
DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 1 of 26

Final Project Report
COVER PAGE

Federal Agency to which Report is submitted: DOE EERE – Wind & Water Power Program

Recipient: University of Washington, DUNS 605799469
Award Number: DE-EE0006785
Project Title: Automatic optical detection and classification of marine animals around MHK
converters using machine vision
Project Period: October 1, 2014 to June 30, 2017

Principle Investigator: Dr. Steven L. Brunton, Assistant Professor, sbrunton@uw.edu, 609-921-
6415
Report Submitted by: Steven L. Brunton

Date of Report: June 30, 2017
Covering Period: October 1, 2014 to June 30, 2017
Report Frequency: End of project

Working Partners: University of Washington, Dr. Steven Brunton, Assistant Professor,

sbrunton@uw.edu, 609-921-6415

 H. T. Harvey & Associates, Dr. Sharon Kramer, Principal,

skramer@harveyecology.com, 707-822-4848

Cost-Sharing Partners: University of Washington, Steve Brunton, 609-921-6415

DOE Project Team: DOE Director – Alejandro Morena
 DOE HQ Technical Manager – Hoyt Battey
 DOE Technical Lead – Samantha Eaves
 DOE Field Contract Officer – Laura Merrick
 DOE Field Grants Management Specialist – Andy Simmons
 DOE Field Project Officer – Corey Vezina
 DOE/CNJV Project Monitor – Jayce Philpott

Signature of Submitting Official:
(electronic signature is acceptable)

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 2 of 26

The information, data, or work presented herein was funded in part by the Office of Energy
Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number
DE-EE0006785.

The information, data, or work presented herein was funded in part by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 3 of 26

TABLE OF CONTENTS

OVERVIEW AND MOTIVATION
 Abstract
 Project Motivation

SUMMARY OF OUTCOMES

LESSONS LEARNED AND FUTURE DIRECTIONS

PRODUCTS/ DELIVERABLES
 Software
 Papers

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

TECHNICAL ACCOMPLISHMENTS
 Task 1: Software Pipeline
 Task 2: Obtain Data
 Task 3: Robust Principal Components Analysis (RPCA)
 Task 4: Dynamic mode decomposition (DMD)
 Task 5: Classification
 Task 6: Deploy Software

PROJECT SCHEDULE & MILESTONES

APPENDIX 1: CODE

APPENDIX 2: MEMORANDUM FROM HT HARVEY & ASSOCIATES

APPENDIX 3: PAPERS

4
4
4

5

5

7
7
7

7

8
8
9

12
15
16
23

25

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 4 of 26

OVERVIEW AND MOTIVATION

Abstract: Optical systems provide valuable information for evaluating interactions and
associations between organisms and MHK energy converters and for capturing potentially rare
encounters between marine organisms and MHK device. The deluge of optical data from cabled
monitoring packages makes expert review time-consuming and expensive. We propose
algorithms and a processing framework to automatically extract events of interest from
underwater video. The open-source software framework consists of background subtraction,
filtering, feature extraction and hierarchical classification algorithms. This principle
classification pipeline was validated on real-world data collected with an experimental
underwater monitoring package. An event detection rate of 100% was achieved using robust
principal components analysis (RPCA), Fourier feature extraction and a support vector machine
(SVM) binary classifier. The detected events were then further classified into more complex
classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank.
Greater than 80% accuracy was achieved using a combination of machine learning techniques.

Project Motivation: Marine environments are challenging to study, and with the growing scale
of marine and hydrokinetic (MHK) energy development there is a need for methods to observe
underwater environments to understand environmental impacts. The high-priority environmental
risk uncertainties for MHK energy projects include the interaction of animals with converters,
noise levels, and changes to marine animal distribution and habitat use at the space/time scales of
arrays. These potential environmental risks pose challenges for permitting and licensing MHK
projects, requiring novel and expensive approaches to monitor and evaluate potential interactions
with organisms. Regulatory requirements, particularly related to endangered and threatened
species, and marine mammals, make achieving near-continuous monitoring of the marine
environment at MHK projects an essential part of quantifying and managing these risks.

Optical sensors can provide valuable information not available from other underwater sensors for
evaluating interactions between organisms and MHK energy converters. Optical images and
video are easier to interpret, in general, than sonar data. The information contained in optical
data includes aggregate measures of time-based occurrence, along with individual animal shape,
color, relative position and movement direction. This information can be used to infer
abundance, species distribution, behavior, and the likelihood of injury or mortality. However,
extracting the relevant information from underwater imagery and video can be labor-intensive.
The current practice for using optical data is to collect the data and then, post-collection, have
human experts visually analyze the data and note events of interest. Oftentimes, the data is
sampled so that, for example, only the first ten minutes of every hour is reviewed. This
methodology is not practical for the long-term monitoring needed to characterize temporal
patterns of activity around MHK devices, nor effective for detecting rare but important events
like the appearance of an endangered marine mammal. Automatic filtering is needed to reduce
optical data into relevant events for expert review, shifting the effort from data management and
processing to expert analysis and interpretation that informs decision-making.

Computer vision and machine learning have proven effective for automating similar monitoring
applications, such as video surveillance, but techniques specific to underwater image processing
are only recently being developed. Underwater imagery presents unique challenges that include

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 5 of 26

sudden illumination changes, unequal spectral propagation (i.e., color is affected by distance),
low contrast, clutter in the form of floating vegetation, and changes in visibility due to turbidity.

SUMMARY OF OUTCOMES

In this work, we developed an integrated, open-source software architecture for the analysis of
marine optical data streams toward the automatic detection and classification of marine animals
around MHK energy converters. The primary goal of this project was to advance the state of the
art to alleviate the growing data mortgage by leveraging recent innovations in machine vision
focused on robust de-noising, background subtraction, and occlusion inference in optical data
streams. After de-noising and background subtraction, event detection algorithms were used to
trigger hierarchical classification to identify marine animals to the lowest level of taxonomic
classification possible. The algorithms are trained on a human-labeled data set curated by H.T.
Harvey and Associates. The hierarchical labeling scheme and labeled data set is another key
outcome of this project, as it provides a template and suggestions for the hierarchical labeling of
a marine data set (see Figure 2 in main report, and Table 1 in Appendix 2). We also integrated
tools from open-source computer vision (OpenCV). This work takes a major step toward
automatic quantification of animal occurrence to reduce environmental risk uncertainties for
MHK energy projects in a timely manner.

The major goals of the project have been fulfilled, including deploying the open-source
EIGENFISH software on GitHub, complete with unit tests, documentation, and an example of
how to use the code. In addition, we have accomplished the following additional tasks: 1)
finished writing and submitting papers, 2) presented technical results at conferences, workshops,
and review meetings, 3) engaged with collaborators to perform advanced classification analysis
on various data sets, and 4) developed additional parallel computation algorithms on a graphics
processing unit (GPU) to streamline computations towards real-time implementation.

LESSONS LEARNED AND FUTURE DIRECTIONS

Throughout the development of this open-source software, we have learned many valuable
lessons about the larger objective of automated characterization of MHK sites through video
classification. These lessons likewise motivate interesting future research objectives and
investments.

Training data and hosting: The software framework can be flexibly applied to new data sets.
However, algorithms must be re-trained on new data, due to differences in sites and data sets
(e.g., cameras, lighting, debris, targets of interest, etc.). Re-training requires expensive “by-
hand” annotation of the new training data, which may require on the order of a day to a week of
manually labeled data. Until several sites are characterized, preliminary expert human
annotation will be necessary to train classifiers. However, after several sites, we may eventually
learn enough to characterize new sites with less supervision. This also motivates a set of
standards for video format, resolution, capture rate, for annotation, and for data archive. This
will provide a sufficient database across multiple sites for more in-depth characterization. More
broadly, there is a need for a larger curated data set with data from several sites and with several
different marine environments and wildlife profiles to train more general classifiers.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 6 of 26

Annotation: A valuable outcome of this work was the annotation format developed with HT
Harvey & Associates. This format will be useful in future MHK characterization efforts, and
may be expanded upon to include additional information of interest for future projects (e.g., fish
locations, etc.). We should seriously consider future goals with increasing camera resolution.

Real-time: With developments in GPU hardware and algorithms, it is possible to push real-time.

Improved classifiers: Emerging deep learning may improve performance with sufficient data
and provide better generalization of results to new MHK sites. This also highlights the need for
extended labeled data sets to be combined, curated, and hosted to provide the training data
required to build these classifiers. This would involve a relatively significant data acquisition
and management effort.

Plans to continue testing: Although there are not formal plans to continue testing these
algorithms, the software is open source, so that researchers from around the globe can contribute
and apply these methods. In addition, I intend to continue using this problem as a benchmark for
my own students and for course projects.

Future users: The hope is that this open-source software will be broadly useful for researchers
and industry partners seeking to characterize MHK environments. The software has already
been used by collaborators at PNNL, and will ideally continue to be adopted by other groups, for
example by environmental stewardship groups, for MHK site certification, and for commercial
fishing, to name a few.
In addition, the software has been designed to be modular so that future algorithm developers
may extend this library with advanced capabilities. Algorithm developers may be attracted either
by funded research opportunities, such as this project, or by a benchmark challenge that
encourages researchers to compete for the best performance. This has been extremely successful
in machine vision applications such as the Google ImageNet data set, and has advanced machine
vision research significantly. For the relatively low cost of hosting and curating a challenge data
set, it may be possible to incentivize researchers to work on these method for free. At a smaller
scale, it would be possible to have a local competition in a computer science department to get
undergraduates developing algorithms.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 7 of 26

PRODUCTS / DELIVERABLES

Software: We have published the open-source EIGENFISH software on GitHub for public use
and development. This code is fully documented, with unit tests and example scripts and data.
This software has already been used by collaborators at PNNL on additional video datasets (See
project Report PNNL-26576, “Triton: Igiugig Fish Video Analysis” by S. Matzner, C. Trostle,
G. Staines, R. Hull, A. Avila, and G.E.L. Harker-Klimes, August 2017).

Papers: We currently have 4 papers or book chapters at various stages (published, submitted, in
preparation). Funding from DOE is acknowledged in each paper.
1) Z. Bai, S. L. Brunton, B. W. Brunton, J. N. Kutz, E. Kaiser, A. Spohn, and B. R. Noack.
“Data-driven methods in fluid dynamics: Sparse classification from experimental data”.
Chapter 17 in Whither Turbulence and Big Data in the 20th Century, Springer 2017.
This chapter uses similar techniques developed in this project to apply machine learning and data
compression techniques to image sequences to classify different types of experimental images
where bubbles are used to visualize a fluid flow. Nearly perfect classification accuracy is
achieved with very few sensors (around 4 optimized pixels).
2) N. B. Erichson, S. L. Brunton, J. N. Kutz. “Compressed Dynamic Mode Decomposition
for Real-Time Object Detection”. Journal of Real-Time Image Processing, 2016.
This paper uses compressed techniques to accelerate DMD for video background subtraction.
3) S. D. Pendergrass, J. N. Kutz, S. L. Brunton. “Streaming GPU Singular Value and
Dynamic Mode Decompositions” Submitted to PLOS ONE. arXiv pre-print arXiv:1612.07875.
This paper uses a GPU and the streaming method of snaphsots to efficiently compute the SVD,
for use in either RPCA or DMD. This method can be used for faster background subtraction
with similar performance to standard algorithms.
4) Z. Bai, S. A. Matzner, R. E. Hull, N. Hejazi, S. D. Pendergrass, B. Polagye, S. Kramer,
and S. L. Brunton. “Automatic optical detection and classification of marine life from
underwater video using machine vision”. In preparation.
This paper summarizes the work from this grant along with work by collaborators at PNNL.

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

Name Steve Brunton, PI
Contribution to Project Steve oversaw the project.

Name Brian Polagye, Co-PI
Contribution to Project Brian provided real-world optical data from an MHK site and

also provided feedback throughout the project.

Name Sharon Kramer, Co-PI
Contribution to Project Sharon and team provided annotations of videos along with

feedback about what would be useful in an automatic classifier.

Name Zhe Bai, Graduate student
Contribution to Project Zhe performed research and wrote a report summarizing results.

Name Seth Pendergrass, Undergraduate
Contribution to Project Seth implemented the final GitHub library and GPU algorithms.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 8 of 26

TECHNICAL ACCOMPLISHMENTS

SOPO Task 1: Software Pipeline

i. Major activities – Develop the software pipeline, interfaces, for streamlined data
processing and algorithm development.

ii. Specific objectives – Decide on software, version control, unit testing and
documentation. Afterward, design interfaces for each major module (RPCA, DMD,
classification, etc.). Finally, test classes and interfaces with a dry-fit, before
implementing algorithms.

iii. Significant results, including major findings, developments or conclusions

(positive or negative) – We have decided on the open-source software, designed
interfaces, and have successfully dry-fit components. The dry-fit of the various
algorithm interfaces is successful, so that it is likely that algorithms will work
together as planned in future project quarters. The specific open-source choices are:

a. Software – The main interfaces are developed in Python, and computationally

expensive functions are wrapped around compiled C++ code. Many of these C++
codes are designed to take advantage of distributed computing on a graphics
processing unit (GPU) for significant acceleration. For example, the SVD,
RPCA, and DMD algorithms will all have a GPU implementation, providing on
the order of 10-100 times speed-up.

b. Version control and Web hosting – We are using ‘git’ for version control, and
the software is hosted on a private educational Github account to keep the
repository internal for development. We will be able to roll-out the software
open-source and free of charge at the end of the project.

c. Unit tests – We are using the Python `unittest’, which is integrated seamlessly in

the Python development environment. This software comes standard with all
Python builds, so installation and maintenance will be simple in the future.

d. Documentation – We are using the integrated ‘pydoc’ within the Python

environment. There are similar advantages as described above for the unit testing.

iv. Key outcomes, milestones and other achievements – The open-source software
pipeline is structurally sound and ready for implementation of all algorithms and
testing on optical data. The existing code-base, with many partial implementations,
may be found in an Appendix.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 9 of 26

SOPO Task 2: Obtain Data

i. Major activities – Obtain, scrub and label optical data

ii. Specific objectives – First, we must obtain a sufficiently rich set of optical data.
Next, we must curate and scrub this data to provide a uniform data format for
numerical analysis in Matlab and Python. This data is passed to H.T. Harvey &
Associates to understand content and value of initial data set. A hierarchical set of
event/species labels is agreed upon by UW and H.T. Harvey & Associates, and the
remaining data is labeled.

iii. Significant results, including major findings, developments or conclusions
(positive or negative) – Here is a summary of the above items:

a. Acquire data – We have acquired a large test data set from the four month Sunset

Bay camera system endurance trials (led by Brian Polagye from March 3 to July
2, 2013). These images were collected at a depth of approximately 20 m. The
camera system collected 1 second of images at 10 frames per second (fps), every
15 minutes.

Of the original data, we are investigating a 60GB subset, consisting of image
sequences collected in March (March 9-16 and March 25). There are over 14,000
images in this set, containing a wide range of conditions, biological activity, etc.

These images come from two cameras, each with a resolution of 1624 by 1234.
The first camera is grayscale, and the second contains color images. Both files
are stored as uncompressed .tif files, which may be pulled into numerical arrays in
Matlab or Python. There is already a significant amount of metadata for these
images, including some annotation or labeling. An example set of images may be
seen in Figure 1.

b. Scrub data – Functions exist to pull the optical data into both Python and Matlab

environments in a standard numeric format for mathematical analysis. In both
environments, an image is handled as a two-dimensional array of integers (from 0
to 255 for gray scale). These arrays of integers are then treated as arrays of
double precision floating point numbers for mathematical analysis, such as RPCA
processing. A sequence of images (i.e., a movie) is a three-dimensional array,
where the third dimension indexes the image in the sequence. In addition, the
RPCA algorithm has been implemented in both Matlab and Python, so that data
scrubbing is an automatic step in loading and processing data. (See SOPO Task 3)

c. Decide on content and value of initial data set – The data set was passed to H.
T. Harvey & Associates, and they provided a detailed report summarizing the
interesting features in the data, the quality of the images, and the useful features
that they used to classify objects in the images. Their report is attached to this
document as Appendix 2.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 10 of 26

In addition, we have agreed on a labeling format for all optical images with H. T.
Harvey & Associates. This constitutes a hierarchical categorization, with the
coarsest-grained classification deciding if there is anything interesting in the
image or not. At finer levels of resolution, we determine if there are fish or
mammals in the image, and if so, which type and how many. The hierarchical
labeling template is shown in Figure 2. The images were labeled according to this
template by human experts. Table 1 of Appendix 2 provides a number of
candidate criteria that are used for human classification of marine wildlife. This
table was constructed based on expert knowledge used for human classification of
the labeled data set. In the current work, the machine classification is based
entirely on automatically mined features from the data, and the criteria of Table 1
from Appendix 2 are only used for human labeling of the data set. It would be
interesting to investigate the explicit use of these criteria in future classifiers, for
example as inputs to a neural network.

d. Label all data – The data was labeled by H. T. Harvey & Associates using the
labeling template in Figure 2. We decided that it is more important to decide on
the correct hierarchical classification, since so many downstream efforts rely on
good labeling of the data. We have enough data to begin developing and testing
Machine Learning Algorithms, and more labeled data will become available as
the DMD algorithm is developed.

We also believe that this delay in obtaining a complete labeled data set will be
offset by the fact that we are ahead of schedule in developing the DMD algorithm
and developing Machine Learning algorithms. We have already submitted a book
chapter (see Deliverables below on pg. 11) developing advanced sparse
classification techniques for similar event-based classification based on images.

iv. Key outcomes, milestones and other achievements – Data is acquired, formatted,
analyzed by H. T. Harvey & Associates, a labeling hierarchy has been determined,
and the data is currently being meticulously labeled. A test data set is available to
begin developing and testing feature extraction and classification algorithms.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 11 of 26

Figure 1: Examples of optical data acquired from Sunset Bay. For more details, see Ecological report by H.
T. Harvey & Associates in an Appendix.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 12 of 26

Figure 2: Labeling template after iterations between UW team and H.T. Harvey & Associates.

SOPO Task 3: Robust Principal Components Analysis (RPCA) Module

i. Major activities – implement RPCA in matlab and Python framework, and test on
original face data as well as marine optical data.

ii. Specific objectives – develop subroutines to perform RPCA on image sequence in
Matlab, and reproduce results from original RPCA paper (see Fig. 3). Next,
implement RPCA in Python framework and test on marine optical data. Finally,
investigate effects of sensor noise on RPCA results.

iii. Significant results, including major findings, developments or conclusions

(positive or negative) – Itemized results are:

a. Implement in Matlab – The RPCA algorithm has been successfully implemented
in Matlab, and results from the original RPCA paper are reproduced correctly.
See Fig. 3 and Tab. 1 for details. Notice that the algorithm effectively removes
shadow occlusions, providing an illuminated view of the low-rank structure.

b. Implementation in Python – The RPCA algorithm has been successfully
implemented in Python (see the Appendix, ‘scrubbing/rpca.py’ for code).
Moreover, many of the computationally expensive components of RPCA
(including the SVD) are being implemented on the graphics processor unit (GPU)
for significant speed-up. These algorithms will have a standard implementation in
addition to the GPU implementation.

c. Test on marine optical data – The RPCA algorithm has been tested on a subset

of Marine Optical data from the sunset bay trial. Figure 4 shows the RPCA
implemented on an image sequence that contains empty images (first two rows) as
well as images populated with fish (bottom row). In all cases, a significant

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 13 of 26

signature of the background is removed, and in the case with fish, the foreground
(fish) stand out significantly against a mostly black background. These outlines
provide valuable information for classification and downstream classification
efforts.

d. Analysis of RPCA with additive noise – We seek to understand the performance

of RPCA with additive measurement noise. This may come from camera
measurement noise, or from small high-frequency debris in the image. Figure 5
shows the scaling of error versus added noise magnitude for the human face data
set. The algorithm performs quite well, even for significant noise magnitudes.

iv. Key outcomes, milestones and other achievements – It is now possible to process

marine image sequences in Matlab and Python to prepare for classification
techniques. RPCA is now part of the standard data processing pipeline.

Person 1 Person 2
Images Low-rank Sparse Images Low-rank Sparse

Figure 3: Reproduction of Fig. 4 from Candes, Li, Ma, and Wright, "Robust Principal Component
Analysis?" J. ACM, 58(3):1-37, 2011.

Table 1: Computational time (in Matlab) for RPCA computations.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 14 of 26

Figure 4: RPCA performed on optical data. Background is largely separated from foreground, allowing for
fish to stand out (bottom row).

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

η

no
rm

al
iz

ed
 e

rro
r

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

η

no
rm

al
iz

ed
 e

rro
r

Noise magnitude (x100 = %)

Er
ro

r
of

 F
or

eg
ro

un
d

(x
10

0
=

%
)

Figure 5: Scaling of foreground error with increasing additive noise.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 15 of 26

SOPO Task 4: Dynamic mode decomposition (DMD)
v. Major activities – Run DMD analysis on labeled optical data.
vi. Specific objectives – Implement DMD in Matlab and Python and then run on various

optical data to see if we can distinguish temporal signals (motion) in the frames.
vii. Significant results, including major findings, developments or conclusions

(positive or negative) – We have analyzed a subset of the optical data using the
DMD algorithm, and preliminary results indicate that there is separation in the DMD
spectrum for image sequences that have nothing of interest and the DMD spectrum
for image sequences that contain schools of fish (see Fig. 6). The DMD algorithm
has not only been implemented in Matlab and Python, but we have also implemented
a fast parallel architecture on the graphics processing unit (GPU) that promises to
make the algorithm near real-time on image sequences.

viii. Key outcomes, milestones and other achievements – The DMD algorithm was
successfully implemented on optical data, and the output (DMD spectrum) is ready to
use for classification.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S, region 1
S, region 2
S, region 3
S, region 4
S, region 5
S, region 6

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X, region 1
X, region 2
X, region 3
X, region 4
X, region 5
X, region 6

Real Part

Im
ag

in
ar

y
Pa

rt

DMD eigenvalues of X

Regions 1,2,5,6
Nothing in image

Regions 3,4
Fish school in image

DMD eigenvalues of S

Real Part

Im
ag

in
ar

y
Pa

rt

Figure 6: DMD eigenvalues for images in original matrix X and for sparse matrix S from
RPCA. DMD is applied to 10 image bursts, and regions 1,2,5,6 correspond to image sequences
with nothing in them. Image sequences 3 and 4 have schools of fish moving through them. The
DMD eigenvalues have a different signature for the images with schools of fish, since the fish
have a characteristic motion. The RPCA filter also provides better separation between images
with and without fish.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 16 of 26

SOPO Task 5: Classification
v. Major activities – Apply machine learning algorithms to classify the content of

image sequences.
vi. Specific objectives – 1) Apply machine learning methods to processed data for cross-

validated event detection, and 2) Pass processed data to Drs. Hwang and Kramer for
future discussion on classification potential.

vii. Significant results, including major findings, developments or conclusions
(positive or negative) – We have taken a subset of labeled data from H.T. Harvey &
Associates from a single day of Sunset Bay image data. Within this subset, we
extract approximately 100 images that correspond to nothing of interest in the image
and 100 images that correspond to images that contain schools of fish. We then
implement various pre-processing algorithms to the images to extract features,
followed by a suite of machine learning algorithms that are built-in to Matlab. In
particular, we implement linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA) and support vector machines (SVM). SVMs performs extremely well
on the processed data, resulting in 100% classification accuracy on this simple
subtask.
To achieve this classification performance, we take the sparse output of RPCA
corresponding to the foreground, and we perform the spatial fast Fourier transform
(FFT) to extract spatial frequency content. The FFT magnitude provides information
about the geometry of the foreground objects, while the FFT phase provides
information about the translations. This is illustrated in Fig. 7. Thus, we use the FFT
magnitude of the RPCA sparse matrix as our feature for classification. This is shown
schematically in Figs. 8 and 9. The results of the classification are shown in Tables 2
and 3.
We have also made processed data (RPCA background subtracted) available for H.T.
Harvey & Associates and Dr. Hwang on my lab server.

viii. Key outcomes, milestones and other achievements – We now have a reliable
framework to test various machine learning algorithms on various tasks related to
event detection and event classification.

Table 2: Accuracy of support vector machine (SVM) classification for various different
processed image data. The classification task is to distinguish between image sequences with no
fish or other marine wildlife and image sequences with schools of fish.
 X S Magnitude of

FFT(S)
Magnitude of

FFT(S)
(PCA=10)

% Accuracy 93.1 26.9 82.5 100

Table 3: Accuracy of linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), and support vector machine (SVM) classification on the FFT magnitude of the sparse
matrix S. Prediction of “Nothing” versus “Fish in image”.

 LDA QDA SVM
% Accuracy 85.2 89.1 100

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 17 of 26

Figure 7: Schematic illustrating the phase and magnitude components of the spatial FFT of an
image. If we have the same object in two images, but translated, then the FFT magnitude of each
image will be identical, corresponding to the geometric information. The FFT phase will encode
the different positions, and we disregard this information because we only care about the
presence of fish shapes.

!

!

Original Image, X

Low rank, L (background)

Sparse, S (foreground) MagnitudePhase

RPCA

FFT

!

Magnitude
(geometry)

Phase
(position)

Image

FFT

FFT

Original

Translated

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 18 of 26

!

Original Image, X

Low rank, L (background)

Sparse, S (foreground)

RPCA

FFT

MagnitudePhase

Figure 8: Schematic of preprocessing of images before machine learning. The sparse
foreground from RPCA is passed through an FFT to extract the Fourier magnitudes, which
encode the shape of the foreground objects.

Sparse classification in fluid dynamics 5

X =

2

4XB XC

3

5 PCA LDA

Y T wTa1

a2

h

wB
C

B C

Decision
line

Fig. 2 Schematic illustrating the use of PCA (feature extraction) and LDA (supervised classifier)
for the automatic classification of data into two categories B and C.

3 Classification of fluids based on image data

Here, we demonstrate supervised learning techniques to distinguish between the
baseline and controlled fluid flow fields from camera images. Supervised learning
requires labeled training data, where the desired distinction (i.e., baseline vs con-
trolled) is recorded in a vector of labels (i.e., ‘B’ corresponds to baseline images
and ‘C’ corresponds to controlled images). In contrast, unsupervised learning, such
as K-means, seeks to find natural clustering of the data in some feature space.

3.1 Methods – machine learning and dimensionality reduction

The methods presented here are general, and may be used to estimate other relevant
flow quantities, as long as there is a labeled set of training data. Figure 2 shows a
schematic of the supervised classification algorithm used in this work. A data matrix
X =

⇥
XB XC

⇤
is constructed by concatenating image vectors from the baseline (‘B’)

and controlled (‘C’) cases. Each image is reshaped into a large column vector with
as many rows as pixels in the original image, similar to how velocity fields are
stacked in the method of snapshots [6]. The mean image is subtracted from X.

Next, a low-rank feature space, Y , is obtained by applying the principal compo-
nents analysis (PCA), which is closely related to POD/SVD:

X = YSV⇤. (1)

In this low-dimensional coordinate system, the data is assumed to separate into clus-
ters according to the labels. Often the basis Y is truncated to only contain ener-
getic modes. A state x may be approximated in this truncated coordinate system as
x ⇡Ya , where a are the PCA/POD coordinates of x in Y .

Finally, it is possible to identify the direction w in feature space that optimally
separates the data clusters using the linear discriminant analysis (LDA) [8, 9]. Once
the discriminant vector w is determined, it is possible to project images into a deci-
sion space by taking the inner product of the image PCA coordinates a with w.

h = wT a = wTY T x. (2)

The value of h determines whether the image x is classified as category ‘B’ or ‘C’.

none
fish

Classification

SVM

Original Image, X Sparse, S (foreground) FFT Magnitude

RPCA FFT

Original Image, X Sparse, S (foreground)

RPCA FFT

Magnitude

!!
Figure 9: Schematic of how data is processed and into machine learning. We use supervised
classification, for example, using support vector machines (SVM).

Tables 4 and 5 show the accuracy of classifiers trained to distinguish images with nothing in
them versus images with something in them. Table 4 uses the full images with minimal
scrubbing; image brightness is adjusted and principal components are used to filter the data.
Table 5 uses more sophisticated data scrubbing, including RPCA for background subtraction and
extracting the Fourier magnitude of the foreground component. In both plots, increasing the rank
of the PCA truncation improves classification performance up until a rank of about r=8. The
scrubbed image classification is also more accurate. Interestingly, this classification task
(nothing vs. something) is more difficult than the previous task in the last report (nothing vs.
fish). The highest accuracy is 79%, achieved using SVM on scrubbed data with r=9 PCA modes.
This accuracy is not as high as the “fish” vs. “nothing” classification before (100% with SVM).
In the present classification, many of the images with “something” contain algae or other debris,
making them much closer to the images with “nothing”. In contrast, images with fish have a
relatively clear signature.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 19 of 26

Table 4: Accuracy of SVM, LDA, and QDA classification of images with “something” versus
“nothing” in them. This classification is performed on minimally adjusted images. The
brightness is adjusted, and principal components analysis truncation is applied to filter data.

160313 Full (adjusted) image: something VS nothing (% Accuracy)
SVM LDA QDA

PCA rank mean std mean std mean std
r = 1 38.8413 13.9323 40.1746 3.6099 32.4921 3.8207
r = 2 46.0688 3.2208 55.291 3.1536 41.7354 3.9867
r = 3 54.9788 3.5933 59.3228 3.1228 44.1164 4.2546
r = 4 50.0265 3.1337 59.2963 3.1009 60.7196 2.9561
r = 5 50.0847 3.1996 60.2751 3.1403 65.455 3.0337
r = 6 50.3915 4.7848 60.3757 3.7306 67.8995 4.0991
r = 7 56.0106 3.0898 63.7513 2.985 71.2593 3.0933
r = 8 61.381 3.7029 65.127 3.1325 69.2434 3.1358
r = 9 62.3386 3.3878 65.8889 3.1643 67.4603 3.2359

r = 10 63.9788 3.4254 65.9788 3.1733 67.1164 3.8342

Table 5: Accuracy of SVM, LDA, and QDA classification of images with “something” versus
“nothing”. This classification is performed on scrubbed images. Brightness is adjusted, RPCA
is used for background subtraction, FFT magnitude is extracted, and this is used to classify data.

160313 Scrubbed Image something VS nothing (% Accuracy)
SVM LDA QDA

PCA rank mean std mean std mean std
r = 1 37.6296 9.5245 39.709 3.2454 30.5661 2.7165
r = 2 31.1005 7.3069 43.7778 5.1975 35.672 3.0419
r = 3 47.582 4.6023 55.3915 2.9547 40.5979 3.0731
r = 4 57.3598 17.3714 55.0423 3.1464 41.0794 2.9296
r = 5 68.6402 13.4249 56.5238 3.0316 45.2381 3.2965
r = 6 66.3175 16.5216 56.6825 3.0894 47.0582 3.0822
r = 7 71.2593 15.8963 56.8677 3.2724 46.0635 3.2143
r = 8 77.9206 10.6899 59.2063 3.5525 52.4921 4.6972
r = 9 79.0952 9.6818 60.4709 3.8569 51.5556 4.9567

r = 10 76.8677 10.6127 63.0529 3.4659 56.8201 3.9479

Tables 6 and 7 show a similar classification task that distinguishes between images with one type
of fish versus two types of fish. The training and test sets are restricted to images with at least
some fish. Classification accuracy of 85% is achieved, and there is no appreciable benefit to pre-
scrubbing the images.

Table 6: Accuracy of SVM, LDA, and QDA classification of images with one or two types of
fish. This classification is performed on minimally adjusted images. The brightness is adjusted,
and principal components analysis truncation is applied to filter data.

160313 Full image: One VS Two species fish (% Accuracy)
SVM LDA QDA

PCA rank Cross-validated accuracy

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 20 of 26

r = 1 70.7692 61.5385 61.5385
r = 2 75.3846 69.2308 69.2308
r = 3 83.0769 70.7692 81.5385
r = 4 70.7692 84.6154 90.7692
r = 5 75.3846 84.6154 89.2308
r = 6 76.9231 83.0769 87.6923
r = 7 84.6154 89.2308 89.2308
r = 8 83.0769 89.2308 90.7692
r = 9 78.4615 90.7692 90.7692

r = 10 83.0769 90.7692 90.7692

Table 7: Accuracy of SVM, LDA, and QDA classification of images with one or two types of
fish. This classification is performed on scrubbed images. Brightness is adjusted, RPCA is used
for background subtraction, FFT magnitude is extracted, and this is used to classify data.

160313 Scrubbed image: One VS Two species fish
(% Accuracy)

SVM LDA QDA
PCA rank Cross-validated accuracy

r = 1 81.5385 61.5385 61.5385
r = 2 76.9231 61.5385 61.5385
r = 3 80 60 72.3077
r = 4 70.7692 83.0769 84.6154
r = 5 72.3077 84.6154 84.6154
r = 6 78.4615 84.6154 83.0769
r = 7 75.3846 84.6154 76.9231
r = 8 78.4615 84.6154 78.4615
r = 9 75.3846 84.6154 80

r = 10 78.4615 84.6154 81.5385

The classification of images with “something” into algae (class 1), invertebrates (class 2), and
vertebrates (class 3) is shown in Table 8 and in Figure 10 in terms of a confusion matrix. In this
plot, we see the columns corresponding to the “true” class of the image, while the rows
correspond to the “output” classification.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 21 of 26

Figure 10: Confusion matrix for classification of Algae, Invertebrate, and Vertebrates. The first
3x3 matrix shows the number of elements from the target class that are correctly (green) or
incorrectly (red) classified in the output class. The perimeter shows the percentage of correct
and incorrect classifications. The overall classification accuracy is 92.8%.

