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A B S T R A C T

Inshore and offshore coastal regions are becoming increasingly occupied by anthropogenic infrastructure. This 
trend will continue with the drive for offshore renewable energy development to reduce carbon emissions and 
provide energy security. The introduction of structures to the marine environment can have direct and indirect 
effects on benthic and pelagic habitats, and subsequent impacts on species contributing to these ecosystems. Fish 
are both prey and predators and, therefore, important components to the functioning of food webs in these 
environments. Should their behaviour, distribution and/or populations be altered by introduced structures then 
it is important to understand the direction and magnitude of effects, both at local and regional seascape scales, to 
understand how these effects may influence ecological interactions. The migratory behaviour of some fish species 
also contributes temporal and spatial variability and uncertainty to observed patterns, which should be char
acterised to provide a fuller understanding of the consequences of introduced structures. Acoustic telemetry 
provides insights into the movement and behaviour of individual fish at scales from single wind turbines to 
regional networks of offshore wind farm developments. Here we review how acoustic telemetry has added to the 
understanding of fish behaviour around introduced structures and discuss how its use can be (and is being) 
expanded to provide a wider ecological understanding of the impacts of offshore wind farms through collabo
rative networks, and integrated research techniques and analyses.

1. Introduction

The expanding use of marine space and seabed for renewable energy 
generation will see an increase of structures and materials in the water, 
including wind or tidal turbines, wave energy converters, subsea ca
bling, moorings and scour protection [1]. Offshore wind is the leading 
method of marine renewable energy generation with global capacity 
estimated to have been 48 GW in 2021, and projected to reach 270 GW 
by 2030 [2,3]. Within the UK EEZ, approximately 2300 km2 of seabed is 
assigned to operational wind farms, with over 3000 turbines of varying 
size and design currently generating electricity or under construction [3,
4]. Under a Balanced Growth Net Zero Pathway model produced for the 
UK government, generating capacity would grow to 95 GW in 2050 
(11.3 GW at end of 2021) [3], with associated increase in turbines, 
infrastructure and seabed area designated to fixed or floating wind farms 
[5].

The introduction of anthropogenic structures to the marine envi
ronment (e.g. oil and gas infrastructure, wind farms, aquaculture sys
tems) can have direct and indirect effects on the host ecosystems [6–10], 
and their ecological connectivity [11]. Given the large upscaling of the 
wind energy industry planned for the coming decades, project specific 
and cumulative effects, at local and regional scales should be assessed in 
order to understand the positive or negative consequences, potential 
mitigation or enhancement options, and provide evidence for future 
development consenting policy and spatial planning [12,13]. The 
behaviour and distribution of fish in these modified environments will 
likely be altered [14–19]. However, knowledge of how, and to what 
extent, these will affect their populations, communities and any marine 
species that prey upon them is in its infancy and will benefit from the 
application of contemporary research techniques (e.g. [20–22]). 
Acoustic tracking of fish has proved invaluable in describing their 
movement and behaviour [23–25] and has potential to fill important 
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knowledge gaps on the impact of anthropogenic activities in aquatic 
systems [24]. Here we review how this method and associated analyses 
have, and could be, used to better understand the impact of the 
large-scale introduction of offshore wind farms on fish ecology, behav
iour, and predator prey interactions. The application of acoustic 
telemetry to assess the effect of a rapidly expanding offshore marine 
renewable energy industry has not previously been discussed in detail, 
making this a timely review.

2. Potential effects on fish and their predators

Demersal and pelagic marine fish can be attracted to physical 
structure, either on the seabed or in the water column, due to the 
enhancement of favourable habitat and/or protection from predators 
[26,27]. The aggregating effect around artificial structures found on the 
seabed has often led them to be termed ‘artificial reefs’ [28], and when 
intentionally introduced are mostly used to restore habitat to enhance 
fish diversity or abundance [29]. The effect can be created uninten
tionally through accidents, such as shipwrecks [30], or by structures 
used for other activities, such as oil and gas extraction, aquaculture and 
marine renewable energy [7,31,32]. Offshore wind farms have the po
tential to represent the largest introduction of artificial structures into 
the offshore marine environment, greater than oil and gas industry both 
in terms of number and spatial extent [1,33]. Moreover, they will pro
vide a network of unintentional artificial reefs or aggregation devices at 
both local and regional scales that will influence the behaviour, distri
bution and connectivity of fish populations and their predators (e.g. 
Fig. 2 (a)) [34–36]. Whether a change in fish abundance around wind 
farms results from redistribution due to attraction towards the structures 
or increased in biomass through enhanced reproduction is still to be 
determined [37]. There is, however, reasonable evidence to suggest 
both mechanisms occur around artificial structures, including wind 
turbines, and that structure age and complexity influence how these 
consequences occur [31,38,39].

