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Abstract

The increasing societal demands on the seabed due to the expansion of

offshore wind energy highlight an urgent need to better understand the rela-

tionship between human activities and the structure and function of seabed

ecosystems. In this paper, we propose an empirically derived approach to

quantify relative ecological risk to benthic invertebrate assemblages from

future offshore wind development. Using benthic data from over 22,000 seabed

grab samples across the UK shelf and wider North Sea contained in

OneBenthic, a freely available online data repository, we produce modeled ras-

ter layers for three biological criteria upon which we define ecological risk.

These are (1) relative benthic sensitivity based on response traits expression,

(2) benthic biodiversity, and (3) assemblage rarity. We create a holistic map

based on these three layers and discuss how this information may be used,

using a new online tool, to assist decisions regarding future offshore develop-

ment to minimize potential impacts on benthic assemblages. Given the broad

spatial coverage of our maps, our tool could help expedite the expansion of off-

shore wind in a large area of the northeast Atlantic, whilst the underlying

methodology can be applied to other regions with extensive benthic survey

data, thereby facilitating international commitments to reduce carbon emis-

sions. We propose how the maps may be improved and discuss the future

incorporation of extra criteria into the framework.
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INTRODUCTION

We are currently witnessing significant global growth in
renewable energy generation from offshore wind. In 2023,
the industry added 11 GW, bringing the global total to over
75 GW. This represents a 24% year-on-year increase,
marking the second-largest growth ever, despite challenges

in key markets (Global Wind Energy Council, 2024).
Demanding Governmental future targets are being set for
many countries which is driving this expansion. For example,
the UK Government in 2019 passed an Act (The Climate
Change Act 2008 (2050 Target Amendment) Order 2019;
http://www.legislation.gov.uk/uksi/2019/1056/contents/
made) that set out a framework to reduce net emissions of
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greenhouse gases by 100% relative to 1990 levels by 2050,
making the United Kingdom a “net zero” emitter. An
increased reliance on offshore wind energy is expected to help
meet this, with a targeted 50 GW from this sector alone by
2030 (UK Government, 2022). This situation is reflected in
other European countries (Birchenough & Degraer, 2020;
Korpinen et al., 2021) and countries across the globe
(Galparsoro et al., 2022; Putuhena et al., 2023; Watson
et al., 2024). Current and future offshore windfarm (OSW)
arrays are situated in areas that often coincide with, or over-
lap, other seabed uses (e.g., demersal fishing, aggregate extrac-
tion, dredged material disposal), each imposing distinct direct
and/or indirect impacts on the seabed (Goodsir et al., 2015;
Guşatu et al., 2021; Palanques et al., 2014). The combined and
cumulative effects resulting from the current increase in
human activities, and the demands and pressures on
marine resources resulting from multiple industrial sectors,
significantly increase the potential to induce long-term and
possibly permanent changes in marine ecosystem functions
(Dannheim et al., 2020; Houde et al., 2014; Nogues
et al., 2020). As such, there is a growing need to manage
the demands associated with the expansion of offshore
wind in a sustainable manner to ensure that the role the
seabed plays in supporting important ecosystem services is
safeguarded (Stelzenmüller et al., 2018; Watson et al., 2024).

Most marine ecosystems have been altered by human
activities (Halpern et al., 2008, 2015). Indeed, as much as
41% of the World’s oceans have been subject to multiple
anthropogenic perturbations (Halpern et al., 2008), with
coastal and shelf seas being particularly susceptible due
to their proximity to the World’s largest cities (Crain
et al., 2008; Houde et al., 2014). The role the marine envi-
ronment plays in supporting important ecosystem pro-
cesses and in stemming further impacts associated with
climate change is becoming increasingly understood
(Ruckelshaus et al., 2013). Sedimentary benthic ecosys-
tems, in particular, play an integral role in a number of
important ecosystem services (Hope et al., 2019;
Rife, 2018; Thrush et al., 2013), but their capacity to effec-
tively provide such provisioning (e.g., pharmaceutical com-
pounds) and supporting services (e.g., sediment
stabilization, primary and secondary production) may be
directly and/or indirectly altered by physical disturbances
(Epstein et al., 2022; Tiano et al., 2019; Watson et al., 2024).

For many decades, the structural characteristics or
qualities of benthic invertebrate assemblages have been
described and quantified using a variety of approaches,
from simple metrics describing specific features of the
assemblage (e.g., total abundance, diversity, and even-
ness) to more involved, multivariate approaches which
impart taxonomic identity into community descriptions
(Boon et al., 2011; Reiss & Kröncke, 2005). The latter
enables benthic assemblages to be classified into more

discrete categories, or “biotopes,” often defined according
to their most abundant or characterizing taxa. All these
approaches provide invaluable insights into how benthic
assemblages vary, both with respect to natural environ-
mental drivers (e.g., sediment type, depth, temperature)
and in response to human activities. More recently, infor-
mation regarding the behavioral, morphological, and life
history characteristics of the individuals within the
assemblage, or Biological Traits Analysis (BTA), has been
used to provide additional insights into their potential
ecological functioning (Beauchard et al., 2017; Bremner
et al., 2006) or their response to human pressures (Bolam
et al., 2014, 2023; van Denderen et al., 2015). Given this,
the current challenge faced by applied marine scientists
is how to assimilate this information into a meaningful,
more unified manner that can be easily understood and
adopted by the relevant sectoral practitioners and associ-
ated licensing authorities (Dannheim et al., 2020).