Table 8: Accuracy of SVM, LDA, and QDA classification of images into algae (class 1),
invertebrates (class 2) and vertebrates (class 3).
160313 Full (adjusted) image: Algae VS

Invertebrate VS vertebrate (% Accuracy)
SVM LDA QDA

PCA rank Cross-validated accuracy
r = 1 86.0643 71.5161 71.5161
r = 2 85.6049 71.2098 71.3629
r = 3 85.758 74.732 76.876
r = 4 85.9112 77.6417 77.0291
r = 5 85.758 79.6325 88.3614
r = 6 85.6049 81.9296 90.0459
r = 7 84.9923 82.0827 90.1991
r = 8 85.758 82.6953 92.1899
r = 9 85.2986 83.1547 92.343

r = 10 85.2986 84.0735 92.8025

The classification of the interest rating of the image by experts at H.T.Harvey & Associates,
(class 1 is uninteresting or unidentifiable, class 2 is moderately interesting, and class 3 is very
interesting) is also explored in Figure 11 and Table 9.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 22 of 26

Figure 11: Confusion matrix for classification of uninteresting, moderately interesting, and
interesting images. The first 3x3 matrix shows the number of elements from the target class that
are correctly (green) or incorrectly (red) classified in the output class. The perimeter shows the
percentage of correct and incorrect classifications. The overall classification accuracy is 91.7%.

Table 9: Accuracy of SVM, LDA, and QDA classification of images into uninteresting (class
1), moderately interesting (class 2) and very interesting (class 3).

160313 Full) image: InterestRank Uninteresting VS
Moderate VS Very (% Accuracy)

SVM LDA QDA
PCA rank Cross-validated accuracy

r = 1 84.0278 64.9306 64.9306
r = 2 86.4583 65.2778 65.2778
r = 3 85.7639 72.9167 80.5556
r = 4 85.4167 76.0417 84.375
r = 5 85.4167 78.4722 85.7639
r = 6 86.1111 78.4722 86.8056
r = 7 86.1111 81.5972 87.8472
r = 8 85.0694 82.6389 91.6667
r = 9 85.4167 83.6806 92.3611

r = 10 85.0694 83.6806 91.6667
There are many additional classification tasks that may be performed by taking different
combinations of labels from the data. Investigating these additional classification tasks and
extending to other days in the Sunset Bay data will be interesting directions to pursue.
Classification algorithms may also be improved with expert intuition from H.T. Harvey &
Associates as well as advanced algorithms of Jenq-Neng Hwang. A primary purpose of the

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 23 of 26

software package is to provide a flexible environment to incorporate these improvements while
building on the existing performance and algorithms.
SOPO Task 6: Deploy Software

i. Major activities – Develop and deploy software, including documentation and unit
tests.

ii. Specific objectives – The goals for this quarter are to completely document all code
and write unit tests for all major components of the code. These tests should pass.

iii. Significant results, including major findings, developments or conclusions
(positive or negative) – We have fully commented and documented the code using
the Python software SPHINX, which generates an html documentation for the code.
As users and developers continue to build on the EIGENFISH framework, the
SPHINX documentation will automatically grow to incorporate new modules and
functionality. A screenshot of the documentation html is provided below (Fig. 12).

We have also developed unit tests, which all pass, for the major components of the
code, including the loading, processing, scrubbing, and classification of images.
These unit tests are developed using the built-in Python unittest framework,
making it simple to add unit tests for future additions to the code. The code is
included in the Appendix.

iv. Key outcomes, milestones and other achievements – The implementation of
documentation and unit tests for the EIGENFISH code will greatly improve the
usability of this software and significantly improve the chances that others will use
and develop in this framework. Moreover, we have also shared a beta version of this
code with our collaborators at PNNL (Shari Matzner and Genevra Harker-Klimes),
who are testing the code on their MHK image classification data set.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 24 of 26

Figure 12. Documentation website for the EIGENFISH project, generated using SPHINX.

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 25 of 26

Project Schedule & Milestones DE-EE0006785

SOPO
Task

Number

Title / Task
Description

Task Completion Date Progress Notes
Original
Planned Actual Percent

Complete

1 Software
Pipeline M6 M6 100% Interface design is complete.

1

Milestone
1.1.1 -
Decide on
software

M3 M3 100% Software will be in Python.

1

Milestone
1.1.2 -
Determine
interface
needs for
classificatio
n

M3 M3 100% We will use standard Matlab
classification interfaces.

1
Milestone
1.1 - Dry-fit
interfaces

M6 M6 100% Dry-fit is successful

2 Obtain Data M9 M9 100%

Data is gathered and formatted.
Labeling of restricted data set has
been performed by H. T. Harvey
and Associates.

2

Milestone
2.1.1 -
Optical data
acquired

M3 M3 100% Large data set acquired by Dr.
Polagye

2
Task 2.2 -
Initial Data
Scrub

M6 M6 100%

Data format has been decided on
and subset of data has been
converted to numeric format for
analysis.

2 Task 2.3 -
Label Data M9 M9 100%

A test subset of the data has been
labeled by H. T. Harvey. A full
labeled set will be available before
machine learning testing.

3 RPCA
Module M12 M12 100% RPCA is implemented in Matlab

and in software framework

3

Milestone
3.1.1 --
Reproduce
RPCA
figure

M9 M9 100% We have reproduced fig. 4 from
RPCA paper using Matlab code

3 Milestone
3.3.1 M12 M12 100% RPCA is implemented in software

framework

DE-EE0006785
Automatic optical detection and classification of marine animals around MHK converters using machine vision

University of Washington
FY2017, Q2

Page 26 of 26

 Go/No-Go M12 M12 100%

Software interfaces decided on,
labeled optical data acquired,

RPCA implemented on canonical
dataset, and RPCA background

subtraction performance assessed
on optical data.

4 DMD Base M15 M15 100%

DMD algorithm is implemented in
Matlab and in Python software

framework, and it has been applied
to optical data.

4 Milestone
4.2.1 M15 M15 100% Implement DMD on optical data to

extract DMD spectrum.

5 Classify M18 M15 100%

We have developed a classifier to
tell the difference between images
with no content and images with

schools of fish. We have also
hosted processed data for Drs.

Hwang and Kramer.

5 Milestone
5.1.1 M15 M15 100% Develop event detection and cross-

validate on data.

5 Milestone
5.1 M15 M15 100%

Host data for Drs. Hwang and
Kramer for classification

consultation.

5 Milestone
5.2.1 M18 M18 100%

Hierarchical classification
implemented, cross-validated using
80% of data for training and 20%

of data for testing.

Milestone
6.2.1 M21 M21 100% All unit tests pass and all code is

documented.

6

Milestone
6.3.1 M24 M24 100% Software is on GitHub repository

6

Appendix 1: Open-source Python code-base

eigenfish.py

Copyright (c) 2015 Seth Pendergrass . See LICENSE .
”””
E i g en f i s h : Analyzes image sequences to determine and i d e n t i f y f i s h .
”””
import argparse
import ex t r a c t i on . e x t r a c t o r
import l e a rn i n g . l e a r n e r
import numpy
import s c ipy . misc
import scrubbing . scrubber

de f load images (f i l enames) :
””” Load images in f i l enames in to l i s t .

: param f i l enames : L i s t o f image f i l enames to load .
: r e turn : L i s t o f loaded images .
”””
i f l en (f i l enames) == 0 :

re turn None

images = []
f o r i in f i l enames :

t ry :
images . append (s c ipy . misc . imread (i))

except :
r e turn None

return images

de f c r ea te image matr ix (images) :
””” Creates a matrix with each column a separa t e f l a t t e n e d image from

images .

: param images : L i s t o f images
: r e turn : Matrix o f f l a t t e n e d images
”””
i f l en (images) == 0 :

re turn None

m, n = images [0] . shape
image mat = numpy . empty ((m ⇤ n , l en (images)))

f o r i in range (l en (images)) :
m2, n2 = images [i] . shape
i f m2 == m and n2 == n :

image mat [: , i] = images [i] . f l a t t e n ()
e l s e :

r e turn None

return image mat

i f name == ’ ma in ’ :

1

par s e r = argparse . ArgumentParser (d e s c r i p t i o n=’ E i g en f i s h ’)
pa r s e r . add argument (’�g ’ , ’��gpu ’ , a c t i on=’ s t o r e t r u e ’ ,

he lp=’ use GPU ac c e l e r a t ed math ’)
pa r s e r . add argument (’ image ’ , type=st r , nargs=’+’ ,

he lp=’ image (s) to p roce s s ’)
args = par s e r . p a r s e a r g s ()

images = load images (args . image)
i f images i s None :

p r i n t (”Image f a i l e d to load . ”)
e x i t ()

image mat = crea te image matr ix (images)
i f image mat i s None :

p r i n t (” Images are not a l l the same dimensions . ”)
e x i t ()

scrubber = scrubbing . scrubber . Scrubber ()
ex t r a c t o r = ex t r a c t i on . e x t r a c t o r . Extractor ()
l e a r n e r = l e a rn i ng . l e a r n e r . Learner ()

p r i n t (’Removing background in fo rmat ion . . . ’)
image mat = scrubber . scrub (image mat)
i f image mat i s None :

p r i n t (’ Scrubbing f a i l e d . ’)
e x i t ()

p r i n t (’ Extract ing important modes . . . ’)
image mat = ex t r a c t o r . e x t r a c t (image mat)
i f image mat i s None :

p r i n t (’ Extract ion f a i l e d . ’)
e x i t ()

p r i n t (’ C l a s s i f y i n g . . . ’)
output = l e a r n e r . c l a s s i f y (image mat)
i f image mat i s None :

p r i n t (’ I d e n t i f i c a t i o n f a i l e d . ’)
e x i t ()

p r i n t (’No marine l i f e detec ted . ’)

2

scrubbing/scrubber.py

Copyright (c) 2015 Seth Pendergrass . See LICENSE .
””” Removes unnecessary in fo rmat ion from an image sequence f o r use in machine
i d e n t i f i c a t i o n .
”””
import ctypes
import numpy
import os . path
import scrubbing . rpca
import sys

c l a s s Scrubber :
””” Manages scrubbing o f image sequences . ”””

l i b = None

de f i n i t (s e l f , gpu acce l=Fal se) :
i f gpu acce l :

path = os . path . dirname (f i l e)

i f sys . p lat form == ’ darwin ’ :
f i l ename = os . path . j o i n (

path , ’ . . / l i b e i g e n f i s h / l i b e i g e n f i s h . dy l i b ’)
e l i f sys . p lat form == ’win32 ’ :

f i l ename = os . path . j o i n (
path , ’ . . / l i b e i g e n f i s h / l i b e i g e n f i s h . d l l ’)

e l s e : # Linux
f i l ename = os . path . j o i n (

path , ’ . . / l i b e i g e n f i s h / l i b e i g e n f i s h . so ’)

s e l f . l i b = ctypes .CDLL(f i l ename)

de f scrub (s e l f , image mat) :
””” Removes background from image sequence .

: param image mat : Image sequence matrix , where each column i s a s i n g l e
f l a t t e nd frame .

: r e turn : Foreground o f each image in sequence .
”””
i f image mat i s None :

re turn

i f s e l f . l i b i s None :
re turn scrubbing . rpca . rpca (image mat) [1]

e l s e :
s = numpy . empty (image mat . shape)
p s = s . c types . data as (ctypes .POINTER(ctypes . c f l o a t))
p image mat = image mat . c types . data as (

ctypes .POINTER(ctypes . c f l o a t))
m, n = s . ctypes . shape as (ctypes . c i n t)

t ry :
r e t = s e l f . l i b .RPCA(m, n , p image mat , None , p s)
i f r e t != 0 :

re turn
except :

3

re turn

return s

4

scrubbing/rpca.py

Copyright (c) 2015 Seth Pendergrass . See LICENSE .
import math
import numpy
import s c ipy . spa r s e . l i n a l g

de f rpca (image mat) :
”””
Performs Robust P r i n c i p l e Component Ana lys i s on imagematrix , and re tu rn s
the Sparse and Low�rank matrix outputs . Uses the Augmented Lagrange
Mu l t i p l i e r Method .

: param image mat : Matrix o f images , where each column i s a s epara t e
f l a t t e n e d image .

: r e turn : A hat , E hat � Low�rank and spar s e components o f image mat .
”””

m = image mat . shape [0]
lam = 1 / math . s q r t (m)
t o l = 1e�7
max iter = 40
norm two = numpy . l i n a l g . norm(image mat , 2)
norm inf = numpy . l i n a l g . norm(image mat . f l a t t e n () , numpy . i n f) / lam
norm fro = numpy . l i n a l g . norm(image mat , ’ f r o ’)
dual norm = max(norm two , norm inf)
y = image mat / dual norm

a hat = numpy . empty (image mat . shape)
e hat = numpy . empty (image mat . shape)
mu = 1.25 / norm two
mu bar = mu ⇤ 1e7
rho = 1 .5

f o r i in range (max i ter) :
temp = image mat � a hat + 1 / mu ⇤ y
e hat = (numpy .maximum(temp � lam / mu, 0) +

numpy .minimum(temp + lam / mu, 0))

u , sigma , vt = (sc ipy . spa r s e . l i n a l g . svds (
numpy . asar ray (image mat � e hat + 1 / mu ⇤ y)))

svp = (sigma > 1 / mu) . sum()

a hat = (u [: , �svp :] . dot (numpy . d iag (sigma[�svp :] � 1 / mu)) . dot (
vt [�svp : , :]))

z = image mat � a hat � e hat
y = y + mu ⇤ z
mu = min (mu ⇤ rho , mu bar)

i f (numpy . l i n a l g . norm(z , ’ f r o ’) / norm fro) < t o l :
break

return a hat , e hat

5

extraction/extractor.py

Copyright (c) 2015 Seth Pendergrass . See LICENSE .
””” Extracts foreground data from the background o f an image sequence or v ideo .
”””
import ctypes
import ex t r a c t i on .dmd
import numpy
import os . path
import sys

c l a s s Extractor :
””” Handles e x t r a c t i on o f important modes from image sequence . ”””

l i b = None

de f i n i t (s e l f , gpu acce l=Fal se) :
i f gpu acce l i s True :

path = os . path . dirname (f i l e)

i f sys . p lat form == ’ darwin ’ :
f i l ename = os . path . j o i n (

path , ’ . . / l i b e i g e n f i s h / l i b e i g e n f i s h . dy l i b ’)
e l i f sys . p lat form == ’win32 ’ :

f i l ename = os . path . j o i n (
path , ’ . . / l i b e i g e n f i s h / l i b e i g e n f i s h . d l l ’)

e l s e : # Linux
f i l ename = os . path . j o i n (

path , ’ . . / l i b e i g e n f i s h / l i b e i g e n f i s h . so ’)

s e l f . l i b = ctypes .CDLL(f i l ename)

de f ex t r a c t (s e l f , image mat) :
””” Extracts important image f e a t u r e s from image sequence . Sequence

should have background removed f o r i d e a l r e s u l t s .

: param image mat : Image sequence matrix , where each column i s a
f l a t t e n e d image .

: r e turn : Image f e a t u r e matrix .
”””
i f image mat i s None :

re turn

i f s e l f . l i b i s None :
re turn ex t r a c t i on .dmd.dmd(image mat) [0]

e l s e :
m, n = image mat . shape
phi = numpy . empty ((m, n�1))
p phi = phi . c types . data as (ctypes .POINTER(ctypes . c f l o a t))
p image mat = image mat . c types . data as (ctypes .POINTER(ctypes . c f l o a t))
m, n = phi . c types . shape as (ctypes . c i n t)

t ry :
r e t = s e l f . l i b .DMD(m, n , p image mat , p phi , None)
i f r e t != 0 :

re turn
except :

6

re turn

return phi

7

extraction/dmd.py

Copyright (c) 2015 Seth Pendergrass . See LICENSE .
import numpy
import s c ipy . spa r s e . l i n a l g

de f dmd(image mat) :
”””
Performs Dynamic Mode Decomposition on image mat .

: param image mat : Matrix o f images , where each column i s a s epara t e
f l a t t e n e d image .

: r e turn : Phi , D � Modes o f image mat
”””

x = image mat [: , 0:�1]
y = image mat [: , 1 :]

u , sigma , vt = sc ipy . spa r s e . l i n a l g . svds (x)
sigma = numpy . diag (sigma)

a t i l d e = u . t ranspose () . dot (y) . dot (vt . t ranspose ()) . dot (1 / sigma)

w, d = numpy . l i n a l g . e i g (a t i l d e)

phi = y . dot (vt . t ranspose ()) . dot (1 / sigma) . dot (w)

re turn phi , d

8

learning/learner.py

Copyright (c) 2015 Seth Pendergrass . See LICENSE .
””” Trains a data s e t and c l a s s i f i e s image data aga in s t t h i s s e t f o r machine
i d e n t i f i c a t i o n o f ex t rac t ed image f e a t u r e s .
”””

c l a s s Learner :
””” Manages machine l e a rn i n g from user�provided t r a i n i n g s e t . ”””

de f t r a i n (s e l f) :
””” Train t h i s l e a r n e r ’ s data s e t with known va lue s . ”””
re turn None

de f c l a s s i f y (s e l f , image mat) :
””” C l a s s i f i e s f e a t u r e s o f image sequence aga in s t t r a in ed data s e t .

: param image mat : Features ex t rac t ed from image sequence .
”””
re turn None

9

libeigenfish/libeigenfish.h

/⇤
Copyright (c) 2015 Seth Pendergrass . See LICENSE .

⇤/

/⇤
Performs Robust P r i n c i p l e Component Ana lys i s on X us ing OpenCL .

m, n � number o f rows and columns o f X, r e s p e c t i v e l y
X � t a r g e t matrix
L , S � low�rank (background) and spar s e (foreground) matr i ce s formed from X,

such that X = L + S
⇤/
i n t RPCA(i n t m, i n t n , f l o a t ⇤ X, f l o a t ⇤ L , f l o a t ⇤ S) ;

/⇤
Performs Dynamic Mode Decomposition on X us ing OpenCL .

m, n � number o f rows and columns o f X, r e s p e c t i v e l y
X � t a r g e t matrix
Phi �
D �

⇤/
i n t DMD(in t m, i n t n , f l o a t ⇤ X, f l o a t ⇤ Phi , f l o a t ⇤ D) ;

10

libeigenfish/libeigenfish.cpp

/⇤
Copyright (c) 2015 Seth Pendergrass . See LICENSE .

⇤/
#inc lude <f stream>
#inc lude <s t r ings t ream>
us ing namespace std ;

i n t RPCA(i n t m, i n t n , f l o a t ⇤ X, f l o a t ⇤ L , f l o a t ⇤ S) {
c l p l a t f o rm i d platID ;
c l d e v i c e i d devID ;
c l c o n t e x t context ;
cl command queue queueKernel , queueTransfer ;
c l program program ;

c l i n t e r r o r ;
s i z e t progS ize ;
i f s t r e am f i l e (” rpca . c l ”) ;
s t r i ng s t r eam stream << f i l e . rdbuf () ;
s t r i n g progSrc = stream . s t r () ;
f i l e . c l o s e () ;

e r r o r = clGetPlat formIDs (1 , &platID , nu l l p t r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

e r r o r = clGetDeviceIDs (platID , CL DEVICE TYPE GPU, 1 , &devID , nu l l p t r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

c l b o o l a v a i l a b l e ;
e r r o r = c lGetDev ice In fo (devID , CL DEVICE AVAILABLE, s i z e o f (a v a i l a b l e) ,

&ava i l ab l e , nu l l p t r) ;
i f (! a v a i l a b l e | | e r r o r != CL SUCCESS) return 1 ;

e r r o r = c lGetDev ice In fo (devID , CL DEVICE COMPILER AVAILABLE,
s i z e o f (a v a i l a b l e) , &ava i l ab l e , nu l l p t r) ;

i f (! a v a i l a b l e | | e r r o r != CL SUCCESS) return 1 ;

c l command queue propert ies props ;
e r r o r = c lGetDev ice In fo (devID , CL DEVICE QUEUE PROPERTIES, s i z e o f (props) ,

&props , nu l l p t r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
props &= CL QUEUE OUT OF ORDER EXEC MODE ENABLE;

context = clCreateContext (0 , 1 , &devID , nu l lp t r , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

queueKernel = clCreateCommandQueue (context , devID , props , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
queueTransfer = clCreateCommandQueue (context , devID , props , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

program = clCreateProgramWithSource (context , 1 , &progSrc . c s t r () , &progSize ,
&e r r o r) ;

i f (e r r o r != CL SUCCESS) return 1 ;

e r r o r = clBuildProgram (program , 0 , nu l lp t r , ”�c l�f a s t�re laxed�math” ,
nu l lp t r , n u l l p t r) ;

11

i f (e r r o r != CL SUCCESS) return 1 ;

/⇤
Memory

⇤/
cl mem mEhat = c lCr ea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mD = c lCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mAhat = c lCr ea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mY = c lCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mXtX = c lCrea t eBu f f e r (context , CL MEMREADWRITE | CL MEM ALLOC HOST PTR,

s i z e o f (c l f l o a t) ⇤ n ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mU = c lCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mS = c lCrea t eBu f f e r (context , CLMEMREADWRITE | CL MEM ALLOC HOST PTR,

s i z e o f (c l f l o a t) ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mV = c lCrea t eBu f f e r (context , CLMEMREADWRITE | CL MEM ALLOC HOST PTR,

s i z e o f (c l f l o a t) ⇤ n ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mZ = c lCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
cl mem mNorm = c lCrea t eBu f f e r (context , CL MEMREADWRITE | CL MEM ALLOC HOST PTR

,
s i z e o f (c l f l o a t) , nu l lp t r , &e r r o r) ;

i f (e r r o r != CL SUCCESS) return 1 ;

/⇤
Kernels

⇤/
c l k e r n e l kYInit = c lCreateKerne l (program , ” y I n i t ” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kYInit , 0 , s i z e o f (cl mem) , &mY) ;
c lSetKerne lArg (kYInit , 1 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kYInit , 3 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kYInit , 4 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kEhat = c lCreateKerne l (program , ” ehat ” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kXtX , 0 , s i z e o f (cl mem) , &mEhat) ;
c lSetKerne lArg (kXtX , 1 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kXtX , 2 , s i z e o f (cl mem) , &mAhat) ;
c lSetKerne lArg (kXtX , 3 , s i z e o f (cl mem) , &mY) ;
c lSetKerne lArg (kXtX , 6 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kXtX , 7 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kSvdTemp = clCreateKerne l (program , ”svdTemp” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kSvdTemp , 0 , s i z e o f (cl mem) , &mXtx) ;
c lSetKerne lArg (kSvdTemp , 1 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kSvdTemp , 2 , s i z e o f (cl mem) , &mEhat) ;

12

c lSetKerne lArg (kSvdTemp , 3 , s i z e o f (cl mem) , &mY) ;
c lSetKerne lArg (kSvdTemp , 5 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kSvdTemp , 6 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kU = c lCreateKerne l (program , ”u” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kU, 0 , s i z e o f (cl mem) , &mU) ;
c lSetKerne lArg (kU, 1 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kU, 2 , s i z e o f (cl mem) , &mS) ;
c lSetKerne lArg (kU, 3 , s i z e o f (cl mem) , &mV) ;
c lSetKerne lArg (kU, 4 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kU, 5 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kAhat = c lCreateKerne l (program , ”ahat” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kAhat , 0 , s i z e o f (cl mem) , &mAhat) ;
c lSetKerne lArg (kAhat , 1 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kAhat , 2 , s i z e o f (cl mem) , &mS) ;
c lSetKerne lArg (kAhat , 3 , s i z e o f (cl mem) , &mV) ;
c lSetKerne lArg (kAhat , 4 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kAhat , 5 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kZ = c lCreateKerne l (program , ”z” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kZ , 0 , s i z e o f (cl mem) , &mZ) ;
c lSetKerne lArg (kZ , 1 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kZ , 2 , s i z e o f (cl mem) , &mAhat) ;
c lSetKerne lArg (kZ , 3 , s i z e o f (cl mem) , &mEhat) ;
c lSetKerne lArg (kZ , 4 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kZ , 5 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kY = c lCreateKerne l (program , ”y” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kY, 0 , s i z e o f (cl mem) , &mY) ;
c lSetKerne lArg (kY, 1 , s i z e o f (cl mem) , &mZ) ;
c lSetKerne lArg (kY, 2 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kY, 3 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kNorm2 = c lCreateKerne l (program , ”norm2” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kNorm2 , 0 , s i z e o f (cl mem) , &mXtX) ;
c lSetKerne lArg (kNorm2 , 2 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kNorm2 , 3 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kVecNormInf = c lCreateKerne l (program , ”vecNormInf” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kVecNormInf , 0 , s i z e o f (cl mem) , &mNorm) ;
c lSetKerne lArg (kVecNormInf , 2 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kVecNormInf , 3 , s i z e o f (c l i n t) , &n) ;
c l k e r n e l kNormFro = c lCreateKerne l (program , ”normFro” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kNormFro , 0 , s i z e o f (cl mem) , &mNorm) ;
c lSetKerne lArg (kNormFro , 2 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kNormFro , 3 , s i z e o f (c l i n t) , &n) ;

f l o a t lambda = 1 / sq r t ((f l o a t)m) ;
f l o a t t o l = 1e�7 f ;
i n t maxIter = 40 ;

c lEnqueueWriteBuffer (queueTransfer , mD, CL TRUE, 0 ,
s i z e o f (c l f l o a t) ⇤ m ⇤ n , X, 0 , nu l lp t r , n u l l p t r) ;

s i z e t workGbl [2] = {m, n } ;
s i z e t workLcl [2] = {8 , 8} ;

13

f l o a t norm2 ;
f l o a t ⇤ XtX = new f l o a t [n ⇤ n] ;
c lSetKerne lArg (kNorm2 , 1 , s i z e o f (cl mem) , &mD) ;
clEnqueueNDRangeKernel (queueKernel , kNorm2 , 2 , nu l l p t r , workGbl , workLcl , 0 ,

nu l l p t r , n u l l p t r) ;
ckEnqueueReadBuffer (queueTransfer , mXtX, CL TRUE, 0 ,

s i z e o f (c l f l o a t) ⇤ n ⇤ n , XtX, 0 , nu l lp t r , n u l l p t r) ;

d e l e t e [] XtX ;

f l o a t normInf ;
c lSetKerne lArg (kVecNormInf , 1 , s i z e o f (cl mem) , &mD) ;
clEnqueueNDRangeKernel (queueKernel , kVecNormInf , 2 , nu l lp t r , workGbl ,

workLcl , 0 , nu l l p t r , n u l l p t r) ;
ckEnqueueReadBuffer (queueTransfer , mNorm, CL TRUE, 0 , s i z e o f (c l f l o a t) ,

normInf , 0 , nu l l p t r , n u l l p t r) ;

f l o a t normDual = max(norm2 , normInf) ;
f l o a t normFro ;
c lSetKerne lArg (kNormFro , 1 , s i z e o f (cl mem) , &mD) ;
clEnqueueNDRangeKernel (queueKernel , kNormFro , 2 , nu l lp t r , workGbl , workLcl ,

0 , nu l l p t r , n u l l p t r) ;
ckEnqueueReadBuffer (queueTransfer , mNorm, CL TRUE, 0 , s i z e o f (c l f l o a t) ,

normFro , 0 , nu l l p t r , n u l l p t r) ;

f l o a t ⇤ Ahat = L ;
f l o a t ⇤ Ehat = S ;
f l o a t mu = 1.25 f / norm2
f l o a t muBar = mu ⇤ 1e7 ;
f l o a t rho = 1 .5 f ;
clEnqueueNDRangeKernel (queueKernel , kYInit , 2 , nu l l p t r , workGbl , workLcl ,

0 , nu l l p t r , n u l l p t r) ;

f o r (i n t i = 0 ; i < maxIter ; ++i) {
clEnqueueNDRangeKernel (queueKernel , kEhat , 2 , nu l l p t r , workGbl , workLcl ,

0 , nu l l p t r , n u l l p t r) ;
clEnqueueNDRangeKernel (queueKernel , kSvdTemp , 2 , nu l l p t r , workGbl ,

workLcl , 0 , nu l l p t r , n u l l p t r) ;

f l o a t ⇤ svdt = new f l o a t [n ⇤ n] ;
ckEnqueueReadBuffer (queueTransfer , mSvdTemp, CL TRUE, 0 , s i z e o f (c l f l o a t) ,

svdt , 0 , nu l l p t r , n u l l p t r) ;

char JOBZ = ’V ’ ;
char RANGE = ’A ’ ;
char UPLO = ’U ’ ;
i n t N = n � 1 ;
i n t LDA = N;
f l o a t VL, VU;
i n t IL , IU ;
f l o a t ABSTOL = 0 ;
i n t M = N;
f l o a t ⇤ W = new f l o a t [N] ;
i n t LDZ = N;
f l o a t ⇤ Z = new f l o a t [LDZ ⇤ M] ;
i n t ⇤ ISUPPZ = new in t [2 ⇤ M] ;
i n t LWORK = 26 ⇤ N;
f l o a t ⇤ WORK = new f l o a t [LWORK] ;
i n t LIWORK = 10 ⇤ N;

14

i n t ⇤ IWORK = new in t [LIWORK] ;
i n t INFO = 0 ;

s s y ev r (&JOBZ, &RANGE, &UPLO, &N, svdt , &LDA, &VL, &VU, &IL , &IU , &ABSTOL,
&M, W, Z , &LDZ, ISUPPZ , WORK, &LWORK, IWORK, &LIWORK, &INFO) ;

i f (INFO) return 1 ;

d e l e t e [] svdt ;

c lEnqueueWriteBuffer (queueTransfer , mV, CL TRUE, 0 ,
s i z e o f (c l f l o a t) ⇤ n ⇤ n , VL, 0 , nu l lp t r , n u l l p t r) ;

c lEnqueueWriteBuffer (queueTransfer , mS, CL TRUE, 0 ,
s i z e o f (c l f l o a t) ⇤ n , W, 0 , nu l lp t r , n u l l p t r) ;

clEnqueueNDRangeKernel (queueKernel , kU, 2 , nu l lp t r , workGbl , workLcl ,
0 , nu l l p t r , n u l l p t r) ;

clEnqueueNDRangeKernel (queueKernel , kAhat , 2 , nu l l p t r , workGbl , workLcl ,
0 , nu l l p t r , n u l l p t r) ;

clEnqueueNDRangeKernel (queueKernel , kZ , 2 , nu l l p t r , workGbl , workLcl ,
0 , nu l l p t r , n u l l p t r) ;

clEnqueueNDRangeKernel (queueKernel , kY, 2 , nu l lp t r , workGbl , workLcl ,
0 , nu l l p t r , n u l l p t r) ;

c lSetKerne lArg (kNormFro , 1 , s i z e o f (cl mem) , &mZ) ;
clEnqueueNDRangeKernel (queueKernel , kNormFro , 2 , nu l lp t r , workGbl ,

workLcl , 0 , nu l l p t r , n u l l p t r) ;
ckEnqueueReadBuffer (queueTransfer , mNorm, CL TRUE, 0 , s i z e o f (c l f l o a t) ,

normFro , 0 , nu l l p t r , n u l l p t r) ;
i f (normFro / normDual < t o l)

break ;
}

clReleaseMemObject (mY) ;
clReleaseMemObject (mD) ;
clReleaseMemObject (mEhat) ;
clReleaseMemObject (mAhat) ;
clReleaseMemObject (mXtX) ;
clReleaseMemObject (mU) ;
clReleaseMemObject (mS) ;
clReleaseMemObject (mV) ;
clReleaseMemObject (mZ) ;
clReleaseMemObject (mNorm) ;

c lRe l ea s eKerne l (kYInit) ;
c lRe l ea s eKerne l (kEhat) ;
c lRe l ea s eKerne l (kSvdTemp) ;
c lRe l ea s eKerne l (kU) ;
c lRe l ea s eKerne l (kAhat) ;
c lRe l ea s eKerne l (kZ) ;
c lRe l ea s eKerne l (kY) ;
c lRe l ea s eKerne l (kNorm2) ;
c lRe l ea s eKerne l (kVecNormInf) ;
c lRe l ea s eKerne l (kNormFro) ;

clReleaseCommandQueue (queueTransfer) ;
clReleaseCommandQueue (queueKernel) ;
c lRe l easeContext (context) ;
c lReleaseProgram (program) ;

}

15

i n t DMD(in t m, i n t n , f l o a t ⇤ X, f l o a t ⇤ Phi , f l o a t ⇤ D) {
c l p l a t f o rm i d platID ;
c l d e v i c e i d devID ;
c l c o n t e x t context ;
cl command queue queueKernel , queueTransfer ;
c l program program ;

c l i n t e r r o r ;
s i z e t progS ize ;
s t r i n g progSrc = LoadProgram (”dmd. c l ” , &progS ize) ;
e r r o r = clGetPlat formIDs (1 , &platID , nu l l p t r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
e r r o r = clGetDeviceIDs (platID , CL DEVICE TYPE GPU, 1 , &devID , nu l l p t r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

c l b o o l a v a i l a b l e ;
e r r o r = c lGetDev ice In fo (devID , CL DEVICE AVAILABLE, s i z e o f (a v a i l a b l e) ,