Diadromous fish will likely encounter offshore wind farm infra
structure during their migrations but the potential impact on these is less 
understood than those previously described for other marine fish spe
cies. Many diadromous fish are protected under national or interna
tional legislation (e.g. EC Habitats Directive protection in Europe for 
Atlantic salmon Salmo salar, Sea lamprey Lampetra fluviatilis, Allis shad 
Alosa alosa and Twaite shad Alosa Fallax) and thus have high conser
vation value. Monitoring these species at sea is particularly difficult due 
to their relative scarcity in the marine environment. Indeed, a key 
knowledge gap is understanding the connectivity of these populations to 
offshore wind farms to enable potential impacts to be assessed.

The redistribution and/or concentration of fish into wind farms is 
expected to modify fish foodscapes for higher predators, including 
humans (i.e. fisheries). Some of the soft and flat seabed currently 
preferred for wind farms have been fundamentally altered and degraded 
by decades of fishing activity (e.g. the North Sea: [40]). Wind farm 
structures will create complex, hard-substrate habitats that can attract 
fish and alter abundance and species [41,42], potentially restoring past 
losses of habitat for both prey and predators. Harbour porpoises (Pho
coena phocoena) have been found to alter their occurrence and feeding 
behaviour in response to large offshore structures [43], while some in
dividual harbour seals (Phoca vitulina) demonstrate striking grid-like 
movements patterns focusing on wind turbines and subsea cable infra
structure during putative foraging [44]. These studies provide compel
ling evidence that wind farms could likely play an important role as 
foraging areas for several marine mammal species. Gathering direct 
empirical evidence on how predator-prey interactions can be, and are 
being, altered by the introduction of wind turbines will inform how wind 
farms might be developed to limit negative impact and promote positive 
effects on important fish and marine mammal populations (e.g. [45]; UK 
government’s Marine Net Gain).

3. Acoustic telemetry technology

Tracking the movement of free-ranging animals provides invaluable 
data on environmental and biological interactions in both space and 
time [46]. Acoustic telemetry has been particularly useful for gathering 
such data for marine fish species [22,46–48]. The technique relies on the 
external attachment or internal placement of acoustic transmitters 
(‘tags’) to individual animals, which each emit a unique identification 
signal (or ping). These may be detected (‘heard’) and stored by sub
surface data-logging hydrophones (‘receivers’), which provide presence 
data at fixed locations, or tracked from receivers on vessels or gliders 
(Fig. 1). Tag variants also transmit other sensor data from the animal, 
such as depth and temperature and acceleration, which can enhance 3D 
spatial positioning [22]. Current battery technology allows tracking of 
fish for up to 10 years in larger species, with only very small species or 
juveniles excluded from tagging due to size constraints. However, bat
tery life constraints may be overcome for suitable species with the 
development of a self-powered acoustic transmitter (SPT) that harnesses 
the biomechanical energy of the fish’s swimming motion, which has the 
potential for life-long activity [49]. The battery life of long-term re
ceivers can also be measured in years (up to 5) providing potential for 
long deployment periods. Nevertheless, in many studies, receivers are 
serviced (e.g. data downloaded and battery checked) more regularly (e. 
g. twice a year) to reduce the risk of valuable stored data being lost due 
to equipment loss, damage or malfunction.

Use of the same encoding method in acoustic signal transmission (e. 
g. pulse position modulation (PPM) or binary phase-shift keying 
(BPSK)), any tagged fish can, in principle, be detected on any receiver 
[50]. This compatibility across equipment enables linking of local, 
regional and international networks of receivers that can each be funded 
and maintained by different research projects, and/or national agencies. 
Such collaborative initiatives, including Florida Atlantic Coast Telem
etry Network (FACT), Atlantic Cooperative Telemetry (ACT), National 
Science Foundation’s Long Term Ecological Research network (LTER), 
Australian Integrated Marine Observing System’s (IMOS) receiver 
network, European Tracking Network (ETN) and Ocean Tracking 
Network (OTN), provide the opportunity for large scale, cross-ecosystem 
and cross-boundary detections and collaborations, increasing under
standing of fish movement and behaviour in migratory and highly mo
bile species [51–56]. However, within the most dominant method 
(PPM), protocols can still differ between manufacturers, limiting 
compatibility to the same purchased equipment, leading to calls, and 
recent progress, for more open source and/or standardised coding pro
tocols [50].

