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Abstract
Assessment and management of sea turtle populations is often limited by a lack of available

data pertaining to at-sea distributions at appropriate spatial and temporal resolutions.

Assessing the spatial and temporal distributions of marine turtles in an open system poses

both observational and analytical challenges due to the turtles’ highly migratory nature. Sur-

face counts of marine turtles in waters along the southern part of Florida’s east coast were

made in and adjacent to the southeast portion of the Florida Current using standard aerial

surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular

concern for sea turtles as interest increases in offshore energy developments, specifically

harnessing the power of the Florida Current. While it is understood that marine turtles use

these waters, here we evaluate seasonal variation in sea turtle abundance and density over

two years. Density of sea turtles observed within the study area ranged from 0.003 turtles

km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of

marine turtles in the waters off southeast Florida quantifies their in-water abundance across

seasons in this area to establish baselines and inform future management strategies of

these protected species.

Introduction
Understanding spatial and temporal distributions is crucial for effective management and con-
servation strategies of threatened and endangered species. Obtaining such information is espe-
cially challenging for highly mobile wildlife that occupy multiple habitats throughout their life
cycle. Sea turtles are large marine reptiles that undergo several habitat shifts that are ontoge-
netic [1–5] and migratory [6–11]. Such habitat changes complicate studies of local and global
distributions, necessitating studies that examine in-water distributions at varied spatial and
temporal scales [12, 13]. Due to the complex life history of marine turtles [1, 2, 10, 14, 15],
knowledge of their spatial and temporal distributions is essential for understanding population
structures and focusing conservation efforts. The southeast Atlantic coast of Florida hosts
some of the world’s largest sea turtle rookeries [16–18] and provides valuable in-water habitat
for various life stages and species [19]. Five of the world’s sea turtle species, including
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loggerhead (Caretta caretta), leatherback (Dermochelys coriacea), green (Chelonia mydas),
Kemp’s ridley (Lepidochelys kempii), and hawksbill (Eretmochelys imbricata) turtles, use the
waters along the southeastern coast of Florida [19]. Each occupies various pelagic and benthic
niches within these waters throughout different life stages [1, 20–23].

Of the five species, the loggerhead [13, 24, 25], leatherback [12, 17], and green [18, 26] tur-
tles migrate and nest regularly in increasing numbers [27] along the southeast coast of Florida,
while few hawksbill [28, 29] and Kemp’s ridley [28, 30] nests occur annually. Florida’s east
coast is important as transitional habitat for hatchlings dispersing offshore [31], as well as
developmental habitat for turtles originating from a wide range of natal beaches [23]. Large
juvenile and adult loggerhead turtles are captured or observed along Florida’s Atlantic coast
year-round [2, 13, 32, 33]. Similarly, juvenile green turtles are consistently present in Florida’s
Atlantic waters in a variety of developmental and foraging habitats including nearshore reefs,
coastal lagoons, and sea grass beds [33–35]. Most Kemp’s ridley turtles present in Florida’s
Atlantic waters are juveniles undergoing coastal foraging migrations [36–39]. Juvenile hawks-
bills occur along hard-bottom reefs in southeast Florida [29, 40], yet few studies exist assessing
their presence year-round. Very little is known about juvenile leatherback turtles once they
leave the nesting beaches [12].

Oceanic currents are important physical features of some habitats used by sea turtles [21,
31, 41–43]. Sea turtles often associate with currents during long-distance movements and as a
primary foraging area [21, 41, 43, 44], which in turn can influence the distribution of nests
along natal beaches [45]. The Florida Current, the southern portion of the Gulf Stream, is a
unique oceanic feature that runs swiftly northward between the southeastern Florida coast and
the Bahamas at speeds of up to 2 m s-1 at its core located approximately 20 km offshore [46].
Due to its proximity to nesting beaches and developmental habitats in south Florida, it is likely
that sea turtle migrations intersect the Florida current and its surrounding waters. The poten-
tial for alternative energy development on the outer continental shelf and within the Florida
current raises questions about the potential impacts on endangered sea turtles and other
marine fauna [46]. Fundamental in the assessment of such concerns is a sound understanding
of sea turtle distributions and abundances in and around the Florida current. That data gap
necessitates fine-scale examination of sea turtle distributions to understand the potential for
interactions with alternative energy industries.