&ava i l ab l e , nu l l p t r) ;
i f (! a v a i l a b l e | | e r r o r != CL SUCCESS) return 1 ;
e r r o r = c lGetDev ice In fo (devID , CL DEVICE COMPILER AVAILABLE,

s i z e o f (a v a i l a b l e) , &ava i l ab l e , nu l l p t r) ;
i f (! a v a i l a b l e | | e r r o r != CL SUCCESS) return 1 ;

c l u l on g maxMem;
e r r o r = c lGetDev ice In fo (devID , CL DEVICE GLOBAL MEM SIZE, s i z e o f (maxMem) ,

&maxMem, nu l l p t r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

s i z e t szMem ;
i f (! stream) {

szMem = s i z e o f (c l f l o a t) ⇤
(n ⇤ m + 7 ⇤ (n � 1) ⇤ (n � 1) + 2 ⇤ (n � 1)) ;

i f (getPhi | | getS)
szMem += (n � 1) ⇤ m;

i f (getS)
szMem += n ⇤ m;

}
e l s e {

szMem = s i z e o f (c l f l o a t) ⇤
(n ⇤ m + 5 ⇤ (n � 1) ⇤ (n � 1) + 2 ⇤ (n � 1) + 2 ⇤ 2 ⇤ (n � 1)) ;

i f (getPhi | | getS)
szMem += 2 ⇤ m;

i f (getS)
szMem += m;

}

i f (maxMem < szMem) return 1 ;

c l command queue propert ies props ;
e r r o r = c lGetDev ice In fo (devID , CL DEVICE QUEUE PROPERTIES, s i z e o f (props) ,

&props , nu l l p t r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
props &= CL QUEUE OUT OF ORDER EXEC MODE ENABLE;

context = clCreateContext (0 , 1 , &devID , nu l lp t r , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

queueKernel = clCreateCommandQueue (context , devID , props , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

16

queueTransfer = clCreateCommandQueue (context , devID , props , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

const char ⇤ s r c = progSrc . c s t r () ;
program = clCreateProgramWithSource (context , 1 , &src , &progSize ,

&e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

e r r o r = clBuildProgram (program , 0 , nu l lp t r , ”�c l�f a s t�re laxed�math” ,
nu l lp t r , n u l l p t r) ;

i f (e r r o r != CL SUCCESS) return 1 ;

mA = c lCrea t eBu f f e r (context , CL MEM READWRITE,
s i z e o f (c l f l o a t) ⇤ m ⇤ n , nu l lp t r , &e r r o r) ;

i f (e r r o r != CL SUCCESS) return 1 ;
mXtX = c lCrea t eBu f f e r (context , CL MEMREADWRITE | CL MEM ALLOC HOST PTR,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mV = c lCrea t eBu f f e r (context , CL MEMREADWRITE | CL MEM ALLOC HOST PTR,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mS = c lCrea t eBu f f e r (context , CLMEMREADWRITE | CL MEM ALLOC HOST PTR,

s i z e o f (c l f l o a t) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mD = c lCrea t eBu f f e r (context , CLMEMREADWRITE | CL MEM ALLOC HOST PTR,

s i z e o f (c l f l o a t) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mXtY = c lCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mUtY = c lCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mAtilde = c lCr ea t eBu f f e r (context , CL MEMREADWRITE | CL MEM ALLOC HOST PTR,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

i f (! stream) {
mW = clCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mVSiW = c lCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mPhi = c lCr ea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m ⇤ (n � 1) , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mS2 = c lCr ea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m ⇤ n , nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

}
e l s e {

mW = clCrea t eBu f f e r (context , CL MEM READWRITE,
s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ 2 , nu l l p t r , &e r r o r) ;

i f (e r r o r != CL SUCCESS) return 1 ;
mVSiW = c lCrea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ 2 , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mPhi = c lCr ea t eBu f f e r (context , CL MEM READWRITE,

17

s i z e o f (c l f l o a t) ⇤ m ⇤ 2 , nu l l p t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
mS2 = c lCr ea t eBu f f e r (context , CL MEM READWRITE,

s i z e o f (c l f l o a t) ⇤ m, nu l lp t r , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;

}

kXtX = clCreateKerne l (program , ”makeXtX” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kXtX , 0 , s i z e o f (cl mem) , &mA) ;
c lSetKerne lArg (kXtX , 1 , s i z e o f (cl mem) , &mXtX) ;
c lSetKerne lArg (kXtX , 2 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kXtX , 3 , s i z e o f (c l i n t) , &n) ;

kXtY = clCreateKerne l (program , ”XtXToXtY” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kXtY , 0 , s i z e o f (cl mem) , &mXtY) ;
c lSetKerne lArg (kXtY , 1 , s i z e o f (cl mem) , &mXtX) ;
c lSetKerne lArg (kXtY , 2 , s i z e o f (cl mem) , &mA) ;
c lSetKerne lArg (kXtY , 3 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kXtY , 4 , s i z e o f (c l i n t) , &n) ;

kUtY = clCreateKerne l (program , ”calcUtY” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kUtY , 0 , s i z e o f (cl mem) , &mUtY) ;
c lSetKerne lArg (kUtY , 1 , s i z e o f (cl mem) , &mS) ;
c lSetKerne lArg (kUtY , 2 , s i z e o f (cl mem) , &mV) ;
c lSetKerne lArg (kUtY , 3 , s i z e o f (cl mem) , &mXtY) ;
c lSetKerne lArg (kUtY , 4 , s i z e o f (c l i n t) , &n) ;

kAt i lde = c lCreateKerne l (program , ” c a l cA t i l d e ” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kAti lde , 0 , s i z e o f (cl mem) , &mAtilde) ;
c lSetKerne lArg (kAti lde , 1 , s i z e o f (cl mem) , &mUtY) ;
c lSetKerne lArg (kAti lde , 2 , s i z e o f (cl mem) , &mV) ;
c lSetKerne lArg (kAti lde , 3 , s i z e o f (cl mem) , &mS) ;
c lSetKerne lArg (kAti lde , 4 , s i z e o f (c l i n t) , &n) ;

i f (! stream) {
kVSiW = clCreateKerne l (program , ”calcVSiW” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kVSiW, 0 , s i z e o f (cl mem) , &mVSiW) ;
c lSetKerne lArg (kVSiW, 1 , s i z e o f (cl mem) , &mV) ;
c lSetKerne lArg (kVSiW, 2 , s i z e o f (cl mem) , &mS) ;
c lSetKerne lArg (kVSiW, 3 , s i z e o f (cl mem) , &mW) ;
c lSetKerne lArg (kVSiW, 4 , s i z e o f (c l i n t) , &n) ;

kPhi = c lCreateKerne l (program , ” ca l cPh i ” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kPhi , 0 , s i z e o f (cl mem) , &mPhi) ;
c lSetKerne lArg (kPhi , 1 , s i z e o f (cl mem) , &mA) ;
c lSetKerne lArg (kPhi , 2 , s i z e o f (cl mem) , &mVSiW) ;
c lSetKerne lArg (kPhi , 3 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kPhi , 4 , s i z e o f (c l i n t) , &n) ;

kS = c lCreateKerne l (program , ” ca l cS ” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kS , 0 , s i z e o f (cl mem) , &mS2) ;
c lSetKerne lArg (kS , 1 , s i z e o f (cl mem) , &mPhi) ;

18

c lSetKerne lArg (kS , 2 , s i z e o f (cl mem) , &mA) ;
c lSetKerne lArg (kS , 3 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kS , 4 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kS , 5 , s i z e o f (c l i n t) , &n) ;

}
e l s e {

kVSiW = clCreateKerne l (program , ”calcVSiWStream” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kVSiW, 0 , s i z e o f (cl mem) , &mVSiW) ;
c lSetKerne lArg (kVSiW, 1 , s i z e o f (cl mem) , &mV) ;
c lSetKerne lArg (kVSiW, 2 , s i z e o f (cl mem) , &mS) ;
c lSetKerne lArg (kVSiW, 3 , s i z e o f (cl mem) , &mW) ;
c lSetKerne lArg (kVSiW, 4 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kVSiW, 5 , s i z e o f (c l i n t) , &n) ;

kPhi = c lCreateKerne l (program , ” calcPhiStream” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kPhi , 0 , s i z e o f (cl mem) , &mPhi) ;
c lSetKerne lArg (kPhi , 1 , s i z e o f (cl mem) , &mA) ;
c lSetKerne lArg (kPhi , 2 , s i z e o f (cl mem) , &mVSiW) ;
c lSetKerne lArg (kPhi , 3 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kPhi , 4 , s i z e o f (c l i n t) , &n) ;
//TODO add Astart f u r t h e r down

kS = c lCreateKerne l (program , ” calcSStream” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kS , 0 , s i z e o f (cl mem) , &mS2) ;
c lSetKerne lArg (kS , 1 , s i z e o f (cl mem) , &mPhi) ;
c lSetKerne lArg (kS , 2 , s i z e o f (cl mem) , &mA) ;
c lSetKerne lArg (kS , 3 , s i z e o f (cl mem) , &mD) ;
c lSetKerne lArg (kS , 4 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kS , 5 , s i z e o f (c l i n t) , &n) ;

}

kUpdateXtX = clCreateKerne l (program , ”updateXtX” , &e r r o r) ;
i f (e r r o r != CL SUCCESS) return 1 ;
c lSetKerne lArg (kUpdateXtX , 0 , s i z e o f (cl mem) , &mXtX) ;
c lSetKerne lArg (kUpdateXtX , 1 , s i z e o f (cl mem) , &mXtY) ;
c lSetKerne lArg (kUpdateXtX , 2 , s i z e o f (cl mem) , &mA) ;
c lSetKerne lArg (kUpdateXtX , 3 , s i z e o f (c l i n t) , &m) ;
c lSetKerne lArg (kUpdateXtX , 4 , s i z e o f (c l i n t) , &n) ;

c lEnqueueWriteBuffer (queueTransfer , mA, CL FALSE, 0 ,
s i z e o f (c l f l o a t) ⇤ m ⇤ n , a , 0 , nu l lp t r , &eA) ;

s i z e t workLcl [2] = { 8 , 8 } ;
s i z e t workGbl [2] = { n � 1 + workLcl [0] � (n � 1) % workLcl [0] ,

n � 1 + workLcl [1] � (n � 1) % workLcl [1] } ;

c l i n t r e s ;
r e s = clEnqueueNDRangeKernel (queueKernel , kXtX , 2 , nu l lp t r , workGbl ,

workLcl , 1 , &eA , &eXtX) ;
i f (r e s != CL SUCCESS) return 1 ;

i f (xtx != nu l l p t r) {
r e s = clEnqueueReadBuffer (queueTransfer , mXtX, CL TRUE, 0 ,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , xtx , 1 , &eXtX , nu l l p t r) ;
i f (r e s != CL SUCCESS) return 1 ;

}

19

r e s = clSetKerne lArg (kXtY , 5 , s i z e o f (c l i n t) , &Astart) ;
i f (r e s != CL SUCCESS) return 1 ;
r e s = clEnqueueNDRangeKernel (queueKernel , kXtY , 2 , nu l lp t r , workGbl ,

workLcl , 1 , &eXtX , &eXtY) ;
i f (r e s != CL SUCCESS) return 1 ;

i f (xty != nu l l p t r) {
r e s = clEnqueueReadBuffer (queueTransfer , mXtY, CL TRUE, 0 ,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , xty , 1 , &eXtY , nu l l p t r) ;
i f (r e s != CL SUCCESS) return 1 ;

}
r e s = clEnqueueReadBuffer (queueKernel , mXtX, CL TRUE, 0 ,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , XtX, 1 , &eXtX , nu l l p t r) ;

i f (r e s != CL SUCCESS) return 1 ;

char JOBZ = ’V ’ ;
char RANGE = ’A ’ ;
char UPLO = ’U ’ ;
i n t N = n � 1 ;
i n t LDA = N;
f l o a t VL, VU;
i n t IL , IU ;
f l o a t ABSTOL = 0 ;
i n t M = N;
f l o a t ⇤ W = new f l o a t [N] ;
i n t LDZ = N;
f l o a t ⇤ Z = new f l o a t [LDZ ⇤ M] ;
i n t ⇤ ISUPPZ = new in t [2 ⇤ M] ;
i n t LWORK = 26 ⇤ N;
f l o a t ⇤ WORK = new f l o a t [LWORK] ;
i n t LIWORK = 10 ⇤ N;
i n t ⇤ IWORK = new in t [LIWORK] ;
i n t INFO = 0 ;

s s y ev r (&JOBZ, &RANGE, &UPLO, &N, XtX, &LDA, &VL, &VU, &IL , &IU , &ABSTOL,
&M, W, Z , &LDZ, ISUPPZ , WORK, &LWORK, IWORK, &LIWORK, &INFO) ;

i f (INFO) return 1 ;

r e s = clEnqueueWriteBuffer (queueTransfer , mS, CL FALSE, 0 ,
s i z e o f (c l f l o a t) ⇤ (n � 1) , W, 0 , nu l l p t r , &eSV [0]) ;

i f (r e s != CL SUCCESS) return 1 ;
r e s = clEnqueueWriteBuffer (queueTransfer , mV, CL FALSE, 0 ,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , Z , 0 , nu l l p t r , &eSV [1]) ;
i f (r e s != CL SUCCESS) return 1 ;

i f (e != nu l l p t r)
memcpy(e , W, s i z e o f (f l o a t) ⇤ (n � 1)) ;

i f (v != nu l l p t r)
memcpy(v , Z , s i z e o f (f l o a t) ⇤ (n � 1) ⇤ (n � 1)) ;

c l e v e n t preUtYEvents [3] ;
preUtYEvents [0] = eSV [0] ;
preUtYEvents [1] = eSV [1] ;
preUtYEvents [2] = eXtY ;

c l i n t r e s ;

20

r e s = clEnqueueNDRangeKernel (queueKernel , kUtY , 2 , nu l lp t r , workGbl ,
workLcl , 3 ,
preUtYEvents , &eUtY) ;

i f (r e s != CL SUCCESS) return 1 ;

i f (uty != nu l l p t r) {
r e s = clEnqueueReadBuffer (queueTransfer , mUtY, CL TRUE, 0 ,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , uty , 1 , &eUtY , nu l l p t r) ;
i f (r e s != CL SUCCESS) return 1 ;

}

r e s = clEnqueueNDRangeKernel (queueKernel , kAti lde , 2 , nu l l p t r , workGbl ,
workLcl , 1 , &eUtY , &eAt i ld e) ;

i f (r e s != CL SUCCESS) return 1 ;

i f (a t i l d e != nu l l p t r) {
r e s = clEnqueueReadBuffer (queueTransfer , mAtilde , CL TRUE, 0 ,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , a t i l d e , 1 , &eAt i lde , nu l l p t r) ;
i f (r e s != CL SUCCESS) return 1 ;

}
r e s = clEnqueueReadBuffer (queueTransfer , mAtilde , CL TRUE, 0 ,

s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) , At i lde , 1 , &eAt i lde , nu l l p t r) ;
i f (r e s != CL SUCCESS) return 1 ;

char JOBVL = ’N ’ ;
char JOBVR = ’V ’ ;
i n t N = n � 1 ;
i n t LDA = N;
f l o a t ⇤ WR = new f l o a t [N] ;
f l o a t ⇤ WI = new f l o a t [N] ;
i n t LDVL = 1 ;
f l o a t ⇤ VR = new f l o a t [N ⇤ N] ;
i n t LDVR = N;
i n t LWORK = 4 ⇤ N;
f l o a t ⇤ WORK = new f l o a t [LWORK] ;
i n t INFO = 0 ;

sgeev (&JOBVL, &JOBVR, &N, Ati lde , &LDA, WR, WI, nu l l p t r , &LDVL, VR, &LDVR,
WORK, &LWORK, &INFO) ;

i f (INFO) return 1 ;

r e s = clEnqueueWriteBuffer (queueTransfer , mD, CL FALSE, 0 ,
s i z e o f (c l f l o a t) ⇤ (n � 1) , WR, 0 , nu l l p t r , &eWD[0]) ;

i f (r e s != CL SUCCESS) return 1 ;

s i z e t szW;
f l o a t ⇤ VRout ;
i f (stream) {

szW = s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ 2 ;
VRout = VR + (n � 1) ⇤ (n � 3) ;

}
e l s e {

szW = s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (n � 1) ;
VRout = VR;

}

r e s = clEnqueueWriteBuffer (queueTransfer , mW, CL FALSE, 0 , szW, VRout , 0 ,
nu l lp t r , &eWD[1]) ;

i f (r e s != CL SUCCESS) return 1 ;

21

memcpy(Dr . data () , WR, s i z e o f (f l o a t) ⇤ (n � 1)) ;
memcpy(Di . data () , WI, s i z e o f (f l o a t) ⇤ (n � 1)) ;

i f (e != nu l l p t r) {
memcpy(e , Dr . data () , s i z e o f (f l o a t) ⇤ (n � 1)) ;
memcpy(e + (n � 1) , Di . data () , s i z e o f (f l o a t) ⇤ (n � 1)) ;

}
i f (v != nu l l p t r)

memcpy(v , VR, s i z e o f (f l o a t) ⇤ (n � 1) ⇤ (n � 1)) ;
i f (stream) {

workLcl [0] = 8 ;
workLcl [1] = 1 ;
workGbl [0] = n � 1 + workLcl [0] � (n � 1) % workLcl [0] ;
workGbl [1] = 1 ;

}
e l s e {

workLcl [0] = 8 ;
workLcl [1] = 8 ;
workGbl [0] = n � 1 + workLcl [0] � (n � 1) % workLcl [0] ;
workGbl [1] = n � 1 + workLcl [1] � (n � 1) % workLcl [1] ;

}

i n t bg = 0 ;

i f (stream) {
r e s = clSetKerne lArg (kVSiW, 6 , s i z e o f (c l i n t) , &bg) ;
i f (r e s != CL SUCCESS) return 1 ;

}
r e s = clEnqueueNDRangeKernel (queueKernel , kVSiW, 2 , nu l lp t r , workGbl ,

workLcl , 2 , eWD, &eVSiW) ;
i f (r e s != CL SUCCESS) return 1 ;

i f (vsiw != nu l l p t r) {
s i z e t szVSiW = s i z e o f (c l f l o a t) ⇤ (n � 1) ⇤ (! stream ? (n � 1) : 2) ;

r e s = clEnqueueReadBuffer (queueTransfer , mVSiW, CL TRUE, 0 , szVSiW ,
vsiw , 1 , &eVSiW, nu l l p t r) ;

i f (r e s != CL SUCCESS) return 1 ;
}

i f (stream) {
workLcl [0] = 8 ;
workLcl [1] = 1 ;
workGbl [0] = m + workLcl [0] � m % workLcl [0] ;
workGbl [1] = 1 ;

}
e l s e {

workLcl [0] = 8 ;
workLcl [1] = 8 ;
workGbl [0] = m + workLcl [0] � m % workLcl [0] ;
workGbl [1] = n � 1 + workLcl [1] � (n � 1) % workLcl [1] ;

}

c l i n t r e s ;
r e s = clSetKerne lArg (kPhi , 5 , s i z e o f (c l i n t) , &Astart) ;
i f (r e s != CL SUCCESS) return 1 ;
r e s = clEnqueueNDRangeKernel (queueKernel , kPhi , 2 , nu l l p t r , workGbl ,

workLcl , 1 , &eVSiW, &ePhi) ;

22

i f (r e s != CL SUCCESS) return 1 ;

i f (phi != nu l l p t r) {
s i z e t szPhi = s i z e o f (c l f l o a t) ⇤ m ⇤ (! stream ? (n � 1) : 2) ;

r e s = clEnqueueReadBuffer (queueTransfer , mPhi , CL TRUE, 0 , szPhi , phi ,
1 , &ePhi , nu l l p t r) ;

i f (r e s != CL SUCCESS) return 1 ;
}
i f (queueKernel) {

c l i n t r e s = c lF i n i s h (queueKernel) ;
i f (r e s != CL SUCCESS) return 1 ;

}
i f (queueTransfer) {

c l i n t r e s = c lF i n i s h (queueTransfer) ;
i f (r e s != CL SUCCESS) return 1 ;

}

i f (mA) clReleaseMemObject (mA) ;
i f (mXtX) clReleaseMemObject (mXtX) ;
i f (mV) clReleaseMemObject (mV) ;
i f (mS) clReleaseMemObject (mS) ;
i f (mXtY) clReleaseMemObject (mXtY) ;
i f (mUtY) clReleaseMemObject (mUtY) ;
i f (mAtilde) clReleaseMemObject (mAtilde) ;
i f (mVSiW) clReleaseMemObject (mVSiW) ;
i f (mW) clReleaseMemObject (mW) ;
i f (mPhi) clReleaseMemObject (mPhi) ;
i f (mS2) clReleaseMemObject (mS2) ;

i f (kUpdateXtX) c lRe l ea s eKerne l (kUpdateXtX) ;
i f (kXtX) c lRe l ea s eKerne l (kXtX) ;
i f (kXtY) c lRe l ea s eKerne l (kXtY) ;
i f (kUtY) c lRe l ea s eKerne l (kUtY) ;
i f (kAt i lde) c lRe l ea s eKerne l (kAt i lde) ;
i f (kVSiW) c lRe l ea s eKerne l (kVSiW) ;
i f (kPhi) c lRe l ea s eKerne l (kPhi) ;
i f (kS) c lRe l ea s eKerne l (kS) ;

i f (eA) c lRe leaseEvent (eA) ;
i f (eXtX) c lRe leaseEvent (eXtX) ;
i f (eXtY) c lRe leaseEvent (eXtY) ;
i f (eSV [0]) c lRe leaseEvent (eSV [0]) ;
i f (eSV [1]) c lRe leaseEvent (eSV [1]) ;
i f (eUtY) c lRe leaseEvent (eUtY) ;
i f (eAt i l d e) c lRe leaseEvent (eAt i l de) ;
i f (eWD[0]) c lRe leaseEvent (eWD[0]) ;
i f (eWD[1]) c lRe leaseEvent (eWD[1]) ;
i f (eVSiW) c lRe leaseEvent (eVSiW) ;
i f (ePhi) c lRe leaseEvent (ePhi) ;
i f (eS) c lRe leaseEvent (eS) ;

i f (program) clReleaseProgram (program) ;
i f (queueKernel) clReleaseCommandQueue (queueKernel) ;
i f (queueTransfer) clReleaseCommandQueue (queueTransfer) ;
i f (context) c lRe leaseContext (context) ;

}

23

libeigenfish/rpca.cl

/⇤
Copyright (c) 2015 Seth Pendergrass . See LICENSE .

⇤/

#de f i n e GSZ 64
#de f i n e GWD 8

k e r n e l void y I n i t (g l o b a l f l o a t ⇤ Y, g l o b a l f l o a t ⇤ D, f l o a t normDual , i n t m,
i n t n) {

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

i n t idx = r ⇤ n + c ;

Y[idx] = D[idx] / normDual ;
}

k e r n e l void ehat (g l o b a l f l o a t ⇤ E hat , g l o b a l f l o a t ⇤ D,
g l o b a l f l o a t ⇤ A hat , g l o b a l f l o a t ⇤ Y, f l o a t mu,

f l o a t lambda , i n t m, i n t n) {
s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

i n t idx = r ⇤ n + c ;

f l o a t T = D[idx] � A hat [idx] + Y[idx] / mu;
E hat [idx] = max(T � lambda / mu, 0) + min (T + lambda / mu, 0) ;

}

k e r n e l void svdTemp(g l o b a l f l o a t ⇤ XtX, g l o b a l f l o a t ⇤ D,
g l o b a l f l o a t ⇤ E hat , g l o b a l f l o a t ⇤ Y, f l o a t mu, i n t m,

i n t n) {
s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

24

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

i n t idx = r ⇤ n + c ;

f l o a t sum = 0 ;
f o r (i n t i = 0 ; i < m, ++i) {

sum += (D[i ⇤ n + r] � E hat [i ⇤ n + r] + Y[i ⇤ n + r] / mu) ⇤
(D[i ⇤ n + c] � E hat [i ⇤ n + c] + Y[i ⇤ n + c] / mu) ;

}
XtX[idx] = sum ;

}

k e r n e l void u(g l o b a l f l o a t ⇤ U, g l o b a l f l o a t ⇤ D, g l o b a l f l o a t ⇤ S ,
g l o b a l f l o a t ⇤ V, i n t m, i n t n) {

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

i n t idx = r ⇤ n + c ;

f l o a t sum = 0 ;
f o r (i n t i = 0 ; i < m; ++i) {

sum += D[r ⇤ n + i] ⇤ V[i ⇤ n + c] ;
}

U[idx] = sum ⇤ n a t i v e r s q r t (f abs (S [c])) ;
}

k e r n e l void ahat (g l o b a l f l o a t ⇤ A hat , g l o b a l f l o a t ⇤ U, g l o b a l f l o a t ⇤ S ,
g l o b a l f l o a t ⇤ V, i n t m, i n t n) {

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

i n t idx = r ⇤ n + c ;

f l o a t sum = 0 ;
f o r (i n t i = 0 ; i < m; ++i) {

sum += U[r ⇤ n + i] ⇤ S [i] ⇤ V[i ⇤ n + c] ;

25

}

A hat [idx] = sum ;
}

k e r n e l void z (g l o b a l f l o a t ⇤ Z , g l o b a l f l o a t ⇤ D, g l o b a l f l o a t ⇤ A hat ,
g l o b a l f l o a t ⇤ E hat , i n t m, i n t n) {

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

i n t idx = r ⇤ n + c ;

Z [idx] = D[idx] � A hat [idx] � E hat [idx] ;
}

k e r n e l void y (g l o b a l f l o a t ⇤ Y, g l o b a l f l o a t ⇤ Z , i n t m, i n t n) {
s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

i n t idx = r ⇤ n + c ;

Y[idx] = Y[idx] + Z [idx] ⇤ mu;
}

k e r n e l void norm2(g l o b a l f l o a t ⇤ XtX, g l o b a l f l o a t ⇤ X, i n t m, i n t n) {
s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

i n t idx = r ⇤ n + c ;

f l o a t sum = 0 ;
f o r (i n t i = 0 ; i < m, ++i) {

26

sum += X[i ⇤ n + r] ⇤ X[i ⇤ n + c] ;
}
XtX[idx] = sum ;

}

k e r n e l void vecNormInf (g l o b a l f l o a t ⇤ Norm, g l o b a l f l o a t ⇤ X, i n t m, i n t n) {
s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

l o c a l f l o a t maxRow[r] ;

f l o a t max = X[r ⇤ n] ;
f o r (i n t i = 1 ; i < n ; ++i) {

i f (X[r ⇤ n + i] > max)
max = X[r ⇤ n + i] ;

}
maxRow[r] = max ;

b a r r i e r (CLK LOCALMEM FENCE) ;

max = maxRow [0] ;
f o r (i n t i = 1 ; i < m; ++i) {

i f (maxRow[i] > max)
max = maxRow[i] ;

}
⇤Norm = max ;

}

k e r n e l void normFro (g l o b a l f l o a t ⇤ Norm, g l o b a l f l o a t ⇤ X, i n t m, i n t n) {
s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

l o c a l f l o a t sumRow[r] ;

f l o a t sum = 0 ;
f o r (i n t i = 0 ; i < n ; ++i) {

sum += X[r ⇤ n + i] ⇤ X[r ⇤ n + i] ;
}
sumRow [r] = sum ;

b a r r i e r (CLK LOCALMEM FENCE) ;

27

sum = 0 ;
f o r (i n t i = 0 ; i < m; ++i) {

sum += sumRow [i] ;
}
⇤Norm = sq r t (sum) ;

}

28

libeigenfish/dmd.cl

/⇤
Copyright (c) 2015 Seth Pendergrass . See LICENSE .

⇤/

#de f i n e GSZ 64
#de f i n e GWD 8

/⇤
XtX = A[: , :�1] ’ ⇤ A[: , :�1]

A: m ⇤ n
column major

XtX : (n � 1) ⇤ (n � 1)
⇤/

k e r n e l void makeXtX(g l o b a l f l o a t ⇤ A, g l o b a l f l o a t ⇤ XtX, i n t m, i n t n) {
n = n � 1 ;

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

l o c a l f l o a t Xl [GWD ⇤ GWD] ;
l o c a l f l o a t Xtl [GWD ⇤ GWD] ;

f l o a t sum = 0 ;

f o r (i n t i = 0 ; i < m; i += GWD) {
Xtl [r l ⇤ GWD + c l] = (c l + i < m) ? A[r ⇤ m + c l + i] : 0 ;
Xl [r l ⇤ GWD + c l] = (r l + i < m) ? A[c ⇤ m + r l + i] : 0 ;

b a r r i e r (CLK LOCALMEM FENCE) ;

f o r (i n t j = 0 ; j < GWD; ++j)
sum += Xtl [r l ⇤ GWD + j] ⇤ Xl [j ⇤ GWD + c l] ;

b a r r i e r (CLK LOCALMEM FENCE) ;
}

XtX[r ⇤ n + c] = sum ;
}

/⇤
XtY [: , :�1] = XtX [: , 1 :]
Astart i n d i c a t e s which column in A i s to be t r ea t ed as i t s f i r s t column

XtY : (n � 1) ⇤ (n � 1)
XtX : (n � 1) ⇤ (n � 1)
A: m ⇤ n

column major

29

⇤/
k e r n e l void XtXToXtY(g l o b a l f l o a t ⇤ XtY, g l o b a l f l o a t ⇤ XtX,

g l o b a l f l o a t ⇤ A, i n t m, i n t n , i n t Astart) {
n = n � 1 ;

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;

s i z e t c l = g e t l o c a l i d (1) ;

i f (rg ⇤ GWD>= n) {
f o r (i n t i = r l ⇤ GWD + c l ; i < n ⇤ (n � 1) ; i += GSZ) {

s i z e t r2 = (i / (n � 1)) % n ;
s i z e t c2 = i % (n � 1) ;
XtY [r2 ⇤ n + c2] = XtX [r2 ⇤ n + c2 + 1] ;

}
}
e l s e {

i f (rg ⇤ GWD + GWD > n)
r �= (rg ⇤ GWD + GWD � n) ;

l o c a l f l o a t Xtl [GWD ⇤ GWD] ;
l o c a l f l o a t Yl [GWD] ;

f l o a t sum = 0 ;

f o r (i n t i = 0 ; i < m; i += GWD) {
i n t rXt = (Astart + r) % (n + 1) ;
i n t cY = (Astart + n) % (n + 1) ;

Xtl [r l ⇤ GWD + c l] = (c l + i < m) ? A[rXt ⇤ m + c l + i] : 0 ;
Yl [r l] = (r l + i < m) ? A[cY ⇤ m + r l + i] : 0 ;

b a r r i e r (CLK LOCALMEM FENCE) ;

f o r (i n t j = 0 ; j < GWD; ++j)
sum += Xtl [r l ⇤ GWD + j] ⇤ Yl [j] ;

b a r r i e r (CLK LOCALMEM FENCE) ;
}
XtY[r ⇤ n + n � 1] = sum ;

}
}

/⇤
UtY = Sˆ�1 ⇤ V’ ⇤ XtY

UtY : (n � 1) ⇤ (n � 1)
S : n � 1

e i g enva lu e s o f XtX, column major , ascending
V: (n � 1) ⇤ (n � 1)

e i g env e c t o r s o f XtX, column major , V[i] => S [i]
⇤/

k e r n e l void calcUtY (g l o b a l f l o a t ⇤ UtY, g l o b a l f l o a t ⇤ S , g l o b a l f l o a t ⇤ V,
g l o b a l f l o a t ⇤ XtY, i n t n) {

n = n � 1 ;

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;

30

s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

l o c a l f l o a t Vl [GWD ⇤ GWD] ;
l o c a l f l o a t XtYl [GWD ⇤ GWD] ;

f l o a t sum = 0 ;

f o r (i n t i = 0 ; i < n ; i += GWD) {
Vl [r l ⇤ GWD + c l] = (c l + i < n) ? V[(n � 1 � r) ⇤ n + (c l + i)] : 0 ;
XtYl [r l ⇤ GWD + c l] = (r l + i < n) ? XtY [(r l + i) ⇤ n + c] : 0 ;

b a r r i e r (CLK LOCALMEM FENCE) ;

f o r (i n t j = 0 ; j < GWD; ++j)
sum += Vl [r l ⇤ GWD + j] ⇤ XtYl [j ⇤ GWD + c l] ;

b a r r i e r (CLK LOCALMEM FENCE) ;
}

UtY[r ⇤ n + c] = sum ⇤ n a t i v e r s q r t (f abs (S [n � 1 � r])) ;
}

/⇤
At i lde = UtY ⇤ V ⇤ Sˆ�1

At i lde : (n � 1) ⇤ (n � 1)
column major

UtY : (n � 1) ⇤ (n � 1)
V: (n � 1) ⇤ (n � 1)

e i g env e c t o r s o f XtX, column major , V[i] => S [i]
S : n � 1

e i g enva lu e s o f XtX, column major , ascending
⇤/

k e r n e l void c a l cA t i l d e (g l o b a l f l o a t ⇤ Ati lde , g l o b a l f l o a t ⇤ UtY,
g l o b a l f l o a t ⇤ V, g l o b a l f l o a t ⇤ S , i n t n) {

n = n � 1 ;