4. Acoustic receiver arrays and integration

The location of autonomous receivers and/or the design of receiver 
arrays will determine the movement or behavioural data that can be 
gathered from tagged animals and, ultimately, the research questions 
that can be addressed [23].

Large scale (regional, national or continental) movements of in
dividuals have been obtained from receivers and arrays positioned 
10s–1000s of kilometres apart, stationed at strategic locations around 
coastlines or offshore [55,57]. Tagged animals need to pass sufficiently 
close to receivers to be detected (e.g. <1000m for the highest power 
tags; but see [58]). The probability of detection increases with the 
strategic positioning of receivers using prior knowledge of putative 
movement or migration routes, the array spatial coverage [23] and 
knowledge of habitat to prevent acoustic shadowing. It is common 
practice to increase spatial coverage through data sharing among in
dependent receiver arrays, often as part of the collaborative networks 
previously detailed [53–55]. High density receiver ‘curtains’ or ‘gates’ 
across estuaries and larger water bodies have been successful in 
increasing the detection probability of tagged animals, and this tech
nique has been especially important for revealing movement and 
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migratory behaviour in anadromous fish species [59–63]. Detections 
from mobile transceivers attached to marine mammal predators (grey 
seals Halichoerus grypus; Fig. 1) and wave gliders have also been used to 
augment fixed array detections and to estimate natural mortality in 
highly mobile Atlantic bluefin tuna Thunnus thynnus [57].

Smaller spatial scale receiver arrays have been designed to address 
species- or site-specific (multi-species) questions related to fish ecology, 
movement behaviour and management, including species presence, 
residency, habitat use and population assessments [64–67]. Such arrays 
now have the potential to explore how networks of structures can in
fluence fish distribution and movements at a wind farm scale [Fig. 1 and 
see Box 1]. Focal studies that near saturate a local area with multiple 
receivers and use enhanced depth sensor tags can provide accurate 2 and 
3 dimensional (3D) positional data to reveal movement dynamics [68]. 
When networks or clusters of receivers are positioned with overlapping 
detection ranges, tags can be simultaneously detected on multiple de
vices, providing fine-scale 3D movement and/or continuous tracking of 
individuals, useful for revealing social-interactions within fish pop
ulations [69], movement patterns around introduced structures [70,71] 
and to identify fish behavioural states [72].

In addition to meeting research or monitoring objectives, a practical 
and financial consideration for any acoustic receiver array is how long 
will it, or can it, be maintained (i.e. data downloaded, receivers cleaned, 
and batteries changed). The logistics and cost (e.g. vessels, equipment, 
and person time) quickly escalate with increasing size of an array, and 
the concomitant tag procurement and catching/tagging of animals. 
These considerations can limit the scope of some studies, emphasizing 
the importance of collaborative networks and/or core funding to 
maintain and potentially adapt arrays for continued monitoring or 
further research once initial study objectives have been met [23]. 
Introduction of these techniques into offshore construction sites and 
operational wind farms result in additional challenges that need 
considering in the study design, maintenance of arrays and fish capture 
[see Box 2].

Incorporating complimentary research methods into fish telemetry 
studies can offer further insight into ecology, behaviour, physiology, and 
marine community dynamics [48,54,73,74]. Biological samples can be 
collected from tagged fish for biochemical or genetic analyses. Such data 
can provide insights into, for example, ontogenetic change in habitat 
and resource use [75] or patterns in spatial structure and connectivity 

Fig. 1. Schematic of an acoustic telemetry array at an offshore wind farm with complimentary survey methods.
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[76], which would not be reflected in telemetry data alone. Co-location 
or integration of environmental sensors with receivers can offer addi
tional data on abiotic variables, such as temperature, salinity, oxygen or 
turbidity, which can inform understanding of the drivers of variation in 
fish presence, activity and behaviour [77–79]. A co-location approach 
using deployment of echolocation click detectors or broad-band re
corders has potential to reveal how predators influence prey behaviour, 
and vice versa. These approaches could be especially valuable when 
exploring novel habitat within wind farms that may influence predator 
prey interactions [43].