In this paper, using a “big data” (Peters et al., 2014)
approach to the macrofauna (benthic invertebrates), we
develop an ecological approach to identify spatial differ-
ences in marine benthic assemblages to their risk associ-
ated with future offshore wind development. Our method
is based on modeling unique characteristics of benthic
assemblages that we consider are relevant to, and thus
should be included in, decisions regarding the location of
future sites. The criteria we propose are (1) assemblage
sensitivity; (2) assemblage biodiversity; and (3) assem-
blage rarity. Firstly, we apply BTA, using specific
response traits that determine a species’ response to
a nonspecific, physical impact to the seabed, to define
the relative sensitivity of benthic macrofauna. Secondly, we
assess differences in macrofaunal biodiversity using an
approach developed in a companion study (Cooper
et al., 2023), which integrates alpha-, beta-, and
gamma-diversity metrics. Finally, we identify assem-
blages that show low ubiquity (i.e., high rarity) across
our study area of the UK continental shelf and the
wider North Sea. We define areas of varying ecological
risk based on each of these criteria in turn, then bring
this information together into a holistic, composite
map revealing relative risks from future OSW develop-
ment. We present a novel, publicly accessible online
tool wherein benthic ecological risk of any area of
interest can be quantified. We discuss how our results,
and potential future iterations, could inform OSW
licensing by guiding developments away from areas
where benthic assemblages show greater sensitivity,
and/or highest biodiversity and/or to spatially rare
assemblages. As our outputs describe inherent charac-
teristics of benthic assemblages across large areas, they
may assist in cross-sectoral decisions as part of national
marine spatial planning approaches.
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METHODS

The OneBenthic database

The empirical macrofaunal data used in this study are
contained in the OneBenthic database (https://rconnect.
cefas.co.uk/onebenthic_portal/). OneBenthic brings together
publicly available disparate benthic datasets (macrofaunal
abundance/biomass and sediment particle size) in a
cloud-based PostgreSQL database. As of October 17, 2024,
the database contained 53,705 samples collected between
1969 and 2023. However, ~94% of the selected dataset used
in this analysis was collected between 2000 and 2023, ensur-
ing that the majority of data reflect contemporary condi-
tions. The spatial extent of the dataset spans UK shelf waters
and regions of other northeast Atlantic countries such as
France, Belgium, the Netherlands, Germany, Denmark, and
Norway. The OneBenthic database incorporates taxonomic
information from the World Register of Marine Species
(WoRMS, see https://www.marinespecies.org/), allowing
data to be outputted using standardized nomenclature.
WoRMS data are accessed via the R package “worms,” with
each taxon uniquely identified by the aphiaID field. From
the available dataset, we selected a subset of 37,925 samples
(Figure 1) for which the data were considered comparable,
that is, sampled using a 0.1-m2 grab or core and processed
using a 1-mm sieve and outside all seabed boundaries
licensed for anthropogenic pressures (e.g., sediment extrac-
tion, disposal). Colonial taxa were included and given a value
of one. A fourth-root transformation was then applied to the
raw abundance data to downweigh the influence of highly
abundant taxa. To mitigate spatial autocorrelation in the data,
following a semi-variogram approach adopted by Cooper
et al. (2019), samples less than 50 m apart were removed from
the dataset, reducing the overall number to 22,814.

Figure 2 shows a schematic summarizing the steps
from OneBenthic raw data to the production of our eco-
logical risk layers (described in the Quantifying the risk
elements section).

Quantifying the risk elements

Based on the abundance data in OneBenthic, the proce-
dure to create 100% coverage maps of each of the three
risk elements varied. The individual steps for each crite-
rion are described below.

Sensitivity

A suite of seven biological traits, considered relevant to
determine the potential sensitivity of macrofaunal taxa

to the impacts associated with OSW, were selected
(Table 1). Our seven traits relate to a species’ response to
the combination of physical disturbances associated with
the main interacting, sector-specific impacts associated
with OSW (e.g., abrasion, increased suspended solids,
smothering) rather than to each of these in turn. The
seven traits selected are similar to those adopted by
Bolam et al. (2014) to define sensitivity to demersal
trawling. Given that the largest spatial footprint impact
associated with OSW relates to sediment scour and abra-
sion, these traits represent a good basis. Each of the seven
traits was subdivided into several “modalities,” chosen to
encompass the range of possible attributes of all the taxa;
for example, modalities for the mobility trait were swim-
ming, burrowing, crawling, or sessile. A total of 31 modal-
ities were established for the seven selected traits
(Appendix S1: Table S1).

Trait information was obtained from Clare et al. (2022)
wherein traits information, principally from published jour-
nal papers and books, and websites of various scientific
institutions (e.g., http://marlin.ac.uk/biotic/) are available.
The data source uses a fuzzy coding approach (Chevenet
et al., 1994) that allows taxa to exhibit multiple expres-
sions for the same trait, thus avoiding the obligate
assignment of a taxon to a single category which can
lead to inaccurate characterization of biological or eco-
logical profiles (Usseglio-Polatera et al., 2000). Of the
3998 taxa within our dataset, traits information from
Clare et al. (2022) was lacking for 1000 taxa, principally
since many taxa within OneBenthic are at species level
while the trait information of Clare et al. (2022) is based
at the genus level or above. For these taxa, traits infor-
mation was assigned based on traits for the most closely
related taxa (mostly for genera within the same family).
Taxa that were present in less than 0.1% of the samples
and, where sampled, attained a mean abundance of less
than 10 per sample were excluded.

Sample (assemblage) sensitivity values were derived
using the approach outlined in Figure 3. Firstly, the 31 trait
modalities were assigned a value for taxon modality sensi-
tivity, ranging from 1 (low) to 10 (high), according to how
expression of that modality governs a taxon’s sensitivity to
(or response from) the physical impacts associated with
OSW construction and operation (see Table 1). These values
were multiplied by trait modality fuzzy scores and then
summed to generate individual taxon sensitivity values. The
scoring of overall sensitivity of a particular taxon is
governed by all seven traits on an equal basis.

The mean sample sensitivity value was calculated by
multiplying square-root taxon-transformed abundances by
their corresponding taxon sensitivity value—these were
then summed and divided by the total untransformed sam-
ple abundance (Figure 3). In this manner, the traits
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expressed by all species present in the sample contribute to
the assemblages’ relative sensitivity.

