AECOM

APPENDIX/V

WETLAND DELINEATION REPORT WATERFORD, CONNECTICUT

Photo credit: Matt Goldsmith, Equinor

Prepared for Beacon Wind LLC

June 2023

State of Connecticut Wetland Regulations

Connecticut state wetlands include areas that meet the definition set out in Connecticut Inland Wetland and Watercourses Act ("IWWA"; Connecticut General Statutes [CGS] Section 22a-36 through 45) and its implementing regulations (Regulations of Connecticut State Agencies [RCSA] Section 22a-39-1 to 22a-39-15). Typically, the state statute is implemented through the Inland Wetlands and Watercourse Regulations as administered by individual municipalities.

Under Section 2 of the IWWA, a wetland is defined as "land, including submerged land, which consists of poorly drained, very poorly drained, alluvial and floodplain soils as defined by the National Cooperative Soils Survey. Such areas may include filled, graded or excavated sites which possess an aquic (saturated) moisture regime as defined by the United States Department of Agriculture (USDA) Cooperative Soil Survey."

In Connecticut, state and federal wetland boundaries can be different. Most frequently, Connecticutonly jurisdictional wetlands are located in areas of well-drained and moderately-well drained alluvial and floodplain soils, which may not support a wetland plant community and/or exhibit evidence of wetland hydrology which are required to qualify as a federal jurisdictional wetland. As a result, some locations on the Connecticut landscape have separate state and federal wetland boundaries.

Watercourses are defined in the IWWA as "rivers, streams, brooks, waterways, lakes, ponds, marshes, swamps, bogs and all other bodies of water, natural or artificial, vernal or intermittent, public or private, which are contained within, flow through or border upon the state or any portion thereof." The IWWA defines Intermittent Watercourses as having a defined permanent channel bed and bank and the occurrence of two of the following: A) evidence of scour or deposits of recent alluvium or detritus, B) the presence of standing or flowing water for a duration of longer than a particular storm incident, or C) the presence of hydrophytic vegetation.

In accordance with applicable federal, state, and local regulatory policies, activities proposed within the state's coastal area must be consistent with the Connecticut Coastal Management Act (CCMA). A portion of the BW2 Waterford, Connecticut parcel is located within the state's Coastal Area and Coastal Boundary resource areas (as defined in CGS SS 22a-93 and described in CGS SS 22a-94).

As noted on the Connecticut Department of Energy and Environmental Protection (CTDEEP) website:

Connecticut's Coastal Management Program is administered by the CTDEEP and is approved by the National Oceanic and Atmospheric Administration (NOAA) under the federal Coastal Zone Management Act. Under the statutory umbrella of Connecticut's Coastal Management Act (CCMA), enacted in 1980, the Coastal Management Program ensures balanced growth along the coast, restores coastal habitat, improves public access, protects water-dependent uses, public trust waters and submerged lands, and promotes harbor management and facilitates research. The Coastal Management Program also regulates work in tidal, coastal, and navigable waters and tidal wetlands under CCMA (Sections 22a-90 – 22a-112 of the Connecticut General Statutes (CGS)), the Structures Dredging and Fill statutes (CGS Sections 22a-359 – 22a-363f) and the Tidal Wetlands Act (CGS Sections 22a-28 – 22a-35). Development of the shoreline is regulated at the local level through municipal planning and the zoning boards and commissions under the policies of the CCMA, with technical assistance and oversight provided by Program staff. The area of the shore subject to Connecticut's regulatory authority includes everything waterward of the Coastal Jurisdiction Line (CJL) or within tidal wetlands. The CJL is a land elevation on the North American Vertical Datum of 1988 (NAVD88) and is based on a specific predicted tide; in Waterford, the CJL is set at elevation 2.1 ft (0.64 m)² (NAVD88). Accordingly, everything at or below this elevation on the site would be subject to CTDEEP regulatory authority under their Coastal Permit Program; tidal wetlands (as noted above) may occur above this elevation and will also be state-regulated.

In addition, Connecticut towns share in the enforcement of the IWWA and often have additional stipulations for the regulation of wetlands and waterbodies. The Town of Waterford, Connecticut where the Waterford, Connecticut Project Area is located details additional wetlands and waterbody regulations in their Inland Wetland and Watercourse Regulations (Town of Waterford, Connecticut 2008). These regulations identify an "Upland Review Area", which extends 100 ft (30.5 m) into the uplands from the wetland boundary. Most activities with the Upland Review Area would be subject to the review of the town's conservation commission.

Inland surface waters and coastal and marine waters in Connecticut are classified by CTDEEP (Sec. 22a-426-4) and include:

• Inland Surface Waters:

• **Class AA**: Designated uses: existing or proposed drinking water supply, fish and wildlife habitat, recreational use (may be restricted,) agricultural and industrial supply. Discharges restricted to: discharges from public or private drinking water treatment systems, dredging and dewatering, emergency and clean water discharges.

• **Class A**: Designated uses: potential drinking water supply; fish and wildlife habitat; recreational use; agricultural and industrial supply and other legitimate uses including navigation. Discharges restricted to: same as allowed in AA

• **Class B**: Designated uses: recreational use: fish and wildlife habitat; agricultural and industrial supply and other legitimate uses including navigation. Discharges restricted to: same as allowed in A and cooling waters, discharges from industrial and municipal wastewater treatment facilities (providing Best Available Treatment and Best Management Practices are applied), and other discharges subject to the provisions of section 22a-430 CGS.

• Coastal and Marine Surface Waters

Class SA: Designated uses: marine fish, shellfish and wildlife habitat, shell fish harvesting for direct human consumption, recreation and all other legitimate uses including navigation. Discharges restricted to: same as for AA or A surface waters.
 Class SB: Designated uses: marine fish, shellfish and wildlife habitat, shellfish harvesting for transfer to approved areas for purification prior to human consumption, recreation, industrial and other legitimate uses including navigation. Discharges restricted to: same as for B surface waters.

In addition to wetlands and waterbodies, vernal pools are also regulated under federal and state laws in Connecticut. Vernal pools are unique seasonal depressional wetlands. They fill with shallow water in the early spring and typically dry out by late summer. Vernal pools are defined by a lack of fish and generally contain no inlet or outlet for water. Vernal pools are an important habitat for many native amphibians who utilize the pools for breeding in the spring. Vernal pools are considered watercourses under the IWWA, which affords these pools the same protection status on the state level as a traditional waterbody. The Waterford Inland Wetlands and Watercourses Regulations do not contain additional protection for vernal pools.

Wetland Delineation • Wetland Assessment & Permitting • Wildlife Surveys • Fisheries & Aquatics • GIS Mapping • Forestry

April 25, 2022

Kimberly Lanterman Mott MacDonald 1435 W. Morehead Street, Suite 140 Charlotte, NC 28208

RE: Wetland and Watercourse Delineation Report Millstone Power Station Millstone Road, Waterford

Mrs. Lanterman,

At your request, Davison Environmental Connecticut Registered Soil Scientists and a Certified Professional Wetland Scientists Eric Davison and Matthew Davison delineated the Connecticut and Federal jurisdictional wetlands on the above-referenced property on March 16, 25 and April 8, 2022. The results of that work are provided herein.

Introduction

The limits of the delineation area (a.k.a. study area) were provided by the client as illustrated on attached Figure 1 – *Topographic Location Map* and Figure 2 – *Wetlands and Watercourses Map*. The wetland flag locations were field located using a Trimble R1 GNSS Receiver capable of submeter accuracy. The purpose of field location of the flags was for illustrative and general planning purposes only. The data accuracy is not compliant with Connecticut General Statutes Section 20-300b survey requirements which would likely be required for local, State and federal permit submittals.

Regulatory Requirements

The regulations governing the delineation of wetlands and watercourses at the site include Connecticut inland wetlands, Connecticut tidal wetlands and Federal wetlands regulated by the U.S. Army Corp of Engineers (USACE). A summary of the regulatory language for each jurisdictional body are described below:

The Connecticut jurisdictional wetlands and watercourses delineation was conducted by a soil scientist according to the requirements of the Connecticut Inland Wetlands and Watercourses Act (P.A. 155). Inland wetlands include soil types designated as poorly drained, very poorly drained, alluvial, and floodplain by the National Cooperative Soils Survey as may be amended from time to time, of the National Resources Conservation Service (NRCS). Watercourses means rivers, streams, brooks, waterways, lakes, ponds, marshes, swamps, bogs and all other bodies of water, natural or artificial, vernal or intermittent. Intermittent watercourses shall be delineated by a defined permanent channel and bank and the occurrence of two or more of the following characteristics: (*A*) Evidence of scour or deposits of recent alluvium or detritus, (*B*) the presence of standing or flowing water for a duration longer than a particular storm incident, and (*C*) the presence of hydrophytic vegetation.

Tidal Wetlands are defined as "those areas which border on or lie beneath tidal waters, such as, but not limited to banks, bogs, salt marsh, swamps, meadows, flats, or other low lands subject to tidal action, including those areas now or formerly connected to tidal waters, and whose surface is at or below an elevation of one foot above local extreme high water; and upon which may grow or be capable of growing some, but not necessarily all of the following" (includes plant list) section 22a-29(2).

Federal wetlands were delineated in accordance with the <u>Regional Supplement to the Corps of</u> <u>Engineers Wetland Delineation Manual: Northcentral and Northeast Region</u> (Version 2.0, January 2012). According to this method, three parameters must be satisfied for an area to be mapped as a wetland. These are wetland soils, hydrophytic vegetation, and wetland hydrology. Five twopoint transects were conducted to document the Federal wetland boundary. The location of the transects is illustrated on Figure 2. The associated Wetland Determination Data Forms are attached. Note that should any pending project not be Self-Verification (SV) eligible under the Connecticut General Permit, additional wetland transects will be required at any locations of proposed direct impact to Federal jurisdictional wetlands.

Methods

Soils, vegetation and hydrology were examined per the aforementioned regulatory requirements. Along each wetland boundary, a hand auger was used to investigate the soil profiles to a minimum depth of 20 inches. This was necessary to determine the U.S. Department of Agriculture drainage class (per State requirements) as well as the presence of hydric soil indicators per the USACE requirements (e.g., reduced matrix, redoximorphic features). Soil profiles were reviewed approximately every 15-30 feet along the boundary, typically digging one hole on either side of the defining boundary to confirm the wetland limit. This information was coupled with observed hydrology (or the presence of hydrologic indicators) as well as the presence of hydrophytic vegetation to determine the final location of the placement of each wetland flag. As is typically the case with most Connecticut wetlands, the boundary of State and Federal jurisdictional wetlands was largely identical. Where they differ, those areas are noted in the following sections.

Results and Wetland Descriptions

Four inland wetlands, one Connecticut jurisdictional intermittent watercourse and one tidal wetland were delineated on the site as summarized below in Table 1. A description of each wetlands soils, hydrology and vegetation are provided in the following sections.

Table 1: Summary of wetlands delineated, flag locations, cover type and regulatory type.						
Wetland	Flag Numbers	Cover Types	Regulatory Type			
Wetland A (A1, A2, A3)	1-118, 119-180, 183-191	PFO, PEM	CT inland and ACOE wetland			
Wetland B	B27-B36	PSS	CT inland and ACOE wetland			
Wetland C	C1-C27, C28-C53	PFO	CT inland and ACOE wetland			
Wetland D	D1-D28	PFO	CT inland and ACOE wetland			
Stormwater Swale	B1-B26, B38-B73	N/A	CT intermittent watercourse			
Tidal Wetlands	TWF1-TWF39	M2RS	CT tidal and ACOE wetland			
PFO – palustrine forested wetland; PEM – palustrine emergent; M2RS – marine intertidal rocky shore; PSS – palustrine scrub-shrub.						

Wetland A

<u>General Description</u>: Wetland A consists primarily of a forested wetland occurring in three segments within the same landscape feature, with the two main segments connected via a culvert. The wetland flows from north to south, draining into a culvert at the southwest corner. The wetland presumably flows to a large wetland system located to the southwest. The discharge location was

not investigated as it was located outside of the study area in a portion of the facility with restricted access. The two seasonally flooded portions of the wetland contain Vernal Pools 1 and 2.

<u>Wetland Hydrology</u>¹: The hydrology ranges from saturated to seasonally flooded. The wetland is fed by groundwater discharge and rainfall. No surface water discharges to the wetland.