5. Contemporary analyses and modelling

The rapid rise in the use of acoustic telemetry and growth in 
collaborative networks has produced vast quantities of detection and 
sensor data for a range of fish species and age classes [24]. Combined 
with access to complimentary data from direct (e.g. biological samples) 
or indirect (e.g. remote sensed) sources, this has encouraged the appli
cation and development of analytical approaches to research questions 
with wider scope than general fish movement patterns [24,48].

Movement and space utilisation studies commonly use kernel based 
methods and detection patterns to estimate fish home ranges [80], res
idency time [70], fidelity [60], connectivity [55], and dispersal mea
sures [62,65], often related to specific sites (e.g. protected areas, 
offshore structures or rivers) and/or environmental drivers [81]. A 
standard analysis framework for calculating a range of these measures 
has been proposed for the multiple species, location and time scales 
within the large datasets now available [82]. Space use layers derived 
from modelled telemetry data have also been used in systematic con
servation planning within the Marxan decision-support tool, to inform 
design and efficiency of marine protected areas for important elasmo
branch species [83].

A spatial array or “network” of receivers lends itself to the applica
tion of network analysis, which uses nodes (receiver locations) inter
connected by edges (movement of individuals between receivers) to 

visualise and statistically analyse presence-absence data [84]. The 
method examines activity space and identifies core use areas, but also 
reveals animal movement pathways and shifts in activity areas [84,85], 
leading to greater understanding of connectivity and dispersal patterns 
[55,86]. Extending the analysis to include associations of individuals, 
social structure and aggregation formation have been explored [69,87,
88] with further opportunity to apply the method to broad fish con
servation themes [89].

The fine-scale positional data that acoustic arrays can provide for 
tagged fish have also led to the application of movement models that 
identify behavioural states using hidden Markov models [90]. These 
Bayesian models reveal underlying behavioural states, such as resting, 
feeding and travelling, which are not directly observed (i.e. no contin
uous monitoring). The occurrence, frequency and/or spatial extent of 
these states can change with factors such as diel period and fish size, as 
found in the commercially fished grey triggerfish Balistes capriscus [72], 
important knowledge when attempting to sustainably manage 
populations.

Fisheries stock models require the estimation of survival, mortality 
and abundance parameters. These have previously been derived from 
mark-recapture studies, but sampling can be logistically challenging and 
result in uncertain estimates in populations where recaptures of indi
vidual fish are rare [67]. Acoustic telemetry has been a useful tool in 
stock modelling studies to compliment or replace these traditional 
methods. Given this has the advantage of only requiring one capture 
event, there is higher probability of fish encounters on receiver arrays, 
and multiple detections over time and space allow construction of 
detailed encounter histories and improved model parameter estimates 
[67,91].

Integrating individual based movement and sensor data from 
telemetry studies into species distribution models (SDMs) has been 
conceptually considered for fish [92]. Changing from indirect proxies of 
movement and area-based environmental data collection to direct esti
mate of movement and environmental variables from sensors on tagged 
animals has been proposed to enhance the precision of the current 

Fig. 2. (a) Current and planned offshore wind farms developments around the North Sea and UK (EMODNet and Crown Estate November 01, 2023). (b) Turbine 
configuration at two operational wind farms in the Moray Firth, Scotland (Beatrice and Moray East; red box in (a)) and the acoustic telemetry receiver array currently 
deployed (2021 as part of the PrePARED Offshore Wind Evidence and Change (OWEC) programme project funded by The Crown Estate and Scottish Crown Estate 
(UK). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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modelling frameworks. Often used to predict species presence and used 
to inform spatial management.

6. Telemetry evidence around offshore structures

Few acoustic telemetry studies have specifically investigated the 
effect of introduced wind farm structures on fish [24,51]. Telemetry 
studies have, however, been conducted around oil and gas platforms, 
artificial reefs and fish aggregation devices (FADS), exploring fidelity, 
residency and movement patterns of fish associated with these 

structures [70,93–100]. Results from this work provide useful indicators 
of the types of effect that might be found around offshore wind 
developments.

