our
observed pattern of high rates of mass increase during the early
non-breeding season also fits with our expectation of mass change
during the winter, as auks such as guillemots tend to spend this period
feeding up while they complete their post-breeding moults (Harris &
Wanless, 1988). Additionally, the aim of this study was not to estimate
true mass values, but rather to investigate differences in predicted
mass between impacted and unimpacted individuals.

Although most simulated kittiwakes interacted with at least
one OWF, we predicted very few collisions, primarily driven by
a low vertical overlap between kittiwake flight height (Johnston
et al., 2014; Supporting Information) and the rotor height used in
this study; therefore, collision was unlikely even when multiple tur-
bine transits were made. The rotor height we used was informed
by discussions with OWF developers within our region, and is our
best estimate for development within Norwegian waters (Layton-
Matthews, Buckingham, et al., 2023). As collision risk for each transit
was derived directly through the sCRM (Band, 2012; Masden, 2015;
McGregor et al., 2018), we did not run a sensitivity analysis of the
impacts of rotor height on collision risk, but we highlight that de-
tailed plans (such as specific footprints and turbine parameters) are
required to accurately assess the impacts of development. We as-
sessed collision risk only during directed flight, rather than during
foraging activities, when kittiwakes undertake short flights in-
terspersed with dips into or rests on the water. However, as flight
heights are typically lower during foraging behaviour than during
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directed flight, collision vulnerability during foraging is significantly
lower (Davies et al., 2024); we therefore chose to model collision
risk during directed flight only. Additionally, we followed an estab-
lished method for allocating activity budgets in kittiwakes from
geolocation-immersion data (McKnight et al., 2011), which did not
distinguish between time in flight and resting on land. It is probable
that kittiwakes spend at least some time on land during the non-
breeding season, thus we have likely overestimated time in flight
within our model. However, as we have modelled very few turbine
collisions, we feel that this has had a negligible impact on our model
results. Additionally, it is outside the remit of this paper to review
methods of allocating activity budgets from geolocation-immersion
data, but as our modelling framework is adaptable, these inputs
could be modified easily as updated methods and data sources be-
come available. Similarly, seabird distributions are likely to change
due to climate change (Clairbaux, Cheung, et al., 2021) and, as OWFs
are expected to be operational for around 25 years, seabird distribu-
tions may not be consistent throughout the development's lifespan.
Nevertheless, as the model requires seabird density maps as envi-
ronmental input data, maps of predicted seabird distribution could
be incorporated to assess the longer-term impacts of OWFs on sea-

birds under different climate scenarios.

5 | CONCLUSIONS

We developed an individual-based model to assess the non-breeding
season impacts of marine threats on seabird populations, which we
applied to assess the cumulative impacts of 10 simulated OWFs.
The model is designed to be easily applied to other populations
and species with similar data, and the model could also be applied
to assess the effects of other marine threats. Overall, we believe
this model makes an important contribution as a useful tool for
gaining a better understanding of the non-breeding season impact
of additional human activity on threatened seabird populations.

AUTHOR CONTRIBUTIONS

Lila Buckingham, Signe Christensen-Dalsgaard, Per Fauchald,
Elizabeth A. Masden and Tone K. Reiertsen conceived the ideas;
Lila Buckingham, Signe Christensen-Dalsgaard, Per Fauchald,
Elizabeth A. Masden, Kate Layton-Matthews, Tone K. Reiertsen,
Kate R. Searle and Arnaud Tarroux designed the methodology;
Ingar S. Bringsvor, Signe Christensen-Dalsgaard, Nina Dehnhard and
Svein-Hakon Lorentsen collected the data; Lila Buckingham, Vegard
Sandgy Brathen, Per Fauchald, Kate Layton-Matthews, Elizabeth
A. Masden and Arnaud Tarroux processed and analysed the data;
Lila Buckingham led the writing of the manuscript and created all
visualisations. All authors contributed critically to the drafts and

gave final approval for publication.

ACKNOWLEDGEMENTS
This study is part of the MARCIS project, financed by the
Research Council of Norway (grant number 326985) and Equinor.

11015
BRITISH H . . .
Emwmw _Ecological Solutions and Evidence | 1roras

SOCIETY

Underlying data for this research were collected through the
SEAPOP programme (www.seapop.no/en), financed by the
Norwegian Ministry of Climate and Environment (via the Norwegian
Environment Agency), the Norwegian Ministry of Energy (via
Offshore Norge) and the Research Council of Norway (grant number
192141), as well as SEATRACK (www.seapop.no/en/seatrack), which
is funded by the Norwegian Ministry of Climate and Environment,
the Norwegian Ministry of Energy, the Norwegian Ministry of
Foreign Affairs, the Norwegian Environment Agency, the Norwegian
Coastal Administration and Offshore Norge and 16 energy
companies. We are grateful to members of the MARCIS project
group for discussions on methodology, particularly Emma Jane
Critchley, Charlotte E. Regan and Roel May. Thank you also to Ruth
E. Dunn and Jonathan A. Green for discussions on modelling mass
during the non-breeding season. We thank the Norwegian Coastal
Administration for facilitating extended stays on Sklinna through
rental agreements for the lighthouse station. Special thanks go to
the many field assistants who have helped with fieldwork on Sklinna.
Finally, we thank several anonymous reviewers, whose comments

and suggestions substantially improved the manuscript.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

PEER REVIEW

The peer review history for this article is available at https://www.
webofscience.com/api/gateway/wos/peer-review/10.1002/2688-
8319.70196.

DATA AVAILABILITY STATEMENT

Data are available from Zenodo (Buckingham et al., 2026a), and all
codes are available in the associated GitHub repository (Buckingham
et al., 2026b).