<u>Vegetation</u>: Predominately palustrine forested. The dominant vegetation includes red maple (*Acer rubrum*), green ash (*Fraxinus pennsylvanica*) and black gum (*Nyssa sylvatica*) in the tree layer, highbush blueberry (*Vaccinium corymbosum*), spicebush (*Lindera benzoin*) and winterberry (*Ilex verticillata*) in the shrub layer, and skunk cabbage (*Symplocarpus foetidus*) in the herbaceous layer. At the southeast end of the wetland is an emergent marsh consisting of a common reed (*Phragmites australis*) monoculture located near the inlet to the culvert.

<u>Soil Type</u>: The Ridgebury, Leicester and Whitman complex which is an inland wetland and hydric soil type. The Ridgebury series is a Loamy, mixed, superactive, acid, mesic, shallow Aeric Endoaquepts. The Leicester series is a Coarse-loamy, mixed, superactive, acid, mesic, shallow Typic Humaquepts. The whitman series is a Loamy, mixed, superactive, acid, mesic, shallow Typic Humaquepts. The soil complex is a mapping unit that is intermingled on the landscape, consisting of two poorly drained (Ridgebury and Leicester) and one very poorly drained (Whitman) soil developed on glacial till in depressions and drainageways in uplands and valleys. Their use interpretations are very similar, and they typically are so intermingled on the landscape that separation is not practical. The Ridgebury and Leicester series have a seasonal high water table at or near the surface (0-6") from fall through spring. They differ in that the Leicester soil has a more friable compact layer or hardpan, while the Ridgebury soils have a dense to very dense compact layer. The Whitman soil has a high water table for much of the year and may frequently be ponded.

¹ Wetland hydrology references the nomenclature provided in Mitsch, W.J. and J.G. Gosselink. 2007. Wetlands, fourth edition. John Wiley and Sons, Inc.

Wetland B

<u>General Description</u>: Wetland B is of anthropogenic origin, based on the nature of the topography (uniform cut slope with mechanically placed boulders) and the presence of two culverts, one is elevated above the ground surface running through the wetland, the second carries flow under the railroad line to the east. Draining into the southern end of the wetland is a constructed stormwater swale designed to carry flow around Eversource's Millstone Substation compound. This feature does not meet State or federal wetland criteria due to the lack of wetland soils and vegetation. However, it does meet the criteria for a Connecticut intermittent watercourse as it has a defined channel and bank (of anthropogenic origin), evidence of scour and it carries flow longer than the duration of a storm event. The transition from stormwater swale (State regulated intermittent watercourse) to wetland is illustrated on Figure 2, with the intermittent watercourse shown in blue and the State and Federal wetland shown in green, field demarcated by wetland flags B27-B36.

<u>Wetland Hydrology</u>: The hydrology is saturated throughout. No surface water drains into the wetland. The wetland is fed by groundwater discharge.

<u>Vegetation</u>: The vegetation is palustrine scrub-shrub. The herbaceous layer is dominated by common reed, with skunk cabbage growing beneath the shrub cover where common reed is less prevalent. The shrub layer is dominated by speckled alder (*Alnus incana*).

<u>Soil Type</u>: The soil type is anthropogenic in origin, and best classified as Aquents. Aquents is a miscellaneous land type used to denote areas of anthropogenic origin or disturbance that are poorly drained or very poorly drained, and hydric. These soils have an aquic soil moisture regime and can be expected to support hydrophytic vegetation. Typically, these soils occur in places where less than two feet of earthen material have been placed over poorly or very poorly drained soils; areas where the natural soils have been mixed so that the natural soil layers are not identifiable; or where the soil materials have been excavated to the watertable.

Wetland C

<u>General Description</u>: Wetland C lies along the northeast side of the study area. The wetland occurs in two segments, bifurcated by an existing culverted road crossing.

<u>Wetland Hydrology</u>: The hydrology is saturated throughout, with an intermittent watercourse that flows from north to south roughly through the center of the wetland and draining to the southeast beyond the study area.

<u>Vegetation</u>: The vegetation is palustrine forested, vegetatively similar to Wetland A. The dominant vegetation includes red maple (*Acer rubrum*), green ash (*Fraxinus pennsylvanica*) and black gum (*Nyssa sylvatica*) in the tree layer, highbush blueberry (*Vaccinium corymbosum*), spicebush (*Lindera benzoin*) and winterberry (*Ilex verticillata*) in the shrub layer, and skunk cabbage (*Symplocarpus foetidus*) in the herbaceous layer.

<u>Soil Type</u>: The Ridgebury, Leicester and Whitman complex which is an inland wetland and hydric soil type. The Ridgebury series is a Loamy, mixed, superactive, acid, mesic, shallow Aeric Endoaquepts. The Leicester series is a Coarse-loamy, mixed, superactive, acid, mesic, shallow Typic Humaquepts. The whitman series is a Loamy, mixed, superactive, acid, mesic, shallow Typic Humaquepts. The soil complex is a mapping unit that is intermingled on the landscape, consisting of two poorly drained (Ridgebury and Leicester) and one very poorly drained (Whitman) soil developed on glacial till in depressions and drainageways in uplands and valleys. Their use interpretations are very similar, and they typically are so intermingled on the landscape that separation is not practical. The Ridgebury and Leicester series have a seasonal high water table at or near the surface (0-6") from fall through spring. They differ in that the Leicester soil has a more friable compact layer or hardpan, while the Ridgebury soils have a dense to very dense compact layer. The Whitman soil has a high water table for much of the year and may frequently be ponded.

Wetland D

<u>General Description</u>: The wetland lies between the access road to the east, a building/parking area to the west, and the Metro North railroad line to the north. The wetland sits in a low swale at the base of the road slope and was presumably created when large scale grading occurred to create the surrounding infrastructure. The maturity of the trees surrounding the wetland (including large sawtimber greater than 20 inches d.b.h.) suggests this area has not been disturbed in some time, and the wetland has naturalized.

<u>Wetland Hydrology</u>²: the wetland has a temporarily flooded hydrology. The wetland drains from north to south, with standing water infiltrating into the ground at the southern terminus where it reaches a stone wall at the edge of the woods. Approximately 50 feet to the south in a graded lawn area, there is a catch basin that intercepts any remaining surface flows discharging from the wetland during periods of peak flow.

<u>Vegetation</u>: The wetland interior consists of a low velocity flow path draining south. This area contains little to no vegetation. The border of the wetland is vegetated with red maple and green ash in the tree layer, and highbush blueberry in the shrub layer.

<u>Soil Type</u>: The soil type is anthropogenic in origin, and best classified as Aquents. Aquents is a miscellaneous land type used to denote areas of anthropogenic origin or disturbance that are poorly drained or very poorly drained, and hydric. These soils have an aquic soil moisture regime and can be expected to support hydrophytic vegetation. Typically, these soils occur in places where less than two feet of earthen material have been placed over poorly or very poorly drained soils; areas where the natural soils have been mixed so that the natural soil layers are not identifiable; or where the soil materials have been excavated to the watertable.

Tidal Wetlands

<u>General Description</u>: Tidal wetlands and tidal waters are located along the western edge of the project area, which borders Long Island Sound at Niantic Bay. For planning purposes, we delineated the field observed ordinarily high water mark³ of Long Island Sound. The regulatory boundaries at this location would need to be field established by survey. The Coastal Jurisdiction

² Wetland hydrology references the nomenclature provided in Mitsch, W.J. and J.G. Gosselink. 2007. Wetlands, fourth edition. John Wiley and Sons, Inc.

³ The Ordinary High Water Mark (OHWM) was determined using the criteria noted in the U.S. Army Corp of Engineers Ordinary High Water Mark Identification criteria outlined on the December 2005 Regulatory Guidance Letter. That guidance document defines the OHWM as follows: *"The term ordinary high water mark means that line on the shore established by the fluctuations of water and indicated by physical characteristics such as a clear, natural line impressed on the bank, shelving, changes in the character of soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas." The guidance document goes on to provide a list of physical characteristics that can be used to reliably determine the OHWM in the field, including the presence of wrack, natural shelving, water staining or changes in the plant community.*

Line (CJL) of elevation 2.1 (datum NAVD88) represents the Connecticut regulatory boundary for Long Island Sound in Waterford. The Army Corp of Engineers would require that the High Tide Line and Mean High Water be established for regulated review purposes. The field established boundary is anticipated to roughly correspond to the CJL.

<u>Vegetation</u>: The vegetation along the upland interface consists predominately of coastal forest and shrubland vegetated primarily with non-tidal species such as autumn olive (*Elaeagnus umbellata*), multiflora rose (*Rosa multiflora*), along with oak (*Quercus sp.*) and wild cherry (*Prunus serotina*) trees. A few locations include typical tidal interface vegetation including switchgrass (*Panicum virgatum*) and beach rose (*Rosa rugosa*). Tidal marsh patches were vegetated with both high marsh associated saltmeadow cordgrass (*Spartina patens*) and low marsh associated smooth cordgrass (*Spartina alterniflora*). Most patches appear to be dead or highly degraded. The intertidal habitat consists primarily of a broad rocky intertidal zone with rockweed beds (*Fucus vesiculosus*) occupying the lower elevations in and around the observed low tide line.

Tidal marshes are a regulated resource in Connecticut. Small disjunct patches of degraded tidal marsh were observed waterward of the high tide line. Due to the degraded nature of these marsh areas, they do not occupy the typical habitat zone that would form the regulated CJL boundary, requiring survey-established regulatory elevations to be utilized for permitting compliance. The specific reason for marsh loss/degradation at this location is unknown, but marsh loss is a well-documented phenomenon plaguing Long Island Sound, with causes including marsh dieback, impacts associated with nutrients from stormwater runoff, and sea level rise. These degraded patches were covered with a thick layer of wrack, and most show shear lines and cleaves where the marsh soils are dislodging from the underlying sand and gravel. A few patches of live marsh were noted just north of the study area limits, where for comparison purposes we noted live root masses and dormant live stems of *Spartina* grasses.

<u>Soil</u> *Type:* Soils consist of Pawcatuck soils. The Pawcatuck series is a Sandy or sandy-skeletal, mixed, euic, mesic Terric Sulfihemists. consists of very deep, very poorly drained soils formed in herbaceous organic deposits over sandy mineral material. They are in tidal marches subject to inundation by salt water twice daily.

Upland (non-wetland) Soil Types Observed

Digitally available soil survey information was obtained from the Natural Resources Conservation Service to classify the non-wetland soil types present (refer to NRCS Soil Map, attached). Note that the NRCS digital soil mapping is not precise to the site scale. Rather, the soil types are representative of the soil catena that would be present in the region in which the site occurs and is therefore a useful reference for onsite wetland soil identification.

The non-wetland soils were not examined in detail, except as was necessary to identify the wetland boundary. They generally consist of Sudbury series, Woodbridge series, Sutton series, Charlton-Chatfield complex, Paxton and Montauk series, sand-Hooksan complex and Udorthents.

The Sudbury series consists of very deep, moderately well and somewhat poorly drained soils on outwash plains. They are nearly level to strongly sloping soils in slight depressions and on terraces and foot slopes in areas of glacial outwash. Permeability is moderately rapid in the upper part of the solum and rapid in the lower part of the solum and in the substratum

The Woodbridge series consists of moderately well drained loamy soils formed in compact, subglacial till. They are very deep to bedrock. They are nearly level to moderately steep soils on till plains, hills, and drumlins. Depth to the compact layer (hardpan) is 18 to 40 inches. Depth to bedrock is commonly more than 6 feet. Woodbridge soils have a seasonal high water table on top of the compact layer (18-40") from fall through late spring.

The Sutton series consists of very deep, moderately well drained loamy soils formed in friable till. They are nearly level to strongly sloping soils on till plains and low ridges, typically in mid to low slope positions. Sutton soils have a seasonal high water table at a depth of about 18-42" from mid-fall through mid-spring.

The Charlton series is a very deep, well drained loamy soil formed in friable till. They are nearly level to very steep soils on till plains and hills. Depth to bedrock and the seasonal high water table is commonly more than 6 feet.

The Chatfield series consists of moderately deep, well drained, and somewhat excessively drained soils formed in till. They are nearly level to very steep soils on glaciated plains, hills, and ridges. Crystalline bedrock is at depths of 20 to 40 inches. The soils formed in a moderately thick mantle of glacial till overlying granite, gneiss, or schist bedrock. Rock outcrops are rare to common and are limited to the more resistant bedrock.