Aerial surveys are commonly used to identify distributions of sea turtles over various spatial
and temporal scales [47]. Loggerhead, leatherback, green, and Kemp’s ridley turtles have been
monitored using aerial surveys in a variety of habitats to assess spatial and temporal variations
in presence [48–57] or to estimate density and abundance of a species in a given area [49, 50,
53, 54, 57, 58]. Here we estimate sea turtle density and abundance in a discrete portion of the
Florida Current and adjacent waters using systematic aerial survey data and identify trends in
the spatial presence and temporal abundance of sea turtles.

Material and Methods
The Florida Atlantic University IACUC granted a waiver of ethical approval because the ani-
mals were not handled, captured or manipulated. The work was authorized under US NMFS
Permit Number 14586 “Assessment of sea turtles and marine mammals within the Florida and
Gulf Stream Currents in the northern Florida Straits."

Study area
The study area was defined as waters off the eastern coast of Florida extending south of 26°
430N, (near West Palm Beach, Florida) to north of 25°400N, near Miami, Florida (Fig 1). This
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area encompasses the southern portion of the Gulf Stream that runs northward between the
western Bahamas and the eastern coast of Florida (hereafter the Florida Current). Our study
also includes an area that has been identified as a potential site for oceanic energy interests.
Structures in the water column have potential to impact wildlife (at various life stages) that use
the Florida Current, as well as coastal habitats westward of the current.

Aerial surveys
To investigate seasonal presence of marine turtles in this study area, systematic aerial surveys
were conducted at approximately monthly intervals from 2011–2012 to complete a total of
22,433 km of survey effort. Surveys in 2011 consisted of 12 parallel transects ranging in length
from 40–100 km spaced 8 km apart. In 2012, the surveys were optimized using distance sam-
pling methodology [59] and the survey was redesigned to include 16 parallel transects ranging
in length from 35–100 km, spaced 4 km apart. All surveys were flown in a high-wing aircraft
(Cessna 337) at a constant altitude of 150 m and groundspeed of 185 km h-1. Following line
transect theory [59, 60], parallel transects were flown east to west to follow an assumed gradient

Fig 1. Study area for aerial surveys.Map includes an (a) inset of the United States of America and (b) the
state of Florida showing the region for this study. Hatched area indicates extent of the survey area over which
aerial surveys were conducted. Dotted lines representing the core of the Florida Current are meant as
approximations for reference. Source: ArcWorld Supplement, Florida Fish andWildlife Conservation
Commission-Fish andWildlife Research Institute.

doi:10.1371/journal.pone.0145980.g001
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of sea turtle distributions, and were spaced far enough apart to minimize the likelihood of
encountering an individual sea turtle more than once in a single survey.

The crew consisted of a pilot, co-pilot, and two trained observers positioned on opposite
sides of the aircraft on each flight. Prior to surveys, observers were trained in survey techniques
and their ability to accurately identify species was verified. At the beginning of each transect,
environmental conditions were recorded including sea state, glare, and cloud cover to be tested
as potential covariates in density estimation. Surveys were only conducted in Beaufort Sea
States� 3 to maximize animal visibility. Upon sighting an animal, the position, species, relative
size (S, M, L), number of individuals, sighting angle, and sea state were recorded. Position was
recorded using a Garmin 12XL GPS unit with external antenna (15 m accuracy). Sighting angle
(declination angle) was recorded using hand-held Suunto™ clinometers (PM-5/360PC). When
possible, relative size classes of turtles were estimated by the observers and categorized as
small, medium, or large relative for each species to provide rough estimates of the life stages
present (small juvenile, large juvenile, adult respectively) in these waters. Where size class was
ambiguous between small and medium, the turtles were classified as small; similarly, turtles
that were between medium and large were classified as large. Size classification was based on
observer knowledge and training prior to flights.

Visualizations of the spatial distributions of all sightings of sea turtles from the surveys and
the most commonly sighted species, Loggerhead (Caretta caretta) and green turtle (Chelonia
mydas) were constructed to illustrate spatial patterns and assess proximity to shoreline and the
Florida Current in our study. One sea turtle sighting was not used due to a poor GPS reading.
Dotted lines denoting the Florida Current are approximate locations for reference and were
not used in analyses. Seasons are defined as winter (December-February), spring (March-
May), summer (June-August), and fall (September-November) to examine trends in presence
of sea turtles. All maps were created using ArcGIS1 software by ESRI1.