Using a Random Forest modeling approach based on
regression trees (Breiman, 2001; Cutler et al., 2007), the
sample sensitivity scores were used to create a 100% cover-
age sensitivity layer. Predictor variables used in modeling
were selected by initially running single models to identify
those with a good correlation with the response variable. A
pairs plot was then used to remove covariates. Model per-
formance was assessed using R2 and root mean squared
error (RMSE), both metrics based on a comparison of

observed and predicted model outputs. Cross-validation,
whereby the model was run 10 times using different subsets
of the data, was performed to create the final model based
on a mean of the 10 runs and a corresponding confidence
(coefficient of variation, or “CV”) layer.

Biodiversity

A heat map representing benthic biodiversity was pro-
duced in a parallel study (Cooper et al., 2026). Based on

F I GURE 1 Locations of the 37,925 samples from OneBenthic. Background bathymetry from GEBCO Grid (GEBCO Compilation

Group, 2023). Map lines delineate study areas and do not necessarily depict accepted national boundaries.

4 of 20 BOLAM ET AL.
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the same dataset used in the present study (see The
OneBenthic database), Cooper et al. (2026) produced mul-
tiple maps revealing different aspects of biodiversity,
based on metrics that give different weights to relative
species abundance (Hill numbers 0, 1, and 2, and abun-
dance) and assessed within the Whittaker (1972) frame-
work (alpha-, beta-, gamma-diversity). These biodiversity

metrics were then synthesized into a single map, based
on k-means clustering (R function “kmeans”) of the indi-
vidual metrics followed by Random Forest modeling. The
resulting map identifies eight biodiversity cluster groups,
ranked according to the sum of cluster centers, and col-
ored using a heat map color scale. In the present study, it
was necessary to derive a numeric scale for biodiversity

F I GURE 2 Schematic illustration summarizing the steps from OneBenthic raw data to the production of our ecological risk layers.

ECOSPHERE 5 of 20
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from the categorical values derived by Cooper et al.
(2026). This was performed in the present study by
substituting the categorical classes (1–8) with the
summed k-means cluster center values for each cluster
group (see Table 2). This method maintained the relative
biodiversity similarities between cluster groups, allowing
them to be translated onto a continuous scale.

Assemblage rarity

The macrofaunal abundance data from OneBenthic (see
The OneBenthic database) were used to identify the spatial
distribution of discrete faunal groups based on multivariate
taxonomic structure, following the method adopted by
Cooper and Barry (2017). Data were first subjected to a
fourth-root transformation to ensure the appropriate
weighting of colonial and rarer taxa in the analyses.
Clustering was undertaken using the k-means (R function
“kmeans”) approach with the MacQueen (1967) algorithm.
This clustering method works by choosing the cluster solu-
tion that minimizes the within-cluster sum of squares,
summed over all variables and clusters. A k-means cluster-
ing approach was specifically chosen due to its utility for
analyzing large datasets. The number of cluster groups was
decided through reference to an “elbow plot,” and it repre-
sents a balance between representing biological complexity
and broader spatial patterns (Appendix S1: Figure S1).

To establish the relationship (i.e., similarity/dissimi-
larity) between the different faunal cluster groups, the
absolute distances between each of the cluster centers

across all variables (R function “dist”) were computed.
The resulting dissimilarity matrix was then used to gener-
ate a dendrogram based on group average hierarchical
clustering (R function “hclust”). Informed by the dendro-
gram (Appendix S1: Figure S1b), each group was
assigned a code (and color) to show the relatedness of the
groups. To allow an understanding of the biological char-
acteristics of each macrofaunal group, we used both clus-
ter centers and the SIMPER routine in Primer v7
(Clarke & Gorley, 2015) to identify characterizing taxa. In
addition, mean univariate measures of taxon richness
and total abundance of each were calculated, as well as
the proportions of taxa by major phyla.

Random Forest modeling was then applied to pro-
duce a 100% coverage layer for macrofaunal assemblages
(see Modeling the risk elements). The spatial extent of
each categorical faunal assemblage cluster group was
determined and subtracted from the total raster extent.
In this way, assemblage groups with limited spatial
extent have high scores, while groups that are widespread
have lower scores, thus providing a measure of rarity.
Cluster groups were substituted in the raster for their rar-
ity scores, thus providing a numeric rarity layer.

Modeling the risk elements

Environmental predictors

Various raster predictor layers for environmental vari-
ables affecting marine benthic macrofauna were sourced

TAB L E 1 Trait modality sensitivity scores (values in square brackets) for the seven traits used to estimate relative sensitivity of

macrofaunal taxa.

Trait

Sensitivity

Low Medium High

Morphology Exoskeleton [1]
Crustose [2]
Cushion [3]

Tunic [4]
Soft [7]

Stalked [9]

Living habit Free living [1]
Crevice/hole/under stones [2]
Tube-dwelling [3]

Burrow-dwelling [4]
Epi/endo zoic/phytic [7]

Attached to substratum [9]

Sediment position Deep (>10 cm) [1]
Mid-depth (5-10 cm) [3]

Shallow (0-5 cm) [7] Surface [9]

Mobility Swim [1] Burrow [7] Sessile [10]
Crawl / creep / climb [8]

Longevity (years) <1 [1]
1–2 [2]

3–10 [7] >10 [9]

Larval development location Planktotrophic [1] Lecithotrophic [5] Direct [9]

Egg development location Eggs shed into water [1]
Asexual/Budding [2]

Eggs laid on or attached to bed [5] Eggs brooded by adults [10]