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

l o c a l f l o a t UtYl [GWD ⇤ GWD] ;
l o c a l f l o a t Vl [GWD ⇤ GWD] ;

31

f l o a t sum = 0 ;

f o r (i n t i = 0 ; i < n ; i += GWD) {
UtYl [r l ⇤ GWD + c l] = (c l + i < n) ? UtY [r ⇤ n + c l + i] : 0 ;
Vl [r l ⇤ GWD + c l] = (r l + i < n) ? V[(n � 1 � c) ⇤ n + r l + i] : 0 ;

b a r r i e r (CLK LOCALMEM FENCE) ;

f o r (i n t j = 0 ; j < GWD; ++j)
sum += UtYl [r l ⇤ GWD + j] ⇤ Vl [j ⇤ GWD + c l] ;

b a r r i e r (CLK LOCALMEM FENCE) ;
}

At i lde [c ⇤ n + r] = sum ⇤ n a t i v e r s q r t (f abs (S [n � 1 � c])) ;
}

/⇤
VSiW = V ⇤ Sˆ�1 ⇤ W

VSiW: (n � 1) ⇤ (n � 1)
complex

V: (n � 1) ⇤ (n � 1)
e i g env e c t o r s o f XtX, column major , V[i] => S [i]

S : n � 1
e i g enva lu e s o f XtX, column major , ascending

W: (n � 1) ⇤ (n � 1)
e i g env e c t o r s o f At i lde , column major , complex

⇤/
k e r n e l void calcVSiW(g l o b a l f l o a t ⇤ VSiW, g l o b a l f l o a t ⇤ V,

g l o b a l f l o a t ⇤ S , g l o b a l f l o a t ⇤ W, in t n) {
n = n � 1 ;

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > n)

r �= (rg ⇤ GWD + GWD � n) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

l o c a l f l o a t Vl [GWD ⇤ GWD] ;
l o c a l f l o a t S l [GWD] ;
l o c a l f l o a t Wl [GWD ⇤ GWD] ;

f l o a t sum = 0 ;

f o r (i n t i = 0 ; i < n ; i += GWD) {
Vl [r l ⇤ GWD + c l] = (c l + i < n) ? V[(n � 1 � (c l + i)) ⇤ n + r] : 0 ;
S l [c l] = (c l + i < n) ? n a t i v e r s q r t (f abs (S [n � 1 � (c l + i)])) : 0 ;
Wl [r l ⇤ GWD + c l] = (r l + i < n) ? W[c ⇤ n + r l + i] : 0 ;

b a r r i e r (CLK LOCALMEM FENCE) ;

f o r (i n t j = 0 ; j < GWD; ++j)

32

sum += Vl [r l ⇤ GWD + j] ⇤ Sl [j] ⇤ Wl[j ⇤ GWD + c l] ;

b a r r i e r (CLK LOCALMEM FENCE) ;
}

VSiW[r ⇤ n + c] = sum ;
}

/⇤
Phi = A[: , 1 :] ⇤ VSiW
Astart i n d i c a t e s which column in A i s to be t r ea t ed as i t s f i r s t column

Phi : m ⇤ (n � 1)
complex

VSiW: (n � 1) ⇤ (n � 1)
complex

A: m ⇤ n
column major

⇤/
k e r n e l void ca l cPh i (g l o b a l f l o a t ⇤ Phi , g l o b a l f l o a t ⇤ A,

g l o b a l f l o a t ⇤ VSiW, i n t m, i n t n , i n t Astart) {
n = n � 1 ;

s i z e t rg = ge t g roup id (0) ;
s i z e t r = g e t g l o b a l i d (0) ;
s i z e t r l = g e t l o c a l i d (0) ;
i f (rg ⇤ GWD + GWD > m)

r �= (rg ⇤ GWD + GWD � m) ;

s i z e t cg = ge t g roup id (1) ;
s i z e t c = g e t g l o b a l i d (1) ;
s i z e t c l = g e t l o c a l i d (1) ;
i f (cg ⇤ GWD + GWD > n)

c �= (cg ⇤ GWD + GWD � n) ;

l o c a l f l o a t Yl [GWD ⇤ GWD] ;
l o c a l f l o a t Vl [GWD ⇤ GWD] ;

f l o a t sum = 0 ;

f o r (i n t i = 0 ; i < n ; i += GWD) {
i n t cY = (Astart + c l + i + 1) % (n + 1) ;

Yl [r l ⇤ GWD + c l] = (c l + i < n) ? A[cY ⇤ m + r] : 0 ;
Vl [r l ⇤ GWD + c l] = (r l + i < n) ? VSiW[(r l + i) ⇤ n + c] : 0 ;

b a r r i e r (CLK LOCALMEM FENCE) ;

f o r (i n t j = 0 ; j < GWD; ++j)
sum += Yl [r l ⇤ GWD + j] ⇤ Vl [j ⇤ GWD + c l] ;

b a r r i e r (CLK LOCALMEM FENCE) ;
}

Phi [r ⇤ n + c] = sum ;
}

33

1125 16th Street, Suite 209 ! Arcata, CA 95521 ! Ph: 707.822.4141 ! F: 707.822.4848

Appendix 2: Memorandum

Project# 3722-01

20 July 2015

To: Dr. Steven Brunton, University of Washington, Department of Mechanical Engineering

From: Dr. Sharon Kramer, Principal Fish Ecologist; Dr. Pete Nelson, Senior Fish Ecologist;
and Ken Lindke, Fish Ecologist

Subject: Automatic optical detection and classification of marine animals around MHK
converters using machine vision. Milestone 1.1.2. Determine interface needs of for future
classification efforts

Introduction

Automated detection of fish targets from non-targets is used in many settings, predominantly to minimize the

amount of time to review and analyze images of interest taken from video imagery used to monitor fish

presence and behavior (Negrea et al. 2014). Monitoring fish behavior around MHK devices using optical

imagery is considered a necessary reality due to the need to obtain information about endangered or

threatened fish species interactions. Recent use of optical imagery to evaluate fish behavior around a tidal

turbine relied on sub-sampling imagery, rather than using automated detection (Hammar et al. 2013).

However, encounters between marine organisms and MHK energy devices are likely to be rare, and will

require means to process large quantities of imagery to hone in on events of interest. As a first step toward

development of automatic optical detection and classification of marine animals associated with MHK

devices, we assisted University of Washington by evaluating existing imagery and recommending criteria for

target discrimination.

Methods

In order to assist the University of Washington team with the development of automatic optical detection and

classification of marine animals from monitoring imagery of MHK devices, fish biologists evaluated imagery

provide by Dr. Brian Polagye taken from Puget Sound. The imagery was taken during test deployments in

March 2013 as part of the development of the Adaptable Monitoring Package proposed for use at the

Admiralty Inlet Tidal Project. The imagery evaluation was conducted in order to determine interface needs

for future classification efforts.

H. T. HARVEY & ASSOCIATES Page 2

Sequences of sample imagery were reviewed using the open-source Microsoft software Movie Maker.

Sequences of images containing relevant artifacts such as marine animals or detritus were identified and

recorded. Our evaluation focused on 1) distinguishing marine animals of interest from other non-interest

targets, and 2) identifying species taxonomic identification to the lowest level possible. Based on our review

of the imagery, we identified example imagery and potential criteria for distinguishing objects of interest from

non-target objects.

Results

Images from Camera 1 were generally of better quality, with a signal-to-noise ratio sufficiently large to allow

the reviewer to resolve marine animals from detritus, and to identify coarse features of animals such as fin

and body shape. In some cases color patterns of fish were identifiable. Images from Camera 2 had a low

signal-to-noise ratio, often making it difficult or impossible to resolve artifacts. Camera 2 images are largely

un-usable unless higher quality files are available than what we were provided. This may preclude the use of

stereo imagery for the purpose of determining size of artifacts in most cases.

Classifying images or segments of video, and artifacts within images, should be done using a decision tree-

based algorithm with the following stepped approach: 1) identify visual targets that are “of interest” (e.g., fish,

marine mammals or seabirds) and basic data on the targets, including frequency, periodicity, environmental

correlates, etc.; then 2) classify the targets into taxonomic groups based on the permitting needs for

taxonomic resolution (e.g., relevant species include listed salmonids, and if possible, which salmon species).

Our review of the provided imagery indicated that it was possible to distinguish:

1) epibenthic invertebrates from pelagic nekton

2) detritus from pelagic nekton

In some circumstances it was possible to classify pelagic nekton to lower taxonomic groups, which is

discussed below.

Distinguish epibenthic invertebrates from pelagic nekton. Epibenthic invertebrates such as crabs and

starfish were always observed on structures, and distances of movement between frames were always very

low compared to free-swimming organisms. They are also clearly distinguishable from fish by the presence of

appendages (e.g., legs and arms) (Figures 1, 2 and 3).

Distinguish detritus from pelagic nekton. Aggregations of marine detritus or plankton passed through the

camera’s field of view in a similar manor as pelagic nekton (e.g., schools of fish) (Figure 4), but can be easily

distinguished based on at least two characteristics. First, all artifacts identifiable as detritus or plankton pass

through the field of view at a consistent rate and direction that coincide with flow past the frame, whereas

pelagic nekton may be swimming in any direction and rate. Second, artifacts identifiable as detritus or

plankton exhibit little to no movement relative to each other, whereas pelagic nekton almost always move and

change direction relative to each other over very few image frames. Pelagic nekton observed in the footage

H. T. HARVEY & ASSOCIATES Page 3

reported here consisted entirely of schools of fish, however other marine animals such as squid, octopus,

large jellyfish, or marine mammals may also be observed and should be distinguishable from detritus in the

same way.

Classify pelagic nekton to the lowest possible taxonomic group. Pelagic nekton of primary interest are

marine mammals, seabirds and fish. No seabirds were observed in the footage reviewed for this task.

Regardless, some very distinct features should distinguish them as distinct from fish. Body size alone may be

a good distinguishing characteristic, although there may be some overlap between small marine mammals,

seabirds and larger fish. Seabirds should be readily identifiable by their means of swimming (wings or feet)

and their body shape. Pinnipeds should be larger than most fish or seabirds (Figure 5), and can move their

heads independently from their bodies (fish cannot turn their heads), they have two hind flippers that can

move independently of each other whereas all fish have only one caudal fin (the caudal fin may be deeply

forked, but the lobes will almost invariably move in unison),

Classification was difficult with the imagery provided but body shape was a key characteristic, e.g., fusiform

shaped fish (Figure 6) versus anguilliform shaped fish (Figure 7). At times, there are mixed schools of fish

and their body shape can be used to distinguish the different species (Figure 8) (Bond 1996). However, the

orientation of the fish relative to the camera can make it difficult to distinguish between laterally compressed

and fusiform fish, depending on whether the image is taken from the dorsal side or the lateral side of the fish

(Figure 9).

Besides body shape, classification of fish to lower taxonomic levels will need to involve criteria including the

caudal fin shape; caudal peduncle width; placement, shape size and number of dorsal fins; placement, shape

and length of pelvic and pectoral fins; and facial features such as eye size, snout shape, mouth size and

placement, and pigment patterns, etc. (see Figures 10 and 11 for examples).

Discussion

Based on our review, the potential criteria for distinguishing objects of interest from non-target objects

include:

• Size (bounded): Identify a single (or multiple singles), entire object with size >100 mm max

dimension. This should allow for the identification of a target object that is the size of a small fish or

greater. An object so close to the cameras that the field of view does not include the entire object is

likely to be difficult or impossible to identify. Stereo photogrammetry provides the means to assess

object dimensions with acceptable accuracy. A more distant object that is only partially recorded by

the cameras presents similar identification challenges. Therefore, we suggest that size be one criterion

for classifying visual targets into two bins (go/no-go).

• Movement relative to stationary reference points: Frames and other structures (i.e., for the camera,

turbine, etc.) that are fixed in the field of view provide a stationary reference point for evaluating the

movement of a visual target. All targets of interest are assumed to be moving relative to the cameras

H. T. HARVEY & ASSOCIATES Page 4

although some organisms that normally associate closely with the substrate, sessile or mobile, may

move infrequently and slowly. Motile examples include starfish and crabs; sessile examples include

mussels and sponges. Some fishes move slowly and infrequently, but even the most sedentary of

rockfish species are expected to move enough that they should be identifiable as moving objects.

Movement relative to stationary reference points, therefore, is expected to be binary (go/no-go).

• Movement relative to drifting material: Water currents will of course move both living and non-living

objects across the field of view. Some means will be necessary to distinguish between a piece of

drifting algae or marine snow and an actively swimming organism. Recording the velocity of

flocculent material drifting across the field of view should provide a basis for comparison between

this drifting material and visual targets with the means to move at least partially independent from

the prevailing current. For example, a clump of algae drifting past the camera, could fit the criteria of

a fish by size, shape, and even conformational change, but will move exactly in accord with the

current velocity—this should be sufficient to exclude such a visual target from those of interest. By

contrast, fish may drift for short periods with the current, but typically orient to that current

(rheotaxis) or exhibit a velocity incongruent with that of the current. The criterion movement relative

to ambient current velocity may match or not match ambient (go/no-go), but the velocity of a

moving visual target should also be fairly easy to measure and the magnitude (if not the direction) of

that velocity may provide additional, relevant information. For example, velocities greater than some

threshold (to be determined) may indicate that the visual target will be unidentifiable; probably there

need be no lower bound.

• Conformational changes (bounded): With the exception of cephalopods, all mobile marine organisms

of interest are limited in terms of their shape; each species has a consistent and predictable shape and

any apparent conformational changes to that shape such as occur when swimming (e.g., wave- or

partial wave-form of the body) is expected to be unique to living organisms. The outline of the image

of an inanimate object such as a plastic bag or clump of sea grass (Zostera sp.) is expected to exhibit

relatively rapid conformational changes that should allow it to be distinguished from an animate

object. A change in the ratio of maximum length to the width (measured at 90 degrees to length and

the greatest point) beyond, say, 20% may suggest that this visual target has a low probability for

identification or even classification. Changes between 10 and 20% may require review (or the

application of additional criteria). A fish viewed from a lateral perspective is likely to provide a

modest degree of conformational change, but the same fish, changing its orientation to move directly

towards or away from the cameras (for example) would exhibit a very strong conformational change.

Possibly, these instances would be so infrequent that they could be disregarded, but stereo

photogrammetry could also be used to detect this kind of change in velocity and certainly would be

indicative of an animate object.

• Movement frequency (predictable, bounded): Animals moving actively through the water, not

drifting passively, must eventually exhibit propulsive behavior (flapping fins, moving wings) although

many do use gliding behavior at some times. Movement patterns with an identifiable frequency

(amplitude probably does not matter) should correlate closely with animate objects and presumably

targets of interest. Possibly, this criterion would be related to conformational changes, as a swimming

H. T. HARVEY & ASSOCIATES Page 5

fish or bird for example is expected to make relatively constant speed through the water, and the

rhythmic movement of fins or wings provide the means for object classification. This criterion is

potentially continuous, but the lack of a measurable frequency should not result in a classification

“no interest.” A sea lion, for example, could easily glide across the field of view with modest

conformational changes and no rhythmic movement—flapping—of its flippers.

• Shape (match with fish/marine mammal/seabird): Shape or outline does have the potential to assist

enormously in identification and some fish, including species or groups of particular interest—green

sturgeon, salmonids generally—have clearly identifiable outlines or shapes (Bond 1996), at least for

human observers and under some visual conditions.

H. T. HARVEY & ASSOCIATES Page 6

Table 1. Summary of potential target criteria

Criteria Type of data Purpose Need

Size Dimensional data on
target

Go/no-go: classify as
an target of interest

Stereo photogrammetry
can provide reasonably
accurate measurements
of visual targets

Movement relative to
stationary structure

Speed and direction of
the target

Determine if the
target is moving

Video/multiple image
analysis

Movement (self-
propelled)

Speed and direction of
the object with respect
to current velocity

Determine if the
target is animate

Video/multiple image
analysis

Conformational change
Alterations in the
apparent shape of the
target

Distinguish between
living and
inanimate/dead
targets

Video/multiple image
analysis

Movement frequency

Periodicity of rhythmic
movement
(conformational
change)

Evidence for
swimming behavior Video/multiple image

analysis

Shape (Un)recognizable target
outline

Taxonomic
classification

Decision tree

References

Bond, C. E. 1996. Biology of Fishes. Second edition. Brooks/Cole, Crawfordsville, IN.

Hammar L, Andersson S, Eggertsen L, Haglund J, Gullström M, et al. (2013) Hydrokinetic Turbine Effects

on Fish Swimming Behaviour. PLoS ONE 8(12): e84141. doi:10.1371/journal.pone.0084141

Negrea, C., D.E. Thompson, S.D. Juhnke, D.S. Fryer, and F.J. Loge. 2014. Automated Detection and

Tracking of Adult Pacific Lampreys in Underwater Video Collected at Snake and Columbia River
Fishways, North American Journal of Fisheries Management, 34:1, 111-118, DOI:
10.1080/02755947.2013.849634

H. T. HARVEY & ASSOCIATES Page 7

Figure 1. Starfish on frame. Image taken on 13 March 2013, Camera 1, image 460.

H. T. HARVEY & ASSOCIATES Page 8

Figure 2. Crab facing camera. Image taken on 14 March 2013, Camera 1, image 691.

H. T. HARVEY & ASSOCIATES Page 9

Figure 3. Crab near camera. Image taken on 14 March 2013, Camera 1, image 843.

H. T. HARVEY & ASSOCIATES Page 10

Figure 4. Debris moving past the frame. Image taken on 15 March 2013, Camera 1, image 914.

H. T. HARVEY & ASSOCIATES Page 11

Figure 5. School of fish with pinniped in distance, facing the camera. Image taken on 24 March 2013,
Camera 1, image 516.

H. T. HARVEY & ASSOCIATES Page 12

Figure 6. School of fusiform fish. Image taken on 11 March 2013, Camera 1, image 722.

H. T. HARVEY & ASSOCIATES Page 13

Figure 7. School of “anguilliform” fish. Image taken on 12 March 2013, Camera 1, image 423.

H. T. HARVEY & ASSOCIATES Page 14

Figure 8. Mixed school of fusiform and anguilliform fish. Image taken on 12 March 2013, Camera 1, image
705.

H. T. HARVEY & ASSOCIATES Page 15

Figure 9. Example of laterally compressed body form (far left) versus fusiform body or orientation from the
dorsal viewpoint (left center) in the same frame. Image taken on 12 March 2013, Camera 1, image 779.

H. T. HARVEY & ASSOCIATES Page 16

Figure 10. Close-up profiles of fusiform fish (dark, foreground) showing forked caudal fin, no apparent
adipose fin, pelvic fin, and dorsal fin. In the background, likely the same species, indicating deeply forked
caudal fin, color patterning, relative eye size, and pectoral fin placement. Image taken on 25 March 2013,
Camera 1, image 306.

H. T. HARVEY & ASSOCIATES Page 17

Figure 11. Fusiform fish dorsal view (dark center foreground) showing pectoral fin placement. Likely the

same species in the background, lateral view. Image taken on 12 March 2013, Camera 1, image 562.

Data-driven methods in fluid dynamics:
Sparse classification from experimental data

Zhe Bai1, Steven L. Brunton1,⇤, Bingni W. Brunton2, J. Nathan Kutz3,
Eurika Kaiser4, Andreas Spohn4, and Bernd R. Noack4,5
1 Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
2 Department of Biology, University of Washington, Seattle, WA 98195, USA
3 Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
4 Institut PPRIME, CNRS – Université de Poitiers – ENSMA, UPR 3346, Départment Fluides,
Thermique, Combustion, F-86036 Poiters CEDEX, France
5 ISM, Technische Universität Braunschweig, Germany

Abstract This work explores the use of data-driven methods, including machine
learning and sparse sampling, for systems in fluid dynamics. In particular, camera
images of a transitional separation bubble are used with dimensionality reduction
and supervised classification techniques to discriminate between an actuated and
an unactuated flow. After classification is demonstrated on full-resolution image
data, similar classification performance is obtained using heavily sub-sampled pix-
els from the images. Finally, a sparse sensor optimization based on compressed
sensing is used to determine optimal pixel locations for accurate classification. With
5-10 specially selected sensors, the median cross-validated classification accuracy is
� 97%, as opposed to a random set of 5-10 pixels, which result in classification ac-
curacy of 70-80%. The methods developed here apply broadly to high-dimensional
data from fluid dynamics experiments. Relevant connections between sparse sam-
pling and the representation of high-dimensional data in a low-rank feature space
are discussed.
Keywords– Flow visualization, reduced-order models, proper orthogonal decompo-
sition, machine learning, classification, sparse sampling, compressed sensing.

1 The importance of data science in fluid dynamics

Fluid dynamics plays a central role in numerous scientific, industrial, and techno-
logical applications, including transportation (planes, trains, automobiles), energy
(wind, tidal, combustion), and mixing (medicine, chocolate), to name only a few.
Understanding and controlling fluid flows provides an opportunity to dramatically
improve performance in these systems, resulting in lift increase, drag reduction,
and mixing enhancement, all of which further important engineering goals of the

⇤ Corresponding author e-mail: sbrunton@uw.edu

1

2 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

modern world [1]. Rapidly developing methods in data science, largely borne out
of the computer science, statistics, and applied mathematics communities, offer a
paradigm shift in our ability to measure, model, and manipulate fluid flows.

Fluid flows are often characterized by high-dimensional, multi-scale, and non-
linear phenomena that evolve on an attractor. Although the Navier-Stokes equations
provide a detailed partial differential equation model, it is often difficult to use this
representation for engineering design and control. An insightful quote of Richard
Feynman, in his lecture on fluid mechanics, summarizes the central dilemma [2]:

“The test of science is its ability to predict. Had you never visited the earth, could you pre-
dict the thunderstorms, the volcanos, the ocean waves, the auroras, and the colorful sunset?"

Instead of analyzing equations in isolation, we collect measurements of flows
in relevant configurations and develop a hierarchy of models to describe critical
features of the flow, rather than every subtle detail. In particular, extracting large
coherent structures in fluids has provided valuable insights. The proper orthogo-
nal decomposition (POD) [3, 4, 5, 6], which is often formulated using the singular
value decomposition (SVD) [7, 8, 9], is a form of dimensionality reduction, which
takes high-dimensional data from simulations or experiments and extracts relevant
low-dimensional features. In many ways, these fundamental techniques in dimen-
sionality reduction for fluids are among the first use of data-science in complex sys-
tems. Importantly, many of the most successful methods in model reduction, such as
Galerkin projection onto POD modes, take a hybrid approach, where data is com-
bined with our knowledge of the Navier-Stokes equations to enforce dynamics [1].

Reduced-order modeling has been especially important in obtaining computa-
tionally efficient models suitable for closed-loop feedback flow control. Many com-
peting design constraints factor into effective control design, although one of the
most important considerations is the latency in making a control decision, with
larger latency imposing fundamental limitations on robust performance [10]. Thus,
as flow speeds increase and flow structures become more complex, it becomes in-
creasingly important to make fast control decisions based on efficient low-order
models. A major open problem in control theory, with particular relevance for flow
control, is the optimal placement of sensors and actuators for a control objective.

Powerful new techniques from data-science are poised to transform the analy-
sis of complex data from dynamical systems, such as fluids. In particular, machine
learning [11, 12] provides advanced capabilities to extract features and correlations.
Sparse sampling techniques, including compressed sensing [13, 14, 15, 16, 17, 18],
sparse regression [19, 20, 21], and sparse classification [22, 23, 24], allow for the
recovery of relevant large-scale information from surprisingly few measurements.

Here, we combine machine learning and sparse sampling for efficient measure-
ment and characterization of a fluid system. An overarching goal is to reduce the
burden of data acquisition and processing. Specifically, we apply sparse classi-
fication to fluid imaging. Flow visualization, such as particle image velocimetry
(PIV) [25, 26, 27], is a cornerstone in fluid mechanics, providing an understanding
of flow structures and mechanisms that may be manipulated by closed-loop feed-
back flow control. Real-time feedback control based on PIV is becoming increas-

Sparse classification in fluid dynamics 3

ingly feasible, although it remains expensive, both in hardware cost and computa-
tional power. The methods here are designed to extract valuable data from inexpen-
sive camera images of bubble visualizations, and they may also be used with PIV to
reduce the data required for reconstruction, resulting in higher sampling rates and
more inexpensive time-resolved systems. Finally, we design optimal sensor loca-
tions for categorical decisions [24], which may be eventually used for control.

1.1 Recent advances in sparsity and machine learning for fluids

Advanced methods from machine learning and compressed sensing have already be-
gun to enter fluid dynamics. Unsupervised clustering has proven effective in deter-
mining probabilistic reduced-order models based on data from the mixing layer [28],
and it has also been used to determine when to switch between various POD sub-
spaces [29]. Graph theory has recently been applied to understand the network struc-
ture underlying unsteady fluids [30]. Finally, machine learning control, based on
genetic programming [31], has been applied to numerous closed-loop flow control
experiments with impressive performance increases that exceed many alternative
control strategies [32, 33, 34].

Sparse sensing has rapidly been embraced by fluid dynamics researchers, most
likely due to the ability to sample considerably less often than suggested by the
Shannon-Nyquist sampling theorem [35, 36]. Although fluids data is typically quite
large, is expensive to collect and analyze, and has a large separation of spatial and
temporal scales, it generally has dominant low-dimensional structures that are useful
for analysis and control. Compressed sensing has been applied in a variety of con-
texts in fluid dynamics [37, 38, 39, 40]. Sparsity techniques have also been applied
to the computation of the dynamic mode decomposition (DMD) [41, 42, 43], in-
cluding promoting sparsity for mode selection [44], spatial compressed DMD [45],
and non-time resolved sampling strategies designed for particle image velocimetry
(PIV) [46, 47]. The DMD is rapidly developing, with data science, machine learn-
ing, and control extensions [48, 49, 50, 51, 52, 53]. Sparsity methods have also been
applied more broadly in dynamical systems [54, 55, 56, 57].

1.2 Fluids in the era of Big Data

Fluid dynamics is one of the original big-data communities, routinely working with
rich data sets that are large, unwieldy, and require high-performance computing to
analyze and visualize. Big data means many different things to different people,
and it is a vital part of the growing data science movement. For some, big data
implies data management: databases, data scrubbing, archiving, and reproducible
analysis. For others, big data implies scaleable architectures for applying advanced
data analysis on growing volumes of data. Yet another perspective sees big data as a

4 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

challenge to mine and visualize hidden patterns inside unwieldy high-dimensional
data.

We are in a fortunate position where there is additional high-value data to collect
for increasingly complex and engineering-relevant flows. This data will continue to
be generated in higher detail and greater volumes with advances in computational
and experimental techniques. As a community, we should view big data as a big
opportunity to coordinate our data collection and analysis efforts to solve pressing
real-world challenges. Continued efforts to collect increasing volumes of data must
be met with advanced data analytics to extract the most value from these data. The
computational methods also inform how we should collect data to maximize the
useful information.

2 Experimental description

Experiments are conducted in a low-speed water tunnel at the Institute PPRIME,
Poitiers. The closed-circuit, free surface water tunnel has a test section of 2.1m
length, 0.5m width and 0.34m height. The ramp model consists of a flat plate of
length L = 100mm followed by a smooth ramp of height 60mm and length 600mm.
The model is 498mm wide and spans the width of the test section, except for 1mm
gaps between the walls and the ramp. The ramp leading edge divides the oncoming
flow into an upper stream following the ramp contour and a stream below the model.
Downstream of the ramp, a horizontal plate prolongates the separated flow to reduce
the impact of temporal changes in the flow structure during forcing. The stagnation
point on the leading edge is controlled by adjustable pressure losses at the outlet of
the upper stream. The Reynolds number is given as Re = UL/n with respect to the
free-stream velocity U , and the kinematic viscosity n of water. A schematic of the
experimental arrangement is shown in Fig. 1 (left).

Beginning from the leading edge, a laminar zero pressure gradient boundary
layer develops along the flat plate. Above the smooth ramp this boundary layer sepa-
rates under the influence of an adverse pressure gradient which is fixed by the shape
of the ramp. Downstream of the flow detachment, the newly-formed separated shear
layer becomes unstable and undergoes laminar-to-turbulent transition, allowing the
flow to reattach. Between the wall and the separated main flow, recirculating fluid
marks the extensions of the laminar separation bubble (LSB). The ramp contour fol-
lows a polynomial shape of order 7 for which Sommer [58] numerically determined
the position of the laminar separation bubble.

To obtain a satisfactory spatial resolution of the visualized separated flow re-
gion, the Reynolds number is fixed to Re = 7900± 100, for which the separation
bubble extends over more than 50% of the ramp length. Locally-controlled forcing
is enabled by a stainless steel wire of 0.13± 0.01mm in diameter and supported
by an oscillating holder. The wire crosses the span of the model and is located at
90± 2.5mm downstream of the leading edge. A vertical sinusoidal motion of the
wire is imposed using a line servo (RS-2 modelcraft) piloted by an Arduino-Due

Sparse classification in fluid dynamics 5

Baseline training

Controlled training

Baseline test

Controlled test

Misclassified

Hydrogen bubble
seeding wire

Actuator wire

Oscillating support frame

Seeded flow field

Camera

4 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

Baseline training

Controlled training

Baseline test

Controlled test

Misclassified

Hydrogen bubble
seeding wire

Actuator wire

Oscillating support frame

Seeded flow field

Camera

Fig. 1 Schematic illustrating experimental set-up, including bubble visualization for separated
flow past a backward facing ramp.

Baseline Controlled
t = 0.118 s t = 0.118 s

t = 0.597 s t = 0.597 s

t = 1.098 s t = 1.098 s

t = 1.598 s t = 1.598 s

Fig. 2 Bubble visualizations for flow past a ramp. The baseline case is without control (left) and
the case with control (right) is used to manipulate the separation length.

Baseline

Controlled

Fig. 1 (left) Schematic illustrating the experimental set-up, including bubble visualizations of the
separated flow past a backward facing ramp. (right) Bubble visualizations for flow past a ramp are
shown for the baseline case (top) and the case with control (bottom).

microprocessor. The frequency is varied between 0.1 and 3Hz to enable the actua-
tion of the Kelvin-Helmholtz instability along the separated shear layer. In all ex-
periments, the oscillation amplitude is set at 3±1mm and the mean vertical position
of the oscillating wire is assigned to 3.5± 0.5mm above the ramp model. Accord-
ing to the preliminary tests these settings proved to be highly efficient to excite the
Kelvin-Helmholtz instability.

Flow visualizations are obtained using the hydrogen bubble technique [59]. For
that purpose, a 0.050± 0.005mm thick stainless steel wire deformed into a zigzag
pattern is fixed in the middle of the ramp at 300± 5mm downstream of the lead-
ing edge. When applying a negative potential, between 30 and 90 Volts, hydrogen
bubbles are produced at the wire and convected downstream. A computer controlled
function generator is employed to trigger the release of bubbles to obtain periodic
timelines. These timelines mark the position of the separated shear layer and patches
related to the rolling up of tracer particles by vortical structures during reattachment,
as shown in Fig. 1 (right) for the baseline and controlled cases.

The images have a resolution of 2116 ⇥ 812 pixels, and they are acquired at
10 Hz. During the process of recording the image sequence, the bubble diameter in-
crease and the timely precision of bubble release diminishes due to electrochemical
processes close to the electrodes. Furthermore, during their progression in the down-
stream direction, the bubbles shrink. Therefore, the intensity of light reflections and
contrast change in time and space during an image sequence. In the following anal-
ysis, we classify baseline and control cases using the full image data, with lighting
changes, etc., and we also use an isolated data set that consists of a short sequence of
images with constant lighting and bubble density. Throughout, these will be referred
to as “Full Data" and “Isolated Data", with the modifiers “Baseline" or “Controlled".

6 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

X =

2

4XB XC

3

5 PCA LDA

Y T wTa1

a2

h

wB
C

B C

Decision
line

Fig. 2 Schematic illustrating the use of PCA (feature extraction) and LDA (supervised classifier)
for the automatic classification of data into two categories B and C.

3 Classification of fluids based on image data

Here, we demonstrate supervised learning techniques to distinguish between the
baseline and controlled fluid flow fields from camera images. Supervised learning
requires labeled training data, where the desired distinction (i.e., baseline vs con-
trolled) is recorded in a vector of labels (i.e., ‘B’ corresponds to baseline images
and ‘C’ corresponds to controlled images). In contrast, unsupervised learning, such
as K-means, seeks to find natural clustering of the data in some feature space.

3.1 Methods – machine learning and dimensionality reduction

The methods presented here are general, and may be used to estimate other relevant
flow quantities, as long as there is a labeled set of training data. Figure 2 shows a
schematic of the supervised classification algorithm used in this work. A data matrix
X =

⇥
XB XC

⇤
is constructed by concatenating image vectors from the baseline (‘B’)

and controlled (‘C’) cases. Each image is reshaped into a large column vector with
as many rows as pixels in the original image, similar to how velocity fields are
stacked in the method of snapshots [9]. The mean image is subtracted from X.

Next, a low-rank feature space, Y , is obtained by applying the principal compo-
nents analysis (PCA), which is closely related to POD/SVD:

X = YSV⇤. (1)

In this low-dimensional coordinate system, the data is assumed to separate into clus-
ters according to the labels. Often the basis Y is truncated to only contain ener-
getic modes. A state x may be approximated in this truncated coordinate system as
x ⇡Ya , where a are the PCA/POD coordinates of x in Y .