STATEMENT ON INCLUSION

The lead author and most of the authorship team were based in
Norway, where the data collection for this study was carried out.
Whenever possible, our research was discussed with local interested
parties to seek feedback on the questions to be tackled and the
approach to be considered. Whenever relevant, literature published
by scientists from the region was also cited, including relevant work
published in the local language. All authors were engaged early on

with the research and study design.

ORCID
Lila Buckingham
Elizabeth A. Masden

https://orcid.org/0000-0002-9846-2734
https://orcid.org/0000-0002-1995-3712
Kate Layton-Matthews "= https://orcid.org/0000-0001-5275-1218
Vegard Sandey Brdthen " https://orcid.org/0000-0002-7357-6727
Nina Dehnhard "= https://orcid.org/0000-0002-4182-2698
Svein-Hdkon Lorentsen " https://orcid.org/0000-0002-7867-0034
https://orcid.org/0000-0002-9579-2420
https://orcid.org/0000-0003-4624-9023

Tone K. Reiertsen
Kate R. Searle

9

a ‘T '9202 ‘6T

wouy

85U8D | SUOWILLOD BAIERID 3|qedl|dde ay) Aq peuseob 8 Sajolfe O ‘SN JO Sa|nJ Joj A%iq1T8UIIUO A8|IM UO (SUORIPUD-PLE-SWS}W00" A3 | 1M Aq 1|BUI|UO//SANY) SUORIPUOD PUe SWB L 84} 89S *[9202/T0/0E] U0 A%iqIT8UIIUO AB]IM ‘UOKSIAIQ SBMULION d1j10ed @Iniisu| [eLoWe A 3|eeg Aq 96T0L ‘6TE8-8892/200T OT/I0p/W00 A8 Im Ariq1jpul U0 'S UINOF


http://www.seapop.no/en
http://www.seapop.no/en/seatrack
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.70196
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.70196
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.70196
https://orcid.org/0000-0002-9846-2734
https://orcid.org/0000-0002-9846-2734
https://orcid.org/0000-0002-1995-3712
https://orcid.org/0000-0002-1995-3712
https://orcid.org/0000-0001-5275-1218
https://orcid.org/0000-0001-5275-1218
https://orcid.org/0000-0002-7357-6727
https://orcid.org/0000-0002-7357-6727
https://orcid.org/0000-0002-4182-2698
https://orcid.org/0000-0002-4182-2698
https://orcid.org/0000-0002-7867-0034
https://orcid.org/0000-0002-7867-0034
https://orcid.org/0000-0002-9579-2420
https://orcid.org/0000-0002-9579-2420
https://orcid.org/0000-0003-4624-9023
https://orcid.org/0000-0003-4624-9023

120f 15 BRITISH ¢ . . s
Eggg}ggm _Ecological Solutions and Evidence

Arnaud Tarroux "= https://orcid.org/0000-0001-8306-6694

Signe Christensen-Dalsgaard "= https://orcid.

org/0000-0003-1657-1919

REFERENCES

Acker, P., Daunt, F., Wanless, S., Burthe, S. J., Newell, M. A., Harris, M. P,,
Grist, H., Sturgeon, J., Swann, R. L., Gunn, C., Payo-Payo, A., & Reid,
J. M. (2021). Strong survival selection on seasonal migration ver-
sus residence induced by extreme climatic events. Journal of Animal
Ecology, 90, 796-808. https://doi.org/10.1111/1365-2656.13410

Band, B. (2012). Using a collision risk model to assess bird collision risks for
offshore windfarms. British Trust for Ornithology.

Barrett, R. T., Anker-Nilssen, T., Bakken, V., Strgm, H., Krasnov, Y., &
Aarvak, T. (2008). Biometrics as a determinant of the origins of
seabirds killed in oil spills and other incidents. Bird Conservation
International, 18, 229-241. https://doi.org/10.1017/5095927090
8000233

Brathen, V. S., Moe, B., Amélineau, F., Ekker, M., Fauchald, P., Helgason,
H. H., Johansen, M. K., Merkel, B., Tarroux, A., Astrém, J., & Strgm,
H. (2021). An automated procedure (v2.0) to obtain positions from
light-level geolocators. NINA Report 1893, Norwegian Institute for
Nature Research.

Buckingham, L., Bogdanova, M. I., Green, J. A., Dunn, R. E., Wanless, S.,
Bennett, S., Bevan, R. M., Call, A., Canham, M., Corse, C. J., Harris,
M. P, Heward, C. J., Jardine, D. C., Lennon, J., Parnaby, D., Redfern,
C. P. F, Scott, L., Swann, R. L., Ward, R. M,, ... Daunt, F. (2022).
Interspecific variation in non-breeding aggregation: A multi-colony
tracking study of two sympatric seabirds. Marine Ecology Progress
Series, 684, 181-197. https://doi.org/10.3354/meps13960

Buckingham, L., Daunt, F., Bogdanova, M. |, Furness, R. W,, Bennett, S.,
Duckworth, J., Dunn, R. E., Wanless, S., Harris, M. P., Jardine, D. C.,
Newell, M. A., Ward, R. M., Weston, E. D., & Green, J. A. (2023).
Energetic synchrony throughout the non-breeding season in com-
mon guillemots from four colonies. Journal of Avian Biology, 2023,
e03018. https://doi.org/10.1111/jav.03018

Buckingham, L., Daunt, F., Bogdanova, M. I., Furness, R. W., Bennett, S.,
Duckworth, J., Dunn, R. E., Wanless, S., Harris, M. P., Jardine, D. C.,
Newell, M. A., Weston, E. D., & Green, J. A. (2025). An improved
method to derive behavioural budgets and energetics from geolo-
cator data in common guillemots Uria aalge. Seabird, 37, 1-14.