6 of 20 BOLAM ET AL.
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for use in modeling (Appendix S1: Table S2). These
layers came from Bio-ORACLE (https://www.bio-oracle.
org/; Assis et al., 2018; Tyberghein et al., 2012) and
Mitchell, Aldridge, and Deising (2019). All Bio-ORACLE
layers were obtained using the Download Manager with
the following options: Dataset version: Bio-ORACLE
v3; Period of layers = Present-day conditions [decade
2000–2010]; Depth of layers = Benthic layers; Layers to
download = Mean and Range. Available layers from
Mitchell, Aldridge, and Deising (2019) included data
products (percent Mud, percent Sand, and percent
Gravel; https://doi.org/10.14466/CefasDataHub.63), and
associated predictor variables (i.e., Water Depth, Wave
velocity, Current speed, Suspended inorganic particulate
matter (summer, winter, and mean); https://doi.org/10.
14466/CefasDataHub.62). Six additional environmental
layers representing seafloor topography were derived
from the bathymetry layer (water depth) using SAGA
GIS tools for QGIS (v.3.2; Conrad et al., 2015). These
included a variable combining topographic slope length
and steepness (gradient over the length, the LS-Factor),
and the relative location along the entire length of a dis-
crete slope ranging from 0 to 1 from the bottom to the

top of the slope (relative slope position [RPS], Böhner &
Selige, 2006). Raster layers from Bio-ORACLE were
cropped and resampled so that the spatial extent and
pixel resolution matched those from Mitchell, Aldridge,
and Deising (2019).

Response variables (sensitivity and assemblage
rarity)

Our study required 100% coverage raster layers for each
of our criteria. Whilst the layer for biodiversity was avail-
able from Cooper et al. (2026), it was necessary, in the
current study, to produce corresponding spatial models
for sensitivity and faunal assemblages. Full coverage
maps for each of these layers were produced using
Random Forest modeling, an ensemble method where a
large number of decision trees (typically 500–1000) are
built using random subsets of the samples and predictor
variables (Breiman, 2001; Cutler et al., 2007). Regression
trees were used for the continuous sensitivity variable,
with predictions based on averages from all trees. In con-
trast, classification trees were used for the categorical

F I GURE 3 Flow chart for calculation of sensitivity scores. For information regarding the final step (“Web Tool”) please see Web

application.
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assemblage clusters, with spatial predictions made either as
class-specific probabilities, derived from the proportion of
component trees predicting the class, or as the class with a
majority vote. Random Forest was selected for its suitability
in predicting numeric and factor-type response variables
and its ability to account for multiple interactions and
nonlinear relationships between the response and predictor
variables (Rodriguez-Galiano et al., 2012). The models were
built in R (R Core Team, 2024) using the “randomForest”
implementation in the “randomForest” package (Liaw &
Wiener, 2002) and were run with the default settings using
1000 trees. Preliminary single models using all environmen-
tal variables were initially run to select the best variables
and remove those with high covariance. Variables were
excluded from the models based on redundancy (high cor-
relation with another variable) or a poorly defined relation-
ship with the response variable. When addressing
correlations between variables, the variable least likely to
express a mechanistic link with biodiversity was removed.
Covariance between environmental variables was investi-
gated using values extracted for the sample locations from
the predictor rasters. Correlation analysis (Appendix S1:
Figure S2) was used to represent covariance and identify
the main predictor variables. Although Random Forest
models are not sensitive to covariance effects (Huang &
Boutros, 2016), models with fewer predictor variables are
simpler and easier to interpret. Additionally, the calculation
of variable importance statistics is more accurate in models
with fewer variables, as highly correlated predictor variables
can mask the importance of other variables by being inter-
changeable in the component trees. Cross-validation via
repeated subsampling was performed to evaluate the
robustness of the model estimate and predictions for data
subsetting. This also allowed additional information to be
extracted from the model outputs to create maps of confi-
dence in the predicted distribution (Mitchell et al., 2018).
The cross-validation was done on 10 split sample datasets

with 75% of the data used to train and 25% to test models,
randomly sampled within the levels of the response variable
to maintain the class balance. For numeric variables
(i.e., sensitivity), the final model outputs were plotted as the
mean of all 10 runs. A confidence map layer consisting of
the CV (10-run SD/mean) was also produced. Model perfor-
mance was evaluated using R2. All accuracy statistics are
presented as means and SDs of the scores from the 10 model
runs. For the assemblage clusters, the final model output
was plotted as the cluster class with the majority vote of all
10 model runs. Three confidence layers were also produced
consisting of: (1) the frequency of the most common class,
(2) the average probability of the most common class, and
(3) combined confidence computed by multiplying the pre-
vious two. Model performance was assessed using multiple,
commonly used accuracy statistics calculated from a confu-
sion matrix. Sensitivity, specificity, and balanced accuracy
(BA) were calculated both for individual classes and for the
model overall. Thus, the final maps from the model
presented consist of (1) the predicted distribution of each
assemblage cluster class (derived from a majority vote of
10 model runs each indicating the most likely class) and
(2) a confidence map layer (high values represent high con-
fidence) calculated by multiplying the frequency of the most
common class by its average probability over the
10 model runs.

Combined risk

Once the modeled risk layers were derived for each of
our three risk elements (sensitivity, biodiversity, assem-
blage rarity), the values for each were normalized using a
rescale function (value minus min value divided by max
value minus min value) to bring their values onto a com-
mon scale from 0 (lowest) to 1 (highest). These three ras-
ters were then “stacked” and summed to create a final
continuous variable for risk (values from 0 to 3), with
values again normalized to bring them on to a scale from
0 (least risk) to 1 (most risk).

Assessing model performance

The composite risk layer was generated by summing
three input layers—sensitivity, biodiversity, and rarity—
rather than modeling risk directly. As a result, no confi-
dence surface was produced during its generation. To
quantify confidence in the composite layer, we derived a
composite confidence surface by combining the confi-
dence information associated with each input.

For sensitivity, a CV raster was available from
model outputs. Because higher CV values represent

TAB L E 2 Biodiversity values of each macrofaunal biodiversity

cluster group (Cooper et al., 2023), derived from the ranked sum of

cluster centers following a k-means clustering approach.