Density estimation
Density and abundance of sea turtles was estimated using line transect distance analyses. Dis-
tance sampling relies on three key underlying assumptions that are important for reliable esti-
mates of density [59, 60]. First, all animals on the transect line are observed. Due to flat
windows, the transect line was not visible in our study. To accommodate for violation of this
assumption, left-truncation was employed subtracting 82 m from all recorded perpendicular
distances to account for the blind area under the plane [50]. This correction effectively shifted
the transect line to the observers’ visible range.

Secondly, distance sampling assumes that animals are detected before any movement. In
this survey, turtle behavior was recorded so any potential avoidance behavior could be identi-
fied to meet the assumption that animals are detected prior to movement. Avoidance behavior
was defined conservatively as diving when the plane passed by. Less than 5% of all observed sea
turtles were diving.

Lastly, distances are assumed to be measured accurately. To minimize measurement bias, all
distances were calculated from the declination angle of the sighting relative to the horizon.
This measurement was then used to calculate the perpendicular distance of the animal from
the transect line using the formula:

Perpedicular Distance ¼ h � tanð90� aÞ
where h is the altitude of the plane (150 m) and α is the declination angle.

Conventional distance sampling (CDS) and multiple covariate distance sampling (MCDS)
analyses were performed using Distance v.6.2 [60]. In CDS methodology, the probability of
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detection, (detection function), is modeled using the perpendicular distance from the transect
line, while MCDS analysis allows the inclusion of covariates in the model of the detection func-

tion [59,60]. Density (bD) is then estimated using a Horowitz-Thompson-like estimator [53,61]
in the form of:

bD ¼ n

2wLbPa

in CDS analyses and:

bD ¼ 1

2wL

Xn

i¼1

1

bPaðziÞ

in MCDS analyses where w is half the effective strip width, L is the total length of transects, n is

the number of turtles observed, bPa is the probability of detection for the ith turtle within the
covered area (2wL) given the observed covariates (zi) where applicable. Seasonal estimates of
abundance were obtained from the global model of the probability of detection using stratifica-
tion by season within year.

Uniform, half-normal, and hazard-rate models of the detection function with cosine, simple
polynomial, or hermite polynomial adjustments were tested using CDS to determine the best-
fit model. Observer, glare, cloud cover, and sea state were considered as covariates using
MCDS analysis to test the same models of the detection function for any influence from those
factors. Observers were grouped as primary and secondary for all MCDS analyses. Minimum
Akaike’s Information Criterion (AIC) was used to select among the candidate CDS and MCDS
models.

Key functions tested are uniform (Uni), half-normal (HN), and hazard-rate (HR) with
cosine (COS), simple polynomial (SP) or hermite polynomial (HP) adjustment terms. Covari-
ates included in MCDS are observer (OBS), sea state (SS), cloud cover (CC), and glare (GL).

Results

Observations
During this study, 218 sea turtles were observed on effort (2011: n = 79; 2012: n = 139) at a sight-
ing rate of 0.01 turtles observed per km surveyed (Table 1). Four species (80% of all observations)
were sighted and identified to species: loggerheads (Caretta caretta), green turtles (Chelonia
mydas), leatherbacks (Dermochelys coriacea), and Kemp’s ridleys (Lepidochelys kempii). Spatial
distributions of sea turtle sightings revealed that 72.8% of observations (n = 158) occurred within
20 km of the shoreline, west of the estimated core of the Florida Current (Fig 2). The most fre-
quently observed species in our study was the loggerhead turtle (n = 113; 52% of all observations)
followed by the green turtle (n = 57, 26%). Distributions for both species were similar within our
study area (Fig 3). Leatherbacks (1.8%, n = 4) and Kemp’s ridleys (<1%, n = 1) were rare. The
low flight altitude allowed for confident identification of most turtles to species. The remaining
20% of sea turtle sightings (n = 43) could not be identified to species due to water clarity and dis-
tance from plane, but could be classified as cheloniids (hard-shelled species) and not as leather-
backs. Size classes recorded during the surveys indicated that small juvenile (n = 39), large
juvenile (n = 116), and adult (n = 45) life stages were present in these waters.