An early study in the Norwegian North Sea tagged 29 Atlantic cod 
Gadus morhua (“cod”) at a decommissioned oil platform, revealing res
idency in half of the tagged fish during the three-month study. Further 
tag detections a year later, and subsequent fishing catches, suggested 
longer term local residency with some longer distance movements [95]. 
The impacts of Californian petroleum platforms on local fish populations 
and communities have been studied over the past 20 years. Latterly this 

Box 1
Fish behaviour at offshore wind farms: Acoustic receiver detections from two haddock Melanogrammus aeglefinus tagged in offshore wind 
farms in the Moray Firth (Scotland, UK), as part of the Predator and Prey Around Renewable Energy Developments project (PrePARED), 
demonstrate contrasting patterns (behaviours). Caught and released within 48 h of each other and similar in length (33.5 cm & 31.5 cm), panel 
(a) presents an individual detected consistently for >100 days at only 3 turbine receivers (primarily 1) since being tagged and released, and (b) 
shows the movement of an individual between 15 turbine receivers across the two wind farms (3 receiver array clusters) in 9 days.

Haddock (a) detections provide evidence for residency behaviour for 3 months in close proximity to 1 turbine, and haddock (b) illustrates how 
passage through or movement out of sites can be detected with enough receivers and/or clusters. The latter reiterates the importance of 
broader scale networks of receiver arrays at planned or built wind farms, e.g. the east coast of UK (see Fig. 1), which could capture larger scale 
movements and connectivity of fish populations in relation to wind farms.
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has involved telemetry studies of 17 groundfish (bottom dwelling) 
species. High intra- and interspecific variability in fidelity to the plat
forms was found over a 1.5 year period, with evidence of movement 
between platforms and natural reef habitats [96]. A translocation study, 
where rockfish (Sebastes spp.) and lingcod Ophiodon elongatus were 
caught at platforms and released at natural reefs 19 km away, revealed 
return (homing) behaviour in a third of the fish, suggesting that a 
portion had a preference for the artificial habitat [93]. The latest of these 
Californian studies focused on nearshore reef species caught at a shallow 
(~50 m) and deep (>200 m) water platform. The four species (cabezon 
Scorpaenichthys marmoratus, grass rockfish Sebastes rastrelliger, kelp 
rockfish Sebastes atrovirens, California sheephead Semicossyphus pulcher) 
revealed a high degree of long-term site fidelity (up to 578d), with 
seasonal patterns in depth (habitat) use [97]. The latter being important 
when considering decommissioning options and policy that could mean 
part, or all (i.e. toppled), of the platform is left in place and continues to 
occupy different depths at the end of their production life [101].

Research at oil and gas platforms and artificial reefs in the Gulf of 
Mexico (“GOM”) have also used telemetry to understand fish behaviour 
around these structures. In parts of the GOM, platforms provide habitat 
that supports a large portion of the reef associated red snapper Lutjanus 
campechanus population (e.g. ~70–80 % of age 2 fish in 1992) [102]. 
Using fine-scale positional data (accurate within ±2–7 m) red snapper 
revealed affinity to the platforms with >90 % of positions recorded 
within 95 m of the structures. Home ranges of tagged fish changed with 
environmental variables and seasons. Short periods of emigration out of 
the range of receivers were detected, but most individuals returned 
within 3 days [70]. The blue runner (Caranx crysos), a pelagic and 
schooling species, also remained close to a large platform structure 
complex for periods of least 7 days [94]. High site fidelity (up to 88 % 
yr− 1) and residency (up to 23 months) of red snapper to introduced 
structures was equally demonstrated around the extensive network of 
seabed artificial reefs in the GOM [98,100,103–107]. An analysis of 3D 
positional data revealed the species used the entire water column 
around and above seabed structure during spring and summer, sug
gesting it is not a strictly benthic species in these environments [103].

Using telemetry to study the behaviour and movement of fish around 
FADs has mainly focused on the large commercially or recreationally 

important fish species, which FADs are designed to aggregate. Tunas 
(Thunnas spp. & Katsuwonus spp.) and dolphinfish (Coryphaena hippurus) 
have been particularly well studied [99,108–114], demonstrating a high 
degree of association, residency and homing behaviour around floating 
devices. These results have provided insight into the attraction and 
behaviour that might be expected around floating wind turbine struc
tures as these developments increase, and how they might affect local 
recreational and commercial fisheries [115].