Biodiversity cluster group Biodiversity value

Bio-A 4.83

Bio-B 4.34

Bio-C 4.27

Bio-D 4.06

Bio-E 3.85

Bio-F 3.28

Bio-G 3.14

Bio-H 2.39
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greater uncertainty, we transformed the raster into a
confidence surface by subtracting CV values from
1. For biodiversity and rarity, confidence layers were
originally derived from the categorical models. In our
derivation of the risk layer, we substituted cluster
groups for the raw biodiversity and rarity scores, but
we retained the original confidence layers to quantify
certainty. These layers were used directly without fur-
ther transformation.

The three confidence surfaces were then averaged to
produce the composite risk confidence surface:

ConfidenceRisk

¼Confidencesensitivity +ConfidenceBiodiversity +ConfidenceRarity
3

:

Higher values in ConfidenceRisk indicate greater con-
fidence in the composite risk prediction. The resulting
surface was classified into five ordinal levels (Low,
Low–Medium, Medium, High–Medium, High) for visual-
ization in the web application (see below).

Web application

To allow stakeholder utilization of our risk layers, we
produced an R shiny web application (app) using the
“shinydashboard” package (Chang & Ribeiro, 2021)
which is shared using the Posit Connect software
(see https://posit.co/products/enterprise/connect/).
The app features a sidebar panel, leaflet map, and
results boxes. The app allows the user to display rasters
for the combined risk layer or for each of the risk ele-
ments layers (i.e., sensitivity, biodiversity, and assem-
blage rarity) separately. The app also allows a variety
of relevant polygons to be displayed, either via the map
“control panel” or via user upload of geoJSON files.
Drawing tools available in the “leaflet map” allow
users to easily create areas of interest (or polygons).
Based on the map and underlying raster layers, the
application outputs: (1) drawn polygon node coordi-
nates, (2) median ecological risk values from the raster,
and (3) a total ecological risk score based on a summa-
tion of all raster cell values within the area of interest.
The app also shows histograms, created using the R
“ggplot” package (Wickham, 2016), of the risk values
of all the modeled cells within the area of interest for
each individual risk element and one for the combined
risk. The user-defined polygons can be moved or
edited, and the application automatically updates the
outputted risk values (1–3). The app also includes a
screenshot facility that allows users to output results to
a .pdf file.

RESULTS

Risk elements

Sensitivity

The macrofaunal sensitivity model (Figure 4a) had R2

and RMSE values of 0.53 (±0.01) and 2.15 (±0.03),
respectively, indicating acceptable performance. There
are clear, large-scale patterns in macrofaunal sensitivity
to offshore wind impacts across the study region. Areas of
highest sensitivity include the English Channel, inshore
regions of the east coast of England, mid Irish Sea area, and
along the Norwegian Trench (see Figure 1 for location
names). Areas of relatively lower macrofaunal sensitivity
characterize the southern North Sea and parts of the north-
ern and much of the west coast of Scotland.

Biodiversity

Differences between areas of seabed occupied by cluster
groups 3 and 4 from the original model (Figure 4b) are
much less apparent in the numeric model output,
reflecting the minor differences in absolute biodiversity
between these groups (Table 2). This similarity in biodi-
versity between cluster groups is also evident between
groups 1 and 2. When placed onto a continuous biodiver-
sity scale (Figure 4c), it is evident that the regions of
greatest macrofaunal biodiversity occur across the whole
of the English Channel, the eastern Celtic Sea, mid Irish
Sea, Inner Hebrides (west coast of Scotland), and across
inshore regions of the southern North Sea. Areas where
macrofaunal biodiversity is relatively poor are located in
the southern North Sea, mid-North Sea, and along cer-
tain areas off the west coast of Scotland.

Assemblage rarity

Model performance for macrofaunal assemblages was
good, with an overall BA of 0.79 (see Appendix S1:
Table S4). Spatial extent of assemblage cluster groups
varies significantly from 892 km2 (A2a) to 323,617 km2

(D2b) (see Table 3), representing 0.1% and 35.8% of the
study area, respectively. Assemblages with the most lim-
ited spatial extent are typically those with highest rich-
ness and abundance (see assemblage characteristics
shown in Appendix S1: Table S3). These groups include
A2a, found in patches off the east coast of England; A1,
found at Inner Silver Pit and in the mid Irish Sea; and
C1b, found in a variety of locations including coastal
areas of the western English Channel and off the coast of
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F I GURE 4 Risk element models for (a) sensitivity (numeric model), (b) biodiversity (categorical model from Cooper et al. (2026)), and

(c) assemblages (categorical model), together with numeric derivatives for (d) biodiversity and (e) assemblage rarity.
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North Wales. These assemblages, together with several
others such as C1a and B1b which are found principally
in the English Channel, form the main regions of highest
ecological risk regarding assemblage rarity (Figure 4f). In
contrast, other assemblage types are widespread and
ubiquitously span larger regions of the study area. For
example, the most spatially expansive group D2b domi-
nates the majority of the northern North Sea and much
of the southern Irish Sea, while the next ubiquitous
assemblage, D2a, represents large parts of the southwest-
ern part of the study area and much of the coast of
Scotland, Northern Ireland, and the Republic of Ireland
(Figure 4e).

Combined risk

Each of the three individual risk elements (Figure 4a,c,e)
was used to create a holistic, combined ecological risk
layer by summing each of the standardized risk values
(Figure 5). The resulting overall ecological risk to OSW
development raster map shows that spatial variations in
benthic assemblage risk occur at different spatial scales
for different regions of the study area. For example, large
regions of the most southwestern part of the area and the
northern North Sea are represented by homogenous
areas of low relative ecological risk (values around 0.2)
(Figure 5). Large parts of the southern North Sea (except
the inshore areas of the English coast) show low, but
slightly higher, ecological risk (risk values ~0.5).