Density estimation
After excluding sightings with no declination angle recorded and left-truncating data according
to distance sampling methodology, 207 observations were included in the density estimation
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analyses. Due to low numbers of turtle observations in some seasons and low numbers of some
species, observations were pooled across seasons and species to estimate the probability of
detection. Despite rigorous MCDS analysis, results indicated that the best model did not
include any of the proposed covariates. Model selection using Akaike’s Information Criterion
(AIC) identified a hazard-rate model with no adjustments as the best fit for sea turtle detection
in this study (Table 2; Fig 4).

Estimates of sea turtle density were generally higher for spring (March-May) and summer
(June-August) seasons than during fall (September-November) and winter (December-

Table 1. Summary of combined aerial survey effort (km), the number of sea turtles sighted (n), seasonal estimates of sea turtle density (turtles/
km2) and abundance with 95% confidence intervals for each estimate including lower and upper confidence limits (LCL and UCL, respectively).
Seasons are defined as winter (December-February), spring (March-May), summer (June-August), and fall (September-November).

Year season effort (km) n density (bD) abundance (bN) % CV 95% CI (bD) 95% CI (bN)

LCL UCL LCL UCL

2011 winter 2481.1 3 0.003 41 74% 0.001 0.012 11 157

spring 2598.2 30 0.030 392 30% 0.017 0.054 218 705

summer 2608.4 30 0.030 391 25% 0.018 0.050 237 645

fall 2612.5 10 0.010 130 40% 0.005 0.022 59 285

2012 winter 3070.5 12 0.010 133 32% 0.006 0.019 72 246

spring 2957.8 73 0.064 838 18% 0.045 0.092 587 1195

summer 3036.3 37 0.032 414 19% 0.022 0.047 281 608

fall 3068.2 12 0.010 133 48% 0.004 0.026 53 333

Total 22,433 207 0.024 313 12% 0.019 0.030 250 393

doi:10.1371/journal.pone.0145980.t001

Fig 2. Seasonal sightings of sea turtles from aerial surveys conducted in 2011–2012. Each symbol represents a single sea turtle. Dotted lines represent
the approximate location of the core of the Florida Current. Source: Florida Fish andWildlife Conservation Commission-Fish andWildlife Research Institute.

doi:10.1371/journal.pone.0145980.g002
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February) in both years (Fig 5). Additionally, estimates for spring 2012 were considerably
higher than those for any other season (Table 1).

Discussion
Aerial surveys are useful for assessing large, highly mobile marine vertebrates that must surface
to breathe, such as sea turtles, and provide valuable information on the spatial and temporal
shifts in distributions over large areas. However, a key shortcoming of many aerial surveys is
relatively restricted temporal coverage, which limits the range of hypotheses that can be tested
using these data. Our two-year long, monthly surveys provided a unique temporal perspective
on sea turtle habitat use across seasons and in both a major warm water current and adjacent
coastal waters. Such data have utility because they highlight spatially and temporally specific
shifts in the abundance of these marine fauna. Our study represents the first estimation of the
variation in sea turtle density and abundance in the waters offshore of the eastern coast of Flor-
ida at the seasonal level and provides a much-needed assessment of annual variation in sea tur-
tle abundance coincident with critical breeding and nesting habitat.

The most frequently observed species, loggerhead (C. caretta) and green turtle (C.mydas),
demonstrated similar spatial distributions within our study area (Fig 3) and correspond with
the most abundant species nesting in this area [28]. However, loggerhead sightings increased
in spring while green turtle sightings increased markedly in summer (Fig 3). The much smaller
numbers of leatherbacks (D. coriacea) and Kemp’s ridleys (L. kempii) made it impossible to
draw any conclusions on their spatial distributions. Additionally, no hawksbills (E. imbricata)
were observed during our surveys. This may be due to morphological similarities between

Fig 3. Sightings of the twomost commonly observed sea turtle species in 2011–2012 by season. Loggerheads (top panels) and green turtles (bottom
panels) sighted in each season during 2011–2012 aerial surveys. Note that the highest numbers of loggerheads sighted is in the spring while the highest
numbers of green turtles sighted is in the summer. Each symbol represents a single sea turtle. Dotted lines represent the approximate location of the core of
the Florida Current. Source: Florida Fish andWildlife Conservation Commission-Fish andWildlife Research Institute.