Finally, it is possible to identify the direction w in feature space that optimally
separates the data clusters using the linear discriminant analysis (LDA) [11, 12].
Once the discriminant vector w is determined, it is possible to project images into a
decision space by taking the inner product of the image PCA coordinates a with w.

h = wT a = wTY T x. (2)

The value of h determines whether the image x is classified as category ‘B’ or ‘C’.

Sparse classification in fluid dynamics 7

The performance of a classifier is determined using cross-validation, whereby
the data is randomly partitioned into a training set (80%) and a test set (20%). The
classifier is built using only training data and it is then used to predict labels in the
test set; the percentage of correctly identified test labels determines the accuracy of
the classifier. Many rounds of cross-validation are performed on different 80%/20%
random shuffling of the data.

There are many alternatives to the choices above. First, if the data does not clus-
ter in a PCA feature space, then feature engineering will be critical to determine the
transformations that isolate features to distinguish the data. Next, there is a host of
advanced supervised learning techniques including quadratic discriminant analysis
(QDA), support vector machines (SVM), and decision trees, to name a few [11, 12].
However, we prefer to use PCA/LDA because of the ease of implementation and
their usefulness with optimization algorithms in later sections. And most impor-
tantly, the data is well-separated with LDA in a PCA feature space.

PCA is often computed using an SVD, which is a spatial-temporal decomposition
of data X into a hierarchy of spatial coherent structures, given by the columns of Y ,
and temporal coherent patterns, given by the columns of V. The importance of each
mode is quantified by the entries of the diagonal matrix S . For high-dimensional
data the SVD may be computed using the method of snapshots [9]:

X⇤X = VS 2V⇤ =) X⇤XV = VS 2. (3)

Thus S and V may be obtained by an eigendecomposition of the symmetric matrix
X⇤X. Afterwards, the modes Y may be constructed as: Y = XVS�1. Note that Y
and V are both unitary matrices.

3.2 Classification results on high resolution image data

Figure 3 shows the results of principal components analysis on the high-resolution
full image sequence data. The modal variance decays somewhat slowly, and the
modes and coefficients are shown below. Mode 2 corresponds to a lighting change
observed in the full image sequence, which can also be seen in the spikes in the
temporal coefficients in both the baseline and controlled data. When performing
PCA on the isolated image sequence, there is no longer a mode corresponding to a
change in lighting, and the modal energy decays more rapidly.

Figure 4 shows the baseline and controlled data projected into the first three PCA
coordinates, for both the full image sequence data and the isolated image sequence
data. In both cases, the baseline and control sequences are well separated, although
the separation is better for the isolated images, which have more uniform conditions.
Figure 5 shows the separating plane determined by LDA. Table 1 quantifies the
performance of LDA classification in a PCA space with 5 modes and with 10 modes.
With 10 PCA modes, the LDA classifier is perfect in both the isolated and full image
sequences. Using only 5 modes, the full image sequence has around 4% error.

8 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

0 100 200 300 400 500
10

3

10
4

10
5

10
6

Mode, k

S
in

g
u

la
r

va
lu

e
, σ

k

0 100 200 300 400 500
0

20

40

60

80

100

Mode, k

C
u

m
u

la
tiv

e
 e

n
e

rg
y

Mode 1

0 200 400

−0.2

0

0.2 Baseline Controlled Mode 4

0 200 400

−0.2

0

0.2

Mode 2

0 200 400

−0.2

0

0.2 Mode 5

0 200 400

−0.2

0

0.2

Mode 3

0 200 400

−0.2

0

0.2 Mode 6

0 200 400

−0.2

0

0.2

Fig. 3 PCA results on full image sequence data. The singular values (top) indicate the energy of
each mode. The PCA modes (left) and coefficients (right) show dominant spatial/temporal features.

α1

α2

α
3

Baseline

Controlled

Full Image Sequence Data

α1

α2

α
3

Baseline

Controlled

Isolated Image Sequence Data

Fig. 4 Data plotted in the first three PCA coordinates a = (a1,a2,a3)T . The full data (left) is
reasonably well-separated. The isolated data (right) is very well separated.

Table 1 Performance of LDA classification in a PCA feature space with 5 and 10 modes on the
full image sequence data and the isolated image sequence data.

Full Image Sequence Isolated Image Sequence

Er
ro

r 5 Modes 3.82±1.79% 0.00%
10 Modes 0.00% 0.00%

Sparse classification in fluid dynamics 9

a1
a2

a 3

Full Image Sequence Data Isolated Image Sequence Data

a1

a2

a 3

Fig. 5 The LDA separating plane is shown for one instance of cross-validation. Although all con-
trolled data are correctly classified, any purple squares to the right of the plane are misclassified,
and are also labeled with black crosses.

4 Sparse classification on compressed/subsampled data

After demonstrating in the previous section that flows may be classified accu-
rately using full-resolution images, here we show that similar classification may be
achieved using heavily subsampled or compressed image data. This is important to
reduce the data acquisition and processing required for high-level decisions. Reduc-
ing processing is important for mobile applications, where on-board computations
are power constrained, and for control, where the fastest decision is desirable.

4.1 Methods – sparsity and low rank structures

In this section, we assume that we take subsampled or compressed measurements
Y, which are related to the full resolution data X by:

Y = CX. (4)

The matrix C 2 Rp⇥n is a measurement matrix. It may consist of p random rows
of the identity matrix, which would correspond to p single-pixel measurements at
those locations. Alternatively, C may be a matrix of independent, identically dis-
tributed Gaussian or Bernoulli random variables. Random Gaussian measurements
are generically powerful for signal reconstruction [15], but single pixel measure-
ments are particularly useful for engineering purposes. Beyond their use in classi-
fying images, we may consider point sensor placement on a wing or in the ocean or
atmosphere to accumulate information about complex time-varying flows.

10 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

Even with a significant reduction in the data, accurate classification is possible,
since the relevant information exists in a low-dimensional subspace. Interestingly,
the ability to infer structures from subsampled data is not new [60]. Nearly all natu-
ral images are sparse in a discrete Fourier transform (DFT) basis, meaning that most
of the Fourier coefficients are small and may be neglected; this is the foundation of
image compression. Fluid velocity fields are also sparse in the Fourier domain [38].

If the data X is sparse in a basis Y (either DFT or PCA), then we may write:

Y = CX = CYS, (5)

where the columns of S are sparse vectors (i.e., mostly zero), and the basis Y is a
unitary matrix. Compressed sensing is based on the observation that under certain
conditions on the measurement matrix C, the projection CY will act as a near isom-
etry on sparse vectors [14, 15, 16]. This means that inner products of the columns of
Y will be similar to the inner products of corresponding columns of S. Further, since
Y is unitary in the case of a DFT or PCA basis, these inner products of columns of
Y will also resemble inner products of columns of X. Thus, using the method of
snapshots, we recover the dominant correlations in the data X from the SVD of Y:

Y⇤Y ⇡ X⇤X = S⇤S. (6)

4.2 Classification results on subsampled data

Figure 6 shows the PCA projection of the baseline and controlled data for random
single-pixel subsampling of the data. In the top row, p = 1718 random pixels are
used, which account for 0.1% of the total pixels in the image. Decreasing the number
of random pixels causes the clusters to merge, making classification more difficult.

Figure 7 shows the cross-validated classification error versus the number of ran-
dom sensors chosen. In both the top and the bottom plots, LDA classification is
applied in a PCA feature space with 10 modes, and 1000 instances were used for
cross-validation. For the isolated image sequence data, the median error is 0% for
as few as 34 random sensors, and for the full image sequence data, the median error
is 0% for 344 random sensors. As might be expected, it is easier to classify baseline
and control images in the isolated image sequence, because it is more uniform and
coherent. However, depending on the 80%/20% partition used for cross-validation,
the classification error may be nearly 50%.

The ability to perform accurate classification with p ⇠O(10)–O(100) randomly
selected single-pixel sensors has significant implications in the data-driven process-
ing and control of fluid systems from optical measurements. First, less spatial data
must be collected, reducing data transfer and making improved temporal sampling
rates possible. Second, all computations are done in a low-dimensional subspace,
making it possible to make control decisions with low latency.

Sparse classification in fluid dynamics 11

Baseline

Controlled

Full Image Sequence

1718 pixels

a1
a2

a 3

172 pixels

a1
a2

a 3

17 pixels

a1
a2

a 3

Isolated Image Sequence

a1
a2

a 3

a1
a2

a 3

a1
a2

a 3

Fig. 6 Subsampled data plotted in the first three PCA coordinates for the full image sequence (top)
and isolated image sequence (bottom). The number of random single-pixel sensors range from
1718 (left), to 172 (middle), to 17 (right). With more compression, the clusters begin to merge.

0

0.1

0.2

0.3

0.4

0.5

17 34 69 103 137 172 344 687 1031 1375 1718

Er
ro

r

Full Image Sequence Data

0

0.1

0.2

0.3

0.4

0.5

17 34 69 103 137 172 344 687 1031 1375 1718

Random Sensors

Er
ro

r

Isolated Image Sequence Data

Fig. 7 Error vs. number of random single-pixel sensors on full image sequence (top) and isolated
image sequence (bottom) for 10 PCA modes. 1000 instances are used for cross-validation. The red
line is the median, and the dashed lines and blue box boundaries denote quartiles of the distribution.

12 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

5 Optimal sensor placement and enhanced sparsity

In the previous section, we demonstrated that machine learning may be applied to
heavily subsampled data, although performance was degraded at large compression
ratios. Here, we demonstrate an algorithm that optimizes sensor locations for cat-
egorical decisions, resulting in accurate classification with an order of magnitude
less sensors than achieved with random placement [24].

5.1 Methods – optimal sensor placement

One of the cornerstone advances in compressed sensing is that it is now possible to
solve for the sparsest solution vector to an underdetermined system of equations

Ax = b, (7)

using convex optimization. Previously, solving for the sparsest vector x would in-
volve a combinatorial brute-force search to find the x with smallest `0 norm, where
kxk0 is equal to the number of nonzero elements in x. However, it is now known
that we may approximate the sparsest solution with high probability by minimiz-
ing the `1 norm, kxk1 = ÂN

k=1 |xk|, which is a convex minimization. Therefore, it is
now possible to solve increasingly large systems in a way that scales favorably with
Moore’s law of exponentially increasing computer power. There are a number of
technical restrictions on the sizes of x and b as well as the spectral properties of the
matrix A [14, 15, 16].

Recently, the `1 convex-minimization architecture has been leveraged to solve for
optimal sensor placement for categorical decision making [24]. This optimization
seeks to find a small number of pixels that are able to capture as much information
as possible about the position of an image in the decision space. Specifically, we
seek to find the sparsest vector s 2 Rn that satisfies the following relationship:

s = argmin
s0

ks0k1 such that Y T s = w. (8)

The vector s is the size of a full image, but it contains mostly zeros. Since w is
in an r-dimensional feature space, Eq. (8) may be solved with a vector s with at
most r nonzero components. Thus, it is possible to sample the image data at these
r critical pixel locations, and perform classification in an r dimensional subspace.
This is called the sparse sensor placement optimization for classification (SSPOC)
algorithm. We will demonstrate that accurate classification may be achieved using
an order of magnitude fewer sensors, as compared with randomly placed sensors.

Sparse classification in fluid dynamics 13

5.2 Classification on optimized sensors

Figure 8 shows the PCA clustering of data using 6 optimal sensor locations (top) and
6 randomly chosen pixels (bottom). The cluster separation with optimal sensors is
striking, when compared with the clusters from random sensors. The cross-validated
classification performance is shown in Fig. 9. The optimal 6 sensor locations provide
a significant improvement over random.

Baseline

Controlled

Full Sequence, Optimal Sensors

a1

a2

a 3

Isolated Sequence, Optimal Sensors

a1

a2

a 3

Full Sequence, Random Sensors

a1

a2

a 3

Isolated Sequence, Random Sensors

a1

a2

a 3

Fig. 8 PCA clustering of data using optimal sensors (top) and using random sensors (bottom).

Figure 10 shows the ensemble of sensor locations determined by the SSPOC
algorithm over 100 instances of cross-validation. A number of interesting features
are found in this data, including sampling of the boundary layer profile and the
shear layer. The boundary layer sampling is more pronounced in the isolated image
sequence data. In the baseline case, the shear layer remains steady and is nearly hor-
izontal, as opposed to the controlled case, where the Kelvin-Helmholtz instability
causes vortex roll-up to occur much sooner (see Fig. 11).

In the image sequence of the controlled case, the disturbance propagation can be
observed close to the ramp wall before the flow actually separates. This may explain
why so few sensors are along the separation line in the isolated image sequence.

14 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Full Image Sequence Data

4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Random
Optimal

Random Sensors

Er
ro

r

Isolated Image Sequence Data

Fig. 9 Comparison of cross-validated error using optimal sensor locations (black) and random
sensors (red) on the full image sequence (top) and the isolate image sequence (bottom). Here, the
LDA classification is done directly in the pixel space.

6 Conclusions and discussion

In this analysis, we demonstrate that methods from machine learning and sparse
sampling may be applied to classify fluid flows from inexpensive camera images.
In particular, we use linear discriminant analysis (LDA) clustering techniques in a
POD/PCA reduced subspace to classify images of a transitional separation bubble
with and without forcing. Sparsity techniques are used to demonstrate that similar
classification performance can be obtained with many fewer pixel measurements.
Finally, a sparse sensor optimization algorithm is used to determine the fewest pixel
sensors required for classification. We find that a small handful of sensors (between
5 and 10) result in a median cross-validated classification performance of � 97%.

There are numerous avenues to extend this work in fluid dynamics. First, it would
be natural to apply these methods to multi-way classification in flows with more
distinct states. It may also be possible to estimate the phase of a periodic or quasi-
periodic flow for use in a closed-loop feedback control strategy. The sparse esti-
mation of bifurcation regimes may also be useful for parameterized reduced-order
modeling techniques [28, 29]. It is also imperative that we do not apply machine
learning naively to fluids data without respecting the constraints and dynamics im-

Sparse classification in fluid dynamics 15

Full Image Sequence Data

Instance Ensemble

Zoom-in

Isolated Image Sequence Data

Instance Ensemble

Fig. 10 Optimal sensor locations (red) for full image sequence data (top) and isolated image se-
quence data (bottom). A single cross-validation instance is shown on the left, and the ensemble of
sensor locations are shown on the right. In each case, the second row provides a zoom-in near the
ramp. The size of the circle denotes how frequently this location was chosen in the ensemble.

Baseline Controlled

Fig. 11 Bubble visualizations for flow past a ramp with zoom-in around inlet.

16 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

posed by the flow physics. Modern tools from data science tell us how to measure
and on what space to perform computations, but they do not guarantee that the basic
physics will be enforced, such as conservation of energy. A hybrid approach, com-
bining data methods with physics will likely be essential in future robust nonlinear
flow control strategies.

The proposed sparse classification algorithm has been demonstrated on a rel-
atively low-dimensional flow with large-scale coherent structures. This geometry
is certainly relevant for many practical flows, such as are found in small aircraft
and bio-locomotion. However, these methods also scale to more complex high-
dimensional data. For example, similar algorithms have been applied to sparse
face recognition using images, and these examples require significantly more POD
modes for accurate signal reconstruction. In the context of higher-dimensional data,
a hierarchical categorization may be favorable, where a series of descriptors are
identified for a given flow. Modifying the cost function for sparse sensor selection
to include multiple categorization tasks is an interesting and important direction of
future work.

Although the basic algorithms scale to larger data sets with a greater variety
of features, there are a number of challenges that may occur specifically for high-
dimensional fluids. First, the method described above is able to classify flows based
on large spatially non-localized features, relying on the incoherence of point mea-
surements with spatial Fourier modes. However, as flow velocities increase, a num-
ber of flow structures become smaller and faster; if these spatially compact features
are important to classification, they will be challenging to locate and identify us-
ing point measurements. Richer random-projection measurements may need to be
employed in these cases. In addition, coherent structure identification methods such
as POD or DMD assume a separation of variables, and they don’t capture traveling
vorticity and local features well. This limits the applicability of these methods for
convective turbulence, where structures do not repeatably occupy the same pixels.
One potential solution to this problem is to perform classification on the magnitude
of the spatial Fourier transform, which removes the phase information.

The simultaneous explosion of data, the miniaturization of sensing and actuation
hardware, and the renaissance of techniques in applied mathematics make this an
exciting time for data-driven control in fluid dynamics. Data streams are becom-
ing increasingly large and inexpensive, both from experimental measurement and
from CFD. In the era of Big Data, it is tempting to continually gather more data
and apply the same analyses to larger data matrices. With increasingly large data
sets, innovative methods to distill meaningful features from data will become more
important. Furthermore, bio-inspired engineering and control design will likely fa-
vor low-dimensional computations that evolve on subspaces or manifolds that cap-
ture relevant information for control and decision tasks using subsampled data. The
prospect of big data in fluid dynamics is promising, and we must continue to em-
brace smart data analysis techniques to complement our big data.

Sparse classification in fluid dynamics 17

Acknowledgements We would like to thank Mark Glauser for valuable suggestions that have im-
proved this work, especially encouraging us to elaborate on the connection to big data. We grate-
fully acknowledge discussions with Josh Proctor about sparsity methods in machine learning. SLB
and ZB acknowledge generous support from the Department of Energy (DOE DE-EE0006785).
SLB also acknowledges support from the Air Force Office of Scientific Research (FA9550-14-1-
0398) and from the University of Washington department of Mechanical Engineering. SLB and
BWB acknowledge sponsorship by the UW eScience Institute as Data Science Fellows. EK, AS,
and BRN acknowledge additional support by the ANR SepaCoDe (ANR-11-BS09-018) and ANR
TUCOROM (ANR-10-CEXC-0015).

References

1. S. L. Brunton and B. R. Noack. Closed-loop turbulence control: Progress and challenges.
Applied Mechanics Reviews, 67:050801–1–050801–48, 2015.

2. Richard P Feynman, Robert B Leighton, and Matthew Sands. The Feynman Lectures on
Physics, volume 2. Basic Books, 2013.

3. William K George. Insight into the dynamics of coherent structures from a proper orthogonal
decomposition. 1988.

4. Mark N Glauser, Stewart J Leib, and William K George. Coherent structures in the axisym-
metric turbulent jet mixing layer. Springer, 1987.

5. G. Berkooz, P. Holmes, and J. L. Lumley. The proper orthogonal decomposition in the analysis
of turbulent flows. Annual Review of Fluid Mechanics, 23:539–575, 1993.

6. P. J. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, coherent structures,
dynamical systems and symmetry. Cambridge Monographs in Mechanics. Cambridge Univer-
sity Press, Cambridge, England, 2nd edition, 2012.

7. G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis,
2(2):205–224, 1965.

8. G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Nu-
merical Mathematics, 14:403–420, 1970.

9. L. Sirovich. Turbulence and the dynamics of coherent structures, parts I-III. Q. Appl. Math.,
XLV(3):561–590, 1987.

10. S. Skogestad and I. Postlethwaite. Multivariable feedback control: analysis and design. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2 edition, 2005.

11. Christopher M Bishop et al. Pattern recognition and machine learning, volume 1. springer
New York, 2006.

12. J. N. Kutz. Data-Driven Modeling & Scientific Computation: Methods for Complex Systems
& Big Data. Oxford University Press, 2013.

13. D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, 2006.

14. E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 52(2):489–509, 2006.

15. E. J. Candès and T. Tao. Near optimal signal recovery from random projections: Universal
encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425, 2006.

16. E. J. Candès. Compressive sensing. Proceedings of the International Congress of Mathemat-
ics, 2006.

17. R. G. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118–120,
2007.

18. J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666, 2007.

18 Z. Bai, S.L. Brunton, B.W. Brunton, J.N. Kutz, E. Kaiser, A. Spohn, and B.R. Noack

19. Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and R Tibshirani.
The elements of statistical learning, volume 2. Springer, 2009.

20. Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to sta-
tistical learning. Springer, 2013.

21. Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

22. J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
31(2):210–227, 2009.

23. L. Clemmensen, T. Hastie, D. Witten, and B. Ersbøll. Sparse discriminant analysis. Techno-
metrics, 53(4), 2011.

24. B. W. Brunton, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Optimal sensor placement and
enhanced sparsity for classification. arXiv preprint arXiv:1310.4217, 2013.

25. D. P. Hart. High-speed PIV analysis using compressed image correlation. Journal of Fluids
Engineering, 120:463–470, 1998.

26. S. Petra and C. Schn orr. Tomopiv meets compressed sensing. Pure Mathematics and Appli-
cations, 20(1-2):49–76, 2009.

27. C. E. Willert and M. Gharib. Digital particle image velocimetry. Experiments in Fluids,
10(4):181–193, 1991.

28. E. Kaiser, B. R. Noack, L. Cordier, A. Spohn, M. Segond, M. Abel, G. Daviller, J. Östh,
S. Krajnovic, and R. K. Niven. Cluster-based reduced-order modelling of a mixing layer. J.
Fluid Mech., 754:365–414, 2014.

29. David Amsallem, Matthew J Zahr, and Charbel Farhat. Nonlinear model order reduction based
on local reduced-order bases. International Journal for Numerical Methods in Engineering,
92(10):891–916, 2012.

30. Aditya G Nair and Kunihiko Taira. Network-theoretic approach to sparsified discrete vortex
dynamics. Journal of Fluid Mechanics, 768:549–571, 2015.

31. John R Koza. Genetic programming: on the programming of computers by means of natural
selection, volume 1. MIT press, 1992.

32. N. Gautier, J-L Aider, T. Duriez, BR Noack, M. Segond, and M. Abel. Closed-loop separation
control using machine learning. Journal of Fluid Mechanics, 770:442–457, 2015.

33. T. Duriez, V. Parezanovic, J.-C. Laurentie, C. Fourment, J. Delville, J.-P. Bonnet, L. Cordier,
B. R. Noack, M. Segond, M. Abel, N. Gautier, J.-L. Aider, C. Raibaudo, C. Cuvier, M. Stanis-
las, and S. L. Brunton. Closed-loop control of experimental shear flows using machine learn-
ing. AIAA Paper 2014-2219, 7th Flow Control Conference, 2014.

34. V. Parezanovic, J.-C. Laurentie, T. Duriez, C. Fourment, J. Delville, J.-P. Bonnet, L. Cordier,
B. R. Noack, M. Segond, M. Abel, T. Shaqarin, and S. L. Brunton. Mixing layer manipulation
experiment – from periodic forcing to machine learning closed-loop control. Journal Flow
Turbulence and Combustion, 94(1):155–173, 2015.

35. H. Nyquist. Certain topics in telegraph transmission theory. Transactions of the A. I. E. E.,
pages 617–644, FEB 1928.

36. C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27(3):379–423, 1948.

37. I. Bright, G. Lin, and J. N. Kutz. Compressive sensing and machine learning strategies for
characterizing the flow around a cylinder with limited pressure measurements. Physics of
Fluids, 25:127102–1–127102–15, 2013.

38. Zhe Bai, Thakshila Wimalajeewa, Zachary Berger, Guannan Wang, Mark Glauser, and
Pramod K Varshney. Low-dimensional approach for reconstruction of airfoil data via com-
pressive sensing. AIAA Journal, 53(4):920–933, 2014.

39. J-L Bourguignon, JA Tropp, AS Sharma, and BJ McKeon. Compact representation of
wall-bounded turbulence using compressive sampling. Physics of Fluids (1994-present),
26(1):015109, 2014.

40. Ido Bright, Guang Lin, and J Nathan Kutz. Classification of spatio-temporal data via asyn-
chronous sparse sampling: Application to flow around a cylinder. arXiv:1506.00661, 2015.

Sparse classification in fluid dynamics 19

41. C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson. Spectral analysis of
nonlinear flows. Journal of Fluid Mechanics, 641:115–127, 2009.

42. P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of
Fluid Mechanics, 656:5–28, August 2010.

43. J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On dynamic mode
decomposition: theory and applications. J. Computational Dynamics, 1(2):391–421, 2014.

44. M. R. Jovanović, P. J. Schmid, and J. W. Nichols. Low-rank and sparse dynamic mode de-
composition. Center for Turbulence Research, 2012.

45. S. L. Brunton, J. L. Proctor, and J. N. Kutz. Compressive sampling and dynamic mode de-
composition. arXiv preprint arXiv:1312.5186, 2014.

46. Jonathan H Tu, Clarence W Rowley, J Nathan Kutz, and Jessica K Shang. Spectral analysis
of fluid flows using sub-nyquist-rate piv data. Experiments in Fluids, 55(9):1–13, 2014.

47. F. Gueniat, L. Mathelin, and L. Pastur. A dynamic mode decomposition approach for large
and arbitrarily sampled systems. Physics of Fluids, 27(2):025113, 2015.

48. J. Gosek and J. N. Kutz. Dynamic mode decomposition for real-time background/foreground
separation in video. submitted for publication, 2013.

49. M. O. Williams, C. W. Rowley, and I. G. Kevrekidis. A kernel approach to data-driven koop-
man spectral analysis. arXiv preprint arXiv:1411.2260, 2014.

50. M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data-driven approximation of the
koopman operator: extending dynamic mode decomposition. arXiv:1408.4408, 2014.

51. M. S. Hemati, M. O. Williams, and C. W. Rowley. Dynamic mode decomposition for large
and streaming datasets. Physics of Fluids, 26(11):111701, 2014.

52. M. O. Williams, C. W. Rowley, I. Mezić, and I. G. Kevrekidis. Data fusion via intrinsic dy-
namic variables: An application of data-driven koopman spectral analysis. EPL (Europhysics
Letters), 109(4):40007, 2015.

53. J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decomposition with control: Using
state and input snapshots to discover dynamics. arxiv, 2014.

54. H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher. Sparse dynamics for partial differential
equations. Proceedings of the National Academy of Sciences USA, 110(17):6634–6639, 2013.

55. Alan Mackey, Hayden Schaeffer, and Stanley Osher. On the compressive spectral method.
Multiscale Modeling & Simulation, 12(4):1800–1827, 2014.

56. S. L. Brunton, J. H. Tu, I. Bright, and J. N. Kutz. Compressive sensing and low-rank libraries
for classification of bifurcation regimes in nonlinear dynamical systems. SIAM Journal on
Applied Dynamical Systems, 13(4):1716–1732, 2014.

57. J. L. Proctor, S. L. Brunton, B. W. Brunton, and J. N. Kutz. Exploiting sparsity and equation-
free architectures in complex systems (invited review). The European Physical Journal Spe-
cial Topics, 223(13):2665–2684, 2014.

58. F. Sommer. Mehrfachlösungen bei laminaren Strömungen mit Druckinduzierter Ablösung:
eine Kuspen-Katastrophe. VDI Fortschrittsbericht, Reihe 7, Nr. 206, VDI Verlag Düsseldorf
(Dissertation Bochum), pages 429–443, 2992.

59. Frederick Anthony Schraub, SJ Kline, J Henry, PW Runstadler, and A Littell. Use of hydrogen
bubbles for quantitative determination of time-dependent velocity fields in low-speed water
flows. Journal of Fluids Engineering, 87(2):429–444, 1965.

60. Mark N Glauser and William K George. Application of multipoint measurements for flow
characterization. Experimental Thermal and Fluid Science, 5(5):617–632, 1992.

N. Benjamin Erichson · Steven L. Brunton · J. Nathan Kutz

Compressed Dynamic Mode Decomposition for

Background Modeling

Abstract We introduce the method of compressed dy-
namic mode decomposition (cDMD) for background
modeling. The dynamic mode decomposition (DMD) is
a regression technique that integrates two of the leading
data analysis methods in use today: Fourier transforms
and singular value decomposition. Borrowing ideas from
compressed sensing and matrix sketching, cDMD eases
the computational workload of high resolution video pro-
cessing. The key principal of cDMD is to obtain the de-
composition on a (small) compressed matrix representa-
tion of the video feed. Hence, the cDMD algorithm scales
with the intrinsic rank of the matrix, rather then the size
of the actual video (data) matrix. Selection of the opti-
mal modes characterizing the background is formulated
as a sparsity-constrained sparse coding problem. Our re-
sults show, that the quality of the resulting background
model is competitive, quantified by the F-measure, Re-
call and Precision. A GPU (graphics processing unit) ac-
celerated implementation is also presented which further
boosts the computational e�ciency of the algorithm.

Keywords dynamic mode decomposition; background
modeling; matrix sketching; sparse coding; GPU-
accelerated computing.

N. Benjamin Erichson
School of Mathematics and Statistics
University of St Andrews
St Andrews, United Kingdom
E-mail: nbe@st-andrews.ac.uk

Steven L. Brunton
Department of Mechanical Engineering
University of Washington
Seattle, WA 98195

J. Nathan Kutz
Department of Applied Mathematics
University of Washington
Seattle, WA 98195-2420

1 Introduction

One of the fundamental computer vision objectives is to
detect moving objects in a given video stream. At the
most basic level, moving objects can be found in a video
by removing the background. However, this is a challeng-
ing task in practice, since the true background is often
unknown. Algorithms for background modeling are re-
quired to be both robust and adaptive. Indeed, the list
of challenges is significant and includes camera jitter, il-
lumination changes, shadows and dynamic backgrounds.
There is no single method currently available that is ca-
pable of handling all the challenges in real-time with-
out su↵ering performance failures. Moreover, one of the
great challenges in this field is to e�ciently process high-
resolution video streams, a task that is at the edge of per-
formance limits for state-of-the-art algorithms. Given the
importance of background modeling, a variety of math-
ematical methods and algorithms have been developed
over the past decade. Comprehensive overviews of tra-
ditional and state-of-the art methods are provided by
Bouwmans [1] or Sobral and Vacavant [2].

Motivation. This work advocates the method of dy-
namic mode decomposition (DMD), which enables the
decomposition of spatio-temporal grid data in both space
and time. The DMD has been successfully applied to
videos [3, 4, 5], however the computational costs are
dominated by the singular value decomposition (SVD).
Even with the aid of recent innovations around random-
ized algorithms for computing the SVD [6], the com-
putational costs remain expensive for high resolution
videos. Importantly, we build on the recently introduced
compressed dynamic mode decomposition (cDMD) al-
gorithm, which integrates DMD with ideas from com-
pressed sensing and matrix sketching [7]. Hence, instead
of computing the DMD on the full-resolution video data,
we show that an accurate decomposition can be obtained
from a compressed representation of the video in a frac-
tion of the time. The optimal mode selection for back-
ground modeling is formulated as a sparsity-constrained

2

sparse coding problem, which can be e�ciently approx-
imated using the greedy orthogonal matching pursuit
method. The performance gains in computation time
are significant, even competitive with Gaussian mixture-
models. Moreover, the performance evaluation on real-
videos shows that the detection accuracy is competitive
compared to leading robust principal component analy-
sis (RPCA) algorithms.

Organization. The rest of this paper is organized as fol-
lows. Section 2 presents a brief introduction to the dy-
namic mode decomposition and its application to video
and background modeling. Section 3 presents the com-
pressed DMD algorithm and di↵erent measurement ma-
trices to construct the compressed video matrix. A GPU
accelerated implementation is also outlined. Finally a de-
tailed evaluation of the algorithm is presented in section
4. Concluding remarks and further research directions
are given in section 5. Appendix A gives an overview of
notation.

2 DMD for Video Processing

2.1 The Dynamic Mode Decomposition

The dynamic mode decomposition is an equation-free,
data-driven matrix decomposition that is capable of pro-
viding accurate reconstructions of spatio-temporal co-
herent structures arising in nonlinear dynamical systems,
or short-time future estimates of such systems. DMD was
originally introduced in the fluid mechanics community
by Schmid [8] and Rowley et al. [9]. A surveillance video
sequence o↵ers an appropriate application for DMD be-
cause the frames of the video are, by nature, equally
spaced in time, and the pixel data, collected in every
snapshot, can readily be vectorized. The dynamic mode
decomposition is illustrated for videos in Figure 1. For
computational convenience the flattened grayscale video
frames (snapshots) of a given video stream are stored,
ordered in time, as column vectors x

1

,x
2

, . . . ,xm of a
matrix. Hence, we obtain a 2-dimensional Rn⇥m spatio-
temporal grid, where n denotes the number of pixels per
frame, m is the number of video frames taken, and the
matrix elements xit correspond to a pixel intensity in
space and time. The video frames can be thought of
as snapshots of some underlying dynamics. Each video
frame (snapshot) xt+1

at time t + 1 is assumed to be
connected to the previous frame xt by a linear map
A : Rn ! Rn. Mathematically, the linear map A is a
time-independent operator which constructs the approx-
imate linear evolution

xt+1

= Axt. (1)

The objective of dynamic mode decomposition is to find
an estimate for the matrix A and its eigenvalue decom-
position that characterize the system dynamics. At its

core, dynamic mode decomposition is a regression algo-
rithm. First, the spatio-temporal grid is separated into
two overlapping sets of data, called the left and right
snapshot sequences

X=

2

4x
1

x
2

· · · xm�1

3

5 , X0=

2

4x
2

x
3

· · · xm

3

5 . (2)

Equation (1) is reformulated in matrix notation

X0 = AX. (3)

In order to find an estimate for the matrix A we face the
following least-squares problem

Â = argmin
A

kX0 �AXk2F , (4)

where k · kF denotes the Frobenius norm. This is a well-
studied problem, and an estimate of the linear operator
A is given by

Â = X0X†, (5)

where † denotes the Moore-Penrose pseudoinverse, which
produces a regression that is optimal in a least-square
sense. The DMD modes � = W, containing the spatial
information, are then obtained as eigenvectors of the ma-
trix Â

ÂW = W⇤, (6)

where columns of W are eigenvectors �j and ⇤ is a di-
agonal matrix containing the corresponding eigenvalues
�j . In practice, when the dimension n is large, the matrix
Â 2 Rn⇥n may be intractable to estimate and to ana-
lyze directly. DMD circumvents the computation of Â
by considering a rank-reduced representation Ã 2 Rk⇥k.
This is achieved by using the similarity transform, i.e.,
projecting Ã on the left singular vectors. Moreover, the
DMD typically makes use of low-rank structure so that
the total number of modes, k min(n,m), allows for di-
mensionality reduction of the video stream. Hence, only
the relatively small Ã 2 Rk⇥k matrix needs to be es-
timated and analyzed (see Section 3 for more details).
The dynamic mode decomposition yields then the fol-
lowing low-rank factorization of a given spatio-temporal
grid (video stream):

�BV =

0

BBBBB@

�
11

�
1p · · · �

1k
...