Meanwhile, the majority of the central English Channel,
the mid Irish Sea and inshore areas of the eastern
English coast, are dominated by assemblages portraying
relatively high overall ecological risk to offshore wind.
However, Figure 5 also reveals much smaller scale,
regional variations in ecological risk occur. These areas
of high patchiness in risk are found, for example, in the
northern and southern Irish Sea, the east coast of
Scotland and England, and the eastern English Channel
(Figure 5).

Each of the three individual risk elements shows
some degree of independence in their spatial pattern,
meaning that some areas of high biodiversity risk
(Figure 4c), for example, do not represent high sensitivity
risk (Figure 4a). This example is observed off some parts
of the southwest coast of England. Meanwhile, the
macrofaunal assemblages in the region off the southeast-
ern coast of England which are regarded as medium risk
based on assemblage rarity (Figure 4e) are neither biodi-
verse nor sensitive to offshore wind development impacts
and are concluded to have relatively low overall ecologi-
cal risk to future development.

Confidence in the overall risk scores (Figure 6)
reveals that risk confidence is relatively high for the
majority of the North Sea, Celtic Sea, the southwestern
Approaches, and the central parts of the Irish Sea. Lower
model confidence values tend to occur around Ireland, to
the west and north of Scotland, and outside of the UK
EEZ off the coast of France and Denmark.

Web application

The Risk tool web application, available from https://
rconnect.cefas.co.uk/OneBenthicRisk/, is principally
intended to allow OSW practitioners to understand and
identify variations in benthic ecological risk and to use
this information to refine potential development sites to
areas of reduced risk. The app represents a visual output
of ecological risk based on the data and subsequent data
analytical procedures outlined in the Methods section. In
the illustrative example shown in Figure 7, area of inter-
est site A results in an overall median risk score of 0.66
(and an associated total score of 159). Relocating the
potential development area (area of interest box B)
results in a reduced ecological risk median score of 0.17
(total score reduced to 67).

DISCUSSION

For the present study, we used three independent quali-
ties of benthic invertebrate assemblages upon which to

TAB L E 3 Spatial extents (in square kilometers and percentage

of total) for faunal assemblage clusters.

Group Area (km2)
Percentage
of total

Inverse
area (km2)

A2a 892 0.1 902,574

A1 1574 0.2 901,893

C1b 9638 1.1 893,828

A2b 11,276 1.2 892,190

B1b 17,456 1.9 886,010

C1a 26,593 2.9 876,874

D1 86,830 9.6 816,637

D2d 114,933 12.7 788,534

D2c 148,718 16.5 754,748

D2a 161,940 17.9 741,526

D2b 323,617 35.8 579,850

Total 903,466

Note: The area not occupied values (in square kilometers: final column) are
those used to directly reflect spatial rarity for the risk assessment. Groups
are ordered according to increasing area.
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base informed decisions regarding the relative ecological
risks associated with future offshore wind development.
Firstly, we deemed the inclusion of relative sensitivity of
invertebrates, founded on a biological trait-based
approach, to be fundamentally important to include in
decision-making. Given that how a species responds to
either directly (damaged, killed) or indirectly (recovery
via recolonisation processes) a physical impact is funda-
mentally governed by the inherent traits it expresses, this
approach has gained widespread applicability for sensi-
tivity assessments for both terrestrial (Böhm et al., 2016;
Gonz�alez-Su�arez et al., 2013) and marine species
(Beauchard et al., 2021; Bolam et al., 2014;
Gonzalez-Irusta et al., 2018) to a range of pressures. The
traits selected in this study, broadly reflecting those
adopted by Bolam et al. (2014) regarding benthic sensitiv-
ity to demersal trawling, are likely to represent a robust
proxy for a range of physical pressures in the marine
environment. That is, this suite of traits is theoretically

likely to predispose any species to be affected by and/or
recover from the various direct physical benthic pressures
such as those associated with OSW construction and
operation. For instance, soft-bodied (morphology trait),
sedentary (mobility trait), and attached to substratum
(living habit trait) would infer high sensitivity to the asso-
ciated physical impacts such as abrasion/disturbance of
the seabed surface, penetration or disturbance of the sedi-
ments, smothering, and physical change to another sea-
bed type. Meanwhile, planktonic larval development will
confer a greater potential for species recolonisation of the
seabed regardless of the specific activity. The wealth of
empirical experimental and observational demersal
trawling impact studies conducted during the past two
decades has provided a good understanding of the links
between benthic invertebrate trait expression and sensi-
tivity (Tillin et al., 2006; Kaiser et al., 2006; van Denderen
et al., 2015). In contrast, there is a relative paucity of
comparable offshore renewables impacts-specific data

F I GURE 5 (a–c) Heat maps showing individual normalized risk element layers for (a) macrofaunal sensitivity to offshore wind, (b)

biodiversity, and (c) assemblage rarity. (d) Heat map of the combined risk layer based on a summation and normalization of these three risk

elements.
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and, consequently, a good understanding of which traits
convey a tolerance to its associated impacts is currently
lacking (Coolen et al., 2022; Galparsoro et al., 2022).
Indeed, as Gasparatos et al. (2017) points out, there is an
urgent need to identify and assess potential environmen-
tal impacts associated with offshore energy production to
prevent or minimize negative effects at a very early stage
of the OSW planning process. This future increased
understanding should be used to improve our under-
standing of species responses and, thus, trait-based
assessments of sensitivity to this sector.