Before 2024, studies directly researching the effect of offshore wind 
farm infrastructure had only been published for sites in European waters 
(Fig. 3), where large development projects have taken place in the past 
15–20 years (https://map.4coffshore.com/offshorewind/). Cod at a 
wind farm in the Belgian North Sea demonstrated high relative levels of 
seasonal residency (n = 22) at the hard substrate habitat around turbines 
during summer and autumn [16,116], with crepuscular movements 
related to feeding activity [117]. Similar turbine residency behaviour of 
cod was reported at a Dutch wind farm, although there was greater in
dividual and seasonal variation in tagged fish behaviour, with a variety 
of diurnal patterns emerging [118]. Sole (Solea vulgaris) fitted with 
acoustic tags at the same wind farm revealed little affinity to turbines, or 
the site itself, with movements at a spatial scale larger than the wind 
farm being inferred from the lack of detections on the network of re
ceivers, but also substantiated by mark-recapture tagging from fishing 
trawlers [118]. A recent study, however, found another flatfish species, 
the European plaice (Pleuronectes platessa), demonstrated residency 
behaviour during the feeding season between and close to turbines with 
scour protection at a Belgium wind farm [n = 26, 70 % detected in study 
area >75 % of days at large: 114]. The study also revealed fine scale 
diurnal movement between turbine scour protection during the day 
(main detection peak <25m from turbine) and sandy habitat further 
away at night (smaller detection peak at ~90m from turbines) [119]. 
These contrasting behaviours highlight the intra-specific differences in 
how offshore wind farm structures may alter fish populations and dis
tribution. A previous study at the same Belgian wind farm used trian
gulated positional data of cod to assess the effects of pile driving sound 
during construction of a neighbouring turbine array. Modest, yet sta
tistically significant, effects were found during and after the piling, with 
cod moving closer to the scour protection surrounding the closest 

Box 2
Challenges and opportunities of acoustic telemetry research in and around offshore wind farm sites:

Challenges. 

• Mooring receiver arrays in proximity to operational wind farm structures: positioning and managing the servicing of receiver arrays to reduce 
potential loss or damage to equipment, structures or interference with vessels. Including liaising and communication with wind farm developers or 
operators.

• Fish capture and deploy/service acoustic arrays at sites far from coasts: the time, effort, equipment, funding and regulatory frameworks 
required to conduct long-term tracking studies at wind farm sites that are (and will be) between 5 km to >150 km offshore is considerable.

• Live capture of benthic fish species in deep waters: fish species with closed swim-bladders (physoclisti) can suffer barotrauma after ascent from 
depths over 30 m, which means they are in sub-optimal condition for tagging. Modification in capture, pre- or post-tagging care and return procedures of 
fish is necessary to enable survival post release.

Opportunities. 

• Predation events: acoustic tags with temperature and pressure sensors can provide useful fine scale 3D space utilisation of fish, but also the possibility 
to identify predation (see Box 3). Specific ‘predation’ sensors can also identify these events. These data can be ecologically informative on how the 
offshore structures act as prey aggregation devices for higher trophic level marine mammals or seabirds, with potential outcomes for fish population 
dynamics.

• Collaboration and wider networks: in isolation, an acoustic tracking study can provide detailed information on one or more fish species movement 
and behaviour. These data are important in understanding ecological interactions with predators and prey within the focal area, which can foster 
collaboration with other researchers and organisations studying these trophic levels providing a more holistic interpretation. The creation of a wider 
network of receiver arrays at wind farms across a region or sea, can open the scope of such studies and collaborations to address more broad scale 
movement and behavioural processes.
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Box 3
Detecting predation events. Offshore wind farm structures have the potential to attract and aggregate fish, therefore become novel foraging 
areas for marine animals that predate on them. The consequence of these interactions for either prey or predator populations at a local or wider 
scale is not fully appreciated at present, but with additional evidence of such events the potential population and ecological effects may be 
assessed and ultimately predicted.