...
. . .

...
�i1 �ip · · · �ik
...

...
. . .

...
�n1 �np · · · �nk

1

CCCCCA

0

BBBBB@

b
1

. . .
bp

. . .
bk

1

CCCCCA

0

BBBBBB@

1 �
1

· · · �m�1

1

...
...

. . .
...

1 �p · · · �m�1

p
...

...
. . .

...
1 �k · · · �m�1

k

1

CCCCCCA
(7)

where the diagonal matrix B 2 Ck⇥k has the amplitudes
as entries and V 2 Ck⇥m is the Vandermonde matrix
describing the temporal evolution of the DMD modes
� 2 Cn⇥k.

3

Fig. 1: Illustration of the dynamic mode decomposition for video applications. Given a video stream, the first step
involves reshaping the grayscale video frames into a 2-dimensional spatio-temporal grid. The DMD then creates a
decomposition in space and time in which DMD modes contain spatial structure.

2.2 DMD for Foreground/Background Separation

The DMD method can attempt to reconstruct any given
frame, or even possibly future frames. The validity of
the reconstruction thereby depends on how well the spe-
cific video sequence meets the assumptions and criteria
of the DMD method. Specifically, a video frame xt at
time points t 2 1, ...,m is approximately reconstructed
as follows

x̃t =
kX

j=1

bj�j�
t�1

j . (8)

Notice that the DMD mode �j is a n⇥ 1 vector contain-
ing the spatial structure of the decomposition, while the
eigenvalue �t�1

j describes the temporal evolution. The
scalar bj is the amplitude of the corresponding DMD
mode. At time t = 1, equation (8) reduces to x̃

1

=Pk
j=1

bj�j . Since the amplitude is time-independent, bj
can be obtained by solving the following least-square
problem using the video frame x

1

as initial condition

b̂ = argmin
b
kx

1

��bk2F . (9)

It becomes apparent that any portion of the first video
frame that does not change in time, or changes very
slowly in time, must have an associated continuous-time
eigenvalue

!j =
log(�j)

�t
(10)

that is located near the origin in complex space: |!j | ⇡
0 or equivalent |�j | ⇡ 1. This fact becomes the key
principle to separate foreground elements (approximate
sparse) from background (approximate low-rank) infor-
mation. Figure 2 shows the dominant continuous-time

eigenvalues for a video sequence. Subplot (a) shows three
sample frames from this video sequence that includes a
canoe. Here the foreground object (canoe) is not present
at the beginning and the end for the video sequence. The
dynamic mode decomposition factorizes this sequence
into modes describing the di↵erent dynamics present.
The analysis of the continuous-time eigenvalue !j and
the amplitudes over time BV (the amplitudes multiplied
by the Vandermonde matrix) can provide interesting in-
sights, shown in subplot (b) and (c). First, the ampli-
tude for the prominent zero mode (background) is con-
stant over time, indicating that this mode is capturing
the dominant (static) content of the video sequence, i.e,
the background. The next pair of modes correspond to
the canoe, a foreground object slowly moving over time.
The amplitude reveals the presence of this object. Specif-
ically, the amplitude reaches its maximum at about the
frame index 150, when the canoe is in the center of the
video frame. At the beginning and end of the video the
canoe is not present, indicated by the negative values of
the amplitude. The subsequent modes describe other dy-
namics in the video sequence e.g., the movements of the
canoeist and the waves. For instance, the modes describ-
ing the waves have high frequency and small amplitudes
(not shown here). Hence, a theoretical viewpoint we will
build upon with the DMD methodology centers around
the recent idea of low-rank and sparse matrix decompo-
sitions. Following this approach, background modeling
can be formulated as a matrix separation problem into
low-rank (background) and sparse (foreground) compo-
nents. This viewpoint has been advocated, for instance,
by Candès et al. [10] in the framework of robust principal
component analysis (RPCA). For a thorough discussion
of such methods used for background modeling, we re-

4

(a) Sample frames (t = 0, 150, 300) of video sequence.

Background
mode

Slow varying foreground objects

Other dynamics

real

im
ag

in
ar

y

0.000-0.005 0.005

-0.1

0.1

0.0

(b) Dominant continuous-time eigenvalues !j .

Other dynamics

Slow varying
foreground
objects

Time (frame index)

Background mode

am
pl

itu
de

s

0 50 100 150 200 250 300

-2000

2000

0

4000

(c) Amplitudes over time.

Fig. 2: Results of the dynamic mode decomposition for the ChangeDetection.net video sequence ‘canoe’. Subplot (a)
shows three samples frames of the video sequence. Subplot (b) and (c) show the the continuous-time eigenvalues and
the temporal evolution of the amplitudes. The modes corresponding to the amplitudes with the highest variance are
capturing the dominant foreground object (canoe), while the zero mode is capturing the dominant structure of the
background. Modes corresponding to high frequency amplitudes capturing other dynamics in the video sequence,
e.g., waves, etc.

fer to Bouwmans et al. [11, 12]. The connection between
DMD and RPCA was first established by Grosek and
Kutz [3]. Assume the set of background modes {!p} sat-
isfies |!p| ⇡ 0. The DMD expansion of equation (8) then
yields

X
DMD

= L + S

=
X

p

bp�p�
t�1

p

| {z }
Background Video

+
X

j 6=p

bj�j�
t�1

j

| {z }
Foreground Video

(11)

where t = [1, ...,m] is a 1⇥m time vector and X
DMD

2
Cn⇥m.1 Specifically, DMD provides a matrix decompo-
sition of the form XDMD = L + S, where the low-rank
matrix L will render the video of just the background,
and the sparse matrix S will render the complementary
video of the moving foreground objects. We can interpret
these DMD results as follows: stationary background ob-
jects translate into highly correlated pixel regions from

1 Note that by construction XDMD is complex, while pixel
intensities of the original video stream are real-valued. Hence,
only the the real part is considered in the following.

one frame to the next, which suggests a low-rank struc-
ture within the video data. Thus the DMD algorithm
can be thought of as an RPCA method. The advantage
of the DMD method and its sparse/low-rank separation
is the computational e�ciency of achieving (11), espe-
cially when compared to the optimization methods of
RPCA. The analysis of the time evolving amplitudes pro-
vide interesting opportunities. Specifically, learning the
amplitudes’ profiles for di↵erent foreground objects al-
lows automatic separation of video feeds into di↵erent
components. For instance, it could be of interest to dis-
criminate between cars and pedestrians in a given video
sequence.

2.3 DMD for Real-Time Background Modeling

When dealing with high-resolution videos, the standard
DMD approach is expensive in terms of computational
time and memory, because the whole video sequence is
reconstructed. Instead a ‘good’ static background model
is often su�cient for background subtraction. This is be-

5

cause background dynamics can be filtered out or thresh-
olded. The challenge remains to automatically select the
modes best describing the background. This is essentially
a bias-variance trade-o↵. Using just the zero mode (back-
ground) leads to an under-fit background model, while
a large set of modes tend to overfit. Motivated, by the
sparsity-promoting variant of the standard DMD algo-
rithm introduced by Jovanović et al. [13], we formulate
a sparsity-constrained sparse coding problem for mode
selection. The idea is to augment equation (9) by an
additional term that penalizes the number of non-zero
elements in the vector b

�̂ = argmin
�
kx

1

���k2F such that k�k
0

< K, (12)

where � is the sparse representation of b, and k · k
0

is the `
0

pseudo norm which counts the non-zero ele-
ments in �. Solving this sparsity problem exactly is NP-
hard. However, the problem in Eq. 12 can be e�ciently
solved using greedy approximation methods. Specifically,
we utilize orthogonal matching pursuit (OMP) [14, 15].
A highly computationally e�cient algorithm is proposed
by Rubinstein et al. [16] as implemented in the scikit-
learn software package [17]. The greedy OMP algorithm
works iteratively, selecting at each step the mode with
the highest correlation to the current residual. Once a
mode is selected the initial condition x

1

is orthogonally
projected on the span of the previously selected set of
modes. Then the residual is recomputed and the pro-
cess is repeated until K non-zero entries are obtained.
If no priors are available, the optimal number of modes
K can be determined using cross-validation. Finally, the
background model is computed as

x̂BG = ��̂. (13)

3 Compressed DMD (cDMD)

Compressed DMD provides a computationally e�cient
framework to compute the dynamic mode decomposi-
tion on massively under-sampled or compressed data [7].
The method was originally devised to reconstruct high-
dimensional, full-resolution DMD modes from sparse,
spatially under-resolved measurements by leveraging
compressed sensing. However, it was quickly realized
that if full-state measurements are available, many of
the computationally expensive steps in DMD may be
computed on a compressed representation of the data,
providing dramatic computational savings. The first ap-
proach, where DMD is computed on sparse measure-
ments without access to full data, is referred to as com-
pressed sensing DMD. The second approach, where DMD
is accelerated using a combination of calculations on
compressed data and full data, is referred to as com-
pressed DMD (cDMD); this is depicted schematically in
Fig. 3. For the applications explored in this work, we

use compressed DMD, since full image data is available
and reducing algorithm run-time is critical for real-time
performance.

X,X0 �,⇤

Y,Y0 �Y,⇤Y

DMD

cDMD

C Eq. (24)

Data Dynamic Modes

F
u
ll

C
o
m
p
re

ss
e
d

Fig. 3: Schematic of the compressed dynamic mode de-
composition architecture. The data (video stream) is first
compressed via left multiplication by a measurement ma-
trix C. DMD is then performed on the compressed rep-
resentation of the data. Finally, the full DMD modes �
are reconstructed from the compressed modes �Y by the
expression in Eq. (24).

3.1 Compressed Sensing and Matrix Sketching

Compression algorithms are at the core of modern video,
image and audio processing software such as MPEG,
JPEG and MP3. In our mathematical infrastructure of
compressed DMD, we consider the theory of compressed
sensing and matrix sketching.

Compressed sensing demonstrates that instead of mea-
suring the high-dimensional signal, or pixel space rep-
resentation of a single frame x, we can measure in-
stead a low-dimensional subsample y and approxi-
mate/reconstruct the full state space x with this sig-
nificantly smaller measurement [18, 19, 20]. Specifically,
compressed sensing assumes the data being measured is
compressible in some basis, which is certainly the case
for video. Thus the video can be represented in a small
number of elements of that basis, i.e. we only need to
solve for the few non-zero coe�cients in the transform
basis. For instance, consider the measurements y 2 Rp,
with k < p⌧ n:

y = Cx. (14)

If x is sparse in , then we may solve the underdeter-
mined system of equations

y = C s (15)

6

for s and then reconstruct x. Since there are infinitely
many solutions to this system of equations, we seek the
sparsest solution ŝ. However, it is well known from the
compressed sensing literature that solving for the spars-
est solution formally involves an `

0

optimization that
is NP-hard. The success of compressed sensing is that
it ultimately engineered a solution around this issue by
showing that one can instead, under certain conditions
on the measurement matrix C, trade the infeasible `

0

optimization for a convex `
1

-minimization [18]:

ŝ = argmin
s0

ks0k
1

, such that y = C s0. (16)

Thus the `
1

-norm acts as a proxy for sparsity promoting
solutions of ŝ. To guarantee that the compressed sensing
architecture will almost certainly work in a probabilis-
tic sense, the measurement matrix C and sparse basis
 must be incoherent, meaning that the rows of C are
uncorrelated with the columns of . This is discussed in
more detail in [7]. Given that we are considering video
frames, it is easy to suggest the use of generic basis func-
tions such as Fourier or wavelets in order to represent the
sparse signal s. Indeed, wavelets are already the standard
for image compression architectures such as JPEG-2000.
As for the Fourier transform basis, it is particularly at-
tractive for many engineering purposes since single-pixel
measurements are clearly incoherent given that it excites
broadband frequency content.

Matrix sketching is another prominent framework in or-
der to obtain a similar compressed representation of
a massive data matrix [21, 22]. The advantage of this
approach are the less restrictive assumptions and the
straight forward generalization from vectors to matrices.
Hence, Eq. 14 can be reformulated in matrix notation

Y = CX, (17)

where again C denotes a suitable measurement matrix.
Matrix sketching comes with interesting error bounds
and is applicable whenever the data matrix X has low-
rank structure. For instance, it has been successfully
demonstrated that the singular values and right singu-
lar vectors can be approximated from such a compressed
matrix representation [23].

3.2 Algorithm

The compressed DMD algorithm proceeds similarly to
the standard DMD algorithm [24] at nearly every step
until the computation of the DMD modes. The key dif-
ference is that we first compute a compressed represen-
tation of the video sequence, as illustrated in Figure 4.
Hence the algorithm starts by generating the measure-
ment matrix C 2 Rp⇥n in order to compresses or sketch
the data matrices as in Eq. (2):

Y = CX, Y0 = CX0. (18)

Fig. 4: Video compression using a sparse measurement
matrix. The compressed matrix faithfully captures the
essential spectral information of the video.

where p is denoting the number of samples or measure-
ments. There is a fundamental assumption that the in-
put data are low-rank. This is satisfied for video data,
because each of the columns of X and X0 2 Rn⇥m�1 are
sparse in some transform basis . Thus, for su�ciently
many incoherent measurements, the compressed matri-
ces Y and Y0 2 Rp⇥m�1 have similar correlation struc-
tures to their high-dimensional counterparts. Then, com-
pressed DMD approximates the eigenvalues and eigen-
vectors of the linear map AY, where the estimator is
defined as:

ÂY = Y0Y† (19a)

= Y0VYS�1

Y UY
⇤, (19b)

where ⇤ denotes the conjugate transpose. The pseudo-
inverse Y† is computed using the SVD:

Y = UYSYVY
⇤, (20)

where the matrices U 2 Rp⇥k, and V 2 Rm�1⇥k are the
truncated left and right singular vectors. The diagonal
matrix S 2 Rk⇥k has the corresponding singular values
as entries. Here k is the target-rank of the truncated
SVD approximation to Y. Note that the subscript Y is
included to explicitly denote computations involving the
compressed data Y. As in the standard DMD algorithm,
we typically do not compute the large matrix ÂY, but
instead compute the low-dimensional model projected
onto the left singular vectors:

ÃY = UY
⇤ÂYUY (21a)

= UY
⇤Y0VYS�1

Y . (21b)

Since this is a similarity transform, the eigenvectors and
eigenvalues can be obtained from the eigendecomposition
of ÃY

ÃYWY = WY⇤Y, (22)

where columns of WY are eigenvectors �j and ⇤Y is a
diagonal matrix containing the corresponding eigenval-
ues �j . The similarity transform implies that ⇤ ⇡ ⇤Y .
The compressed DMD modes are consequently given by

�Y = Y0VYS�1

Y WY. (23)

7

Finally, the full DMD modes are recovered using

� = X0VYS�1

Y WY. (24)

Note that the compressed DMD modes in Eq. (24) make
use of the full data X0 as well as the linear transfor-
mations obtained using the compressed data Y and Y0.
The expensive SVD on X is bypassed, and it is instead
performed on Y. Depending on the compression ratio,
this may provide significant computational savings. The
computational steps are summarized in Algorithm 1 and
further numerical details are presented in [7].

Remark 1 The computational performance heavily de-
pends on the measurement matrix used to construct the
compressed matrix, as described in the next section. For
a practical implementation sparse or single pixel mea-
surements (random row sampling) are favored. The lat-
ter most memory e�cient methods avoids the generation
of a large number of random numbers and the expensive
matrix-matrix multiplication in step 3.

Remark 2 One alternative to the predefined target-rank
k is the recent hard-thresholding algorithm of Gavish and
Donoho [25]. This method can can be combined with step
4 to automatically determine the optimal target-rank.

Remark 3 As described in Section 2.3 step 9 can be re-
placed by the orthogonal matching pursuit algorithm,
in order to obtain a sparsity-constrained solution: b =
omp(�,x

1

). Computing the OMP solution is in general
extremely fast, but if it comes to high resolution video
streams this step can become computationally expensive.
However, instead of computing the amplitudes based
on the the full-state dynamic modes � the compressed
DMD modes �Y can be used. Hence, Eq. 12 can be re-
formulated as

�̂ = argmin
�
ky

1

��Y�k2F such that k�k
0

< K, (25)

where y
1

is the first compressed video frame. Then step
9 can be replaced by: beta = omp(�Y,y

1

).

3.3 Measurement Matrices

A basic sensing matrix C can be constructed by draw-
ing p ⇥ n independent random samples from a Gaus-
sian, Uniform or a sub Gaussian, e.g., Bernoulli distri-
bution. It can be shown that these measurement matrices
have optimal theoretical properties, however for practical
large-scale applications they are often not feasible. This
is because generating a large number of random numbers
can be expensive and computing (18) using unstructured
dense matrices has a time complexity of O(pnm). From
a computational perspective it is favorable to build a
structured random sensing matrix which is memory ef-
ficient, and enables the execution of fast matrix-matrix
multiplications. For instance, Woolfe et al. [26] showed

that the costs can be reduced to O(log(p)nm) using a
subsampled random Fourier transform (SRFT) sensing
matrix

C = RFD, (26)

where R 2 Cp⇥n draws p random rows (without replace-
ment) from the identity matrix I 2 Cn⇥n. F 2 Cn⇥n

is the unnormalized discrete Fourier transform with the
following entries F(j, k) = exp(�2⇡i(j � 1)(k � 1)/m)
and D 2 Cn⇥n is a diagonal matrix with independent
random diagonal elements uniformly distributed on the
complex unit circle. While the SRFT sensing matrix
has nice theoretical properties, the improvement from
O(pnm) to O(log(p)nm) is not necessarily significant. In
practice it is often su�cient to construct even simpler
sensing matrices. An interesting approach making the
matrix-matrix multiplication (18) redundant is to use
single-pixel measurements (random row-sampling)

C = R. (27)

In a practical implementation this allows construction
of the compressed matrix Y from choosing p random
rows without replacement from X. Hence, only p ran-
dom numbers need to be generated and no memory is
required for storing a sensing matrix C. A di↵erent ap-
proach is the method of sparse random projections [27].
The idea is to construct a sensing matrix C with identi-
cal independent distributed entries as follows

cij =

8
<

:

1 with prob. 1

2s
0 with prob. 1� 1

s ,
-1 with prob. 1

2s

(28)

where the parameter s controls the sparsity. While
Achlioptas [27] has proposed the values s = 1, 2, Li et al.
[28] showed that also very sparse (aggressive) sampling
rates like s = n/log(n) achieve accurate results. Modern
sparse matrix packages allow rapid execution of (18).

3.4 GPU Accelerated Implementation

While most current desktop computers allow multi-
threading and also multiprocessing, using a graphics pro-
cessing unit (GPU) enables massive parallel processing.
The paradigm of parallel computing becomes more im-
portant as larger amounts of data stagnate CPU clock
speeds. The architecture of a modern CPU and GPU
is illustrated in Figure 5. The key di↵erence between
these architectures is that the CPU consists of few
arithmetic logic units (ALU) and is highly optimized
for low-latency access to cached data sets, while the
GPU is optimized for data-parallel, throughput compu-
tations. This is achieved by the large number of small
arithmetic logic units (ALU). Traditionally this archi-
tecture was designed for the real-time creation of high-
definition 2D/3D graphics. However, NVIDIA’s pro-
gramming model for parallel computing CUDA opens up

8

Algorithm 1 Compressed Dynamic Mode Decomposition. Given a matrix D 2 Rn⇥m containing the flattened
video frames, this procedure computes the approximate dynamic mode decomposition, where � 2 Cn⇥k are the
DMD modes, b 2 Ck are the amplitudes, and V 2 Ck⇥m is the Vandermonde matrix describing the temporal
evolution. The procedure can be controlled by the two parameters k and p, the target rank and the number of
samples respectively. It is required that n � m, integer k, p � 1 and k ⌧ n and p � k.

function [�,b,V] = cdmd(D, k, p)

(1) X,X0 = D Left/right snapshot sequence.

(2) C = rand(p,m) Draw p⇥m sensing matrix.

(3) Y,Y0 = C ⇤D Compress input matrix.

(4) U,S,V = svd(Y, k) Truncated SVD.

(6) Ã = U⇤ ⇤Y0 ⇤V ⇤ S�1 Least squares fit.

(7) W,⇤ = eig(Ã) Eigenvalue decomposition.

(8) � X0 ⇤V ⇤ S�1 ⇤W Compute full-state modes �.

(9) b = lstsq(�,x
1

) Compute amplitudes using x
1

as intial condition.

(10) V = vander(diag(⇤)) Vandermonde matrix (optional).

ALU ALU

ALU ALU

Control

L2

DRAM

(a) CPU

L2

DRAM

(b) GPU

Fig. 5: Illustration of the CPU and GPU architecture.

Fig. 6: Illustration of the data parallelism in matrix-
matrix multiplications.

the GPU as a general parallel computing device [29]. Us-
ing high-performance linear algebra libraries, e.g. CULA
[30], can help to accelerate comparable CPU implemen-
tations substantially. Take for instance the matrix mul-
tiplication of two n ⇥ n square matrices, illustrated in
Figure 6. The computation involves the evaluation of
n2 dot products.2 The data parallelism therein is that
each dot-product can be computed independently. With
enough ALUs the computational time can be substan-
tially accelerated. This parallelism applies readily to the
generation of random numbers and many other linear
algebra routines.

Relatively few GPU accelerated background subtrac-
tion methods have been proposed [31, 32, 33]. The au-
thors achieve considerable speedups compared to the
corresponding CPU implementations. However, the pro-
posed methods barely exceed 25 frames per second for
high definition videos. This is mainly due to the fact
that many statistical methods do not fully benefit from
the GPU architecture. In contrast, linear algebra based
methods can substantially benefit from parallel comput-
ing. An analysis of Algorithm 1 reveals that generating
random numbers in line 2 and the dot products in lines
3, 6, and 8 are particularly suitable for parallel process-
ing. But also the computation of the deterministic SVD,
the eigenvalue decomposition and the least-square solver
can benefit from the GPU architecture. Overall the GPU
accelerated DMD implementation is substantially faster
than the MKL (Intel Math Kernel Library) accelerated
routine. The disadvantage of current GPUs is the rather

2 Modern e�cient matrix-matrix multiplications are based
on block matrix decomposition or other computational tricks,
and do not actually compute n2 dot products. However the
concept of parallelism remains the same.

9

limited bandwidth, i.e., the amount of data which can
be exchanged per unit of time, between CPU and GPU
memory. However, this overhead can be mitigated using
asynchronous memory operations.

4 Results

In this section we evaluate the computational perfor-
mance and the suitability of compressed DMD for ob-
ject detection. To evaluate the detection performance,
a foreground mask X is computed by thresholding the
di↵erence between the true frame and the reconstructed
background. A standard method is to use the Euclidean
distance, leading to the following binary classification
problem

Xt(j) =

⇢
1 if kxjt � x̂jk > ⌧ ,
0 otherwise

(29)

where xjt denotes the j-th pixel of the t-th video frame
and x̂j denotes the corresponding pixel of the modeled
background. Pixels belonging to foreground objects are
set to 1 and 0 otherwise. Access to the true foreground
mask allows the computation of several statistical mea-
sures. For instance, common evaluation measures in the
background subtraction literature are recall, precision
and the F-measure. While recall measures the ability to
correctly detect pixels belonging to moving objects, pre-
cision measures how many predicted foreground pixels
are actually correct, i.e., false alarm rate. The F-measure
combines both measures by their harmonic mean. A
workstation (Intel Xeon CPU E5-2620 2.4GHz, 32GB
DDR3 memory and NVIDIA GeForce GTX 970) was
used for all following computations.

4.1 Evaluation on Real Videos

We have evaluated the performance of compressed DMD
for object detection using the CD (ChangeDetection.net)
and BMC (Background Models Challenge) benchmark
dataset [34, 35]. Figure 7 illustrates the 9 real videos
of the latter dataset, posing many common challenges
faced in outdoor video surveillance scenarios. Mainly, the
following complex situations are encountered:

– Illumination changes: Gradual illumination
changes caused by fog or sun.

– Low illumination: Bad light conditions, e.g., night
videos.

– Bad weather: Introduced noise (small objects) by
weather conditions, e.g., snow or rain.

– Dynamic backgrounds: Moving objects belonging
to the background, e.g. waving trees or clouds.

– Sleeping foreground objects: Former foreground
objects that becoming motionless and moving again
at a later point in time.

(001)
Boring
parking

(002) Big
trucks

(003)
Wandering
students

(004)
Rabbit in
the night

(005) Snowy
Christmas

(006)
Beware of
the trains

(007) Train
in the
tunnel

(008) Tra�c
during

windy day

(009) One
rainy hour

Fig. 7: BMC dataset: Example frames of the 9 real
videos.

Evaluation settings. In order to obtain reproducible re-
sults the following settings have been used. For a given
video sequence, the low-rank dynamic mode decomposi-
tion is computed using a very sparse measurement ma-
trix with a sparsity factor s = n/log(n) and p = 1000
measurements. While, we use here a fixed number of
samples, the choice can be guided by the formula p >
k · log(n/k). The target-rank k is automatically deter-
mined via the optimal hard-threshold for singular val-
ues [25]. Once the dynamic mode decomposition is ob-
tained, the optimal set of modes is selected using the
orthogonal matching pursuit method. In general the use
of K = 10 non-zero entries achieves good results. In-
stead of using a predefined value for K, cross-validation
can be used to determine the optimal number of non-
zero entries. Further, the dynamic mode decomposition
as presented here is formulated as a batch algorithm, in
which a given long video sequence is split into batches of
200 consecutive frames. The decomposition is then com-
puted for each batch independently.

The CD dataset. First, six CD video sequences are used
to contextualize the background modeling quality using
the sparse-coding approach. This is compared to using
the zero (static background) mode only. Figure 8 shows
the evaluation results of one batch by plotting the F-
measure against the threshold for background classifica-
tion. In fife out of the six examples the sparse-coding ap-
proach (cDMD k=opt) dominates. In particular, signif-
icant improvements are achieved for the dynamic back-

10

(a) Highway (b) Blizzard (c) Canoe

(d) Fountain02 (e) Park (f) Library

Fig. 8: The F-measure for varying thresholds is indicating the dominant background modeling performance of the
sparsity-promoting compressed DMD algorithm. In particular, the performance gain (over using the zero mode
only) is substantial for the dynamic background scenes ‘Canoe’ and ‘Fountain02’.

ground video sequences ‘Canoe’ and ‘Fountain02’. Only
in case of the ‘Park’ video sequence the method tends to
over-fit. Interestingly, the performance of the compressed
algorithm is slightly better then the exact DMD algo-
rithm, overall. This is due to the implicit regularization
of randomized algorithms [36, 37].

The BMC dataset. In order to compare the cDMD al-
gorithm with other RPCA algorithms the BMC dataset
has been used. Table 1 shows the evaluation results com-
puted with the BMC wizard for all 9 videos. An individ-
ual threshold value has been selected for each video to
compute the foreground mask. For comparison the eval-
uation results of 3 other RPCA methods are shown [12].
Overall cDMD achieves an average F-value of about
0.648. This is slightly better then the performance of
GoDec [38] and nearly as good as LSADM [39]. How-
ever, it is lower then the F-measure achieved with the
RSL method [40]. Figure 9 presents visual results for ex-
ample frames across 5 videos. The last row shows the
smoothed (median filtered) foreground mask.

Discussion. The results reveal some of the strengths and
limitations of the compressed DMD algorithm. First, be-
cause cDMD is presented here as a batch algorithm, de-
tecting sleeping foreground objects as they occur in video
001 is di�cult. Another weakness is the limited capabil-
ity of dealing with non-periodic dynamic backgrounds,
e.g., big waving trees and moving clouds as occurring
in the videos 001, 005, 008 and 009. On the other hand
good results are achieved for the videos 002, 003, 004

Fig. 9: Visual evaluation results for 5 example frames
corresponding to the BMC Videos: 002, 003, 006, 007
and 009. The top row shows the original grayscale im-
ages (moving objects are highlighted). The second row
shows the di↵erencing between the reconstructed cDMD
background and the original frame. Row three shows the
thresholded and row four the in addition median filtered
foreground mask.

and 007, showing that DMD can deal with large moving
objects and low illumination conditions. The integration
of compressed DMD into a video system can overcome
some of these initial issues. Hence, instead of discarding
the previous modeled background frames, a background
maintenance framework can be used to incrementally up-
date the model. In particular, this allows to deal better
with sleeping foreground objects. Further, simple post-

11

processing techniques (e.g. median filter or morphology
transformations) can substantially reduce the false pos-
itive rate.

4.2 Computational Performance

Figure 12 shows the average frames per seconds (fps) rate
required to obtain the foreground mask for varying video
resolutions. The results illustrate the substantial com-
putational advantage of the cDMD algorithm over the
standard DMD. The computational savings are mainly
achieved by avoiding the expensive computation of the
singular value decomposition. Specifically, the compres-
sion step reduces the time complexity from O(knm) to
O(kpm). The computation of the full modes � in Eq. 24
remain the only computational expensive step of the al-
gorithm. However, this step is embarrassingly parallel
and the computational time can be further reduced us-
ing a GPU accelerated implementation. The decompo-
sition of a HD 1280 ⇥ 720 videos feed using the GPU
accelerated implementation achieves a speedup of about
4 and 21 compared to the corresponding CPU cDMD
and (exact) DMD implementations. The speedup of the
GPU implementation can even further be increased using
sparse or single pixel (sPixel) measurement matrices.

Figure 10 investigates the performance of the di↵er-
ent measurement matrices in more detail. Therefor, the
fps rate and the F-measure is plotted for a varying num-
ber of samples p. Gaussian measurements achieves the
best accuracy in terms of the F-measure, but the com-
putational costs become increasingly expensive. Single
pixel measurements (sPixel) is the most computationally
e�cient method. The primary advantages of single pixel
measurements are the memory e�ciency and the simple
implementation. Sparse sensing matrices o↵er the best
trade-o↵ between computational time and accuracy, but
require access to sparse matrix packages.

It is important to stress that randomized sensing ma-
trices cause random fluctuations influencing the back-
ground model quality, illustrated in Figure 11. The boot-
strap confidence intervals show that sparse measure-
ments have lower dispersion than single pixel measure-
ments. This is, because single pixel measurements dis-
card more information than sparse and Gaussian sensing
matrices.

5 Conclusion and Outlook

We have introduced the compressed dynamic mode de-
composition as a novel algorithm for video background
modeling. Although many techniques have been devel-
oped in the last decade and a half to accomplish this
task, significant challenges remain for the computer vi-
sion community when fast processing of high-definition
video is required. Indeed, real-time HD video analysis

Fig. 10: Algorithms runtime (excluding computation of
the foreground mask) and accuracy for a varying number
of samples p. Here a 720⇥ 480 video sequence with 200
frames is used.

Fig. 11: Bootstrap 95%-confidence intervals of the F-
measure computed using both sparse and single pixel
measurements.

12

Measure BMC real videos Average

001 002 003 004 005 006 007 008 009

RSL
De La Torre et al. [40]

Recall 0.800 0.689 0.840 0.872 0.861 0.823 0.658 0.589 0.690 -
Precision 0.732 0.808 0.804 0.585 0.598 0.713 0.636 0.526 0.625 -
F-Measure 0.765 0.744 0.821 0.700 0.706 0.764 0.647 0.556 0.656 0.707

LSADM
Goldfarb et al. [39]

Recall 0.693 0.535 0.784 0.721 0.643 0.656 0.449 0.621 0.701 -
Precision 0.511 0.724 0.802 0.729 0.475 0.655 0.693 0.633 0.809 -
F-Measure 0.591 0.618 0.793 0.725 0.549 0.656 0.551 0.627 0.752 0.650

GoDec
Zhou and Tao [38]

Recall 0.684 0.552 0.761 0.709 0.621 0.670 0.465 0.598 0.700 -
Precision 0.444 0.682 0.808 0.728 0.462 0.636 0.626 0.601 0.747 -
F-Measure 0.544 0.611 0.784 0.718 0.533 0.653 0.536 0.600 0.723 0.632

cDMD
Recall 0.552 0.697 0.778 0.693 0.611 0.700 0.720 0.515 0.566 -
Precision 0.581 0.675 0.773 0.770 0.541 0.602 0.823 0.510 0.574 -
F-Measure 0.566 0.686 0.776 0.730 0.574 0.647 0.768 0.512 0.570 0.648

Table 1: Evaluation results of nine real videos from the BMC dataset. For comparison, the results of three other
leading robust PCA algorihtms are presented, adapted from [12].