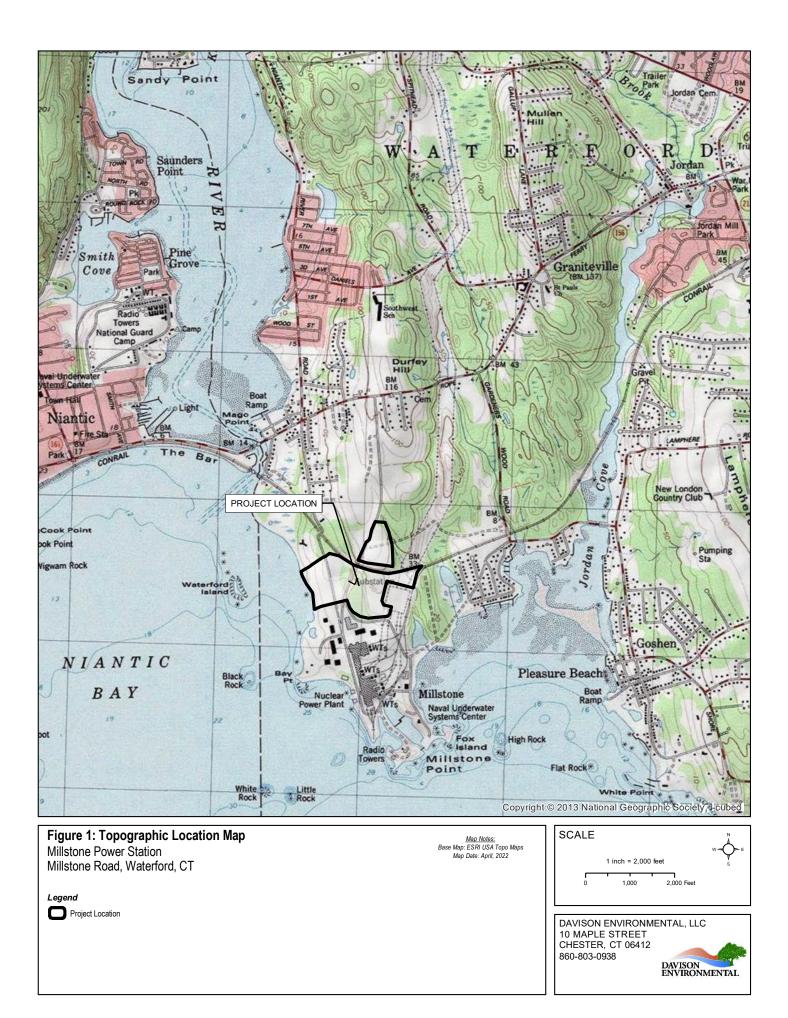
The Paxton series consists of well drained loamy soils formed in subglacial till. The soils are very deep to bedrock and moderately deep to a densic contact (known locally as hardpan). They are nearly level to steep soils on till plains, hills, and drumlins. The depth to the densic contact and material is commonly 20 to 40 inches but the range includes 18 to 40 inches. Depth to bedrock is commonly more than 6 feet. Rock fragments range from 5 to 35 percent by volume.

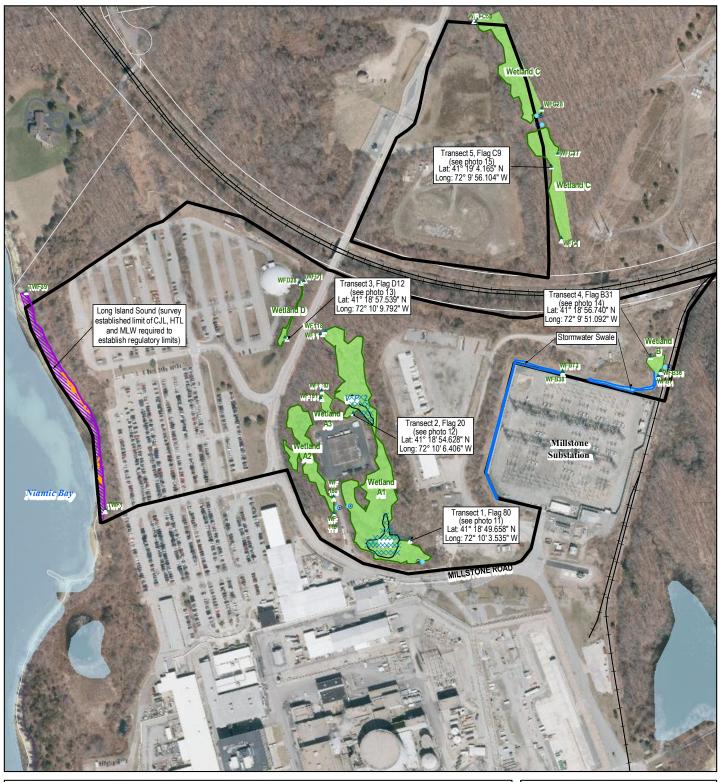
The Montauk series consists of very deep, well drained soils formed in glacial till derived primarily from granitic materials. These soils are on upland till plains and moraines. The landscape in some areas has many closed depressions, some of which are filled by perennial ponds or wet spots. The soils formed in thick moderately coarse or medium textured glacial till mantles underlain by firm sandy till. Some areas have very stony or extremely stony surfaces. The potential for runoff is low to high. Permeability is moderate or moderately rapid in the solum and slow or moderately slow in the substratum.

The sand-Hooksan complex consists of very deep excessively drained sands on rolling topography, typically vegetated with beach grass and brush cover. They consist of eolian sands derived from sandy marine deposits.

If you have any questions regarding these findings, please feel free to contact me.

Respectfully submitted,


Gui Davies


Eric Davison Certified Professional Wetland Scientist Registered Soil Scientist eric@davisonenvironmental.com www.davisonenvironmental.com

Attachments: (1) Figures 1 and 2

- (2) General Wetland Photographs
- (3) NRCS Soil Survey Mapping
- (4) Wetland Determination Data Forms
- (5) Wetland Transect Photographs

Figures 1 and 2

Figure 2: Wetlands and Watercourses Map Millstone Power Station Millstone Road, Waterford, CT

Legend

Project Area
 Approximate Parcel Boundary
 Railroad
 Wetland Flag
 Culvert
 Stormwater Swale

Delineated Wetland Boundary Outline
 Delineated Wetland
 Long Island Sound OHWM
 Tidal Marsh (high and low marsh, degraded)
 Open Water

Confirmed Vernal Pool

<u>Map Notes:</u> Base Map: CTECO 2019 Aerial Imagery Map Date: April, 2022 SCALE 1 inch = 350 feet 1 inch = 350 feet DAVISON ENVIRONMENTAL, LLC 10 MAPLE STREET CHESTER, CT 06412 860-803-0938 DAVISON ENVIRONMENTAL GENERAL WETLAND PHOTOGRAPHS

Wetland A

Photo 1: View of northern end of wetland.

Photo 1: View of eastern end of wetland.

Wetland B

Photo 3: View of stormwater swale intermittent watercourse draining to Wetland B.

Photo 4: View of wetland at location of elevated culvert interior to wetland.

Wetland C

Photo 5: View of central portion of wetland showing embedded intermittent watercourse.

Photo 6: View of culvert crossing.

Wetland D

Photo 7: View of southern portion of wetland looking north.

Photo 8: View of northern portion of wetland looking north.

Tidal Wetlands

Photo 9: View of tidal limits at southern end looking north.

Photo 10: View of tidal limits at northern end looking south.

NRCS Soil Survey Mapping

Soil Map—State of Connecticut (Millstone, Waterford, CT)

MAP LEGEND				MAP INFORMATION		
Area of Int	erest (AOI) Area of Interest (AOI)	M 6	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:12,000.		
Soils	Soil Map Unit Polygons Soil Map Unit Lines	03 V	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi		
Special I	Soil Map Unit Points Point Features		Other Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.		
() ()	Blowout Borrow Pit	Water Fea	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.		
¥ ♦	Clay Spot Closed Depression		Rails Interstate Highways	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)		
* * ©	Gravel Pit Gravelly Spot Landfill	* *	US Routes Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more		
۸ بینه ج	Lava Flow Marsh or swamp Mine or Quarry	Backgrou	nd Aerial Photography	accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.		
0	Miscellaneous Water Perennial Water			Soil Survey Area: State of Connecticut Survey Area Data: Version 21, Sep 7, 2021 Soil map units are labeled (as space allows) for map scales		
× +	Rock Outcrop Saline Spot			1:50,000 or larger. Date(s) aerial images were photographed: Mar 28, 2011—Ma 27, 2019		
8	Sandy Spot Severely Eroded Spot Sinkhole			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor		
ବ ୬ ୭	Slide or Slip Sodic Spot			shifting of map unit boundaries may be evident.		

Natural Resources Conservation Service

USDA

Г

Г

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
3	Ridgebury, Leicester, and Whitman soils, 0 to 8 percent slopes, extremely stony	7.9	12.2%
23A	Sudbury sandy loam, 0 to 5 percent slopes	0.0	0.0%
45A	Woodbridge fine sandy loam, 0 to 3 percent slopes	0.6	0.9%
46B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	2.2	3.3%
51B	Sutton fine sandy loam, 0 to 8 percent slopes, very stony	0.0	0.0%
73C	Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky	1.0	1.5%
84B	Paxton and Montauk fine sandy loams, 3 to 8 percent slopes	0.5	0.7%
307	Urban land	8.4	12.9%
311	Udorthents-Urban land complex, coastal, rarely flooded	15.8	24.3%
312	Udorthents, coastal, rarely flooded	27.0	41.5%
640	Beaches, sand-Hooksan complex, 0 to 8 percent slopes	0.7	1.1%
860	Billington silt loam, 0 to 1 meter water depth	0.3	0.4%
861	Billington silt loam, 1 to 2 meter water depth	0.7	1.1%
Totals for Area of Interest		65.1	100.0%

Map Unit Legend

Wetland Determination Data Forms

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Millstone Power Station	City/County: <u>V</u>	Vaterford/New London	Sampling Date: <u>3-25-22</u>		
Applicant/Owner: Mott-MacDonald			CT Sampling Point: T1A		
Investigator(s): Eric Davison, Matthew Davison	Section, Town	ship, Range:			
Landform (hillside, terrace, etc.): coastal plain		cave, convex, none): convex	Slope (%): 3-5		
Subregion (LRR or MLRA): LRR R	Lat: 41° 18' 49.658" N		00pe (%) Datum: NAD83		
• · · · ·	Lal. 41 10 49.000 IN				
Soil Map Unit Name: <u>Udorthents</u>			ification: <u>None</u>		
Are climatic / hydrologic conditions on the site ty		S <u>X</u> No(If no, explain	n in Remarks.)		
Are Vegetation, Soil, or Hydrold		Are "Normal Circumstances" pr	resent? Yes X No		
Are Vegetation, Soil, or Hydrold	ogynaturally problematic?	(If needed, explain any answer	s in Remarks.)		
SUMMARY OF FINDINGS – Attach si	ite map showing sampling po	oint locations, transects,	important features, etc.		
Hydrophytic Vegetation Present? Yes	No X Is the Sar	npled Area			
Hydric Soil Present? Yes		•	No X		
Wetland Hydrology Present? Yes		ional Wetland Site ID:			
HYDROLOGY					
Wetland Hydrology Indicators:		Secondary Ind	icators (minimum of two required)		
Primary Indicators (minimum of one is required	ן; check all that apply)		oil Cracks (B6)		
Surface Water (A1)	Water-Stained Leaves (B9)Aquatic Fauna (B13)		Patterns (B10)		
High Water Table (A2)		Moss Trim Lines (B16)			
Saturation (A3)		Dry-Season Water Table (C2)			
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	<u> </u>	urrows (C8)		
Sediment Deposits (B2)	Oxidized Rhizospheres on Liv Presence of Reduced Iron (C4	• • • •	Visible on Aerial Imagery (C9)		
Drift Deposits (B3)		Stunted or Stressed Plants (D1)			
Algal Mat or Crust (B4)	· · ·	(C6) Geomorphic Position (D2) Shallow Aquitard (D3)			
Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3) Microtopographic Relief (D4)			
Sparsely Vegetated Concave Surface (B8)	Other (Explain in Remarks)		ral Test (D5)		
Field Observations:					
Surface Water Present? Yes No	X Depth (inches):				
Water Table Present? Yes No	` ` ` /				
Saturation Present? Yes No	X Depth (inches):	Wetland Hydrology Presen	nt? Yes No X		
(includes capillary fringe)					
Describe Recorded Data (stream gauge, monit	oring well, aerial photos, previous insp	pections), if available:			
Remarks:					

VEGETATION – Use scientific names of plants.