Secondly, supporting the recent findings of Stranddorf
et al. (2025), we advocate that benthic biodiversity is an
important criterion which should be considered as part of
planning future OSW development. High biodiversity not
only represents a fundamental natural capital in the gener-
ation of marine ecosystem services (Tubío et al., 2021) but,
in line with substantive theoretical support for the

biodiversity-ecosystem functioning paradigm (Naeem
et al., 1994; Loreau et al., 2001; Tilman et al., 1996), biodi-
verse habitats represent the most functionally important
regions of the seabed. A large body of research shows that
greater diversity leads to an increase in the number of
expressed biological traits and greater effects on ecosystem
functioning compared to less diverse assemblages that
have poor functional expression (Reiss et al., 2009;
Snelgrove et al., 2014). The policy requirement to safe-
guard important ecological function and associated ecosys-
tem services is becoming increasingly pressing; thus,
identifying and consequently protecting relatively biodi-
verse marine benthic assemblages is a key goal for
policy-supporting science.

Thirdly, as identified by Cooper and Barry (2017),
benthic assemblages vary not only in their taxonomic
composition, that is, the compositional differences in the
faunal cluster groups presented here, but also that these

F I GURE 6 (a–c) Maps showing model performance of the individual risk element layers for (a) macrofaunal sensitivity to offshore

wind, (b) biodiversity, and (c) assemblage rarity. (d) Model confidence values for the combined risk layer. Model performance scores range

from 0 to 1 (biodiversity, rarity, and combined risk), with higher scores indicating higher confidence in the model. For sensitivity (CV),

lower scores indicate higher confidence in the model.

ECOSPHERE 13 of 20

 21508925, 2026, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.70520 by B

attelle M
em

orial Institute Pacific N
orthw

est D
ivision, W

iley O
nline L

ibrary on [12/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



different assemblages can exhibit dramatic differences in
their spatial extents (Table 3). Quantifying their relative
spatial extents affords the opportunity to identify assem-
blages which are relatively rare, opening the opportunity to
provide them with greater protection from future develop-
ment. It is becoming increasingly evident that managing
biological resources based on such assemblage-level groups,
as opposed to species-based approaches, provides an
improved basis upon which to help address biodiversity loss
(Belitz et al., 2025). As O’Brien et al. (2022) pointed out,
characterizing the diversity of distinct assemblages in
marine ecosystems and their distribution is key to the suc-
cessful implementation of regional conservation planning
and marine spatial planning processes that collectively aim
to maintain or restore biodiversity and ecosystem functions
that underpin services and benefits to society.

Management of sectoral pressures inherently relies on
empirical data and the information we glean from them.
The individual ecological risk maps provided here, particu-
larly when unified to a single composite raster layer
(Figure 5), provide a meaningful backdrop against which
the ecological impacts of future OSW developments can be
assessed. The composite map provides an illustration of
accumulated relative sensitivity, biodiversity, and assem-
blage rarity, facilitating the spatial examination of the
potential for adverse cumulative effects. The associated tool

we have developed based on these layers (Figure 7) offers a
simple, user-friendly interface to allow a range of stake-
holders (e.g., developers, licensing authorities, scientific
advisers) to understand, visualize, and portray the relative
ecological risks for any area of interest. Furthermore, easy
signposting of which of the three criteria (i.e., sensitivity,
biodiversity, assemblage rarity) is responsible for raising the
risk for a particular area (i.e., histogram plots; Figure 7)
allows the potential for early mitigation options to reduce
ecological risk at the planning stage of an activity. We have
witnessed that benthic assemblages may possess indepen-
dent qualities of ecological risk, that is, highly biodiverse
assemblages are not always sensitive to OSW development
while, in contrast, other assemblages are sensitive but not
biodiverse. This highlights the need to base licensing deci-
sions on such a suite of characteristics as basing decisions
on single or inappropriate criteria increases the risk of inad-
vertently and unnecessarily severely impacting benthic
assemblages.

Our composite map (Figure 5) infers that the lowest
ecological risk regions for future OSW development are
found widespread across the northern North Sea (except
inshore), some parts of the southern North Sea, the Irish
Sea south of Ireland, and to the west of Ireland in the
Atlantic Ocean. The majority of the Irish Sea, English
Channel, and the inshore areas of the southern North

F I GURE 7 Screenshots from the ecological risk app (https://rconnect.cefas.co.uk/OneBenthicRisk/) showing results for two potential

areas of interest, A and B. Inset shows risk scores for scenario B.
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Sea, in contrast, represent areas of greatest relative eco-
logical risk. Decisions regarding future development will
inherently be heavily based on practical, logistical and
financial factors, together with potential risks to other
ecological (e.g., seabirds, marine mammals, fish), sectoral
(e.g., other licensed activities), and societal (e.g., cultural
interests) constraints. Proximity to the coast is a critical
factor regarding suitability: Regions further offshore gen-
erally carry a higher ecological impact footprint and ele-
vated costs to transfer the generated power to land. It
must be noted that even areas identified as relatively high
ecological risk based on our approach do not necessarily
or automatically represent “exclusion areas” for future
OSW development. They represent areas of greatest eco-
logical risk based on sensitivity to the pressure, biodiver-
sity, and assemblage rarity (or any two of these for
medium risk areas), and by definition, the remaining
regions reflect areas of low relative ecological risk.
Inherently, this philosophy assumes that OSW develop-
ment negatively impacts biodiversity and assemblage
structure: Whether this is reflected in reality, given the
complex interrelationships between OSW development
with associated direct and indirect effects (e.g., potential
exclusion or reduction in demersal trawling pressure,
increased carbon delivery to the seabed resulting from
epifaunal species on turbines), still largely remains to be
established (Galparsoro et al., 2022).

Our approach may be augmented by additional
criteria to the three presented herein, where considered
necessary and/or appropriate. For example, areas of high
conservation value as defined by legislation (e.g., marine
protected areas or Annex I Habitats) can be included or
uploaded into the app to augment our risk layers, creat-
ing a framework whereby both consenting and ecological
risk considerations are brought together. Indeed, the
online tool allows (and its associated guidance document
promotes) the upload of a suite of additional layers to be
used to assist with decisions regarding future develop-
ment areas. Likewise, additional or alternative ecological
layers may be used in the future depending on the con-
text and what measure of benthic structure and/or func-
tion is to be safeguarded. For benthic assemblages, for
example, estimated total secondary production (Bolam
et al., 2010), bioturbation potential (Zhang et al., 2024),
or effect trait-based maps (Bolam et al., 2023) currently
offer the opportunity to include proxies of ecological
function into this framework. As scientists are increas-
ingly being asked by regulators and licensing authorities
to protect marine ecosystem function and ecosystem ser-
vices (in addition to routine structural-based metrics)
(Causson & Gill, 2018), we envisage that, once sufficient
data are available to provide more robust large-scale
maps of such criteria, these metrics can also be included

on an equal or even elevated priority over
structural-based maps.