Fig. 12: CPU and GPU algorithms runtime (including the computation of the foreground mask) for varying video
resolutions (200 frames). The optimal target rank is automatically determined and p = 1000 samples are used.

remains one of the grand challenges of the field. Our
cDMD method provides compelling evidence that it is a
viable candidate for meeting this grand challenge, even
on standard CPU computing platforms. The frame rate
per second is highly competitive compared to other stat-
of-the-art algorithms, e.g. Gaussian mixture-based algo-
rithms. Compared to current robust principal component
analysis based algorithm the increase in speed is even
more substantial. In particular, the GPU accelerated im-
plementation substantially improves the computational
time.

Despite the significant computational savings, the
cDMD remains competitive with other leading algo-
rithms in the quality of the decomposition itself. Our
results show, that for both standard and challenging en-
vironments, the cDMD’s object detection accuracy in
terms of the F-measure is competitive to leading RPCA
based algorithms [12]. Though, the algorithm cannot
compete, in terms of the F-measure, with highly special-
ized algorithms, e.g. optimized Gaussian mixture-based
algorithms for background modeling [2]. The main dif-
ficulties arise when video feeds are heavily crowded or

dominated by non-periodic dynamic background objects.
Overall, the trade-o↵ between speed and accuracy of
compressed DMD is compelling.

Future work will aim to improve the background sub-
traction quality as well as to integrate a number of inno-
vative techniques. One technique that is particularly use-
ful for object tracking is the multi-resolution DMD [41].
This algorithm has been shown to be a potential method
for target tracking applications. Thus one can envision
the integration of multi-resolution ideas with cDMD, i.e.
a multi-resolution compressed DMD method, in order
to separate the foreground video into di↵erent dynamic
targets when necessary.

Acknowledgements We would like to express our grati-
tude to E. R. Davies, K. Manohar and the three anonymous
reviewers for many helpful comments on an earlier version of
this paper.

JNK acknowledges support from Air Force O�ce
of Scientific Research (FA9500-15-C-0039). SLB acknowl-
edges support from the Department of Energy under
award DE-EE0006785. NBE acknowledges support from the
UK Engineering and Physical Sciences Research Council
(EP/L505079/1).

13

A Notation

Scalars

k Number of modes (target-rank)
p Number of samples (measurements)
s Number of sparse samples
K Number of non-zero amplitudes
n Number of pixels per video frame
m Number of video frames
� Eigenvalue
! Continuous-time eigenvalue

Vectors

x 2 Rn Flattened video frame
y 2 Rp Compressed video frame
� 2 Rn DMD mode
b 2 Rk Amplitudes
� 2 Rk Sparsity-constrained amplitudes

Matrices

X,X0 2 Rn⇥m�1 Left and right snapshot sequence
Y,Y0 2 Rp⇥m�1 Compressed left/right snapshot sequence
C 2 Rp⇥n Measurement matrix
A 2 Rn⇥n Linear map
˜

A 2 Rk⇥k Rank-reduced linear map
� 2 Rn⇥k DMD modes
�Y 2 Rp⇥k Compressed DMD modes
W,WY 2 Rk⇥k Rank-reduced eigenvectors
⇤,⇤Y 2 Rk⇥k Rank-reduced eigenvalues (diagonal matrix)
B 2 Rk⇥k Amplitudes (diagonal matrix)
V 2 Rk⇥m Vandermonde matrix
UY 2 Rp⇥k Truncated compressed left singular vectors
VY 2 Rk⇥m�1 Truncated compressed right singular vectors
SY 2 Rk⇥k Truncated compressed singular values

References

1. T. Bouwmans, Traditional and recent approaches in
background modeling for foreground detection: An
overview, Computer Science Review 11-12 (2014)
31–66. doi:10.1016/j.cosrev.2014.04.001.

2. A. Sobral, A. Vacavant, A comprehensive review of
background subtraction algorithms evaluated with
synthetic and real videos, Computer Vision and Im-
age Understanding 122 (2014) 4–21. doi:10.1016/

j.cviu.2013.12.005.
3. J. Grosek, J. N. Kutz, Dynamic mode decomposition

for real-time background/foreground separation in
video (2014). arXiv:1404.7592.

4. N. B. Erichson, C. Donovan, Randomized low-rank
dynamic mode decomposition for motion detection,
Computer Vision and Image Understanding 146
(2016) 40–50. doi:10.1016/j.cviu.2016.02.005.

5. J. N. Kutz, X. Fu, S. L. Brunton, N. B. Erichson,
Multi-resolution dynamic mode decomposition for
foreground/background separation and object track-
ing, in: 2015 IEEE International Conference on Com-
puter Vision Workshop (ICCVW), 2015, pp. 921–
929. doi:10.1109/ICCVW.2015.122.

6. N. Halko, P. G. Martinsson, J. A. Tropp, Find-
ing structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decom-
positions, SIAM Review 53 (2) (2011) 217–288. doi:
10.1137/090771806.

7. S. L. Brunton, J. L. Proctor, J. H. Tu, J. N. Kutz,
Compressed sensing and dynamic mode decompo-
sition, Journal of Computational Dynamics 2 (2)
(2015) 165–191. doi:10.3934/jcd.2015002.

8. P. Schmid, Dynamic mode decomposition of nu-
merical and experimental data, Journal of Fluid
Mechanics 656 (2010) 5–28. doi:10.1017/

S0022112010001217.
9. C. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D. Hen-

ningson, Spectral analysis of nonlinear flows, Journal
of Fluid Mechanics 641 (2009) 115–127.

10. E. J. Candès, X. Li, Y. Ma, J. Wright, Robust princi-
pal component analysis?, Journal of the ACM 58 (3)
(2011) 1–37. doi:10.1145/1970392.1970395.

11. T. Bouwmans, E. H. Zahzah, Robust PCA via prin-
cipal component pursuit: A review for a compara-
tive evaluation in video surveillance, Computer Vi-
sion and Image Understanding 122 (2014) 22–34.
doi:10.1016/j.cviu.2013.11.009.

12. T. Bouwmans, A. Sobral, S. Javed, S. K. Jung, E.-H.
Zahzah, Decomposition into low-rank plus additive
matrices for background/foreground separation: A
review for a comparative evaluation with a large-
scale dataset (2015). arXiv:1511.01245.

13. M. R. Jovanović, P. J. Schmid, J. W. Nichols,
Sparsity-promoting dynamic mode decomposition,
Physics of Fluids (1994-present) 26 (2) (2014)
024103.

14. S. G. Mallat, Z. Zhang, Matching pursuits with time-
frequency dictionaries, IEEE Transactions on signal
processing 41 (12) (1993) 3397–3415.

15. J. A. Tropp, A. C. Gilbert, Signal recovery from ran-
dom measurements via orthogonal matching pursuit,
IEEE Transactions on information theory 53 (12)
(2007) 4655–4666.

16. R. Rubinstein, M. Zibulevsky, M. Elad, E�cient im-
plementation of the K-SVD algorithm using batch
orthogonal matching pursuit, CS Technion 40 (8)
(2008) 1–15.

17. F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

18. D. L. Donoho, Compressed sensing, IEEE Transac-
tions on Information Theory 52 (4) (2006) 1289–
1306. doi:10.1109/TIT.2006.871582.

19. E. J. Candès, M. B. Wakin, An introduction to com-
pressive sampling, IEEE Signal Processing Maga-
zine 25 (2) (2008) 21–30. doi:10.1109/MSP.2007.

http://dx.doi.org/10.1016/j.cosrev.2014.04.001
http://dx.doi.org/10.1016/j.cviu.2013.12.005
http://dx.doi.org/10.1016/j.cviu.2013.12.005
http://arxiv.org/abs/1404.7592
http://dx.doi.org/10.1016/j.cviu.2016.02.005
http://dx.doi.org/10.1109/ICCVW.2015.122
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.3934/jcd.2015002
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1016/j.cviu.2013.11.009
http://arxiv.org/abs/1511.01245
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/MSP.2007.914731

14

914731.
20. R. G. Baraniuk, Compressive sensing, IEEE Signal

Processing Magazine 24 (4) (2007) 118–120.
21. E. Liberty, Simple and deterministic matrix sketch-

ing, in: Proceedings of the 19th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, ACM, 2013, pp. 581–588.

22. D. P. Woodru↵, Sketching as a tool for numeri-
cal linear algebra, Foundations and Trends in The-
oretical Computer Science 10 (1-2) (2014) 1–157.
doi:10.1561/0400000060.

23. A. C. Gilbert, J. Y. Park, M. B. Wakin, Sketched
SVD: Recovering spectral features from compres-
sive measurements, arXiv preprint arXiv:1211.0361
(2012) 1–10.

24. J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
Brunton, J. N. Kutz, On dynamic mode decom-
position: Theory and applications (2013). arXiv:

1312.0041.
25. M. Gavish, D. Donoho, The optimal hard thresh-

old for singular values is 4/
p
3, Information The-

ory, IEEE Transactions on 60 (8) (2014) 5040–5053.
doi:10.1109/TIT.2014.2323359.

26. F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast
randomized algorithm for the approximation of ma-
trices, Applied and Computational Harmonic Anal-
ysis 25 (3) (2008) 335–366.

27. D. Achlioptas, Database-friendly random projec-
tions: Johnson-Lindenstrauss with binary coins,
Journal of computer and System Sciences 66 (4)
(2003) 671–687.

28. P. Li, T. J. Hastie, K. W. Church, Very sparse ran-
dom projections, in: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, ACM, 2006, pp. 287–296.

29. J. Nickolls, I. Buck, M. Garland, K. Skadron, Scal-
able parallel programming with CUDA, Queue 6 (2)
(2008) 40–53. doi:10.1145/1365490.1365500.

30. J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L.
Paolini, E. J. Kelmelis, CULA: Hybrid GPU accel-
erated linear algebra routines (2010). doi:10.1117/
12.850538.

31. P. Carr, GPU accelerated multimodal background
subtraction, in: Digital Image Computing: Tech-
niques and Applications, IEEE, 2008, pp. 279–286.

32. V. Pham, P. Vo, V. T. Hung, et al., GPU implemen-
tation of extended gaussian mixture model for back-
ground subtraction, in: IEEE International Confer-
ence on Computing and Communication Technolo-
gies, Research, Innovation, and Vision for the Fu-
ture, 2010, pp. 1–4.

33. Q. Lixia, S. Bin, L. Weiyao, W. Wen, S. Ruimin,
GPU-accelerated video background subtraction us-
ing Gabor detector, Journal of Visual Communica-
tion and Image Representation 32 (2015) 1–9. doi:
10.1016/j.jvcir.2015.07.010.

34. Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad,
Y. Benezeth, P. Ishwar, CDnet 2014: An expanded
change detection benchmark dataset, in: IEEE
Workshop on Computer Vision and Pattern Recog-
nition, IEEE, 2014, pp. 393–400.

35. A. Vacavant, T. Chateau, A. Wilhelm, L. Lequievre,
A benchmark dataset for outdoor fore-
ground/background extraction, in: Computer
Vision–ACCV 2012 Workshops, Springer, 2013, pp.
291–300.

36. M. W. Mahoney, Randomized algorithms for ma-
trices and data, Foundations and Trends in Ma-
chine Learning 3 (2) (2011) 123–224. doi:10.1561/
2200000035.

37. N. B. Erichson, S. Voronin, S. L. Brunton, J. N.
Kutz, Randomized matrix decompositions using R
(2016). arXiv:1608.02148.

38. T. Zhou, D. Tao, Godec: Randomized low-rank &
sparse matrix decomposition in noisy case, in: In-
ternational Conference on Machine Learning, ICML,
2011, pp. 1–8.

39. D. Goldfarb, S. Ma, K. Scheinberg, Fast alternat-
ing linearization methods for minimizing the sum
of two convex functions, Mathematical Program-
ming 141 (1-2) (2013) 349–382. doi:10.1007/

s10107-012-0530-2.
40. F. D. la Torre, M. Black, A framework for robust

subspace learning, International Journal of Com-
puter Vision 54 (1-3) (2003) 117–142.

41. J. N. Kutz, X. Fu, S. L. Brunton, Multiresolution
dynamic mode decomposition, SIAM Journal on Ap-
plied Dynamical Systems 15 (2) (2016) 713–735.

http://dx.doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1561/0400000060
http://arxiv.org/abs/1312.0041
http://arxiv.org/abs/1312.0041
http://dx.doi.org/10.1109/TIT.2014.2323359
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1117/12.850538
http://dx.doi.org/10.1117/12.850538
http://dx.doi.org/10.1016/j.jvcir.2015.07.010
http://dx.doi.org/10.1016/j.jvcir.2015.07.010
http://dx.doi.org/10.1561/2200000035
http://dx.doi.org/10.1561/2200000035
http://arxiv.org/abs/1608.02148
http://dx.doi.org/10.1007/s10107-012-0530-2
http://dx.doi.org/10.1007/s10107-012-0530-2

Streaming GPU singular value and dynamic mode decompositions

Seth D. Pendergrass

University of Washington

Computer Engineering

J. Nathan Kutz

University of Washington

Applied Mathematics

Steven L. Brunton

⇤

University of Washington

Mechanical Engineering

July 29, 2017

Abstract

The dynamic mode decomposition (DMD) has re-
cently emerged as a promising method for fore-
ground/background modeling in real-time video applica-
tions. This work develops a parallelized algorithm to com-
pute DMD on a graphics processing unit using the stream-
ing method of snapshots singular value decomposition.
This allows the algorithm to operate e�ciently on stream-
ing data by avoiding redundant inner-products as new
data becomes available. In addition, it is possible to lever-
age the native compressed format of many data streams,
such as HD video and computational physics codes that
are represented sparsely in the Fourier domain, to mas-
sively reduce data transfer from CPU to GPU and to en-
able sparse matrix multiplications. Taken together, these
algorithms facilitate real-time streaming DMD on high-
dimensional data streams. We demonstrate the proposed
method on numerous high-dimensional video datasets for
background subtraction, and provide comparisons against
standard algorithms for the SVD, DMD and background
subtraction. However, this method may accelerate nu-
merous other algorithms based on the SVD or DMD. The
computational framework is developed as an open-source
library written in C++ and CUDA to promote repro-
ducible research.
Keywords: Singular Value Decomposition, Dynamic
Mode Decomposition, GPU, Background Subtraction,
Streaming

1 Introduction

Real-time video processing is a pressing challenge of the
modern era, with significant technological and societal
impact. Applications include security, surveillance, eco-
logical monitoring, and autonomous vehicles, to name a
few. In nearly all applications, there is a growing demand
for higher-resolution imaging, exemplified by 4K video.
These vast and increasing volumes of data pose a tremen-
dous challenge for current computational algorithms, de-
spite the growth of modern computational power. How-
ever, the complexity of the underlying scene is typically

⇤Corresponding author: +1 (609)-921-6415 sbrunton@uw.edu

of much lower dimension than the ambient measurement
dimension.

In video applications, foreground/background model-
ing is a primary task. The quality of the foreground
separation impacts many downstream tasks, such as ob-
ject classification, and the computational time required
limits the resources available for downstream process-
ing. However, foreground/background modeling is a com-
putationally expensive task, which only becomes more
challenging with increased resolution (Bouwmans, 2014;
Bouwmans and Zahzah, 2014; Bouwmans et al., 2016).
Many algorithms have been developed to accomplish this
task at various levels of accuracy and speed (Bouwmans
et al., 2016). Candès et al. (2011) framed the problem of
background subtraction as a separation of the input ma-
trix into its sparse foreground and low-rank background
components, using robust principle component analysis
(RPCA). Although RPCA is expensive, performing an
iterative singular value decomposition (SVD) until con-
vergence on a final result, the formulation of the fore-
ground/background problem in terms of matrix decompo-
sition has a number of advantages. Matrix decomposition
methods, such as the SVD and RPCA benefit from par-
allelization and modern randomized methods that scale
with the complexity of the signal rather than the ambient
measurement dimension.

The dynamic mode decomposition (DMD) is a recent
matrix decomposition that has shown promise as a poten-
tial method for real-time foreground/background separa-
tion in high-resolution video streams (Grosek and Kutz,
2014; Erichson et al., 2016). DMD is closely related to
RPCA for video applications, and it only requires a sin-
gle SVD computation, as opposed to an iterative SVD
procedure. DMD was first introduced by Schmid in the
fluids community (Schmid, 2010) as a data-driven method
to decompose complex fluid systems into spatiotempo-
ral coherent structures, where each mode is associated
with a particular frequency and rate of growth or de-
cay. DMD has since been rigorously connected to non-
linear dynamical systems via Koopman operator theory
(Rowley et al., 2009; Kutz et al., 2014), which provides
an alternative infinite-dimensional linear representation
of nonlinear dynamical systems (Koopman, 1931; Mezić,
2005, 2013). DMD may also be thought of as an algo-

1

DMD
Engine

Sparse Output Low-Rank Output

Video Input

Streaming
SVD

Figure 1: Diagram of the streaming DMD engine used for
video separation.

rithm (Kutz et al., 2014) which yields a fundamental ma-
trix decomposition, combining many beneficial features of
principal components analysis (PCA) or proper orthogo-
nal decomposition (POD) and the fast Fourier transform
(FFT). As such, DMD has gained significant attention in
a wide variety of fields (Kutz et al., 2016a), including fluid
dynamics (Schmid et al., 2010; Noack et al., 2015; Brun-
ton and Noack, 2015; Priebe et al., 2016), neuroscience
(Brunton et al., 2016a), robotics (Berger et al., 2014),
epidemiology (Proctor and Eckho↵, 2015) and video pro-
cessing (Grosek and Kutz, 2014).

Despite the growing success of DMD, the underlying al-
gorithm is based on an expensive singular value decompo-
sition on high-dimensional data. Moreover, in many ap-
plications, such as video processing and high-performance
computations of transient physical processes, a sliding-
window DMD computation must be performed repeat-
edly for streaming data. Many algorithms have been pro-
posed to increase the speed of the SVD and DMD al-
gorithms. Sayadi and Schmid (2016) proposed using a
parallel QR factorization as the basis for a parallel SVD
on tall-skinny matrices, as are common in scientific com-
puting and video processing. Hemati et al. (2014) de-
veloped a batch-process and POD compressed version of
the DMD, in order to accommodate large data streams.
Brand (2002) created the incremental SVD, a method for
updating an SVD to adjust for new data. Wang et al.
(2016) propose a partitioned method of snapshots SVD
that is readily parallelized. Kutz et al. (2016c); Erich-
son and Donovan (2016); Erichson et al. (2016); Bistrian
and Navon (2017) used compression or randomized tech-
niques in order to reduce the size of the matrix DMD
is performed on. In Kutz et al. (2014) it was shown that
the computational bottleneck in the DMD, when comput-
ing the singular value decomposition using the method of
snapshots (Sirovich, 1987), is the calculation of the inner
product matrix on high-dimensional data. They further
note that when computing DMD on a sequential times-
series, many redundant inner products may be avoided
from one timestep to the next. The focus of this paper is
to develop a new streaming DMD algorithm, designed to
eliminate redundant computations when repeatedly per-
forming the DMD on a sequence of data. Thus by copying
these shared elements rather than recalculating them, a
massive speed-up may be realized. The present work syn-

Frame n

Frame n+1

XTXXInput
Stream

Real Time Data

Stored Data

Flatten
and

Append
Update

Figure 2: Overview of the streaming method of snap-
shots SVD, which avoids redundant inner product com-
putations by reusing portions of the matrix X

⇤
X in sub-

sequent time steps.

thesizes and builds on many of these ideas, providing an
accelerated DMD computation using a streaming method
of snapshots SVD, parallelized on a GPU, and extendable
to work directly on compressed data.

1.1 Contributions

In this paper, we develop a streaming DMD algorithm,
shown in Fig. 1, designed to reuse computations when
processing sequential inputs. The core of this algorithm
is the streaming SVD based on the method of snapshots,
shown in Fig. 2, which we compare to a standard SVD al-
gorithm, demonstrating considerable speed up with neg-
ligible loss in accuracy. We also demonstrate a new, e�-
cient way to calculate DMD mode amplitudes on POD co-
e�cients, as opposed to the traditional high-dimensional
least-squares fit. Additionally, we implement both CPU
and GPU versions of streaming DMD and show that these
algorithms are well suited to parallel processing. We com-
pare the GPU implementation of the streaming DMD
against a non-streaming CPU implementation, with neg-
ligible di↵erence in outcome. Further, we design this ar-
chitecture to work with the native compressed format of
many data streams (e.g. in the Fourier domain) to reduce
data transfer size and leverage sparse matrix multipli-
cations. Many of the innovations developed for stream-
ing, GPU, compressed DMD are also equally valid for
the SVD, and may have significant impact on scientific
computing. The C++ package for the streaming DMD
and SVD algorithms is available under an open-source
license on GitHub to promote reproducible research, at
https://github.com/sethdp/libssvd.

This paper is organized as follows: First, we review
background material, including the method of snapshots
SVD and the DMD in section 2. We also discuss the
motivation for graphics processing unit (GPU) accelera-
tion for our algorithms. Next, in section 3, we explain our
core innovations, including the streaming SVD and DMD,
fast computation of DMD mode amplitudes, our imple-
mentations, and leveraging compressed data formats. In
section 4 we show the significant performance improve-
ments made by our streaming algorithms and the similar
accuracy on video datasets. Lastly, in section 5, we sum-

2

Figure 3: Comparison between the method of snapshots
SVD and the standard SVD of singular values from the
standard and method of snapshots SVDs. This compari-
son was made on the first Yale face sequence (Belhumeur
et al., 1996). See Figure 4 for the corresponding image
reconstruction.

marize our findings and conclude with a discussion on
applications and future work.

2 Background

In order to develop our streaming DMD algorithm, we
first provide an overview of the standard DMD, the
method of snapshots SVD and general purpose GPU com-
puting. The backbone of our streaming versions of the
SVD and DMD is the method of snapshots SVD.

In all of the analysis that follows, we consider a matrix
of data snapshots X 2 Rm⇥n,

X =

2

4
x

1

x

2

· · · x

n

3

5 (1)

where n is the number of measurements andm is the num-
ber of temporal snapshots. For example, if the columns
of X represent image frames in a movie, then n is the
number of pixels per frame (i.e., n = n

x

n
y

, where the
image has n

x

⇥ n
y

pixels, and the image is reshaped into
an n ⇥ 1 vector) and m is the number of frames in the
movie.

Similarly, we may consider a time-series of an evolv-
ing spatial field from a numerical simulation of a partial
di↵erential equation.

Figure 4: Comparison of the standard and method of
snapshots SVDs for image reconstruction with one, half
or all singular values and vectors. Created using the first
Yale face sequence (Belhumeur et al., 1996). See Figure 3
for the corresponding comparison of singular values.

2.1 Method of Snapshots Singular Value

Decomposition

The method of snapshots is an alternative way to calcu-
late the singular value decomposition of a matrix X,

X = U⌃V

⇤, (2)

developed for matrices where one dimension is much
larger than the other. This method was originally de-
veloped for data from fluid dynamics, in which the tar-
get matrices are significantly taller than they are wide
(Sirovich, 1987), i.e. m � n. In these applications, it
is observed that the nonzero eigenvalues of X⇤

X are the
same as those of XX

⇤, although the first matrix is size
n⇥n while the second matrix is sizem⇥m. It is computa-
tionally more e�cient to compute the eigendecomposition
of the smaller matrix X

⇤
X and then use this informa-

tion to reconstruct the left and right singular vectors of
X. This allows for significant reductions in computation
time, although with a potential reduction in accuracy.
The method of snapshots is summarized as follows:

1. Multiply X by its transpose, in whichever order cre-
ates the smallest output. We assume X is a tall-
skinny matrix (i.e., m � n). Then find the eigende-
composition:

X

⇤
XV = V⇤ (3)

where ⇤ are the eigenvalues and V the eigenvectors
of X⇤

X. The non-negative square roots of ⇤ are the
singular values ⌃ of the original matrix X.

2. The left singular vectors U are calculated as follows:

U = XV⌃

�1. (4)

3

This creates an “economy” SVD, where U 2 Rm⇥n is
the same dimension as X, and ⌃ 2 Rn⇥n and V 2 Rn⇥n

are both small square matrices. Figure 3 shows the sin-
gular values calculated with both the standard SVD and
the method of snapshots, performed on the Yale faces
dataset (Belhumeur et al., 1996). The method of snap-
shots is a standard technique in the fluid dynamics com-
munity due to the high aspect ratio of the data matrix.
Figure 4 compares the reconstruction of the Yale faces
(Belhumeur et al., 1996) between the standard SVD and
method of snapshots SVD, as well as the absolute dif-
ference between the two. This further demonstrates how
close the method of snapshots is to the standard SVD, ir-
regardless of the number of eigenvalues and eigenvectors
used to reconstruct the images. In turn, the speed-up
provided by the method of snapshots SVD can be carried
over to the DMD.

The Läuchli matrix (Läuchli, 1961) is one example
where the Method of Snapshots SVD can lose significant
accuracy, due to the limited precision of floating point
representations. The Läuchli matrix X 2 R(n+1)⇥n is as
follows:

X =

2

6664

1 · · · 1
" 0

. . .
0 "

3

7775
(5)

where " is much smaller than 1. When multiplied by its
transpose, the Laüchli matrix will create a matrix with all
o↵ diagonals equal to 1 and the diagonal equal to 1 + "2.
Thus when " p

✏, where ✏ is the machine epsilon, 1+"2

will equal 1 in floating point arithmetic. However, we find
that this is not often an issue in practice. Consider a ma-
trix representing 8 bit per pixel normalized image data:
the smallest non-zero value of " is 1/255 ⇡ .0039. This
will be greater than the machine epsilon for 32-bit floating
point numbers, and thus will not lose the contributions
from ".

2.2 Dynamic Mode Decomposition

The DMD arose out of the fluid dynamics community to
analyze the spatio-temporal coherent structures arising
from fluids data (Schmid, 2010). It quickly gained pop-
ularity as strong connections were made between DMD
and Koopman spectral analysis (Rowley et al., 2009; Kutz
et al., 2014; Alekseev et al., 2016; Kutz et al., 2016a),
which provides an infinite-dimensional linear represen-
tation of nonlinear dynamical systems (Koopman, 1931;
Mezić, 2005, 2013).

DMD finds the dominant eigenvalues and eigenvectors
of a best-fit linear dynamical system modeling the tran-
sition of a state x

k

to the next time-step x

k+1

; nonlinear
model reduction is also possible with similar data (Brun-
ton et al., 2016b). In particular, given a matrix X and
another matrix X

0 consisting of the snapshots one time-

step in the future:

X

0 =

2

4
x

2

x

3

· · · x

n+1

3

5 , (6)

the DMD algorithm obtains the eigendecomposition of
the best-fit linear operator A given by

A = X

0
X

† = X

0
V⌃

�1

U

⇤, (7)

where † denotes the Moore-Penrose pseudo inverse (Kutz
et al., 2014).

However, since the state dimension nmay be quite large
(on the order of a million for HD video, tens of millions for
4K video, and even larger for scientific computing appli-
cations), the matrix A is too large to directly analyze on
simple computational architectures. Instead, it is possi-
ble to analyze a smaller matrix Ã obtained via projection
onto the left singular vectors in U:

Ã = U

⇤
AU = U

⇤
X

0
V⌃

�1. (8)

Much like the method of snapshots, the matrix Ã is
size n ⇥ n, and it has the same eigenvalues as the high-
dimensional matrix A, as shown in (Kutz et al., 2014).
Taking the eigendecomposition

ÃW = W⇤ (9)

it is then possible to obtain eigenvectors of the original
high-dimensional matrix A via

� = X

0
V⌃

�1

W. (10)

The columns of � are called dynamic modes of X and
they are spatio-temporal modes that have a single tem-
poral signature given by the corresponding eigenvalue �
in ⇤.

The large number of independent inner-products per-
formed in the process of calculating the SVD and DMD
make it a perfect fit for being computed on a graphics pro-
cessing unit(GPU), where their many cores can be lever-
aged.

2.2.1 DMD for Video Background Subtraction

Grosek and Kutz (2014) show that the DMD can be ef-
fectively leveraged to compute decomposition of a video
into the foreground and background components. This
provides a similar decomposition as in the robust prin-
ciple component analysis (RPCA) (Candès et al., 2011),
but at a fraction of the cost, as RPCA involves an itera-
tive procedure requiring dozens of SVD computations. In
this framework, the video X is decomposed into its con-
stituent low-rank and sparse components, where the low-
rank contains a low-dimensional representation of the sys-
tem under observation and the sparse the outliers, noise
and/or corruption measured by the input. This is repre-
sented as:

X = L+ S, (11)

4

where L is the low-rank component (background) and S

is the sparse component (foreground).
Because each DMD mode has a corresponding fre-

quency given by the DMD eigenvalue �, the discrete-
time eigenvalues that are nearly equal to 1 correspond
to modes that do not change from frame to frame, i.e.,
the background modes. Thus, DMD can also be used to
split the matrix X into two components, corresponding to
slowly varying modes with eigenvalues �

p

⇡ 1, and those
that have faster dynamics:

X =
X

p

b
p

�
p

�t�1

p

| {z }
Background modes

+
X

j 6=p

b
j

�
j

�t�1

j

| {z }
Foreground modes

, (12)

where t =
⇥
1 2 · · · n

⇤
is a vector of time indices.

Refer to Erichson et al. (2016) for the state of the art
DMD implementation of background modeling.

2.3 General Purpose GPU Computing

We will provide a brief overview of general purpose GPU
(GPGPU) programming here, but refer the reader to
Sanders and Kandrot (2010) for in-depth information
on GPGPU programming with CUDA. General purpose
GPU computing has proven e↵ective for accelerating
many linear algebra problems, as it is able to perform
many operations in parallel. Creating an e�cient algo-
rithm for use on a modern GPU requires a very di↵er-
ent approach than would be used on a central processing
unit (CPU). This design allows a GPU to achieve a much
higher throughput than a CPU (NVIDIA, 2015), if the
algorithm is written with the GPU in mind. This Single-
Instruction, Multiple Data (SIMD) style of code works
best when there is a large amount of input data need-
ing to be independently processed. NVIDIA (2015) notes
that minimizing host (CPU) to device (GPU) memory
transfers is key to maximizing performance. This lends
itself naturally to streaming algorithms where only the
updated data need be transferred on or o↵ the device.

3 Streaming Algorithms

In many applications, data is continually acquired from
sensors in a streaming fashion; new data is appended as
columns to the right of the matrix X, while old columns
may be removed from the left ofX if necessary. In stream-
ing applications, such as online video processing or win-
dowed DMD on transient simulations, the cost of repeated
DMD and SVD calculations may be prohibitively expen-
sive.

Here, we build a suite of complementary techniques
to accelerate repeated SVD and DMD computations for
streaming data. The core of the streaming DMD al-
gorithm is the streaming method of snapshots SVD,
whereby redundant inner product computations in X

⇤
X

are reused from one timestep to the next, reducing the

SVD computational complexity from O(mn2) to O(mn).
The streaming SVD and DMD are discussed in subsec-
tion 3.1 and subsection 3.2, respectively. When it is nec-
essary to compute the mode amplitudes in b, we intro-
duce an e�cient computation in subsection 3.3. All of
the above methods are readily parallelized, and we dis-
cuss GPGPU implementation in subsection 3.4. Once
GPU parallelized algorithms have been implemented,
data transfer from the CPU to GPU becomes the main
computational bottleneck. However, in many applica-
tions it is possible to leverage the native sparse repre-
sentation of the data (e.g., image sequences are stored in
compressed Fourier or wavelet representations) to signif-
icantly reduce data transfer and promote sparse matrix
operations, further reducing the computational burden.
This is discussed in subsection 3.5.

3.1 Streaming SVD

In the streaming context, letX be the current data matrix
and X

0 be the next matrix in the sequence. Many of the
inner products in X

⇤
X, shown in blue, may be reused in

X

0⇤
X

0:

X

⇤
X =

2

6664

hx
1

,x
1

i hx
1

,x
2

i · · · hx
1

,x
n�1

i
hx

2

,x
1

i hx
2

,x
2

i · · · hx
2

,x
n�1

i
...

...
. . .

...
hx

n�1

,x
1

i hx
n�1

,x
2

i · · · hx
n�1

,x
n�1

i

3

7775

(13a)

X

0⇤
X

0 =

2

6664

hx
2

,x
2

i · · · hx
2

,x
n�1

i hx
2

,x
n

i
...

. . .
...

...
hx

n�1

,x
2

i · · · hx
n�1

,x
n�1

i hx
n�1

,x
n

i
hx

n

,x
2

i · · · hx
n

,x
n�1

i hx
n

,x
n

i

3

7775
.

(13b)

Thus, as X0⇤
X

0 is symmetric, only the last row or column
will need to be recalculated (shown in green). Remov-
ing the redundant inner product calculations reduces the
computational complexity from O(mn2) to O(mn). As
this is the most time-consuming part of the method of
snapshots (Kutz et al., 2014), a large performance gain is
realized. This streaming method of snapshots facilitates
a streaming version of the DMD.

3.2 Streaming DMD

The streaming DMD relies on the streaming SVD in order
to process data in sequence, but is also able to realize
speed-ups from reusing intermediate steps from the SVD,
and by only returning the last column of the sparse matrix
XS in the case of background subtraction. Figure 1 shows
an outline of how the streaming DMD is set up in order
to perform background subtraction.