Sampling Point: T1A

	Absolute	Dominant	Indicator			
<u>Tree Stratum</u> (Plot size: <u>30ft</u>)	% Cover	Species?	Status	Dominance Test worksheet:		
1. Acer rubrum	30	Yes	FAC	Number of Dominant Species		<i>(</i>)
2. Betula lenta	30	Yes	FACU	That Are OBL, FACW, or FAC:	1	(A)
3				Total Number of Dominant		
4				Species Across All Strata:	4	_(B)
5				Percent of Dominant Species		
6				That Are OBL, FACW, or FAC:	25.0%	(A/B)
7				Prevalence Index worksheet:		
	60	=Total Cover		Total % Cover of:	Multiply by:	
Sapling/Shrub Stratum (Plot size: 15ft)				OBL species 0	x 1 =0	
1. Rosa multiflora	60	Yes	FACU	FACW species 0	x 2 =0	
2				FAC species 30	x 3 = 90	
3.				FACU species 90	x 4 = 360	
4.				UPL species 20	x 5 = 100	
5.		·		Column Totals: 140	(A) 550	(B)
6.				Prevalence Index = B/A	= 3.93	
7.				Hydrophytic Vegetation Indica	ators:	
	60	=Total Cover		1 - Rapid Test for Hydrophy	tic Vegetation	
Herb Stratum (Plot size: 5ft)				2 - Dominance Test is >50	-	
1. Carex pensylvanica	20	Yes	UPL	3 - Prevalence Index is ≤3.0	D 1	
2.				4 - Morphological Adaptatio	ns ¹ (Provide sur	portina
3.				data in Remarks or on a		
4.				Problematic Hydrophytic Ve	egetation ¹ (Expla	ain)
5.						
6.				¹ Indicators of hydric soil and well be present, unless disturbed or	, ,,	must
7.				Definitions of Vegetation Stra	ta:	
8.				Tree – Woody plants 3 in. (7.6 d	cm) or more in d	iameter
9.				at breast height (DBH), regardle	,	
10 11				Sapling/shrub – Woody plants and greater than or equal to 3.2		BH
12.						
12.	20	=Total Cover		Herb – All herbaceous (non-woo of size, and woody plants less th		ardless
Woody Vine Stratum (Plot size: 30ft)				Woody vines – All woody vines	greater than 3.2	28 ft in
1.				height.	-	
2.						
3.		·		Hydrophytic Vegetation		
4.				Present? Yes	No X	
		=Total Cover				
Remarks: (Include photo numbers here or on a separ	ate sheet.)			1		
	,					

SOIL

Sampling Point:	
-----------------	--

SOIL							Sampling Point:	T1A
Profile De	scription: (Describe	to the de	epth needed to document th	e indicat	or or con	firm the absence of in	dicators.)	
Depth	Matrix		Redox Featur					
(inches)	Color (moist)	%	Color (moist) %	Type ¹	Loc ²	Texture	Remarks	
0-8	10YR 3/1	100				Loamy/Clayey		
8-14	10yr 4/6	100				Loamy/Clayey		
		_		_	_			
		·						
						,		
		·						
		·						
1Turnet C=		lation DI			-ted Conc			Matuix
-	Concentration, D=Dep	letion, ru	M=Reduced Matrix, CS=Cover	red or Cua	ated Sano		on: PL=Pore Lining, Marcon PL=Pore Lining, Ma	
	sol (A1)		Polyvalue Below Surface	e (S8) (LF	RR.		A10) (LRR K, L, MLRA	
	Epipedon (A2)		MLRA 149B)		,		e Redox (A16) (LRR K ,	
	Histic (A3)		Thin Dark Surface (S9)	(LRR R, I	MLRA 14		Peat or Peat (S3) (LRI	
-	ogen Sulfide (A4)		High Chroma Sands (S1			•	elow Surface (S8) (LRF	
	fied Layers (A5)		Loamy Mucky Mineral (F	, ,	K , L)	Thin Dark Surface (S9) (LRR K, L)		
·	eted Below Dark Surfa	ce (A11)		2)		Iron-Manganese Masses (F12) (LRR K, L, R)		
	Dark Surface (A12) y Mucky Mineral (S1)		Depleted Matrix (F3) Redox Dark Surface (F6	:)		Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	y Gleyed Matrix (S4)		Depleted Dark Surface (Fo				Material (F21)	145, 1450)
	y Redox (S5)		Redox Depressions (F8)	· ,			v Dark Surface (TF12)	
Stripp	bed Matrix (S6)		Marl (F10) (LRR K, L)			Other (Expla	in in Remarks)	
Dark \$	Surface (S7)							
31	f las alua a las días sea mata	there are also	1		Hatun	· · · · · · · · · · · · · · · · · · ·		
	s of hydrophytic vegeta ve Layer (if observed)		wetland hydrology must be pre	sent, unit	ess distur	bed or problematic.		
Type:	e Layer (II observed)	•						
Depth (i	nchae).					Hydric Soil Presen	nt? Yes	No <u>X</u>
	,					Tryune con Freedo	100	
Remarks: This data		orthcentra	al and Northeast Regional Sup	oplement'	Version 2	0 to reflect the NRCS F	Field Indicators of Hydr	ric Soils
			/w.nrcs.usda.gov/Internet/FSE					

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Millstone Power Station City/County: Waterford/New London Sampling Date: 3-25-	22
Applicant/Owner: Mott-MacDonald State: CT Sampling Point:	
Investigator(s): Eric Davison, Matthew Davison Section, Township, Range:	
Landform (hillside, terrace, etc.): coastal plain Local relief (concave, convex, none): concave Slope (%)· 0_3
Subregion (LRR or MLRA): LRR R Lat: 41° 18' 49.658" N Long: 72° 10' 3.535" W Datum: N/	
Soil Map Unit Name: <u>Ridgebury, Leicester and Whitman</u> NWI classification: <u>PFO1C</u>	
Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrologysignificantly disturbed? Are "Normal Circumstances" present? Yes X	No
Are Vegetation, Soil, or Hydrologynaturally problematic? (If needed, explain any answers in Remarks.)	
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features	etc.
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area	
Hydric Soil Present? Yes X No within a Wetland? Yes X No	
Wetland Hydrology Present? Yes X No If yes, optional Wetland Site ID:	
Remarks: (Explain alternative procedures here or in a separate report.) Transect point located ca. 5ft downslope of Wetland Flag #80.	
HYDROLOGY	
Wetland Hydrology Indicators: Secondary Indicators (minimum of two re	auired)
Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6)	·
x Surface Water (A1) x Water-Stained Leaves (B9) Drainage Patterns (B10)	
<u>x</u> High Water Table (A2) <u>x</u> Aquatic Fauna (B13) <u>Moss Trim Lines (B16)</u>	
x Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2)	
<u>x</u> Water Marks (B1)Hydrogen Sulfide Odor (C1)Crayfish Burrows (C8)	
Sediment Deposits (B2) X Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery	(C9)
Drift Deposits (B3)Presence of Reduced Iron (C4)Stunted or Stressed Plants (D1)	
Algal Mat or Crust (B4)Recent Iron Reduction in Tilled Soils (C6)Geomorphic Position (D2)	
Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4)	
Sparsely Vegetated Concave Surface (B8)X FAC-Neutral Test (D5)	
Surface Water Present? Yes No x Depth (inches):	
Water Table Present? Yes x No Depth (inches): 11	
Saturation Present? Yes X No Depth (inches): 9 Wetland Hydrology Present? Yes X N	0
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:	
Remarks:	
Transect point located at wetland edge bordering seasonally flooded vernal pool habitat. Point located on transitional slope just beyond ponded	area.

Sampling Point:	T1B

Tree Stratum (Plot size: 30ft)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer rubrum	100	Yes	FAC	
2.	100	103	TAU	Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
				Total Number of Dominant Species Across All Strata: 5 (B)
4				Species Across All Strata: <u>5</u> (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: <u>80.0%</u> (A/B)
7	100	Tatal Oaura		Prevalence Index worksheet:
Carling/Charle Strature (Distaire)	100	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15ft)			FAOL	OBL species 30 x 1 = 30
1. Rosa multiflora	20	Yes	FACU	FACW species 40 x 2 = 80
2. Acer rubrum	40	Yes	FAC	FAC species 140 x 3 = 420
3.				FACU species x 4 = 80
4.				UPL species 1 x 5 = 5
5				Column Totals: 231 (A) 615 (B)
6				Prevalence Index = B/A = 2.66
7				Hydrophytic Vegetation Indicators:
	60	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5ft)				X 2 - Dominance Test is >50%
1. Symplocarpus foetidus	30	Yes	OBL	<u>X</u> 3 - Prevalence Index is ≤3.0 ¹
2. Phragmites australis	40	Yes	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter
9.				at breast height (DBH), regardless of height.
10.				Sapling/shrub – Woody plants less than 3 in. DBH
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				
	70	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30ft)				
1. Celastrus orbiculatus	1	No	UPL	Woody vines – All woody vines greater than 3.28 ft in height.
2.				nogn
				Hydrophytic
3.				Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Sampling Point:	

		e to the de	pth needed to docu			r or con	firm the absence o	of indicato	rs.)	
epth nches)	Matrix Color (moist)	%	Redo Color (moist)	ox Features %	s Type ¹	Loc ²	Texture		Remarks	
	· · · ·				Турс				Remains	
0-10	10yr 3/1	100					Mucky Loam/Clay			
10-18	10yr 4/2	80	10yr 4/1	10	D	М	Loamy/Clayey			
		<u> </u>	10yr 4/6	10	С	М		Promi	nent redox conc	entrations
						·				
		<u> </u>								
/pe: C=(Concentration. D=De	epletion. RM	I=Reduced Matrix, C	S=Covere	d or Coa	ted Sand	Grains. ² Loo	cation: PL:	Pore Lining, M	=Matrix.
	I Indicators:	, ,	, -						atic Hydric Soi	
Histoso	ol (A1)		Polyvalue Belov	v Surface ((S8) (LR	RR,	2 cm Mu	ck (A10) (L	.RR K, L, MLR	A 149B)
_Histic	Epipedon (A2)		MLRA 149B)				Coast Pr	airie Redo	k (A16) (LRR K	, L, R)
	Histic (A3)		Thin Dark Surfa	. , .				•	r Peat (S3) (LR	
	gen Sulfide (A4)	-	High Chroma S	• •					Irface (S8) (LRI	
	ed Layers (A5)		Loamy Mucky N		, ,	(, L)			S9) (LRR K, L)	
	ed Below Dark Surf Dark Surface (A12)	()	Loamy Gleyed I X Depleted Matrix					-	asses (F12) (LF n Soils (F19) (N	
	Mucky Mineral (S1)	-	Redox Dark Su	. ,				-	(MLRA 144A,	
	Gleyed Matrix (S4)		Depleted Dark S	, ,	7)		-	ent Materia	•	,
	Redox (S5)		Redox Depress	•	,				Surface (TF12)	
	ed Matrix (S6)		Marl (F10) (LRF	R K, L)			Other (Ex	xplain in Re	emarks)	
_Dark S	urface (S7)									
diantaua						است ما تصفر سا	a a la u u u a b la ua atia			
	Layer (if observed		etland hydrology mu	ist be pres	ent, unie	ssaisturi	bed or problematic.			
туре:	Layer (II Observed	<i>.</i> ,.								
Depth (in	ches).						Hydric Soil Pre	sent?	Yes X	No
	onee)						inguite contrib			