Acoustic telemetry tags with temperature and depth sensors can provide evidence of predation events, which if involving a marine mammal is 
primarily indicated by the increase in tag temperature to between 35–38◦C (mammal body temperature range). When associated with a fish 
(externally or internally) the tag temperature will reflect the surrounding water, therefore vary with the time of year, so the increase when 
consumed by a mammal predator is quite stark in temperate waters. These patterns can be seen in (a) panels where detections from a tagged 
Atlantic cod in the Moray Firth wind farms are shown spatially and as temperature and depth time series plots for 7 months. The fish shows 
residency behaviour in the ME1 acoustic cluster (particular proximity to 1 turbine) from May to June where the depth is within a relatively 
small range (–38 to –53 m) and the temperature values reflects the seasonal change in water temperature. The dramatic increase in tem
perature and depth variation in January, coincides with an increase in spatial movement as the tag is detected on multiple receivers over a 
short period, indicative of predation by a mammal (i.e. seal or cetacean).The patterns shown in (b) panels illustrates a less resident cod that 
moves between turbines in the B1 cluster for a 3 week period, but then the tag is not detected on a receiver until 6 months later when its shows 
the increased spatial movement, high temperature and variability in depth that is indicative of a marine mammal. The predation event is 
assumed to have taken place somewhere outside the range of the acoustic array, but the predator has entered the wind farm and been detected 
after consuming the cod (timing would be dependent on gut residency time) and is moving between the turbines potentially looking for 
further prey.
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turbine and moving further away from the sound source, but all tagged 
fish remaining within the estimated exposure area [120].

Complementing the studies on fish behaviour, a recent telemetry 
study has revealed turbine scour protection is also useful habitat for a 
commercially important marine invertebrate, the European lobster 
(Haomarus gammarus). Thirty three tagged individuals demonstrated 
high levels of residency at turbine tagging sites (70 % of time) with 50 % 
of detections recorded within 35 m of the hard substrate protection 
[122]. Further illustrating the application of acoustic telemetry to detail 
the impact of OWF infrastructure on behaviour and movement of 
important marine animals, beyond the fish community.

7. Discussion of future telemetry research around offshore wind 
farms

Fish telemetry studies around offshore structures support the body of 
evidence indicating these sites alter fish movement and behaviour and 
act as important habitat for attracting (aggregation or production) a 
variety of fish species.

With global offshore wind generating capacity predicted to grow 

annually until 2030, the number of wind farm installations could 
potentially triple in the coming decade [2]. This expansion will neces
sitate the installation of thousands of wind turbine structures of varying 
design and complexity, fixed foundations on the seabed or as floating 
devices, with the accompanying moorings, subsea cables, dynamic and 
floating cables, substation platforms and scour protection. The need to 
expand into deeper water will become pressing, as available space in 
shallower waters becomes limited. The construction will be one of the 
largest introductions of artificial structures into the global offshore 
marine environment in terms of number and spatial extent, and will 
produce novel subsea and sea surface seascapes [1,33]. Large areas of 
uniform, regularly spaced habitat are rare (if not unique) in the natural 
marine environment, rather heterogeneous or patchy distribution of 
habitats (and organisms) is the norm [123,124]. OWF sites provide such 
regular habitat at the local level (Fig. 3 (b)), and with the planned 
expansion, will create a patchwork of these sites separated by regions of 
natural (to varying degree) seascape (Fig. 3 (a)). A hierarchical (scale 
dependent) mosaic of regular (local site) and irregular (regional sites) 
habitat patches, will elicit different responses by fish depending on the 
scale and species life history characteristics [125]. How these responses 

Fig. 3. Peer-reviewed literature and reports (see References and [121]) of studies directly assessing the effect of offshore wind farms on teleost fish (not larval stage) 
before 2024. Yellow = included in study & & blue = not included in study. Red box highlights studies that used acoustic telemetry to track fish. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
* = report, SI = stable isotope & FA = fatty acid.
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will shape fish movement, population dynamics and community struc
ture, are key and unknown ecological impacts of OWF construction. In 
later phases of the industry’s development, early projects will be coming 
to the end of their planned life, requiring careful management of 
de-commissioning or re-purposing of structures across these networks of 
sites [126,127].