Buckingham, L., Masden, E., Layton-Matthews, K., Bringsvor, I. S.,
Brathen, V. S., Dehnhard, N., Fauchald, P., Lorentsen, S.-H.,
Reiertsen, T. K., Searle, K., Tarroux, A., & Christensen-Dalsgaard,
S.(2026a). An individual-based model to quantify the non-breeding
season impact of wind farms on seabirds. Zenodo Dataset. https://
doi.org/10.5281/zeno0do0.17630133

Buckingham, L., Masden, E., Layton-Matthews, K., Bringsvor, I. S.,
Brathen, V. S., Dehnhard, N., Fauchald, P., Lorentsen, S.-H.,
Reiertsen, T. K., Searle, K., Tarroux, A., & Christensen-Dalsgaard, S.
(2026b). An individual-based model to quantify the non-breeding
season impact of wind farms on seabirds. GitHub Repository. https://
github.com/LilaBuckingham/seabird-nonbreeding-I1BM

Burke, C. M., & Montevecchi, W. A. (2018). Taking the bite out of winter:
Common murres (Uria aalge) push their dive limits to surmount en-
ergy constraints. Frontiers in Marine Science, 5, 63. https://doi.org/
10.3389/fmars.2018.00063

Busch, M., & Garthe, S. (2016). Approaching population thresholds in the
presence of uncertainty: Assessing displacement of seabirds from
offshore wind farms. Environmental Impact Assessment Review, 56,
31-42.

Caneco, B., Humphries, G., Cook, A., & Masden, E. (2022). Estimating
bird collisions at offshore windfarms with stochLAB (Technical report).
Marine Scotland.

BUCKINGHAM ET AL.

Christensen-Dalsgaard, S., Anker-Nilssen, T., Crawford, R., Bond, A,
Sigurdsson, G. M., Glemarec, G., Hansen, E. S., Kadin, M., Kindt-
Larsen, L., Mallory, M., Merkel, F. R., Petersen, A., Provencher, J., &
Baerum, K. M. (2019). What's the catch with lumpsuckers? A North
Atlantic study of seabird bycatch in lumpsucker gillnet fisheries.
Biological Conservation, 240, 108278. https://doi.org/10.1016/j.
biocon.2019.108278

Christensen-Dalsgaard, S., Langset, M., & Anker-Nilssen, T. (2022).
Massedgd av lomvi i Nordsjeomrddet vinteren 2021/22. Resultater fra
obduksjonen av lomvi samlet inn in Viken, Agder og Rogaland. NINA
Report 2146. Norwegian Institute for Nature Research.

Cinner, J. E., Zamborain-Mason, J., Gurney, G. G., Graham, N. A. J,
MacNeil, M. A., Hoey, A. S., Mora, C., Villéger, S., Maire, E.,
McClanahan, T. R., Maina, J. M., Kittinger, J. N., Hicks, C. C., D'agata,
S., Huchery, C., Barnes, M. L., Feary, D. A., Williams, I. D., Kulbicki,
M., ... Mouillot, D. (2020). Meeting fisheries, ecosystem function,
and biodiversity goals in a human-dominated world. Science, 368,
307-311. https://doi.org/10.1126/science.aax9412

Clairbaux, M., Cheung, W. W. L., Mathewson, P., Porter, W., Courbin, N.,
Fort, J., Strem, H., Moe, B., Fauchald, P., Descamps, S., Helgason,
H., Brathen, V. S., Merkel, B., Anker-Nilssen, T., Bringsvor, I. S.,
Chastel, O., Christensen-Dalsgaard, S., Danielsen, J., Daunt, F., ...
Grémillet, D. (2021). Meeting Paris agreement objectives will tem-
per seabird winter distribution shifts in the North Atlantic Ocean.
Global Change Biology, 27, 1457-1469.

Clairbaux, M., Mathewson, P., Porter, W., Fort, J., Strem, H., Moe, B.,
Fauchald, P., Descamps, S., Helgason, H. H., Brathen, V. S., Merkel,
B., Anker-Nilssen, T., Bringsvor, I. S., Chastel, O., Christensen-
Dalsgaard, S., Danielsen, J., Daunt, F., Dehnhard, N., Erikstad, K. E.,
... Grémillet, D. (2021). North Atlantic winter cyclones starve sea-
birds. Current Biology, 31, 3964-3971.e3.

Cook, A.S. C. P, Thaxter, C. B., Davies, J., Green, R. M. W., Wischnewski,
S., & Boersch-Supan, P. (2023). Understanding seabird behaviour
at sea part 2: Improved estimates of collision risk model parameters.
Scottish Government.

Cook, T. R., Hamann, M., Pichegru, L., Bonadonna, F., Grémillet, D., &
Ryan, P. G. (2012). GPS and time-depth loggers reveal underwa-
ter foraging plasticity in a flying diver, the cape cormorant. Marine
Biology, 159, 373-387.

Davies, J. G., Boersch-Supan, P. H., Clewley, G. D., Humphreys, E. M.,
O'Hanlon, N. J., Shamoun-Baranes, J., Thaxter, C. B., Weston, E., &
Cook, A.S. C. P. (2024). Influence of wind on kittiwake Rissa tridac-
tyla flight and offshore wind turbine collision risk. Marine Biology,
171, 191.

Deakin, Z., Hamer, K., Sherley, R. B., Bearhop, S., Bodey, T. W., Clark,
B., Grecian, W. J., Gummery, M., Lane, J., Morgan, G., Morgan, L.,
Phillips, R. A., Wakefield, E. D., & Votier, S. C. (2019). Sex differ-
ences in migration and demography of a wide-ranging seabird, the
northern gannet. Marine Ecology Progress Series, 622, 155-168.

DeAngelis, D. L., & Mooij, W. M. (2005). Individual-based modeling of
ecological and evolutionary processes. Annual Review of Ecology,
Evolution, and Systematics, 36, 147-168.