Project/Site: Millstone Power Station		C	City/County: Wa	aterford/New Lor	ndon	Sampling Dat	te: <u>3-25-2</u>	2
Applicant/Owner: Mott-MacDonald			•			CT Sampl		
Investigator(s): Eric Davison, Matthew Da	vison	S	ection, Townsh	ip, Range:				
Landform (hillside, terrace, etc.): coastal				ve, convex, none	e). convex		Slope (%):	0-5
Subregion (LRR or MLRA): LRR R		: 41° 18' 54.628" N	•				atum: NAI	
- · · · · · · · · · · · · · · · · · · ·	Lat.	. 41 10 54.020 1		Long. <u>72</u> 1				
Soil Map Unit Name: Woodbridge						fication: <u>None</u>		
Are climatic / hydrologic conditions on the				<u>X</u> No				
Are Vegetation, Soil, or H				Are "Normal Circ	cumstances" pr	esent? Ye	es <u>X</u> N	No
Are Vegetation, Soil, or H	ydrology	naturally prot	blematic? (If needed, expla	ain any answers	s in Remarks.)		
SUMMARY OF FINDINGS – Attac	ch site ma	ap showing sa	ampling poi	nt locations,	, transects,	important fe	eatures,	etc.
Hydrophytic Vegetation Present?	Yes	No X	Is the Sam	oled Area				
Hydric Soil Present?	Yes	No X	within a W		Yes	No X		
Wetland Hydrology Present?	Yes	No X	If yes, optio	nal Wetland Site	e ID:			
HYDROLOGY								
Wetland Hydrology Indicators:				5	Secondary Indi	cators (minimun	n of two req	uired)
Primary Indicators (minimum of one is red	quired; chec	ck all that apply)				oil Cracks (B6)		
Surface Water (A1)		Water-Stained Le	eaves (B9)	-	Drainage F	Patterns (B10)		
High Water Table (A2)		_Aquatic Fauna (B	313)	_	Moss Trim	Lines (B16)		
Saturation (A3)		_Marl Deposits (B	15)	_	Dry-Seaso	n Water Table (C2)	
Water Marks (B1)		_Hydrogen Sulfide	()	-		urrows (C8)		
Sediment Deposits (B2)		Oxidized Rhizosp		g Roots (C3)		Visible on Aeria		C9)
Drift Deposits (B3)		Presence of Redu		-		Stressed Plants	s (D1)	
Algal Mat or Crust (B4)		_Recent Iron Redu		Soils (C6)	·	ic Position (D2)		
Iron Deposits (B5)		_ Thin Muck Surfac	. ,	-		uitard (D3)		
Inundation Visible on Aerial Imagery	. ,	_Other (Explain in	Remarks)	_		raphic Relief (D	4)	
Sparsely Vegetated Concave Surface	; (B8)		1		FAC-Neutr	al Test (D5)		
Field Observations: Surface Water Present? Yes	No X	Depth (inches):						
Water Table Present? Yes		Depth (inches):						
Saturation Present? Yes X	No No	Depth (inches):	19	Wetland Hvdi	rology Presen	t? Yes	No	х
(includes capillary fringe)				····,				
Describe Recorded Data (stream gauge,	monitoring v	well, aerial photos,	previous inspe	ctions), if availat	ble:			
Remarks:								
remans.								

Sampling Point: T2A

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30ft</u>) 1. <i>Quercus rubra</i>	% Cover 40	Species? Yes	Status FACU	
2. Acer rubrum	20	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3. Betula lenta	30	Yes	FACU	
4.		105	17,00	Total Number of Dominant Species Across All Strata: 5 (B)
5.				, , ,
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: <u>40.0%</u> (A/B)
7.				Prevalence Index worksheet:
	90	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15ft)				$\begin{array}{c c} \hline \\ \hline $
1. Clethra alnifolia	20	Yes	FAC	FACW species $0 x 2 = 0$
2.				FAC species 43 x 3 = 129
3.				FACU species 70 x 4 = 280
4.				UPL species 30 x 5 = 150
5.				Column Totals: 143 (A) 559 (B)
6.				Prevalence Index = $B/A = 3.91$
7.				Hydrophytic Vegetation Indicators:
	20	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5ft)				2 - Dominance Test is >50%
1. Carex pensylvanica	30	Yes	UPL	3 - Prevalence Index is ≤3.0 ¹
2.				4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter
9.				at breast height (DBH), regardless of height.
10.				Sapling/shrub – Woody plants less than 3 in. DBH
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				Herb – All herbaceous (non-woody) plants, regardless
	30	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30ft)				Woody vines – All woody vines greater than 3.28 ft in
1. Smilax rotundifolia	3	No	FAC	height.
2.				Hydrophytic
3.				Vegetation
4.				Present? Yes No X
	3	=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

rofile Des	scription: (Describ	e to the de	pth needed to docu	iment the	indicato	r or con	firm the absence of	indicators.)	
epth	Matrix			x Features						
iches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-4	10yr 3/1	100					Loamy/Clayey			
4-10	10yr 4/6	100					Loamy/Clayey			
0-15	10yr 4/4	98	10yr 4/6	2	С	Μ	Loamy/Clayey	Distinct	redox concentratio	ns
·				<u> </u>	·	·				
				<u> </u>						
·				<u> </u>						
				<u> </u>						
vne: C=0	Concentration D=De	nletion RM	I=Reduced Matrix, C	S=Covere	d or Coa	ted Sand	Grains ² l oca	ation: PI =Pr	ore Lining, M=Matri	x
	I Indicators:			0 001010	<u>u</u>				c Hydric Soils ³ :	
Histos			Polyvalue Belov	v Surface	(S8) (LR	RR,			R K, L, MLRA 149E	3)
_Histic	Epipedon (A2)		MLRA 149B)				Coast Prai	irie Redox (A	A16) (LRR K, L, R)	
Black	Histic (A3)		Thin Dark Surfa	ace (S9) (L	.RR R, N	ILRA 14	·	•	eat (S3) (LRR K, L	
_ Hydro	gen Sulfide (A4)		High Chroma S	ands (S11) (LRR K	, L)	Polyvalue	Below Surfa	ace (S8) (LRR K, L))
Stratifi	ed Layers (A5)		Loamy Mucky N	/lineral (F1) (LRR K	ί, L)	Thin Dark	Surface (S9) (LRR K, L)	
_ Deplet	ed Below Dark Surf	ace (A11)	Loamy Gleyed I	Matrix (F2))		Iron-Mang	anese Mass	ses (F12) (LRR K, L	-, R)
_ Thick I	Dark Surface (A12)		Depleted Matrix	(F3)			Piedmont	Floodplain S	Soils (F19) (MLRA 1	149B
_Sandy	Mucky Mineral (S1)		Redox Dark Su	rface (F6)			Mesic Spo	dic (TA6) (M	ILRA 144A, 145, 14	49B)
	Gleyed Matrix (S4)		Depleted Dark	•	7)			nt Material (F		
	Redox (S5)		Redox Depress						rface (TF12)	
_Strippe	ed Matrix (S6)		Marl (F10) (LRF	R K, L)			Other (Exp	plain in Rem	arks)	
	urface (S7)									
strictive	of hydrophytic vege Layer (if observed		retland hydrology mu	ist be pres	ent, unle	ss disturl	bed or problematic.			
Type: Depth (in	ches).						Hydric Soil Pres	ent?	Yes No_	х
emarks:										
	orm is revised from	Northcentra	l and Northeast Reg	ional Supp	lement \	ersion 2	.0 to reflect the NRCS	S Field Indic	ators of Hydric Soil	ls
							cs142p2_051293.do			
		(g							

Project/Site: Millstone Power Station	City/County: Waterford/New London Sampling Date: 3-25-22
Applicant/Owner: Mott-MacDonald	State: CT Sampling Point: T2B
Investigator(s): Eric Davison, Matthew Davison	Section, Township, Range:
Landform (hillside, terrace, etc.): <u>coastal plain</u>	Local relief (concave, convex, none): <u>concave</u> Slope (%): <u>0-3</u>
Subregion (LRR or MLRA): LRR R Lat: 41° 18' 54	.628" N Long: 72° 10' 6.406" W Datum: NAD83
Soil Map Unit Name: <u>Ridgebury, Leicester and Whitman</u>	NWI classification: PF01C
Are climatic / hydrologic conditions on the site typical for this time	of year? Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignifi	icantly disturbed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrologynatura	ally problematic? (If needed, explain any answers in Remarks.)
	ing sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes X No	within a Wetland? Yes X No
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate r Transect point located ca. 3ft downslope of Wetland Flag #20.	report.)
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that a	pply) Surface Soil Cracks (B6)
x Surface Water (A1) x Water-Sta	ained Leaves (B9)Drainage Patterns (B10)
<u>x</u> High Water Table (A2) <u>x</u> Aquatic F	auna (B13)Moss Trim Lines (B16)
x Saturation (A3) Marl Depo	osits (B15)Dry-Season Water Table (C2)
<u>x</u> Water Marks (B1) Hydrogen	Sulfide Odor (C1) Crayfish Burrows (C8)
Sediment Deposits (B2)Oxidized	Rhizospheres on Living Roots (C3)Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)Presence	of Reduced Iron (C4) Stunted or Stressed Plants (D1)
	on Reduction in Tilled Soils (C6)Geomorphic Position (D2)
Iron Deposits (B5) Thin Much	
	plain in Remarks)Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	<u> </u>
Field Observations:	
Surface Water Present? Yes No X Depth (in	,
Water Table Present? Yes X No Depth (in	·
Saturation Present? Yes X No Depth (in	nches): Wetland Hydrology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial p	photos, previous inspections), if available:
Remarks:	
Refinitions.	

Sampling Point:	T2B

Tree Stratum (Plot size: 30ft)	Absolute % Cover	Dominant	Indicator Status	Dominance Test worksheet:
1. Acer rubrum	100	Species? Yes	FAC	
2.	100	103	170	Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
3.				
4.				Total Number of Dominant Species Across All Strata: 3 (B)
5				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
	100	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15ft)				$\begin{array}{c c} \hline \\ \hline $
1. Clethra alnifolia	60	Yes	FAC	FACW species 0 x 2 = 0
2.				FAC species 160 x 3 = 480
3.				FACU species $0 x 4 = 0$
4.				UPL species $0 \times 5 = 0$
5.				Column Totals: 180 (A) 500 (B)
6.				Prevalence Index = B/A = 2.78
7.				Hydrophytic Vegetation Indicators:
	60	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5ft)				X 2 - Dominance Test is >50%
1. Symplocarpus foetidus	20	Yes	OBL	X 3 - Prevalence Index is ≤3.0 ¹
2.				4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter
9.				at breast height (DBH), regardless of height.
10.				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	20	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30ft)				Woody vines – All woody vines greater than 3.28 ft in
1.				height.
2				Hydrophytic
3.				Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Samp	ling Point	

SOIL								Sam	pling Point:	T2B
Profile De	escription: (Describe	to the de	epth needed to docun	nent th	e indicato	r or con	firm the absence of i	ndicators	s.)	
Depth	Matrix			Feature						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-9	10yr 3/1	100					Muck			
9-15	10yr 5/1	90	10yr 4/4	10	С	М	Loamy/Clayey	Distin	ct redox concer	ntrations
		·			·					
					<u> </u>					
			<u> </u>		·	<u> </u>				
					<u> </u>		,			
			<u> </u>		·					[
¹ Type: C=	Concentration D=De	oletion R	M=Reduced Matrix, CS	=Cove	red or Coa	ted Sand	Grains ² l ocat	tion: PI =[Pore Lining, M=	=Matrix
-	oil Indicators:			00701			Indicators for F			
-	sol (A1)		Polyvalue Below	Surface	e (S8) (LR	RR.			RR K, L, MLRA	
	Epipedon (A2)		MLRA 149B)		()(,		` '`	(A16) (LRR K ,	,
X Black	Histic (A3)		Thin Dark Surfac	;e (S9)	(LRR R, N	ILRA 149	9B)5 cm Muck	y Peat or	Peat (S3) (LRF	R K, L, R)
Hydro	ogen Sulfide (A4)		High Chroma Sar	nds (S1	1) (LRR K	., L)	Polyvalue E	3elow Sur	face (S8) (LRR	₹K, L)
Strati	fied Layers (A5)		Loamy Mucky Mi	neral (F	[:] 1) (LRR K	(, L)	Thin Dark S	Surface (S	69) (LRR K, L)	
·	eted Below Dark Surfa	ce (A11)	Loamy Gleyed M	•	2)		-		sses (F12) (LR	
	Dark Surface (A12)		X Depleted Matrix	. ,					Soils (F19) (M	
	y Mucky Mineral (S1)		Redox Dark Surfa				-	. , .	(MLRA 144A, 1	145, 149B)
	y Gleyed Matrix (S4)		Depleted Dark Su			Red Parent Material (F21) Very Shallow Dark Surface (TF12)				
	y Redox (S5) bed Matrix (S6)		Redox Depressio Marl (F10) (LRR			Other (Explain in Remarks)				
	Surface (S7)			N , Ľ)					liaiks)	
Danks										
³ Indicators	s of hydrophytic vegeta	ation and v	wetland hydrology mus	t be pre	esent, unle	ss disturł	bed or problematic.			
Restrictiv	/e Layer (if observed)	:								
Туре:										
Depth (i	inches):						Hydric Soil Prese	ent?	Yes X	No
Remarks:										
			al and Northeast Regio						icators of Hydri	ic Soils
version 7.	0 March 2013 Errata.	(http://ww	w.nrcs.usda.gov/Interr	iet/FSE	_DOCUM	ENTS/nr	cs142p2_051293.doc	;x)		