doi:10.1371/journal.pone.0145980.g003
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Table 2. Akaike’s Information Criterion (AIC) values for the conventional distance sampling andmultiple covariate distance samplingmodels of
the detection function tested.

model adjustment terms parameters AIC ΔAIC

conventional distance sampling (CDS)

HR HP* 2 2329.61 0.00

HR SP* 2 2329.61 0.00

HN SP* 1 2333.73 4.12

HN COS* 1 2333.73 4.12

Uni COS* 1 2334.04 4.43

model parameters AIC ΔAIC

multiple covariate distance sampling (MCDS)

GL 3 2331.64 2.03

OBS 3 2331.64 2.03

SS 4 2333.63 4.02

OBS SS 4 2333.64 4.02

OBS GL 4 2333.64 4.03

CC 5 2335.42 5.81

OBS SS GL 5 2335.62 6.00

SS GL 5 2335.63 6.02

OBS SS CC 7 2336.38 6.77

CC GL 6 2337.42 7.81

OBS CC 6 2337.43 7.82

OBS CC GL SS 8 2338.20 8.59

SS CC 7 2339.35 9.74

OBS CC GL 7 2339.43 9.82

SS CC GL 8 2341.35 11.74

* Indicates no adjustment terms were selected by AIC.

doi:10.1371/journal.pone.0145980.t002

Fig 4. Plot of the detection function for sea turtles based on the AIC selected Conventional Distance
Sampling (CDS) model.Histogram represents the probability of detection for each distance interval. The
curved line is the detection function, showing the probability that a turtle is observed as a function of distance
from the transect line.

doi:10.1371/journal.pone.0145980.g004
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hawksbill and green sea turtles. Without a positive identification, any observed hawksbills
likely were classified as unidentified cheloniids. Loggerhead and green turtles were observed on
every survey conducted during our study, demonstrating their presence in these waters year-
round and their potential for interaction with any ocean energy technologies that may be
placed in this area.

Turtles also displayed a strong affinity for more coastal waters with 72.8% of all observations
west of the approximate core of the Florida Current (~20 km offshore). Previous studies show
that sea turtles associate with oceanic currents [21,41–44] and post-hatchling loggerhead tur-
tles are carried by the Florida Current to the Gulf Stream into the North Atlantic Gyre [31]. It
is assumed that sea turtles of various life stages and all species that hatch in Florida encounter
the Florida Current. Our results clearly indicate the presence of these threatened and endan-
gered species in the southeast portion of the Florida Current and its surrounding waters (Fig
5), demonstrating the need for improved assessments of their in-water distributions and move-
ments to more fully understand any impacts of future ocean energy developments.

There were seasonal variations of density and abundance estimates prevalent throughout
our study period; higher estimates were during the spring and summer surveys and lower esti-
mates during the fall and winter surveys (Fig 5). The coastal area of South Florida adjacent to
our study hosts one of the world’s largest loggerhead rookeries [24, 25] and increasing green
turtle [18] and leatherback breeding populations [17], so it is reasonable to conclude that
breeding and nesting turtles made up a large portion of our sightings during spring and sum-
mer (nesting season). Additionally, size classes recorded during surveys indicated larger indi-
viduals were identified more often during spring and summer surveys (n = 52) than winter and
fall surveys (n = 5). Non-breeding turtles also migrate through Florida’s waters en route to
northern feeding grounds in the spring and summer months, returning to more southern habi-
tats in the winter and fall months [11, 15]. These breeding and foraging migrations likely hold
a large influence over the seasonal shifts in density and abundance observed in this study.