Dierschke, V., Furness, R. W., & Garthe, S. (2016). Seabirds and off-
shore wind farms in European waters: Avoidance and attraction.
Biological Conservation, 202, 59-68. https://doi.org/10.1016/j.bio-
con.2016.08.016

Drewitt, A. L., & Langston, R. H. W. (2006). Assessing the impacts of
wind farms on birds. Ibis, 148, 29-42. https://doi.org/10.1111/j.
1474-919X.2006.00516.x

Duckworth, J. A. (2023). Using behavioural and energetic insights to assess
the impacts of displacement from offshore wind farms on red-throated
divers (Gavia stellata) (PhD thesis). University of Liverpool.

Dunn, R. E., Green, J. A.,, Wanless, S., Harris, M. P., Newell, M. A.,
Bogdanova, M. |, Horswill, C., Daunt, F., & Matthiopoulos, J.
(2022). Modelling and mapping how common guillemots balance

9

a ‘T '9202 ‘6T

wouy

85U8D | SUOWILLOD BAIERID 3|qedl|dde ay) Aq peuseob 8 Sajolfe O ‘SN JO Sa|nJ Joj A%iq1T8UIIUO A8|IM UO (SUORIPUD-PLE-SWS}W00" A3 | 1M Aq 1|BUI|UO//SANY) SUORIPUOD PUe SWB L 84} 89S *[9202/T0/0E] U0 A%iqIT8UIIUO AB]IM ‘UOKSIAIQ SBMULION d1j10ed @Iniisu| [eLoWe A 3|eeg Aq 96T0L ‘6TE8-8892/200T OT/I0p/W00 A8 Im Ariq1jpul U0 'S UINOF


https://orcid.org/0000-0001-8306-6694
https://orcid.org/0000-0001-8306-6694
https://orcid.org/0000-0003-1657-1919
https://orcid.org/0000-0003-1657-1919
https://orcid.org/0000-0003-1657-1919
https://doi.org/10.1111/1365-2656.13410
https://doi.org/10.1017/S0959270908000233
https://doi.org/10.1017/S0959270908000233
https://doi.org/10.3354/meps13960
https://doi.org/10.1111/jav.03018
https://doi.org/10.5281/zenodo.17630133
https://doi.org/10.5281/zenodo.17630133
https://github.com/LilaBuckingham/seabird-nonbreeding-IBM
https://github.com/LilaBuckingham/seabird-nonbreeding-IBM
https://doi.org/10.3389/fmars.2018.00063
https://doi.org/10.3389/fmars.2018.00063
https://doi.org/10.1016/j.biocon.2019.108278
https://doi.org/10.1016/j.biocon.2019.108278
https://doi.org/10.1126/science.aax9412
https://doi.org/10.1016/j.biocon.2016.08.016
https://doi.org/10.1016/j.biocon.2016.08.016
https://doi.org/10.1111/j.1474-919X.2006.00516.x
https://doi.org/10.1111/j.1474-919X.2006.00516.x

BUCKINGHAM ET AL.

their energy budgets over a full annual cycle. Functional Ecology, 36,
1612-1626. https://doi.org/10.1111/1365-2435.14059

Dunn, R. E., Wanless, S., Daunt, F., Harris, M. P., & Green, J. A. (2020).
A year in the life of a North Atlantic seabird: Behavioural and en-
ergetic adjustments during the annual cycle. Scientific Reports, 10,
5993. https://doi.org/10.1038/s41598-020-62842-x

Eichhorn, M., Johst, K., Seppelt, R., & Drechsler, M. (2012). Model-based
estimation of collision risks of predatory birds with wind turbines.
Ecology and Society, 17(2), 12. https://doi.org/10.5751/ES-045%94
-170201

Elliott, K. H., Chivers, L. S., Bessey, L., Gaston, A. J., Hatch, S. A., Kato,
A., Osborne, O., Ropert-Coudert, Y., Speakman, J. R., & Hare, J. F.
(2014). Windscapes shape seabird instantaneous energy costs but
adult behavior buffers impact on offspring. Movement Ecology, 2,
17. https://doi.org/10.1186/s40462-014-0017-2

Elliott, K. H., & Gaston, A. J. (2014). Dive behaviour and daily energy ex-
penditure in thick-billed murres Uria lomvia after leaving the breed-
ing colony. Marine Ornithology, 42, 183-189.

Enevoldsen, P., & Xydis, G. (2019). Examining the trends of 35years
growth of key wind turbine components. Energy for Sustainable
Development, 50, 18-26. https://doi.org/10.1016/j.esd.2019.02.
003

Fauchald, P., Tarroux, A., Amélineau, F., Brathen, V. S., Descamps, S.,
Ekker, M., Helgason, H. H., Johansen, M. K., Merkel, B., Moe, B.,
Astrém,J.,Anker-NiIssen,T.,Bj(arnstad,O.,ChasteI,O.,Christensen-
Dalsgaard, S., Danielsen, J., Daunt, F., Dehnhard, N., Erikstad, K. E.,
... Strgm, H. (2021). Year-round distribution of Northeast Atlantic
seabird populations: Applications for population management and
marine spatial planning. Marine Ecology Progress Series, 676, 255-
276. https://doi.org/10.3354/meps13854

Fayet, A. L., Freeman, R., Anker-Nilssen, T., Diamond, A., Erikstad,
K. E., Fifield, D., Fitzsimmons, M. G., Hansen, E. S., Harris, M. P,,
Jessopp, M., Kouwenberg, A.-L., Kress, S., Mowat, S., Perrins, C.
M., Petersen, A., Petersen, |. K., Reiertsen, T. K., Robertson, G. J,,
Shannon, P,, ... Guilford, T. (2017). Ocean-wide drivers of migration
strategies and their influence on population breeding performance
in a declining seabird. Current Biology, 27, 3871-3878.e3. https://
doi.org/10.1016/j.cub.2017.11.009

Ferreira, D., Freixo, C., Cabral, J. A., Santos, R., & Santos, M. (2015). Do
habitat characteristics determine mortality risk for bats at wind
farms? Modelling susceptible species activity patterns and antic-
ipating possible mortality events. Ecological Informatics, 28, 7-18.
https://doi.org/10.1016/j.ecoinf.2015.04.001