Project/Site: Millstone Power	Station	City/County:	Waterford/New London	Sampling Date: <u>3-25-22</u>			
Applicant/Owner: Mott-MacDo	onald		State:	CT Sampling Point: T3A			
Investigator(s): Eric Davison,	Matthew Davison	Section, Tow	nship, Range:				
Landform (hillside, terrace, etc.		Local relief (cor	ncave, convex, none): convex	Slope (%): 3-8			
Subregion (LRR or MLRA): LRI	· · · · ·		Long: <u>72° 10' 9.792" W</u>	Datum: NAD83			
• · · · ·		41 10 J7.559 N					
Soil Map Unit Name: Udorthent				ification: <u>None</u>			
Are climatic / hydrologic conditi	5.	•	es <u>X</u> No (If no, explai	n in Remarks.)			
Are Vegetation, Soil			Are "Normal Circumstances" p	resent? Yes <u>No X</u>			
Are Vegetation, Soil	, or Hydrology	naturally problematic?	(If needed, explain any answe	rs in Remarks.)			
SUMMARY OF FINDING	S – Attach site ma	p showing sampling p	point locations, transects	important features, etc.			
Hydrophytic Vegetation Prese	ent? Yes	No X Is the S	ampled Area				
Hydric Soil Present?	Yes		Wetland? Yes	No X			
Wetland Hydrology Present?	Yes	No X If yes, o	ptional Wetland Site ID:				
Remarks: (Explain alternative Transect point located 3ft ups	•	,	cent disturbance present.				
HYDROLOGY							
Wetland Hydrology Indicato			Secondary Ind	icators (minimum of two required)			
Primary Indicators (minimum		all that apply)		oil Cracks (B6)			
Surface Water (A1)		Water-Stained Leaves (B9)		Patterns (B10)			
High Water Table (A2)		Aquatic Fauna (B13)		Lines (B16)			
Saturation (A3)		Marl Deposits (B15)		on Water Table (C2)			
Water Marks (B1)		Hydrogen Sulfide Odor (C1)		Surrows (C8)			
Sediment Deposits (B2)		Oxidized Rhizospheres on L	·	Visible on Aerial Imagery (C9)			
Drift Deposits (B3)		Presence of Reduced Iron (C	• • • •	Stressed Plants (D1)			
Algal Mat or Crust (B4)		Recent Iron Reduction in Till		Geomorphic Position (D2)			
Iron Deposits (B5)		Thin Muck Surface (C7)	· · ·	Shallow Aquitard (D3)			
Inundation Visible on Aeri		Other (Explain in Remarks)	· · · · · · · · · · · · · · · · · · ·				
Sparsely Vegetated Conc		,		ral Test (D5)			
Field Observations:							
Surface Water Present?	Yes No X	Depth (inches):					
Water Table Present?	Yes No X	Depth (inches):					
Saturation Present?	Yes X No	Depth (inches): 14	Wetland Hydrology Preser	nt? Yes No X			
(includes capillary fringe)							
Describe Recorded Data (stre	am gauge, monitoring we	ell, aerial photos, previous in	spections), if available:				
Remarks:							

Sampling Point: T3A

	Absolute	Dominant	Indicator	Deminence Test worksheet		
<u>Tree Stratum</u> (Plot size: <u>30ft</u>) 1. <i>Betula populifolia</i>	% Cover 30	Species? Yes	Status FAC	Dominance Test worksheet:		
2. Betula lenta	30	Yes	FACU	Number of Dominant Species That Are OBL, FACW, or FAC:	1	(A)
3. Quercus rubra	40	Yes	FACU			(,)
4	-10	105	17100	Total Number of Dominant Species Across All Strata:	4	(B)
5.					T	_(())
6.				Percent of Dominant Species That Are OBL, FACW, or FAC:	25.0%	(A/B)
7.				Prevalence Index worksheet:	20.070	(110)
	100	=Total Cover		Total % Cover of:	Multiply by:	
Sapling/Shrub Stratum (Plot size: 15ft)				OBL species 0 x	1 = 0	
1. None				FACW species 0 x	2 = 0	
2.				FAC species 30 x	3 = 90	
3.					4 = 280	_
4.				·	5 = 50	
5.				· · · · · · · · · · · · · · · · · · ·	A) 420	(B)
6.				Prevalence Index = B/A =	·	_``
7.				Hydrophytic Vegetation Indicat	ors:	
		=Total Cover		1 - Rapid Test for Hydrophyti		
Herb Stratum (Plot size: 5ft)				2 - Dominance Test is >50%	b	
1. Carex pensylvanica	10	Yes	UPL	3 - Prevalence Index is ≤3.0	1	
2.				4 - Morphological Adaptation	ıs¹ (Provide sup	porting
3.				data in Remarks or on a s	eparate sheet)	
4.				Problematic Hydrophytic Veg	getation ¹ (Explai	in)
5.				¹ Indicators of hydric soil and weth	and hydrology n	nuet
6.				be present, unless disturbed or p	, ,,	nust
7.				Definitions of Vegetation Strata	a:	
8.				Tree – Woody plants 3 in. (7.6 cr	m) or more in di	ameter
9.				at breast height (DBH), regardles		
10.				Sapling/shrub – Woody plants l	ess than 3 in. D	вн
11.				and greater than or equal to 3.28	ft (1 m) tall.	
12.				Herb – All herbaceous (non-woo	dv) plants, rega	rdless
	10	=Total Cover		of size, and woody plants less th		
Woody Vine Stratum (Plot size: 30ft)				Woody vines – All woody vines	greater than 3.2	8 ft in
1.				height.		
2.				Hudrophytic		
3.				Hydrophytic Vegetation		
4.				Present? Yes	No X	
		=Total Cover				
Remarks: (Include photo numbers here or on a separate	ate sheet.)					

Sampling	Point:	1

SOIL							Sampling Point:	T3A
Profile De	escription: (Describe	to the de	epth needed to docum	ent the indicat	or or conf	firm the absence of in	dicators.)	
Depth	Matrix			Features				
(inches)	Color (moist)	%	Color (moist)	% Type ¹	Loc ²	Texture	Remark	s
0-5	10yr 3/1	100				Loamy/Clayey		
5-15	10yr 4/4	100				Loamy/Clayey		
		·						
		·						
		<u> </u>			<u> </u>			
		·						
		·						
¹ Type: C=	Concentration, D=Der	oletion, RM	M=Reduced Matrix, CS	=Covered or Co	ated Sand	Grains. ² Locatio	on: PL=Pore Lining,	M=Matrix.
	oil Indicators:	,	· · ·				roblematic Hydric S	
Histo	sol (A1)		Polyvalue Below S	Surface (S8) (LF	RR,	2 cm Muck (A10) (LRR K, L, ML	RA 149B)
Histic	Epipedon (A2)		MLRA 149B)			Coast Prairie	e Redox (A16) (LRR	K, L, R)
Black	(A3)		Thin Dark Surface			9B)5 cm Mucky	Peat or Peat (S3) (L	RR K, L, R)
-	ogen Sulfide (A4)		High Chroma San			•	elow Surface (S8) (L	
	fied Layers (A5)		Loamy Mucky Mir	. , .	K, L)		urface (S9) (LRR K,	
· ·	eted Below Dark Surfa	ce (A11)	Loamy Gleyed Ma	. ,		-	nese Masses (F12) (l	
	Dark Surface (A12) y Mucky Mineral (S1)		Depleted Matrix (F Redox Dark Surfa				oodplain Soils (F19) c (TA6) (MLRA 144/	. ,
	y Gleyed Matrix (S4)		Depleted Dark Sulla			-	Material (F21)	(, 143, 143D)
	y Redox (S5)		Redox Depression	. ,			v Dark Surface (TF1)	2)
	bed Matrix (S6)		Marl (F10) (LRR H	. ,			in in Remarks)	,
Dark	Surface (S7)							
			vetland hydrology must	be present, unl	ess disturb	oed or problematic.		
	ve Layer (if observed)	:						
Туре:								
Depth (i	inches):					Hydric Soil Preser	nt? Yes	<u>No X</u>
Remarks:								
			al and Northeast Regior	• •				dric Soils
version 7.	0 March 2013 Errata.	(nttp://ww	w.nrcs.usda.gov/Intern	et/FSE_DOCUN	IEN IS/nro	cs142p2_051293.docx	()	

Project/Site: Millstone Power Station	City/County: Waterford/New London	Sampling Date: <u>3-25-22</u>
Applicant/Owner: Mott-MacDonald		CT Sampling Point: T3B
Investigator(s): Eric Davison, Matthew Davison	Section, Township, Range:	
Landform (hillside, terrace, etc.): coastal plain	Local relief (concave, convex, none): concave	Slope (%): 0-3
Subregion (LRR or MLRA): LRR R Lat: 41°		Olope (70) Datum: NAD83
Soil Map Unit Name: <u>Aquents</u>		sification: <u>PFO1A</u>
Are climatic / hydrologic conditions on the site typical for this		,
Are Vegetation, SoilX_, or Hydrology		present? Yes No X
Are Vegetation, Soil, or Hydrology	naturally problematic? (If needed, explain any answe	ers in Remarks.)
SUMMARY OF FINDINGS – Attach site map s	howing sampling point locations, transects	s, important features, etc.
Hydrophytic Vegetation Present? Yes X N	No Is the Sampled Area	
	No within a Wetland? Yes	X No
	No If yes, optional Wetland Site ID:	
Remarks: (Explain alternative procedures here or in a sep	arate report.)	
Transect point located ca. 3ft downslope of wetland flag D	12. This area was historically disturbed/created, but has r	naturalized and revegeted over
decades. No recent disturbance to the vegetation or hydro	ology.	
HYDROLOGY		
Wetland Hydrology Indicators:		dicators (minimum of two required)
Primary Indicators (minimum of one is required; check all		Soil Cracks (B6)
		e Patterns (B10)
		m Lines (B16)
		son Water Table (C2)
		Burrows (C8)
	· · · · · · · · · · · · · · · · · · ·	n Visible on Aerial Imagery (C9) or Stressed Plants (D1)
<u> </u>		
	ent Iron Reduction in Tilled Soils (C6)Geomorp	ohic Position (D2)
	. ,	ographic Relief (D4)
Nundation visible on Aenal Imagery (B7)Oth Sparsely Vegetated Concave Surface (B8)		utral Test (D5)
Field Observations:		
	epth (inches):	
	epth (inches):	
	epth (inches): 19 Wetland Hydrology Prese	ent? Yes X No
(includes capillary fringe)		
Describe Recorded Data (stream gauge, monitoring well, a	aerial photos, previous inspections) if available:	
Remarks:		

Sampling Point:	T3B

Tree Stratum (Plot size: 30ft)	Absolute % Cover	Dominant Species?	Indicator	Dominance Test worksheet:
1. Acer rubrum	70	Yes	Status FAC	
2.	70	163	170	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3.				
4.				Total Number of Dominant Species Across All Strata: 2 (B)
			·······	Species Across All Strata: <u>2</u> (B)
				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
6				()
7	70	=Total Cover		Prevalence Index worksheet: Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15ft)	70			$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	10	Yes	FACW	FACW species 10 $x^2 = 20$
1. Vaccinium corymbosum	10	res	FACW	FAC species $70 \times 3 = 210$
3.				
· · · · · · · · · · · · · · · · · · ·				······
4.				UPL species $0 \times 5 = 0$
5.				Column Totals: 80 (A) 230 (B)
6.				Prevalence Index = B/A = 2.88
7				Hydrophytic Vegetation Indicators:
	10	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5ft)				X 2 - Dominance Test is >50%
1. None				<u>X</u> 3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in diameter
9.				at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12		=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30ft)				
1. None				Woody vines – All woody vines greater than 3.28 ft in height.
2.				I hadro n hustio
3.				Hydrophytic Vegetation
4.				Present? Yes X No
	·	=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

		be to the de	pth needed to docu			or or con	firm the absence o	of indicators.)
Depth	Matrix	0/		ox Feature		1 2	T <i>t</i>	Denseration
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10yr 2/1	100					Mucky Loam/Clay	
4-9	10yr 5/2	80	10yr 5/1	10	R	Μ	Loamy/Clayey	
			10yr 4/4	10	С	М		Distinct redox concentrations
9-16	10yr 5/1	90	10yr 4/4	10	C	M	Loamy/Clayey	Distinct redox concentrations
		· ·						
		· ·						
	anaantration D-D	platian D	/=Reduced Matrix, C	`S=Cover	d or Coa	tod Sana		action: DL=Doro Lining M=Matrix
	Indicators:	epielion, Riv	/I=Reduced Matrix, C	S=Covere	ed or Coa	lied Sand		cation: PL=Pore Lining, M=Matrix. r Problematic Hydric Soils ³ :
Black H Hydrog Stratifie Thick D Sandy I Sandy 0 Sandy 0 Sandy 1 Sandy 0 Dark Su	pipedon (A2) listic (A3) en Sulfide (A4) ed Layers (A5) ed Below Dark Surf ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7)		MLRA 149B) Thin Dark Surfa High Chroma S Loamy Mucky M Loamy Gleyed X Depleted Matri: Redox Dark Su Depleted Dark Redox Depress Marl (F10) (LRI	ace (S9) (I ands (S11 Mineral (F1 Matrix (F2 k (F3) rface (F6) Surface (F6) Surface (F6) R K , L)) (LRR K) (LRR K) 7)	S, L) (, L)	9B) 5 cm Mud Polyvalue Thin Dark Iron-Man Piedmon Mesic Sp Red Pare Very Sha Other (Ex	airie Redox (A16) (LRR K, L, R) cky Peat or Peat (S3) (LRR K, L, R) e Below Surface (S8) (LRR K, L) < Surface (S9) (LRR K, L) ganese Masses (F12) (LRR K, L, R) t Floodplain Soils (F19) (MLRA 149B iodic (TA6) (MLRA 144A, 145, 149B) ent Material (F21) illow Dark Surface (TF12) cplain in Remarks)
	of hydrophytic vege Layer (if observed		vetland hydrology mu	ust be pres	ent, unle	ess distur	bed or problematic.	
Туре:	,							
Depth (inc	ches):						Hydric Soil Pre	sent? Yes <u>X</u> No
			il and Northeast Reg w.nrcs.usda.gov/Inte					CS Field Indicators of Hydric Soils ocx)