5

3.3 E�cient Mode Amplitudes

Computing the vector b of DMD mode amplitudes has
been investigated in the past (Jovanović et al., 2014; Kutz
et al., 2016a). The simplest approach involves computing
a best-fit b vector using the least-squares approximation:

b = �

†
x

1

. (14)

Instead, we use the following formulation directly on POD
coe�cients using Equation 8 and Equation 10:

x

1

= �b (15a)

=) U↵
1

= X

0
V⌃

�1

Wb (15b)

=) ↵
1

= ÃWb (15c)

=) ↵
1

= W⇤b (15d)

=) b = (W⇤)�1 ↵
1

, (15e)

where ↵
1

is the vector of POD coe�cients for x

1

. This
is significantly more e�cient than the high-dimensional
least-squares algorithm. Additionally, only the row cor-
responding to the smallest absolute DMD eigenvalue need
be calculated when streaming. The benefit of this faster
calculation of the DMD mode amplitudes is even more
pronounced on a GPU, requiring fewer synchronizations
with the device, and reducing the amount of data trans-
fer.

3.4 Implementation

U is not explicitly calculated so as to reduce space and
computational complexity of the DMD. While it is pos-
sible for this to cause issues with numerical accuracy, we
show that the results of these algorithms are similar in
subsection 4.2. Additionally, we used single-precision to
further reduce memory usage and increase performance.
NVIDIA (2017) discusses how CUDA may diverge from
typical IEEE 754 floating point. Floating point itself is
not perfectly accurate (Goldberg, 1991), which will cause
further rounding issues for large matrix operations. Our
code relies on OpenBLAS (Wang et al., 2013) for LA-
PACK Anderson et al. (1999) and BLAS functions on the
CPU, and MAGMA (Tomov et al., 2010a) for the GPU.
We also found that writing algorithms in MAGMA im-
proved performance over those written in OpenCL. This
can be attributed to the amount of work put into tuning
MAGMA (Tomov et al., 2010b; Dongarra et al., 2014) and
the better performance of CUDA over OpenCL (Karimi
et al., 2010; Fang et al., 2011; Du et al., 2012).

3.5 Sparse Data

After parallelization on the GPU, data transfers between
the CPU and GPU become a bottleneck. We may naively
transfer data in the ambient signal space, such as pixel
space for images or a spatial domain for high performance
computations. However, in both cases, these signals are

reshape reshape

reshape reshape

DMD

DMD

Sparse GPU Computations

GPU Computations

Transfer
to GPU

Transfer
to GPU
(Sparse)

Figure 5: Illustration of GPU accelerated DMD leverag-
ing native compressed data formats, such as for image
streams that are compressed in the Fourier domain.

typically stored or computed in a transformed basis, such
as Fourier or wavelets. Moreover, these transform bases
allow the data to be massively compressed, often by or-
ders of magnitude, which would lead to a significant sav-
ings in data transfer. Recent work combining compressed
sensing and DMD (Kutz et al., 2016c) showed that both
the SVD and DMD are invariant to unitary transforma-
tion, such as the fast Fourier transform (FFT). Thus, it is
possible to directly transfer FFT compressed data to the
GPU, perform DMD on the Fourier representation, and
transfer the compressed DMD from the GPU back for
storage or further processing. There is an added benefit
that many of the core steps in the DMD algorithm will be
performed on sparse data matrices, enabling further ef-
ficiency gains. This procedure is shown schematically in
Figure 5. This is not explicitly implemented in our code,
but is included because of the potentially important role
in reducing the size of memory transfers between CPU
and GPU in practical implementations. Note that com-
pressed and randomized (Halko et al., 2011) architectures
have recently been used to great advantage in scientific
computing applications, for example in (Schae↵er et al.,
2013; Mackey et al., 2014).

4 Results

We now present the performance and accuracy compar-
isons of our streaming SVD, DMD and background sub-
traction algorithms. The algorithms are demonstrated on
two high-resolution video datasets; however, the stream-
ing SVD and DMD algorithms are general to any high-
dimensional data inputs.

4.1 Performance

We benchmarked all algorithms on the PEViD “Walking
Day Indoor 4” video (Korshunov and Ebrahimi, 2014),
converted to greyscale and resized to common 16:9 resolu-

6

Figure 6: Comparison of CPU, streaming CPU (SCPU),
GPU and streaming GPU (SGPU) versions of the SVD,
DMD and DMD background subtraction. Times repre-
sent a one-frame update from steady state with all singu-
lar values in use. In the case of background subtraction,
only the closest single or complex conjugate pair of �
to 1 is used. Timings are a best of 5 mean with mem-
ory transfers to and from the GPU excluded. Tests were
run on PEViD “Walking Day Indoor 4” (Korshunov and
Ebrahimi, 2014).

tions up to UHD (3840 x 2160).1 We choose not to include
data transfers between CPU and GPU in our benchmarks,
as they don’t reflect the computational di↵erences in CPU
versus GPU code; instead they are only representative of
a hardware limitation of current computers. However,
in practical implementations, we discuss the potential to
significantly reduce data transfer using compressed data
formats as shown in Figure 5 in subsection 3.5. Instead,
our tests measure the time taken to update the SVD,
DMD or DMD background subtraction from steady state,
where the system has already been initialized. Both im-
plementations may require a short initialization period.

Figure 6 shows comparisons of the CPU, GPU, stream-
ing CPU (SCPU) and streaming GPU (SGPU) implemen-
tations for the SVD, DMD and DMD background sub-

1Our tests were performed on an Intel Xeon E5-2620v3 with
32GB of RAM and an NVIDIA Tesla K40, running Ubuntu 16.04.2
LTS. Our code was compiled with gcc 5.4.0 and depends on Open-
BLAS 0.2.18 (Wang et al., 2013) and MAGMA 2.2. (Tomov et al.,
2010a).

(a) (b) (c) (d)

Figure 7: Comparison of background subtraction on PE-
ViD “Walking Day Indoor 4” (Korshunov and Ebrahimi,
2014), cropped. (a) is the original frame, with a red rect-
angle indicating the boundaries of the non-zero region of
the thresholded foreground. (b) is a close-up of the orig-
inal frame. (c) is the foreground from DMD background
subtraction on the CPU. (d) is the foreground using our
Streaming GPU DMD.

traction. This test shows streaming to significantly bene-
fit the CPU implementation, putting it on par with that
of the GPU. In real world applications, this is promising
as it could reduce the need for a dedicated GPU, while
still netting a large performance improvement and elim-
inating memory transfers. Further, the streaming GPU
is significantly faster than the other three versions, and
scales more favorably for large input dimensions (i.e., res-
olution m and number of frames n).

When the resolution is kept constant, we see that the
scaling of both streaming algorithms is more favorable
than that of the non-streaming algorithms. This is as
expected, since that the cost to update X⇤

X is on the or-
der of O(mn) when streaming, rather than O(mn2). Of
particular note is the large jump in time from resolution
1440 to 2160 on all three varying height graphs (left col-
umn): this jump shows when the memory available to
the GPU becomes an issue. Due to its reduced memory
footprint, the streaming versions of each algorithm do
not su↵er from this memory bottleneck and associated
reduction in performance. With regards to the graphs
of varying width, we see that both streaming algorithms
grow far more slowly than their non-streaming counter-
parts. This shows that in all cases the streaming CPU
and GPU implementations of all 3 algorithms are faster
than their traditional counterparts, at both high resolu-
tion and frame counts. Additionally, the streaming GPU
versions of the SVD, DMD and DMD background sub-
traction algorithms all show the best potential for scaling
to even higher-dimensional inputs.

4.2 Accuracy

It is important to verify that the significant speed-up of
the streaming and GPU implementations do not come
with unacceptable losses in accuracy. Figure 7 shows a
subjective comparison between our CPU and streaming
GPU implementations of DMD background subtraction.
Examining (c) and (d) show that the results are nearly

7

Dataset Alg n = 20 n = 40 n = 60 n = 80 n = 100 n = 120
PEViD SVD 2.00e-04 1.90e-04 2.00e-04 2.19e-04 2.42e-04 2.42e-04

DMD 5.31e-05 1.10e-04 1.04e-04 2.16e-04 7.21e-05 1.01e-04
BMC SVD 6.97e-03 7.46e-03 7.98e-03 7.85e-03 7.00e-03 6.31e-03

DMD 2.81e-02 1.46e-01 2.42e-02 2.31e-02 1.52e-01 1.25e-01

Table 1: Relative errors of SVD (⌃) and DMD (�
�⇡0

)
streaming GPU implementation versus standard Python
implementation. Measurements were made using the PE-
ViD (Korshunov and Ebrahimi, 2014) dataset at n =
1920⇥ 1080 height and the BMC (Vacavant et al., 2013)
dataset at widths varying from n = 20 to n = 120.

indistinguishable.
Table 1 shows comparisons made between our stream-

ing SVD and DMD output against Python implementa-
tions of the standard algorithms. In both cases, the rela-
tive error is quite small, even for the largest input sizes.
The DMD comparison was made on the product of col-
umn of � corresponding to the smallest absolute value
in ⇤. However, in many applications of DMD, such as
video background modeling, this constitutes an accept-
able error for the considerable speed-up, as downstream
processing algorithms do not require machine precision.

Figure 8 shows sample frames from each of the 9
Background Models Challenge real videos next to fore-
ground masks generated by OpenCV (Bradski, 2000)
and our streaming GPU DMD. We compared our DMD
against the “MOG2” Gaussian mixture model (Zivkovic,
2004) and “KNN” k-nearest neighbors (Zivkovic and Van
Der Heijden, 2006) background subtractors using their
default parameters. This figure demonstrates that our
streaming DMD is subjectively comparable to other stan-
dard background subtraction algorithms. While the re-
sults are not as clean for the DMD due to ghosting,
there is clearly the potential for significant improvement
through post-processing like blurring, filtering or thresh-
olding.

Table 2 lists the standard foreground mask evalua-
tion metrics generated by the Background Models Chal-
lenge Wizard. These evaluations correspond to the same
“MOG2”, “KNN” and DMD setups as in Figure 8. In
general, the DMD performance is close to that of the
“MOG2” and “KNN” methods. This is promising, as
DMD is a relatively new method and may be further
developed and improved with recent innovations (Kutz
et al., 2016c,b; Dawson et al., 2016). Moreover, the sig-
nificant computational savings associated with the new
streaming GPU DMD enables real-time video processing
with computations left over for downstream analysis and
processing.

5 Discussion and Conclusion

Matrix decompositions, such as the singular value de-
composition (SVD) and dynamic mode decomposition
(DMD), are cornerstones of numerical linear algebra.

Figure 8: Comparison of our streaming DMD background
subtraction algorithm against two common alternatives
based on gaussian mixture model (MOG2) (Zivkovic,
2004) and k-nearest neighbors (KNN) (Zivkovic and Van
Der Heijden, 2006). OpenCV (Bradski, 2000) provided
the implementations of MOG2 and KNN, and were run
with their default parameters. Our DMD algorithm was
run with a window size of 30 frames and kept only the
10 largest singular values. All values below 10% were
set to 0. This comparison used the Background Models
Challenge real world dataset(Vacavant et al., 2013).

8

Sequence Alg Recall Precision F-Measure PSNR

Video 1 DMD 0.583234 0.585362 0.584296 38.4607
MOG2 0.618224 0.563368 0.589523 34.3749
KNN 0.608381 0.559737 0.583046 34.3468

Video 2 DMD 0.608118 0.726146 0.661912 26.0115
MOG2 0.72366 0.686597 0.704641 22.42
KNN 0.792748 0.669372 0.725855 20.6405

Video 3 DMD 0.758537 0.696091 0.725974 36.2454
MOG2 0.850997 0.675859 0.753383 33.246
KNN 0.841266 0.758035 0.797485 38.0807

Video 4 DMD 0.70198 0.700967 0.701473 43.3357
MOG2 0.799231 0.579539 0.671882 31.8003
KNN 0.798056 0.628809 0.703395 36.9051

Video 5 DMD 0.626271 0.551574 0.586554 39.1576
MOG2 0.654289 0.507281 0.571482 17.4064
KNN 0.651026 0.510855 0.572486 22.2382

Video 6 DMD 0.699749 0.729035 0.714092 32.3418
MOG2 0.82021 0.659463 0.731105 26.2544
KNN 0.825746 0.664574 0.736445 26.5406

Video 7 DMD 0.606475 0.59481 0.600586 22.5322
MOG2 0.750474 0.667586 0.706608 22.9777
KNN 0.808194 0.67034 0.732841 22.1621

Video 8 DMD 0.563182 0.517349 0.539293 22.9505
MOG2 0.579596 0.516037 0.545972 19.8442
KNN 0.55195 0.507792 0.528951 16.5084

Video 9 DMD 0.505496 0.551778 0.527624 35.3733
MOG2 0.616528 0.570914 0.592845 46.5633
KNN 0.584392 0.575733 0.58003 48.6861

Table 2: Comparison of DMD, Gaussian mixture model
(MOG2), and k-nearest neighbors (KNN) on Background
Models Challenge data sets (Vacavant et al., 2013). Per-
formance is quantified by recall, precision, F-measure,
and peak signal to noise ratio (PSNR). DMD accuracy is
promising, as it is competitive with standard algorithms,
which have been developed and optimized over decades.
Further innovations to DMD may improve performance.

However, these methods typically become computation-
ally intractable for high-dimensional data, and this cost
is compounded in streaming applications, where a new
matrix decomposition is required for each new measure-
ment in time. These computational issues hinder e↵orts
for real-time processing of high-dimensional data, such
as HD video, which will only get worse with growing big
data volumes. In this work, we have exploited the fact
that these streaming architectures have many redundant
computations and may be readily parallelized on a graph-
ics processing unit (GPU), providing significant acceler-
ation of the algorithm. We have developed and analyzed
streaming singular value and dynamic mode decomposi-
tion algorithms and their GPU implementations. In ad-
dition, we show performance benefits for streaming video
background subtraction. In all cases, a large number of
calculations are able to be carried forward from frame
to frame by exploiting the structure of the method of
snapshots SVD. This allows both the SVD and DMD to
process large data streams in real-time, whether for video
or otherwise. We have evaluated the proposed algorithms
on multiple datasets, demonstrating the significantly im-
proved computational performance for stream processing
with negligible loss in accuracy. Our C++ and CUDA im-
plementation of the SVD and DMD are available under
an open-source license on GitHub.

The results of our performance comparison suggest that
streaming algorithms are favorable, regardless of whether
a GPU is available on a target platform. Additionally, sig-
nificant speed-ups are possible at smaller data sizes once
faster transfers are available to and from a GPU. While
not suitable for extreme-precision applications, we believe
our streaming SVD and DMD algorithms provide a valu-
able improvement for many applications due to their im-
proved computational performance. The small loss in ac-
curacy was shown to be negligible for video background
modeling applications.

There are a number of interesting future directions that
may arise from this work. One could modify the stream-
ing algorithms shown here to support dynamic updating
with more than one column at a time; when data inputs
slow down, the number of new columns processed may
be increased to catch up, and vice versa. This dynamic
streaming update could help to recover from a build-up
of columns waiting to be processed for a long-running in-
stance of the streaming SVD or DMD. A streaming input
build-up could also be used instead of waiting for enough
initial inputs for the first SVD or DMD. This would in-
stead pre-allocate the maximum matrix size, but start
the algorithm with only 2 columns. Until the matrix is
filled, the new columns would be appended without eras-
ing the oldest. Dynamically changing the number of sin-
gular values used in the economy SVD is also possible.
In using the streaming DMD for background subtraction,
the algorithm could be modified to use some small subset
of background DMD modes rather than just the single
slowest changing mode, as suggested in Erichson et al.

9

(2016). This would improve results at the cost of per-
formance. Our algorithm should also be able to be used
to accelerate the segmentation of Tirunagari et al. (2016)
’s color DMD for background subtraction. Lastly, our
method could be joined with other modified DMD al-
gorithms, such as compressed DMD (Kutz et al., 2016c;
Erichson et al., 2016), multi-resolution DMD (Kutz et al.,
2016b), or de-noised DMD (Dawson et al., 2016) in order
to improve performance.

The emergence of the big data era across the physi-
cal, biological, social and engineering sciences has severely
challenged our ability to extract meaningful features from
data in a real-time manner. Critical technologies such as
LIDAR, 4K video streams, computer vision, high-fidelity
numerical simulations, sensor networks, brain-machine
interfaces, internet of things, and augmented reality will
all depend on scalable algorithms that can produce mean-
ingful decompositions of data in real time. Failure to
compute data streams in real time results in a data mort-
gage (Polagye et al., 2014) whereby the cost of collection
and storage limits the available resources to analyze and
extract features. We are already seeing this across the
sciences where massive data sets are collected and stored,
yet remained un-mined for informative features and/or
critical information for automated decision making pro-
cesses. The streaming technique presented here provides
a mathematical architecture for real-time processing of
data and extraction of features. The method is adaptive,
e�cient, parallelizable and scalable, potentially enabling
a host of applications currently beyond the capabilities of
standard techniques.

Acknowledgements

We gratefully acknowledge valuable discussions with Zhe
Bai and Ben Erichson. SLB and SDP acknowledge sup-
port from the Department of Energy: The information,
data, or work presented herein was funded in part by
the O�ce of Energy E�ciency and Renewable Energy
(EERE), U.S. Department of Energy, under Award Num-
ber DE-EE006785. We also thank NVIDIA for provid-
ing a Tesla K40 GPU for this research. SLB also ac-
knowledges support from the Boeing corporation [con-
tract SSOW-BRT-W0714-0004], and SDP acknowledges
support from the Mary Gates Research Scholarship.

Disclaimer

The information, data, or work presented herein was
funded in part by an agency of the United States Gov-
ernment. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not neces-
sarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any
agency thereof. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

References

Alekseev, A.K., Bistrian, D.A., Bondarev, A.E., Navon,
I.M., 2016. On linear and nonlinear aspects of dynamic
mode decomposition. International Journal for Numer-
ical Methods in Fluids 82, 348–371. doi:10.1002/fld.
4221.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Dem-
mel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Sorensen, D., 1999.
LAPACK Users’ Guide. Third ed., Society for Indus-
trial and Applied Mathematics, Philadelphia, PA.

Belhumeur, P.N., ao P. Hespanha, J., Kriegman, D.J.,
1996. Eigenfaces vs. fisherfaces: Recognition using class
specific linear projection, in: Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, pp. 43–58.
doi:10.1007/bfb0015522.

Berger, E., Sastuba, M., Vogt, D., Jung, B., Amor,
H.B., 2014. Dynamic mode decomposition for pertur-
bation estimation in human robot interaction, in: The
23rd IEEE International Symposium on Robot and Hu-
man Interactive Communication, IEEE. doi:10.1109/
roman.2014.6926317.

Bistrian, D.A., Navon, I.M., 2017. Randomized dynamic
mode decomposition for nonintrusive reduced order
modelling. International Journal for Numerical Meth-
ods in Engineering doi:10.1002/nme.5499.

Bouwmans, T., 2014. Traditional and recent approaches
in background modeling for foreground detection: An
overview. Computer Science Review 11-12, 31–66.
doi:10.1016/j.cosrev.2014.04.001.

Bouwmans, T., Aybat, N.S., hadi Zahzah, E. (Eds.),
2016. Handbook of Robust Low-Rank and Sparse Ma-
trix Decomposition. CRC Press. doi:10.1201/b20190.

Bouwmans, T., Zahzah, E.H., 2014. Robust pca via
principal component pursuit: A review for a compara-
tive evaluation in video surveillance. Computer Vision
and Image Understanding 122, 22–34. doi:10.1016/j.
cviu.2013.11.009.

Bradski, G., 2000. OpenCV library. Dr. Dobbś Journal
of Software Tools .

10

http://dx.doi.org/10.1002/fld.4221
http://dx.doi.org/10.1002/fld.4221
http://dx.doi.org/10.1007/bfb0015522
http://dx.doi.org/10.1109/roman.2014.6926317
http://dx.doi.org/10.1109/roman.2014.6926317
http://dx.doi.org/10.1002/nme.5499
http://dx.doi.org/10.1016/j.cosrev.2014.04.001
http://dx.doi.org/10.1201/b20190
http://dx.doi.org/10.1016/j.cviu.2013.11.009
http://dx.doi.org/10.1016/j.cviu.2013.11.009

Brand, M., 2002. Incremental singular value de-
composition of uncertain data with missing val-
ues, in: Computer Vision textemdash ECCV 2002.
Springer Berlin Heidelberg, pp. 707–720. doi:10.1007/
3-540-47969-4_47.

Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz,
J.N., 2016a. Extracting spatialtextendashtemporal co-
herent patterns in large-scale neural recordings using
dynamic mode decomposition. Journal of Neuroscience
Methods 258, 1–15. doi:10.1016/j.jneumeth.2015.
10.010.

Brunton, S.L., Noack, B.R., 2015. Closed-loop turbulence
control: Progress and challenges. Applied Mechanics
Reviews 67, 050801. doi:10.1115/1.4031175.

Brunton, S.L., Proctor, J.L., Kutz, J.N., 2016b. Discov-
ering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences 113, 3932–3937.
doi:10.1073/pnas.1517384113.

Candès, E.J., Li, X., Ma, Y., Wright, J., 2011. Robust
principal component analysis? Journal of the ACM 58,
1–37. doi:10.1145/1970392.1970395.

Dawson, S.T.M., Hemati, M.S., Williams, M.O., Row-
ley, C.W., 2016. Characterizing and correcting for
the e↵ect of sensor noise in the dynamic mode de-
composition. Experiments in Fluids 57. doi:10.1007/
s00348-016-2127-7.

Dongarra, J., Gates, M., Haidar, A., Kurzak, J.,
Luszczek, P., Tomov, S., Yamazaki, I., 2014. Ac-
celerating numerical dense linear algebra calculations
with GPUs, in: Numerical Computations with GPUs.
Springer International Publishing, pp. 3–28. doi:10.
1007/978-3-319-06548-9_1.

Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson,
G., Dongarra, J., 2012. From CUDA to OpenCL:
Towards a performance-portable solution for multi-
platform GPU programming. Parallel Computing 38,
391–407. doi:10.1016/j.parco.2011.10.002.

Erichson, N.B., Brunton, S.L., Kutz, J.N., 2016. Com-
pressed dynamic mode decomposition for background
modeling. Journal of Real-Time Image Processing
doi:10.1007/s11554-016-0655-2.

Erichson, N.B., Donovan, C., 2016. Randomized low-
rank dynamic mode decomposition for motion detec-
tion. Computer Vision and Image Understanding 146,
40–50. doi:10.1016/j.cviu.2016.02.005.

Fang, J., Varbanescu, A.L., Sips, H., 2011. A comprehen-
sive performance comparison of CUDA and OpenCL,
in: 2011 International Conference on Parallel Process-
ing, IEEE. doi:10.1109/icpp.2011.45.

Goldberg, D., 1991. What every computer scientist
should know about floating-point arithmetic. ACM
Computing Surveys 23, 5–48. doi:10.1145/103162.
103163.

Grosek, J., Kutz, J.N., 2014. Dynamic mode decompo-
sition for real-time background/foreground separation
in video. arXiv preprint arXiv:1404.7592 .

Halko, N., Martinsson, P.G., Tropp, J.A., 2011. Finding
structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions.
SIAM Review 53, 217–288. doi:10.1137/090771806.

Hemati, M.S., Williams, M.O., Rowley, C.W., 2014. Dy-
namic mode decomposition for large and streaming
datasets. Physics of Fluids 26, 111701. doi:10.1063/
1.4901016.

Jovanović, M.R., Schmid, P.J., Nichols, J.W., 2014.
Sparsity-promoting dynamic mode decomposition.
Physics of Fluids 26, 024103. doi:10.1063/1.4863670.

Karimi, K., Dickson, N.G., Hamze, F., 2010. A per-
formance comparison of CUDA and OpenCL. arXiv
preprint arXiv:1005.2581 .

Koopman, B.O., 1931. Hamiltonian systems and trans-
formation in hilbert space. Proceedings of the National
Academy of Sciences 17, 315–318. doi:10.1073/pnas.
17.5.315.

Korshunov, P., Ebrahimi, T., 2014. UHD video dataset
for evaluation of privacy, in: 2014 Sixth Interna-
tional Workshop on Quality of Multimedia Experience
(QoMEX), IEEE. doi:10.1109/qomex.2014.6982324.

Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.,
2016a. Dynamic Mode Decomposition. Society for
Industrial and Applied Mathematics. doi:10.1137/1.
9781611974508.

Kutz, J.N., Brunton, S.L., Luchtenburg, D.M., Rowley,
C.W., Tu, J.H., 2014. On dynamic mode decomposi-
tion: Theory and applications. Journal of Computa-
tional Dynamics 1, 391–421. doi:10.3934/jcd.2014.
1.391.

Kutz, J.N., Fu, X., Brunton, S.L., 2016b. Multiresolution
dynamic mode decomposition. SIAM Journal on Ap-
plied Dynamical Systems 15, 713–735. doi:10.1137/
15m1023543.

Kutz, J.N., Tu, J.H., Proctor, J.L., Brunton, S.L., 2016c.
Compressed sensing and dynamic mode decomposi-
tion. Journal of Computational Dynamics 2, 165–191.
doi:10.3934/jcd.2015002.

Läuchli, P., 1961. Jordan-elimination und ausgleichung
nach kleinsten quadraten. Numerische Mathematik 3,
226–240. doi:10.1007/bf01386022.

11

http://dx.doi.org/10.1007/3-540-47969-4_47
http://dx.doi.org/10.1007/3-540-47969-4_47
http://dx.doi.org/10.1016/j.jneumeth.2015.10.010
http://dx.doi.org/10.1016/j.jneumeth.2015.10.010
http://dx.doi.org/10.1115/1.4031175
http://dx.doi.org/10.1073/pnas.1517384113
http://dx.doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1007/s00348-016-2127-7
http://dx.doi.org/10.1007/s00348-016-2127-7
http://dx.doi.org/10.1007/978-3-319-06548-9_1
http://dx.doi.org/10.1007/978-3-319-06548-9_1
http://dx.doi.org/10.1016/j.parco.2011.10.002
http://dx.doi.org/10.1007/s11554-016-0655-2
http://dx.doi.org/10.1016/j.cviu.2016.02.005
http://dx.doi.org/10.1109/icpp.2011.45
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.1063/1.4901016
http://dx.doi.org/10.1063/1.4901016
http://dx.doi.org/10.1063/1.4863670
http://dx.doi.org/10.1073/pnas.17.5.315
http://dx.doi.org/10.1073/pnas.17.5.315
http://dx.doi.org/10.1109/qomex.2014.6982324
http://dx.doi.org/10.1137/1.9781611974508
http://dx.doi.org/10.1137/1.9781611974508
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.1137/15m1023543
http://dx.doi.org/10.1137/15m1023543
http://dx.doi.org/10.3934/jcd.2015002
http://dx.doi.org/10.1007/bf01386022

Mackey, A., Schae↵er, H., Osher, S., 2014. On the com-
pressive spectral method. Multiscale Modeling & Sim-
ulation 12, 1800–1827. doi:10.1137/140965909.

Mezić, I., 2005. Spectral properties of dynami-
cal systems, model reduction and decompositions.
Nonlinear Dynamics 41, 309–325. doi:10.1007/
s11071-005-2824-x.

Mezić, I., 2013. Analysis of fluid flows via spectral
properties of the koopman operator. Annual Re-
view of Fluid Mechanics 45, 357–378. doi:10.1146/
annurev-fluid-011212-140652.

Noack, B.R., Stankiewicz, W., Morzynski, M., Schmid,
P.J., 2015. Recursive dynamic mode decomposi-
tion of a transient cylinder wake. arXiv preprint
arXiv:1511.06876 .

NVIDIA, 2015. CUDA C best practices guide .

NVIDIA, 2017. Precision & performance: Floating point
and IEEE 754 compliance for NVIDIA GPUs .

Polagye, B.L., Copping, A.E., Brown-Saracino, J.,
Suryan, R., Kramer, S., Smith, C., 2014. Instrumenta-
tion for Monitoring around Marine Renewable Energy
Converters: Workshop Final Report. Technical Report.
doi:10.2172/1220858.

Priebe, S., Tu, J.H., Rowley, C.W., Martn, M.P., 2016.
Low-frequency dynamics in a shock-induced separated
flow. Journal of Fluid Mechanics 807, 441–477. doi:10.
1017/jfm.2016.557.

Proctor, J.L., Eckho↵, P.A., 2015. Discovering dynamic
patterns from infectious disease data using dynamic
mode decomposition. International Health 7, 139–145.
doi:10.1093/inthealth/ihv009.

Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Hen-
ningson, D.S., 2009. Spectral analysis of nonlinear
flows. Journal of Fluid Mechanics 641, 115. doi:10.
1017/s0022112009992059.

Sanders, J., Kandrot, E., 2010. CUDA by Example. Pear-
son Education.

Sayadi, T., Schmid, P.J., 2016. Parallel data-driven de-
composition algorithm for large-scale datasets: with
application to transitional boundary layers. Theoret-
ical and Computational Fluid Dynamics 30, 415–428.
doi:10.1007/s00162-016-0385-x.

Schae↵er, H., Caflisch, R., Hauck, C.D., Osher, S., 2013.
Sparse dynamics for partial di↵erential equations. Pro-
ceedings of the National Academy of Sciences 110,
6634–6639. doi:10.1073/pnas.1302752110.

Schmid, P.J., 2010. Dynamic mode decomposition of nu-
merical and experimental data. Journal of Fluid Me-
chanics 656, 5–28. doi:10.1017/s0022112010001217.

Schmid, P.J., Li, L., Juniper, M.P., Pust, O., 2010. Appli-
cations of the dynamic mode decomposition. Theoret-
ical and Computational Fluid Dynamics 25, 249–259.
doi:10.1007/s00162-010-0203-9.

Sirovich, L., 1987. Turbulence and the dynamics of coher-
ent structures. part i: Coherent structures. Quarterly
of applied mathematics 45, 561–571.

Tirunagari, S., Poh, N., Bober, M., Windridge, D.,
2016. Can dmd obtain a scene background in color?,
in: 2016 International Conference on Image, Vision
and Computing (ICIVC), IEEE. doi:10.1109/icivc.
2016.7571272.

Tomov, S., Dongarra, J., Baboulin, M., 2010a. To-
wards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Computing 36, 232–240.
doi:10.1016/j.parco.2009.12.005.

Tomov, S., Nath, R., Ltaief, H., Dongarra, J., 2010b.
Dense linear algebra solvers for multicore with GPU
accelerators, in: 2010 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), IEEE. doi:10.1109/ipdpsw.
2010.5470941.

Vacavant, A., Chateau, T., Wilhelm, A., Lequièvre,
L., 2013. A benchmark dataset for outdoor fore-
ground/background extraction, in: Computer Vision
- ACCV 2012 Workshops. Springer Berlin Heidelberg,
pp. 291–300. doi:10.1007/978-3-642-37410-4_25.

Wang, Q., Zhang, X., Zhang, Y., Yi, Q., 2013. AUGEM,
in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis on - SC ’13, ACM Press. doi:10.1145/
2503210.2503219.

Wang, Z., McBee, B., Iliescu, T., 2016. Approximate
partitioned method of snapshots for pod. Journal of
Computational and Applied Mathematics 307, 374–
384. doi:10.1016/j.cam.2015.11.023.

Zivkovic, Z., 2004. Improved adaptive gaussian mixture
model for background subtraction, in: Proceedings of
the 17th International Conference on Pattern Recog-
nition, 2004. ICPR 2004., IEEE. doi:10.1109/icpr.
2004.1333992.

Zivkovic, Z., Van Der Heijden, F., 2006. E�cient adap-
tive density estimation per image pixel for the task of
background subtraction. Pattern recognition letters 27,
773–780. doi:10.1016/j.patrec.2005.11.005.

12

http://dx.doi.org/10.1137/140965909
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1146/annurev-fluid-011212-140652
http://dx.doi.org/10.1146/annurev-fluid-011212-140652
http://dx.doi.org/10.2172/1220858
http://dx.doi.org/10.1017/jfm.2016.557
http://dx.doi.org/10.1017/jfm.2016.557
http://dx.doi.org/10.1093/inthealth/ihv009
http://dx.doi.org/10.1017/s0022112009992059
http://dx.doi.org/10.1017/s0022112009992059
http://dx.doi.org/10.1007/s00162-016-0385-x
http://dx.doi.org/10.1073/pnas.1302752110
http://dx.doi.org/10.1017/s0022112010001217
http://dx.doi.org/10.1007/s00162-010-0203-9
http://dx.doi.org/10.1109/icivc.2016.7571272
http://dx.doi.org/10.1109/icivc.2016.7571272
http://dx.doi.org/10.1016/j.parco.2009.12.005
http://dx.doi.org/10.1109/ipdpsw.2010.5470941
http://dx.doi.org/10.1109/ipdpsw.2010.5470941
http://dx.doi.org/10.1007/978-3-642-37410-4_25
http://dx.doi.org/10.1145/2503210.2503219
http://dx.doi.org/10.1145/2503210.2503219
http://dx.doi.org/10.1016/j.cam.2015.11.023
http://dx.doi.org/10.1109/icpr.2004.1333992
http://dx.doi.org/10.1109/icpr.2004.1333992
http://dx.doi.org/10.1016/j.patrec.2005.11.005