Fliessbach, K. L., Borkenhagen, K., Guse, N., Markones, N., Schwemmer,
P., & Garthe, S. (2019). A ship traffic disturbance vulnerability index
for northwest European seabirds as a tool for marine spatial plan-
ning. Frontiers in Marine Science, 6, 192. https://doi.org/10.3389/
fmars.2019.00192

Furness, R. W., Wade, H. M., & Masden, E. A. (2013). Assessing vulnera-
bility of marine bird populations to offshore wind farms. Journal of
Environmental Management, 119, 56-66. https://doi.org/10.1016/j.
jenvman.2013.01.025

Gallagher, C. A., Grimm, V., Kyhn, L. A,, Kinze, C. C., & Nabe-Nielsen,
J. (2021). Movement and seasonal energetics mediate vulnerabil-
ity to disturbance in marine mammal populations. The American
Naturalist, 197, 296-311.

Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A., & Olang, T. A.
(2017). Renewable energy and biodiversity: Implications for tran-
sitioning to a green economy. Renewable and Sustainable Energy
Reviews, 70, 161-184. https://doi.org/10.1016/j.rser.2016.08.030

Goodale, M. W,, & Milman, A. (2019). Assessing the cumulative expo-
sure of wildlife to offshore wind energy development. Journal of
Environmental Management, 235, 77-83. https://doi.org/10.1016/j.
jenvman.2019.01.022

Green, J. A., Boyd, I. L., Woakes, A. J., Green, C. J., & Butler, P. J. (2007).
Feeding, fasting and foraging success during chick rearing in

130f 15
BRITISH H . . .
Emwsw _Ecological Solutions and Evidence | 12015

SOCIETY
macaroni penguins. Marine Ecology Progress Series, 346, 299-312.
https://doi.org/10.3354/meps07024

Green, J. A, Boyd, I. L., Woakes, A. J., Warren, N. L., & Butler, P. J. (2009).
Evaluating the prudence of parents: Daily energy expenditure
throughout the annual cycle of a free-ranging bird. Journal of Avian
Biology, 40, 529-538. https://doi.org/10.1111/j.1600-048X.2009.
04639.x

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-
Custard, J,, Grand, T, Heinz, S. K., Huse, G., Huth, A, Jepsen, J. U.,
Jargensen, C., Mooij, W. M., Miiller, B., Pe'er, G., Piou, C., Railsback,
S. F., Robbins, A. M,, ... DeAngelis, D. L. (2006). A standard protocol
for describing individual-based and agent-based models. Ecological
Modelling, 198, 115-126.

Grimm, V., Railsback, S. F.,, Vincenot, C. E., Berger, U., Gallagher, C.,
DeAngelis, D. L, Edmonds, B., Ge, J., Giske, J., Groeneveld, J.,
Johnston, A. S. A, Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk,
V., Rohwader, M.-S,, Stillman, R. A, Thiele, J. C., & Ayllén, D. (2020).
The ODD protocol for describing agent-based and other simulation
models: A second update to improve clarity, replication and structural
realism. Journal of Artificial Societies and Social Simulation, 23, 7.

GWEC (Global Wind Energy Council). (2023). Global offshore wind re-
port 2023.

Harris, M. P., Frederiksen, M., & Wanless, S. (2007). Within- and
between-year variation in juvenile survival of common Guillemots
Uria aalge. Ibis, 149, 472-481. https://doi.org/10.1111/j.1474-919X.
2007.00667.x

Harris, M. P., & Wanless, S. (1988). Measurements and seasonal changes
in weight of guillemots Uria aalge at a breeding colony. Ringing &
Migration, 9, 32-36.

Harris, M. P., Wanless, S., & Webb, A. (2000). Changes in body mass of
common Guillemots Uria aalge in southeast Scotland throughout
the year: Implications for the release of cleaned birds. Ringing &
Migration, 20, 134-142. https://doi.org/10.1080/03078698.2000.
9674235

Hijmans, R. J,, Bivand, R., & Forner, K. (2022). terra. R package.

Hilton, G. M., Furness, R. W., & Houston, D. C. (2000). A comparative
study of digestion in North Atlantic seabirds. Journal of Avian
Biology, 31, 36-46. https://doi.org/10.1034/j.1600-048X.2000.
310106.x

Horswill, C., Miller, J. A. O., & Wood, M. J. (2022). Impact assessments of
wind farms on seabird populations that overlook existing drivers of
demographic change should be treated with caution. Conservation
Science and Practice, 4, el12644. https://doi.org/10.1111/csp2.
12644

International Energy Agency. (2021). Net zero by 2050: A roadmap for the
global energy sector. OECD. https://doi.org/10.1787/c8328405-en

Johnston, A., Cook, A. S. C. P, Wright, L. J., Humphreys, E. M., & Burton,
N. H. K. (2014). Modelling flight heights of marine birds to assess
collision risk with offshore wind turbines. Journal of Applied Ecology,
51, 31-41. https://doi.org/10.1111/1365-2664.12191

Kaldellis, J. K., & Kapsali, M. (2013). Shifting towards offshore wind en-
ergy—Recent activity and future development. Energy Policy, 53,
136-148. https://doi.org/10.1016/j.enpol.2012.10.032

Lane, J. V., Jeavons, R., Deakin, Z., Sherley, R. B., Pollock, C. J., Wanless,
R. J., & Hamer, K. C. (2020). Vulnerability of northern gannets to
offshore wind farms: Seasonal and sex-specific collision risk and
demographic consequences. Marine Environmental Research, 162,
105196. https://doi.org/10.1016/j.marenvres.2020.105196

Layton-Matthews, K., Buckingham, L., Critchley, E. J., Nilsson, A. L. K.,
Ollus, V. M., Ballesteros, M., Christensen-Dalsgaard, S., Dehnhard,
N., Fauchald, P., Hanssen, F., Helberg, M., Masden, E. A., May, R.,
Sandvik, H., Tarroux, A., & Reiertsen, T. K. (2023). Development of
a cumulative impact assessment tool for birds in Norwegian offshore
waters: Trollvind OWF as a case study. NINA Report.