Project/Site: Millstone Power Station	City/County: Waterford/Ne	w London	Sampling Date: <u>3-25-22</u>			
Applicant/Owner: Mott-MacDonald			CT Sampling Point: T4A			
Investigator(s): Eric Davison, Matthew Davison	Section, Township, Range:					
Landform (hillside, terrace, etc.): coastal plain	Local relief (concave, convex	. none): convex	Slope (%): 5-10			
· · · · · · · · · · · · · · · · · · ·	t: <u>41° 18' 56.740" N</u> Long: _		Datum: NAD83			
Soil Map Unit Name: <u>Udorthents</u>			fication: <u>None</u>			
Are climatic / hydrologic conditions on the site typical	•	(If no, explain	,			
Are Vegetation <u>x</u> , Soil <u>x</u> , or Hydrology		al Circumstances" pr				
Are Vegetation, Soil, or Hydrology _	naturally problematic? (If needed,	explain any answer	s in Remarks.)			
SUMMARY OF FINDINGS – Attach site m	ap showing sampling point locati	ons, transects,	important features, etc.			
Hydrophytic Vegetation Present? Yes	No X Is the Sampled Area					
Hydric Soil Present? Yes	No X within a Wetland?	Yes	No X			
Wetland Hydrology Present? Yes	No X If yes, optional Wetlan	d Site ID:				
Transect point located 5ft upslope of flag B31. This a transect being disturbed/created. The upland transe		ntirety of the upland	and wetland portions of the			
L HYDROLOGY						
Wetland Hydrology Indicators:		Secondary Indi	cators (minimum of two required)			
Primary Indicators (minimum of one is required; che	ck all that apply)	Surface S	oil Cracks (B6)			
Surface Water (A1)	_Water-Stained Leaves (B9)	Drainage F	Patterns (B10)			
	_Aquatic Fauna (B13)	Moss Trim	Lines (B16)			
	_Marl Deposits (B15)		on Water Table (C2)			
	_Hydrogen Sulfide Odor (C1)		urrows (C8)			
	_Oxidized Rhizospheres on Living Roots (C	,	Visible on Aerial Imagery (C9)			
	Presence of Reduced Iron (C4)	·	Stressed Plants (D1)			
	_ Recent Iron Reduction in Tilled Soils (C6)					
	Thin Muck Surface (C7)	Shallow Aquitard (D3) Microtopographic Relief (D4)				
	_Other (Explain in Remarks)		graphic Relief (D4) ral Test (D5)			
Sparsely Vegetated Concave Surface (B8) Field Observations:		FAC-Neuli	lai Test (D3)			
Surface Water Present? Yes No X	Depth (inches):					
	Depth (inches):					
Saturation Present? Yes No X		Hydrology Presen	t? Yes No X			
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring	well, aerial photos, previous inspections), if a	vailable:				
Remarks:						
1						

Sampling Point: T4A

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30ft)	% Cover	Species?	Status	Dominance Test worksheet:
1. None				Number of Dominant Species
2.				That Are OBL, FACW, or FAC: 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: 4 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: <u>0.0%</u> (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15ft)				OBL species 0 x 1 = 0
1. Elaeagnus umbellata	50	Yes	UPL	FACW species 0 x 2 = 0
2. Rosa multiflora	20	Yes	FACU	FAC species 0 x 3 = 0
3. Rubus allegheniensis	20	Yes	FACU	FACU species 40 x 4 = 160
4.				UPL species 130 x 5 = 650
5.				Column Totals: 170 (A) 810 (B)
6.				Prevalence Index = B/A = 4.76
7.				Hydrophytic Vegetation Indicators:
	90	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5ft)				2 - Dominance Test is >50%
1. Artemisia vulgaris	80	Yes	UPL	3 - Prevalence Index is ≤3.0 ¹
2.				4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in diameter
9.				at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	80	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30ft)				Woody vines – All woody vines greater than 3.28 ft in
1.				height.
2.				I hadro n hu sti o
3.				Hydrophytic Vegetation
4.				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a separa	ate sheet.)			

ampling Point:	T4A

SOIL								Sam	pling Point:	T4A
Profile De	escription: (Describe	to the de	epth needed to docum	ent the i	ndicato	r or confir	rm the absence of in	dicators	s.)	
Depth	Matrix			Features						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-10	10yr 4/3	100					Sandy		Gravelly	
10-16	10yr 4/6	100					Sandy		Gravelly	
		<u> </u>			•					
					·					
¹ Type: C=	-Concentration D=Der	oletion RM	M=Reduced Matrix, CS=	-Covered	l or Coat	ted Sand C	Grains ² Locatio	n [.] PI =F	Pore Lining, N	/=Matrix
	oil Indicators:			0010.04			Indicators for Pr		-	
•	sol (A1)		Polyvalue Below S	Surface (S	38) (LRF	RR,			RRK, L, MLR	
	Epipedon (A2)		MLRA 149B)	,	, (,		, ,	(A16) (LRR K	
Black	(Histic (A3)		Thin Dark Surface	: (S9) (LF	RR R, M	LRA 149E	3)5 cm Mucky	Peat or F	Peat (S3) (LR	R K, L, R)
Hydro	ogen Sulfide (A4)		High Chroma Sand	ds (S11)	(LRR K	, L)	Polyvalue Be	low Surf	face (S8) (LR	R K, L)
Strati	ified Layers (A5)		Loamy Mucky Min	• •	(LRR K	., L)		•	9) (LRR K, L)	
	eted Below Dark Surfa	ce (A11)	Loamy Gleyed Ma	. ,			-		sses (F12) (LI	
	Contraction (A12)		Depleted Matrix (F	,				-	Soils (F19) (N	
	ly Mucky Mineral (S1)		Redox Dark Surface	. ,	1			. , .	MLRA 144A,	145, 149B)
	ly Gleyed Matrix (S4) ly Redox (S5)		Depleted Dark Sur Redox Depression	• • •)		Red Parent N	,	(FZT) urface (TF12)	
	ped Matrix (S6)		Marl (F10) (LRR K				Other (Expla		, ,	
	Surface (S7)			., ∟)					nanoj	
	04.1400 (07)									
³ Indicators	s of hydrophytic vegeta	ation and v	wetland hydrology must	be prese	nt, unle	ss disturbe	ed or problematic.			
Restrictiv	ve Layer (if observed)	:								
Туре:										
Depth (i	inches):						Hydric Soil Preser	ıt?	Yes	No <u>X</u>
Remarks:						I				
			al and Northeast Region						icators of Hyd	ric Soils
version 7.	0 March 2013 Errata.	(http://ww	w.nrcs.usda.gov/Interne	et/FSE_D	OCUM	ENTS/nrcs	s142p2_051293.docx)		

Project/Site: Millstone Power Station	_ City/County: <u>Waterford/New London</u> Sampling Date: <u>3-25-22</u>
Applicant/Owner: Mott-MacDonald	State: <u>CT</u> Sampling Point: <u>T4B</u>
Investigator(s): Eric Davison, Matthew Davison	Section, Township, Range:
	Local relief (concave, convex, none): concave Slope (%): 0-3
	D" N Long: 72° 9' 51.092" W Datum: NAD83
Soil Map Unit Name: <u>Aquents</u>	NWI classification: PSS1Br
Are climatic / hydrologic conditions on the site typical for this time of y	vear? Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significant	tly disturbed? Are "Normal Circumstances" present? Yes <u>No x</u>
Are Vegetation, Soil, or Hydrologynaturally	problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes X No	within a Wetland? Yes X No
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report Transect point located approximately 5ft downslope of Wetland Flag consisting mostly of earthen fill, but large boulders form the wetland	#B31. This a created wetland consisting of mechanically formed embankments
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply	· · _ · _ · _ · _ · _ · _ ·
Surface Water (A1)X Water-Stained	
X High Water Table (A2)	
X Saturation (A3) Marl Deposits	(B15) Dry-Season Water Table (C2)
X Water Marks (B1) Hydrogen Sul	fide Odor (C1) Crayfish Burrows (C8)
Sediment Deposits (B2)Oxidized Rhiz	zospheres on Living Roots (C3)Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)Presence of R	Reduced Iron (C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)Recent Iron R	Reduction in Tilled Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Su	rface (C7) Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain	n in Remarks)Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (inche	es):
Water Table Present? Yes X No Depth (inche	es): 0
Saturation Present? Yes X No Depth (inche	es): Wetland Hydrology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial phote	os, previous inspections), if available:
Remarks:	

Sampling Point:	T4B

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30ft)	% Cover	Species?	Status	Dominance Test worksheet:
1. No trees				Number of Dominant Species
2				That Are OBL, FACW, or FAC: 3 (A)
3				Total Number of Dominant
4.				Species Across All Strata: 3 (B)
5.				、 /
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
				Prevalence Index worksheet:
7		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15ft)				$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	40	Ma a		· <u> </u>
1. Alnus incana	40	Yes	FACW	FACW species 120 x 2 = 240
2.				FAC species 0 x 3 = 0
3.				FACU species x 4 =
4.				UPL species 0 x 5 = 0
5.				Column Totals: 140 (A) 260 (B)
6.				Prevalence Index = B/A = 1.86
7.				Hydrophytic Vegetation Indicators:
	40	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5ft)				X 2 - Dominance Test is >50%
1. Phragmites australis	80	Yes	FACW	3 - Prevalence Index is ≤3.0 ¹
2. Symplocarpus foetidus	20	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Deminions of Vegetation Strata.
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter
				at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	100	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30ft)				Woody vines – All woody vines greater than 3.28 ft in
1. Vitis sp.				height.
2				Hydrophytic
3.				Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Sampling Point:	
-----------------	--