The approach presented here offers the basis for wide
flexibility in application to facilitate early decisions
regarding the suitability of future licensing activities. The
holistic risk map presented here is based on an equal
weighting to each of the three adopted criteria, while,
alternatively, it may also be derived by varying the rela-
tive importance on any of the metrics. For example, it is
entirely plausible to regard protection of biodiversity to
preside over assemblage rarity or sensitivity. Meanwhile,
for application to other marine-based activities or pres-
sures where the present understanding of the inherent
biological characteristics that predispose benthic inverte-
brates to being sensitive or nonsensitive is presently
lacking, the relative influence of each metric within the
final composite map can be refined (e.g., by reducing the
relative influence of the sensitivity risk layer).

One noteworthy limitation of the present study
relates to the fact that the layers presented were derived
based on invertebrate data from grabs and cores from the
OneBenthic data repository. As grabs and cores can only
be successfully used to acquire benthic invertebrate data
from sedimentary habitats, our modeling approach and
thus the resulting layers assume that sediments occupy
the whole of the study region when, in reality, there are
known regions of the study area which possess coarser
(cobbles, boulders) or even bedrock substrates. The inver-
tebrate communities of such habitats and their sensitivity
to OSW impacts are inherently different from those of
sediment regions. During application, this limitation may
be addressed through uploading raster layers of predicted
rock habitats and, for example, placing less confidence
on our predicted ecological risk values in areas of
predicted rock habitat.

This study capitalizes on data across several decades.
Some species’ distributions will undoubtedly have
changed due to climatic shifts or more localized changes
due to changes in demersal fishing pressure during this
time span. However, we believe this is likely to be a
greater limitation for species distribution models than
models of derived layers which encapsulate information
from all the species within a sample as we have done
here for our three independent layers. Cooper and Barry
(2017) provided support for this, showing the spatial dis-
tribution of assemblages across the UK shelf remained
comparable between 1976 and 2016. Moreover, as we are
producing models based on the underlying relationships
between the benthos (response variable) and environ-
mental drivers (predictor variables), any climatic changes
in species distributions are likely to manifest through a
slightly poorer model performance as opposed to a less
accurate spatial representation.
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Based on a significantly large amount of empirically
derived, quantitative observational data of benthic inver-
tebrate assemblages contained within the OneBenthic
repository, modeled using a suite of environmental pre-
dictor variables to produce maps of three ecological
criteria we consider important for licensing decisions as
part of OSW planning, our ecological risk map offers an
alternative but complementary framework to the
European Union Nature Information System (EUNIS)
habitat approach that currently forms the basis of such
planning decisions across Europe (Davies et al., 2004;
Galparsoro et al., 2012). Our approach and the EUNIS
framework represent bottom-up and top-down approaches
respectively (Cameron & Askew, 2011; LaFrance
et al., 2014; Shumchenia & King, 2010) and each have
their own merits and offer useful insights to facilitate man-
agement decisions. While the latter (i.e., EUNIS) currently
represents the statutory basis representing potential signif-
icance of impacts as part licensing assessments, and will
undoubtedly continue to do so, insights from our
bottom-up method should be used to augment those from
a EUNIS habitat approach. Regions where disparity
between the two approaches are identified should be given
particular attention. Top-down and bottom-up approaches
are fundamentally different and provide different insights
for valid reasons. There are multiple, interacting benthic
impacts associated with the construction and operation of
OSW project (e.g., smothering, habitat change, abrasion)
(Copping et al., 2020), each acting at various spatial and
temporal scales and each varying in significance depending
on the nature of the receiving environment and the design
and construction methods adopted (Li et al., 2023). In view
of the relative paucity of good monitoring data upon which
we can utilize to more fully understand the implications of
such impacts on the structure and function of benthic
assemblages (Franco et al., 2015; Lindeboom et al., 2015),
prudent management is required and decisions regarding
future developments should be informed by harnessing the
merits provided by each of these complementary
approaches as opposed to a reliance on a single approach if
we are to provide a more robust, ecological-based basis for
future developments. The online tool developed here can
and should be used by OSW practitioners as a means of
obtaining instantaneous predictions regarding the ecological
risks of any area of development interest. In doing so, areas
subsequently identified as high risk may be avoided at an
early stage, thereby expediting the expansion of the OSW
sector and, ultimately, facilitating national net zero emis-
sion targets being achieved.

This study examines an ecological risk-based
approach for determining future OSW locations. The
methodology can also be adapted to other sectors includ-
ing dredged material disposal and sediment extraction.

Two of the three layers—assemblage rarity and
biodiversity—characterize inherent qualities of the ben-
thos that are equally relevant across all types of anthro-
pogenic pressures. Although our trait sensitivity scoring
approach is currently focused on (and scored to proxy)
offshore wind, it could similarly be adopted for physical
pressures related to other sectors. Insights from previous
research, such as Bolam et al. (2016) pertaining to
dredged material disposal, may assist in applying this
method more broadly by identifying response traits perti-
nent to sector-specific sensitivities. In this respect, our
study adds to a growing body of science aiming to under-
stand and quantify risks associated with various anthro-
pogenic activities to facilitate future licensing (Bolam
et al., 2014; Kaikkonen et al., 2024; Kenny et al., 2018;
Quemmerais-Amice et al., 2020).
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