Layton-Matthews, K., Reiertsen, T. K., Erikstad, K.-E., Anker-Nilssen, T.,
Daunt, F., Wanless, S., Barrett, R. T., Newell, M. A., & Harris, M. P.

9

a ‘T '9202 ‘6T

wouy

85U8D | SUOWILLOD BAIERID 3|qedl|dde ay) Aq peuseob 8 Sajolfe O ‘SN JO Sa|nJ Joj A%iq1T8UIIUO A8|IM UO (SUORIPUD-PLE-SWS}W00" A3 | 1M Aq 1|BUI|UO//SANY) SUORIPUOD PUe SWB L 84} 89S *[9202/T0/0E] U0 A%iqIT8UIIUO AB]IM ‘UOKSIAIQ SBMULION d1j10ed @Iniisu| [eLoWe A 3|eeg Aq 96T0L ‘6TE8-8892/200T OT/I0p/W00 A8 Im Ariq1jpul U0 'S UINOF


https://doi.org/10.1111/1365-2435.14059
https://doi.org/10.1038/s41598-020-62842-x
https://doi.org/10.5751/ES-04594-170201
https://doi.org/10.5751/ES-04594-170201
https://doi.org/10.1186/s40462-014-0017-2
https://doi.org/10.1016/j.esd.2019.02.003
https://doi.org/10.1016/j.esd.2019.02.003
https://doi.org/10.3354/meps13854
https://doi.org/10.1016/j.cub.2017.11.009
https://doi.org/10.1016/j.cub.2017.11.009
https://doi.org/10.1016/j.ecoinf.2015.04.001
https://doi.org/10.3389/fmars.2019.00192
https://doi.org/10.3389/fmars.2019.00192
https://doi.org/10.1016/j.jenvman.2013.01.025
https://doi.org/10.1016/j.jenvman.2013.01.025
https://doi.org/10.1016/j.rser.2016.08.030
https://doi.org/10.1016/j.jenvman.2019.01.022
https://doi.org/10.1016/j.jenvman.2019.01.022
https://doi.org/10.3354/meps07024
https://doi.org/10.1111/j.1600-048X.2009.04639.x
https://doi.org/10.1111/j.1600-048X.2009.04639.x
https://doi.org/10.1111/j.1474-919X.2007.00667.x
https://doi.org/10.1111/j.1474-919X.2007.00667.x
https://doi.org/10.1080/03078698.2000.9674235
https://doi.org/10.1080/03078698.2000.9674235
https://doi.org/10.1034/j.1600-048X.2000.310106.x
https://doi.org/10.1034/j.1600-048X.2000.310106.x
https://doi.org/10.1111/csp2.12644
https://doi.org/10.1111/csp2.12644
https://doi.org/10.1787/c8328405-en
https://doi.org/10.1111/1365-2664.12191
https://doi.org/10.1016/j.enpol.2012.10.032
https://doi.org/10.1016/j.marenvres.2020.105196

14 0of 15 BRITISH ¢ . . s
Eggg}ggm _Ecological Solutions and Evidence

H. (2023). Consequences of cross-season demographic correlations
for population viability. Ecology and Evolution, 13, e10312. https://
doi.org/10.1002/ece3.10312

Martin, G. R., & Banks, A. N. (2023). Marine birds: Vision-based wind
turbine collision mitigation. Global Ecology and Conservation, 42,
e02386. https://doi.org/10.1016/j.gecco.2023.e02386

Masden, E. A. (2015). Developing an avian collision risk model to incor-
porate variability and uncertainty. Scottish Marine and Freshwater
Science, 6, 14.

Masden, E. A, Fox, A. D., Furness, R. W., Bullman, R., & Haydon, D. T. (2010).
Cumulative impact assessments and bird/wind farm interactions:
Developing a conceptual framework. Environmental Impact Assessment
Review, 30, 1-7. https://doi.org/10.1016/j.eiar.2009.05.002

Maxwell, S. M., Hazen, E. L., Bograd, S. J., Halpern, B. S., Breed, G. A.,
Nickel, B., Teutschel, N. M., Crowder, L. B., Benson, S., Dutton, P.
H., Bailey, H., Kappes, M. A., Kuhn, C. E., Weise, M. J., Mate, B.,
Shaffer, S. A, Hassrick, J. L., Henry, R. W., Irvine, L., ... Costa, D.
P. (2013). Cumulative human impacts on marine predators. Nature
Communications, 4, 2688. https://doi.org/10.1038/ncomms3688

Maxwell, S. M., Kershaw, F., Locke, C. C., Conners, M. G., Dawson, C.,
Aylesworth, S., Loomis, R., & Johnson, A. F. (2022). Potential im-
pacts of floating wind turbine technology for marine species
and habitats. Journal of Environmental Management, 307, 114577.
https://doi.org/10.1016/j.jenvman.2022.114577

McGregor, R. M., King, S., Donovan, C. R., Caneco, B., & Webb, A. (2018).
A stochastic collision risk model for seabirds in flight. Marine Scotland.

McKnight, A., Irons, D. B., Allyn, A. J., Sullivan, K. M., & Suryan, R. M.
(2011). Winter dispersal and activity patterns of post-breeding
black-legged kittiwakes Rissa tridactyla from Prince William Sound,
Alaska. Marine Ecology Progress Series, 442, 241-253. https://doi.
org/10.3354/meps09373

Merkel, B., & Strgm, H. (2023). Post-colony swimming migration in the
genus Uria. Journal of Avian Biology, 2024, e03153. https://doi.org/
10.1111/jav.03153

NVE. (2023). Identifisering av utredningsomrdder for havvind. Norwegian
Water Resources and Energy Directorate.