Additionally, the inter-annual variation of our density estimates highlights the potentially
large variability in sea turtle behavior. Changes of the magnitudes observed over the two years

Fig 5. Seasonal trend in sea turtle surface density with 95% confidence intervals estimated from
conventional distance sampling analysis of aerial surveys. Turtle densities varied with season in both
years. The large peak in spring 2012 corresponded with a larger than normal number of nesting loggerhead
turtles.

doi:10.1371/journal.pone.0145980.g005

Sea Turtles and the Southern Gulf Stream Current

PLOS ONE | DOI:10.1371/journal.pone.0145980 December 30, 2015 9 / 14



can complicate accurate estimation of their spatial and temporal densities. Our estimate of den-
sity from spring 2012 was more than twice that from spring 2011 (Table 1, Fig 5). However,
there is independent evidence that the trends in density between the two seasons likely are rep-
resentative; the 2012 nest counts for loggerheads were exceptionally high as compared with
2011 suggesting more turtles were nesting since nests per females is constrained [27]. Thus
fluctuations in nesting behavior from year to year should be considered in interpreting results
of surveys such as the one described here because such temporal shifts in local abundance
impact estimations of sea turtle presence. Our study highlights the need for long term temporal
monitoring of in-water sea turtle distributions and movements to examine how density and
abundance vary across years.

This study clearly demonstrates the value of aerial surveys in (i) identifying the spatial distri-
butions of marine turtles (protected species) in areas where there is potential for interactions
with industry developments and (ii) estimating seasonal changes in density in ways that may
be considered the effective management of species.

Despite the achievements of this study, there were several limitations. Selection of the con-
ventional distance sampling (CDS) model over the multiple covariate distance sampling
(MCDS) models was likely due to survey design and selection of flight dates for optimal survey-
ing conditions. Because surveys were only conducted in optimal conditions, we effectively min-
imized the influence sea state and weather conditions that were considered in our MCDS
analyses. Hence, inclusion of sea state and weather covariates did not improve the model of the
detection function and thereby did not improve estimates of density or abundance. Although
this did provide the benefit of removing potential sources of perception bias, it precluded the
use of the more rigorous multiple covariate distance sampling methods with our observations.

Our density and abundance estimates are underestimates because they are surface estimates
and are not corrected for perception bias or availability bias. Perception bias, animals at the
surface that were not detected by observers, could not be addressed because equipment limita-
tions prevented using a “double-platform” approach [59]. Availability bias, presence of animals
underwater that cannot be detected by the observers, can be corrected for using concurrent
dive profiles to assess the percentage of time spent at the surface. However, the scope and bud-
get of the study prevented simultaneous tracking of turtles with time depth devices during the
aerial surveys. Further, variation in dive duration correction is complex and can vary greatly
with species, age, and oceanographic factors such as sea surface temperature or depth [62].
Nevertheless, a recent study on the effects of availability and perception bias on the results of
aerial surveys for marine turtles in the Torres Strait indicates that uncorrected estimates are
likely 20 times lower than estimates corrected for these biases [63]. This further illustrates the
importance of this body of water for sea turtle species. Though, this estimate is predominantly
based on adjustments for availability bias, it highlights the need for dedicated research that
includes bias correction of aerial survey data to provide more robust density and abundance
estimates. Finally, sea turtle distributions have been associated with a variety of oceanographic
features including sea surface temperature [11, 44, 64], ocean depth or bathymetry [10, 65–67],
chlorophyll a concentrations [64, 67], and mesoscale eddies [41], which should also be consid-
ered in future studies of sea turtle distributions.

Estimates of density and abundance are of particular interest for management and develop-
ment of new conservation strategies for imperiled species like sea turtles because they provide
valuable baselines for comparisons of changes in habitat uses or marine management out-
comes. Aerial survey data for marine turtles have influenced fisheries management, habitat use
and protection policies, and water use at local and large spatial scales [48–50, 55]. In our study
area, the Florida Current is of particular interest because it has the potential to provide an alter-
native renewable energy source that may be captured by a variety of kinetic energy current
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capture technologies [68]. The combination of existing submerged land leases for energy devel-
opment, increased interests in developing current capture technologies, and ongoing research
on implementation of these technologies necessitates a clear understanding of the potential
effects of ocean energy development on sea turtles and other marine life. Establishing these
baseline abundance estimates and continuing research to improve our understanding of sea
turtle distributions and movements in these waters will aid in assessing the potential for inter-
action with energy capturing or other interests that share these important waters used by sea
turtles.

Supporting Information
S1 Dataset. Dataset of sea turtle sightings from aerial surveys in 2011 and 2012 used in dis-
tance sampling analyses to estimate density and abundance.
(PDF)
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