Acoustic telemetry could help fill knowledge gaps by revealing de
tails of individual fish behaviour at both fine (<10 m) and broad 
(>1000 km) scale. The direct effect of pile driving noise during con
struction of wind turbine foundations has been studied in relation to 
marine mammals [128,129], but little is known how these events might 
impact fish [130]. Acoustically tracking the movement and behaviour of 
individual fish over the period of these events (pre, during and post), in 
conjunction with other techniques (e.g. passive acoustics, cameras, 
sonar), could provide detailed data on how fish respond to impulsive 
noise sources and whether effects may be cumulative and/or persistent 
[130]. For reef or hard substrate associated species, the habitat provided 
by regular turbines and multiple wind farm sites may promote a meta
population environment over local and regional spatial scales. In this 
instance, residency, dispersal patterns (immigration/emigration) and 
distances, and survival rates available from telemetry studies would be 
combined with species population estimates (abundance, biomass or 
density metrics) from complimentary surveys at wind farms (Fig. 1), e.g. 
underwater cameras [20,131] or fisheries hydroacoustic and trawl sur
veys, to assess changes in population structuring. Species that migrate 
and move over much larger distances, such as salmon and tuna, may not 
be so intimately linked with the introduced habitat but must still navi
gate the new seascape created by OWFs. Notably, these sites may 
become areas of increased foraging (‘hotspots’) for some species, shelter 
from predators for others, or even barriers during spawning migration. 
Maintaining a network of telemetry arrays (including wind farm sites) 
that share detection data could help detail changes in movement pat
terns with increasing regional development (e.g. Interreg FISH INTEL 
project: FISH INTEL Interreg France (Channel) England - University of 
Plymouth).

These approaches also provide opportunities for exploring ecological 
interactions around OWF. A growing number of studies have demon
strated that marine top predators such as marine mammals may be 
attracted to structures such as OWF [43,44,132]. Observed seasonal or 
diel patterns of occurrence and foraging around structures seem likely to 
be related to the behaviour of different prey species [133,134]. How
ever, limited information on the behaviour of individual fish around 
artificial structures constrains current understanding of how any 
changes in prey distribution around OWF might shape predatory 
behaviour and influence top-down ecological interactions. Networks of 
OWF could aggregate prey, for example, potentially providing predict
able foraging patches for predators such as seals (see [44]). In turn, this 
may shape predator-prey interactions to the extent that they constrain 
recovery of some depleted species such as cod [135,136]. Acoustic 
tracking of individual fish around networks of OWF provides one of the 
most promising avenues for understanding these interactions in more 
detail. Broader scale data on residency patterns or movements of indi
vidual fish across networks of OWF may inform understanding of drivers 
of seasonality in marine mammal or seabird activity. At a finer-scale, 
acoustic tags with pressure sensors could, for example, be used to 
explore whether observed diel patterns in porpoise foraging around 
structures [43,134] are in response to either fine-scale horizontal or 
vertical movements of prey at night. Where larger marine mammal 
predators are known to concentrate their foraging in areas containing 
acoustically tagged fish, animal-borne (e.g. seal) acoustic receivers can 
provide direct information on predator-prey encounters [137–139]. 
However, such studies would be extremely challenging around offshore 
wind farms given the difficulty of capturing and instrumenting indi
vidual predators that are likely to forage in specific offshore sites. On the 
other hand, additional sensors within acoustic tags placed on fish caught 
in these offshore areas can still provide information on predation events 

[22,140,141]. For example, marine mammal predation attempts may be 
detected through sudden rises in tag temperature, or depth profiles (see 
Box 3). Similarly, predation by other fish can be detected using preda
tion tags which change their identification code after contact with 
stomach acid [141]. These evolving technologies [140] and analytical 
approaches for detecting predation events [142] are increasing oppor
tunities to understand both the prey base and predator-prey interactions 
around offshore structures. Combining complimentary survey and 
analytical techniques, including acoustic telemetry, underwater cam
eras and energetic models, should now help reduce knowledge gaps and 
improve evidence-based decision making regarding the ecological im
pacts of upscaling OWF.

Acoustic telemetry has been used to assess fish behaviour, movement 
and interactions over relatively short time frames (<10 years), but 
findings also need to be considered within the context of climate change 
that is continuing to alter the temperature and chemistry of the oceans 
over much longer periods, including intermittent severe marine heat
wave events [143]. Increasing water temperature and reduction in dis
solved oxygen are known to alter marine fish community structure, 
diversity and distribution over decades [144–146], with predicted ef
fects on predators [147,148]. The presence, condition and behaviour of 
fish utilising current or future OWF sites will have been moulded by the 
climate driven changes in biotic (prey and predators) and abiotic 
(temperature, salinity, oxygen) factors. It will require a longer term 
(>10 year) and larger scale (international) vision of acoustic telemetry 
receiver networks (i.e. ETN and OTN) and tagging programs to enable 
the method to assess how large scale OWF development (fixed and 
floating foundations) and ongoing climate induced ocean changes might 
interact to shape fish behaviour and movement in a shifting seascape.
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