O'Hanlon, N. J,, Bond, A. L., Masden, E. A., Boertmann, D., Bregnballe,
T., Danielsen, J., Descamps, S., Petersen, A., Strem, H., Systad, G., &
James, N. A. (2023). Using foraging range and colony size to assess
the vulnerability of breeding seabirds to oil across regions lacking
at-sea distribution data. Ornithological Applications, 125, duad030.

Orians, G. H., & Pearson, N. E. (1979). On the theory of central place
foraging. In J. Horn, G. R. Stairs, & R. D. Mitchell (Eds.), Analysis of
ecological systems (pp. 157-177). Ohio State University Press.

Patterson, A., Gilchrist, H. G., Robertson, G. J., Hedd, A., Fifield, D. A., &
Elliott, K. H. (2022). Behavioural flexibility in an Arctic seabird using
two distinct marine habitats to survive the energetic constraints of
winter. Movement Ecology, 10, 45. https://doi.org/10.1186/s4046
2-022-00344-3

Peschko, V., Mendel, B., Miiller, S., Markones, N., Mercker, M., &
Garthe, S. (2020). Effects of offshore windfarms on seabird abun-
dance: Strong effects in spring and in the breeding season. Marine
Environmental Research, 162, 105157. https://doi.org/10.1016/j.
marenvres.2020.105157

Peschko, V., Schwemmer, H., Mercker, M., Markones, N., Borkenhagen,
K., & Garthe, S. (2024). Cumulative effects of offshore wind farms
on common guillemots (Uria aalge) in the southern North Sea—
climate versus biodiversity? Biodiversity and Conservation, 33,
949-970.

Pollock, C. (2022). Modelling breeding season foraging and tracking au-
tumn migrations to fill knowledge gaps in gannet ecology (PhD thesis).
University of Leeds.

R Core Team. (2024). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

Reiertsen, T. K., Layton-Matthews, K., Erikstad, K. E., Hodges, K., Ballesteros,
M., Anker-Nilssen, T., Barrett, R. T., Benjaminsen, S., Bogdanova, M.,

BUCKINGHAM ET AL.

Christensen-Dalsgaard, S., Daunt, F., Dehnhard, N., Harris, M. P,
Langset, M., Lorentsen, S. H., Newell, M., Braathen, V. S., Stayle-
Bringsvor, I., Systad, G. H., & Wanless, S. (2021). Inter-population syn-
chrony in adult survival and effects of climate and extreme weather in
non-breeding areas of Atlantic puffins. Marine Ecology Progress Series,
679, 219-231. https://doi.org/10.3354/meps13809

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., &
Schlax, M. G. (2007). Daily high-resolution blended analyses for sea
surface temperature. Journal of Climate, 20, 5473-5496. https://
doi.org/10.1175/2007JCLI1824.1

Scheffer, M., Baveco, J. M., DeAngelis, D. L., Rose, K. A., & van Nes, E. H.
(1995). Super-individuals: A simple solution for modelling large pop-
ulations on an individual basis. Ecological Modelling, 80, 161-170.

Searle, K. R., Mobbs, D., Butler, A., Bogdanova, M., Freeman, S., Wanless,
S., & Daunt, F. (2014). Population consequences of displacement from
proposed offshore wind energy developments for seabirds breed-
ing at Scottish SPAs (CR/2012/03). Scottish Marine and Freshwater
Science, 5, 13.

Searle, K. R., Mobbs, D. C., Butler, A, Furness, R. W., Trinder, M. N., &
Daunt, F.(2018). Finding out the fate of displaced birds (FCR/2015/19).
Marine Scotland Science.

Searle, K. R., Regan, C. E., Perrow, M. R., Butler, A., Rindorf, A., Harris, M.
P., Newell, M. A., Wanless, S., & Daunt, F. (2023). Effects of a fishery
closure and prey abundance on seabird diet and breeding success:
Implications for strategic fisheries management and seabird con-
servation. Biological Conservation, 281, 109990.

Sinclair, N. C., Harris, M. P., Nager, R. G., Leakey, C. D. B., & Robbins, A. M.
C. (2017). Nocturnal colony attendance by common guillemots Uria
aalge at colony in Shetland during the pre-breeding season. Seabird,
30, 51-62.

Soudijn, F. H., Hin, V., Melis, E., Chen, C., van Donk, S., Benden, D., &
Poot, M. J. M. (2025). Population level effects of displacement of
marine birds due to offshore wind energy developments, KEC 5.
Wageningen Marine Research.

Strem, H., Descamps, S., Ekker, M., Fauchald, P., & Moe, B. (2021).
Tracking the movements of North Atlantic seabirds: Steps towards
a better understanding of population dynamics and marine eco-
system conservation. Marine Ecology Progress Series, 676, 97-116.
https://doi.org/10.3354/meps13801

Szangolies, L., Rohwéader, M.-S., Ahmed, H., Jahanmiri, F., Wagner, A.,
Souto-Veiga, R., Grimm, V., & Gallagher, C. (2024). Visual ODD: A
standardised visualisation illustrating the narrative of agent-based
models. Journal of Artificial Societies and Social Simulation, 27, 1.

Venegas-Li, R., Levin, N., Morales-Barquero, L., Kaschner, K., Garilao, C.,
& Kark, S. (2019). Global assessment of marine biodiversity poten-
tially threatened by offshore hydrocarbon activities. Global Change
Biology, 25, 2009-2020. https://doi.org/10.1111/gch.14616

Vincenot, C. E. (2018). How new concepts become universal scientific
approaches: Insights from citation network analysis of agent-
based complex systems science. Proceedings of the Royal Society B:
Biological Sciences, 285, 20172360. https://doi.org/10.1098/rspb.
2017.2360

Wanless, S., Harris, M. P, Redman, P., & Speakman, J. R. (2005). Low en-
ergy values of fish as a probable cause of a major seabird breeding
failure in the North Sea. Marine Ecology Progress Series, 294, 1-8.
https://doi.org/10.3354/meps294001

Warwick-Evans, V., Atkinson, P. W., Walkington, I., & Green, J. A. (2018).
Predicting the impacts of wind farms on seabirds: An individual-
based model. Journal of Applied Ecology, 55, 503-515. https://doi.
org/10.1111/1365-2664.12996

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

9

a ‘T '9202 ‘6T

wouy

85U8D | SUOWILLOD BAIERID 3|qedl|dde ay) Aq peuseob 8 Sajolfe O ‘SN JO Sa|nJ Joj A%iq1T8UIIUO A8|IM UO (SUORIPUD-PLE-SWS}W00" A3 | 1M Aq 1|BUI|UO//SANY) SUORIPUOD PUe SWB L 84} 89S *[9202/T0/0E] U0 A%iqIT8UIIUO AB]IM ‘UOKSIAIQ SBMULION d1j10ed @Iniisu| [eLoWe A 3|eeg Aq 96T0L ‘6TE8-8892/200T OT/I0p/W00 A8 Im Ariq1jpul U0 'S UINOF


https://doi.org/10.1002/ece3.10312
https://doi.org/10.1002/ece3.10312
https://doi.org/10.1016/j.gecco.2023.e02386
https://doi.org/10.1016/j.eiar.2009.05.002
https://doi.org/10.1038/ncomms3688
https://doi.org/10.1016/j.jenvman.2022.114577
https://doi.org/10.3354/meps09373
https://doi.org/10.3354/meps09373
https://doi.org/10.1111/jav.03153
https://doi.org/10.1111/jav.03153
https://doi.org/10.1186/s40462-022-00344-3
https://doi.org/10.1186/s40462-022-00344-3
https://doi.org/10.1016/j.marenvres.2020.105157
https://doi.org/10.1016/j.marenvres.2020.105157
https://doi.org/10.3354/meps13809
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.3354/meps13801
https://doi.org/10.1111/gcb.14616
https://doi.org/10.1098/rspb.2017.2360
https://doi.org/10.1098/rspb.2017.2360
https://doi.org/10.3354/meps294001
https://doi.org/10.1111/1365-2664.12996
https://doi.org/10.1111/1365-2664.12996

BUCKINGHAM ET AL.

Figure S1. Model visualisation using the vODD format (Szangolies
et al. 2024).

Table S1. State variables for each seabird super-individual.

Table S2. Additional state variables for each individual within each
super-individual.

Table S3. State variables of offshore wind farms.

Table S4. State variables of the global environment, consisting of
0.25° grid cells.

Figure S2. The global environment for the guillemot model,
aggregated into two-month periods (Fauchald et al.,, 2021). The
colour of the sea depicts the density (individuals km™) of adult
guillemots that breed at Sklinna (indicated by a white circle).

Figure S3. The global environment for the kittiwake model,
aggregated into two-month periods (Fauchald et al., 2021). The
colour of the sea depicts the density (individuals km™) of adult
kittiwakes that breed in Alesund (indicated by a white circle).

Figure S4. Visualisation of submodel processes. Submodel 1
(behaviour and movement) runs first; if there is an OWF interaction,
submodel 2 (displacement and energetics) or 3 (collision) runs
depending on the species and the impact being assessed.

Figure S5. Graphic of submodel 1: behaviour and movement. In
both panels, the black circle shows the current location of a super-
individual, with the white dashed circle showing the maximum
distance the individual can move during the next time step (1 day),
according to the time spent in ‘travelling’ behaviours.

Table S5. Number of geolocator datasets for each species, tag type
and non-breeding season.

Figure Sé6. Graphic of the displacement relocation process.

Table Sé. Probability of displacement at varying distances from an
OWEF footprint boundary. Spring probabilities were extracted from
Peschko et al. (2020) and autumn and winter were extracted from
Peschko et al. (2024).

Table S7. Estimates for the intercept («, mass at median fledging
date), linear trend in mass over the breeding season (ﬂDay) and
individual (62), year (62 and observation effect variances (s2__) for
guillemots breeding at Sklinna.

Figure S7. Predicted relationship between body mass and date for
common guillemots breeding at Sklinna.

Table S8. Mass change parameters.
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Figure S8. Graphic of offshore wind farm interactions for kittiwakes.
Table S9. Parameters used in the stochastic Collision Risk Model.
Figure S9. Modelled flight heights from Johnston et al. (2014),
extracted from the stochLAB R package (Caneco et al., 2022).

Table S10. The proportionate densities that were retained that had
the top ten most similar population-level distributions (BA) to the
input data for guillemots.

Table S11. The proportionate densities that were retained that had
the top ten most similar population-level distributions (BA) to the
input data for kittiwakes.

Figure S10. A selection of simulated tracks without behavioural
inputs for guillemots breeding at Sklinna. Locations are coloured by
month and the breeding colony is shown as a white circle.

Figure S11. A selection of simulated tracks without behavioural
inputs for kittiwakes breeding at Alesund. Locations are coloured by
month and the breeding colony is shown as a white circle.

Figure S12. A selection of simulated tracks using the final model for
common guillemots breeding at Sklinna. Locations are coloured by
month and the breeding colony is shown as a white circle.

Figure S13. A selection of simulated tracks using the final model for
kittiwakes breeding at Alesund. Locations are coloured by month
and the breeding colony is shown as a white circle.

Table S12. The strength of the pull (a) towards Mass, and mean
difference (AMass) in end of simulation mass compared with Mass, .
Figure S14. Patterns of mass change during the non-breeding season
for individuals (light blue lines; n=500) and the population-level

means for different strengths of the pull () towards Mass, .
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