Profile De	scription: (Describ	e to the de	pth needed to docu	iment the i	ndicato	or or confi	rm the absence	of indicato	rs.)	
Depth	Matrix		Redo	x Features						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-5	10yr 2/1	100		. <u> </u>			Muck			
5-10	10yr 5/1	90	10yr 4/6	10	С	М	Sandy	Promir	nent redox conce	ntrations
10-15	10yr 5/1	80	10yr 4/6	20	С	M	Sandy	Promi	nent redox conce	entrations
·		· ·			·					
·					·					
		· ·								
Гуре: С=0	Concentration, D=De	epletion, RN	/I=Reduced Matrix, C	S=Covered	l or Coa	ted Sand (Grains. ² Lo	ocation: PL=	Pore Lining, M=	Matrix.
Black Hydro Stratifi Complete Stratifi Sandy Sandy Sandy Complete Dark S	Epipedon (A2) Histic (A3) gen Sulfide (A4) ied Layers (A5) ted Below Dark Surf Dark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) ed Matrix (S6) Surface (S7) of hydrophytic yege		MLRA 149B) Thin Dark Surfa High Chroma S. Loamy Mucky M Depleted Matrix Redox Dark Sur Depleted Dark S Redox Depress Marl (F10) (LRF vetland hydrology mu	ands (S11) Mineral (F1) Matrix (F2) (F3) face (F6) Surface (F7 ions (F8) & K, L)	(LRR K (LRR K	(, L) (, L)	B)5 cm M Polyval Thin Da Iron-Ma Piedmo Nesic S Red Pa Very Sh Other (I	ucky Peat o ue Below Su rk Surface (unganese Ma nt Floodplai Spodic (TA6) rent Materia hallow Dark S Explain in Re	Surface (TF12)	K, L, R) K, L) R K, L, R) .RA 149B
	of hydrophytic vege • Layer (if observed		vetland hydrology mu	ist be prese	nt, unle	ss disturbe	ed or problematic	•		
Туре:										
Depth (ir Remarks:	iches):						Hydric Soil P	resent?	Yes <u>X</u>	No
			Il and Northeast Reg w.nrcs.usda.gov/Inte							

pilcant/Owner: Mott-MacDonald State: CT Sampling Point: T5A vestigator(s): Eric Davison, Matthew Davison Section, Township, Range:
vestigator(s): Eric Davison, Matthew Davison Section, Township, Range: undform (hillside, terrace, etc.): coastal plain Local relief (concave, convex, none): convex Slope (%): 3-5. brbergion (LRR or MLRA): LRR R Lat: 41° 19' 4.165° N Long: 72° 9' 56.104° W Datum: NAD83 oill Map Unit Name: Woodbridge INVI classification: None Woodbridge INVI classification: None e Vegetation
Indform (hillside, terrace, etc.): coastal plain Local relief (concave, convex, none): convex Slope (%): 3-5 ubregion (LRR or MLRA): LRR R Lat: 41° 19′ 4.165° N Long: 72° 9′ 56.104° W Datum: NAD83 pil Map Unit Name: Woodbridge NVII classification: None None None e climatic / hydrologic conditions on the site typical for this time of year? Yes No (ff no, explain in Remarks.) P vegetation
bit egion (LRR or MLRA): LRR Lat: 41° 19'4.165" N Long: 72' 9' 56.104" W Datum: NAD83 bil Map Unit Name: Woodbridge NWI classification: None e climatic / hydrologic conditions on the site typical for this time of year? Yes_X_No(If no, explain in Remarks.) e Vegetation
bill Map Unit Name: Woodbridge NWI classification: None re climatic / hydrologic conditions on the site typical for this time of year? Yes
e climatic / hydrologic conditions on the site typical for this time of year? Yes X No (ff no, explain in Remarks.) e Vegetation Soli or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes X No (ff needed, explain any answers in Remarks.) UMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No X Ist the Sampled Area within a Wetland? Yes No X if yes, optional Wetland? Yes No X Wetland Hydrology Present? Yes No X If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) rransect point location ca. 5ft upslope of Flag #C9. YDROLOGY Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Surface Water (A1) Water Stained Leaves (B9) Drainage Patterns (B10) High Water Table (A2) Aquatic Fauna (B13) Moss Trin Lines (B16) Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Weter Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Standed Stards (C7) Saturation (S5) Presence of Reduced Iron (C4) Standed OS (C3) Saturation (D3) Hundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Again Att Crust (B4) Recent Iron Reduction in Tilled Solis (C6) Geomorphic Position (D2) In undation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)
e Vegetation
e Vegetation, Soil, or Hydrologynaturally problematic? (If needed, explain any answers in Remarks.) UMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. tydrophytic Vegetation Present? YesNo
UMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. tydrophytic Vegetation Present? Yes No X Is the Sampled Area within a Wetland? Yes No X tydric Soil Present? Yes No X If yes, optional Wetland? Yes No X Wetland Hydrology Present? Yes No X If yes, optional Wetland Site ID: No X Remarks: (Explain alternative procedures here or in a separate report.) Transect point location ca. 5ft upslope of Flag #C9. Secondary Indicators (minimum of two required) YDROLOGY
tydrophytic Vegetation Present? Yes No X hydric Soil Present? Yes No X hydric Soil Present? Yes No X hydric Soil Present? Yes No X hydrology Present? Yes No X Remarks: (Explain alternative procedures here or in a separate report.) rransect point location ca. 5ft upslope of Flag #C9. YDROLOGY Yutand Hydrology Indicators: Primary. Indicators (minimum of one is required; check all that apply)
Hydric Soil Present? Yes No X within a Wetland? Yes No X Wetland Hydrology Present? Yes No X If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) If yes, optional Wetland Site ID: YDROLOGY Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Moss Trim Lines (B16) Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Solis (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Invadiation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) Presence (R5)
Hydric Soil Present? Yes No X within a Wetland? Yes No X Wetland Hydrology Present? Yes No X If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) If yes, optional Wetland Site ID: YDROLOGY Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Water (A1) Water-Stained Leaves (B9) Surface Soil Cracks (B6) High Water Table (A2) Aquatic Fauna (B13) Moss Trim Lines (B16) Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Invadiation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)
Wetand Hydrology Present? Yes No X If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) Transect point location ca. 5ft upslope of Flag #C9. YDROLOGY Yetland Hydrology Indicators: Secondary Indicators (minimum of two required) "Yimary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) Surface Water (A1) Water-Stained Leaves (B9) Drainage Patterns (B10) High Water Table (A2) Aquatic Fauna (B13) Moss Trim Lines (B16) Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Irin Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Invandation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8)
Transect point location ca. 5ft upslope of Flag #C9. YDROLOGY Vetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) _Surface Water (A1) Water-Stained Leaves (B9) Drainage Patterns (B10) _High Water Table (A2) Aquatic Fauna (B13) Moss Trin Lines (B16) _Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) _Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) _Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) _Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) _Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) _Iron Deposits (B5) _Thin Muck Surface (C7) Shallow Aquitard (D3) _Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) _Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5) FAC-Neutral Test (D5)
Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) Surface Water (A1) Water-Stained Leaves (B9) Drainage Patterns (B10) High Water Table (A2) Aquatic Fauna (B13) Moss Trim Lines (B16) Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5) FAC-Neutral Test (D5)
Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) Surface Water (A1) Water-Stained Leaves (B9) Drainage Patterns (B10) High Water Table (A2) Aquatic Fauna (B13) Moss Trim Lines (B16) Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5) FAC-Neutral Test (D5)
Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6)
Surface Water (A1)Water-Stained Leaves (B9)Drainage Patterns (B10)High Water Table (A2)Aquatic Fauna (B13)Moss Trim Lines (B16)Saturation (A3)Marl Deposits (B15)Dry-Season Water Table (C2)Water Marks (B1)Hydrogen Sulfide Odor (C1)Crayfish Burrows (C8)Sediment Deposits (B2)Oxidized Rhizospheres on Living Roots (C3)Saturation Visible on Aerial Imagery (C9)Drift Deposits (B3)Presence of Reduced Iron (C4)Stunted or Stressed Plants (D1)Algal Mat or Crust (B4)Recent Iron Reduction in Tilled Soils (C6)Geomorphic Position (D2)Iron Deposits (B5)Thin Muck Surface (C7)Shallow Aquitard (D3)Inundation Visible on Aerial Imagery (B7)Other (Explain in Remarks)Microtopographic Relief (D4)Sparsely Vegetated Concave Surface (B8)FAC-Neutral Test (D5)
Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5) FAC-Neutral Test (D5)
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)
Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)
Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)
Sparsely Vegetated Concave Surface (B8)FAC-Neutral Test (D5)
ield Observations:
Surface Water Present? Yes No X Depth (inches):
Vater Table Present? Yes X No Depth (inches): 19
Saturation Present? Yes X No Depth (inches): 17 Wetland Hydrology Present? Yes No X includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
Jomarka:
Remarks:

Sampling Point: T5A

	Absolute	Dominant	Indicator	Deminente Testurale hert		
<u>Tree Stratum</u> (Plot size: <u>30ft</u>) 1. <i>Quercus velutina</i>	% Cover 50	Species? Yes	Status UPL	Dominance Test worksheet:		
2. Acer rubrum	20	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:	2	(A)
3. Betula lenta	20	Yes	FACU			(~)
	20	165	FACU	Total Number of Dominant	F	(D)
4		· · · · · · · · · · · · · · · · · · ·		Species Across All Strata: 5		(B)
5		·		Percent of Dominant Species	10.00/	(
6		. ——		That Are OBL, FACW, or FAC:	40.0%	(A/B)
7				Prevalence Index worksheet:		
	90	=Total Cover		Total % Cover of:	Multiply by:	
Sapling/Shrub Stratum (Plot size: 15ft)				· · · · · · · · · · · · · · · · · · ·	1 = 0	
1. Clethra alnifolia	30	Yes	FAC	·	2 = 0	_
2.				FAC species 50 x 3	3 = 150	_
3.				FACU species 20 x 4	4 = 80	
4.				UPL species 70 x s	5 = 350	
5.				Column Totals: 140 (A) 580	(B)
6.				Prevalence Index = B/A =	4.14	
7.		·		Hydrophytic Vegetation Indicate	ors:	
	30	=Total Cover		1 - Rapid Test for Hydrophytic	vegetation	
Herb Stratum (Plot size: 5ft)		•		2 - Dominance Test is >50%		
1. Carex pensylvanica	20	Yes	UPL	3 - Prevalence Index is ≤3.0 ¹		
2.		·		4 - Morphological Adaptations	s ¹ (Provide supp	porting
3.				data in Remarks or on a se	eparate sheet)	Ū
4.				Problematic Hydrophytic Veg	etation ¹ (Explai	n)
5.						
6.				¹ Indicators of hydric soil and wetla be present, unless disturbed or pr	, ,,	nust
7.				Definitions of Vegetation Strata	:	
8.				Tree – Woody plants 3 in. (7.6 cm	n) or more in dia	ameter
9.				at breast height (DBH), regardless		
10.				Sapling/shrub – Woody plants le	ess than 3 in. DE	ЗН
11				and greater than or equal to 3.28	ft (1 m) tall.	
12				Herb – All herbaceous (non-wood		dless
	20	=Total Cover		of size, and woody plants less that	ın 3.28 ft tall.	
Woody Vine Stratum (Plot size: 30ft)				Woody vines – All woody vines g	reater than 3.28	8 ft in
1				height.		
2.				Hydrophytic		
3.				Vegetation		
4.				Present? Yes	No X	
		=Total Cover				
Remarks: (Include photo numbers here or on a separ	ate sheet.)					

Samp	ling Po	oint:	

rofile De	scription: (Describ	e to the de			ndicato	r or con	firm the absence o	f indicators.)
epth	Matrix	0/		x Features	T 1		- ·	
nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10yr 3/1	100					Loamy/Clayey	
6-14	10yr 4/4	98	10yr 4/6	2	С	M	Loamy/Clayey	Distinct redox concentrations
					·	·		
					·	·		
	Concentration, D=De	epletion, RM	Reduced Matrix, C	S=Covered	d or Coa	ted Sand		ation: PL=Pore Lining, M=Matrix. r Problematic Hydric Soils ³ :
Histos Histic Black Hydro Stratif Deple Thick Sandy Sandy Sandy Stripp Dark S	sol (A1) Epipedon (A2) Histic (A3) ogen Sulfide (A4) ied Layers (A5) ted Below Dark Surf Dark Surface (A12) / Mucky Mineral (S1) / Gleyed Matrix (S4) / Redox (S5) ed Matrix (S6) Surface (S7)	tation and w	Depleted Matrix Redox Dark Sur Depleted Dark S Redox Depressi Marl (F10) (LRF	ice (S9) (Li ands (S11) fineral (F1) Matrix (F2) (F3) face (F6) Surface (F7 ons (F8) & K, L)	RR R, M (LRR K (LRR K	ILRA 14(, L) (, L)	2 cm Muc Coast Pra 5 cm Muc Polyvalue Thin Dark Iron-Mang Piedmont Mesic Spo Red Pare Very Shal Other (Ex	ck (A10) (LRR K, L, MLRA 149B) airie Redox (A16) (LRR K, L, R) cky Peat or Peat (S3) (LRR K, L, R) e Below Surface (S8) (LRR K, L) s Surface (S9) (LRR K, L) ganese Masses (F12) (LRR K, L, R) : Floodplain Soils (F19) (MLRA 149B) odic (TA6) (MLRA 144A, 145, 149B) nt Material (F21) llow Dark Surface (TF12) :plain in Remarks)
Гуре:	e Layer (if observed	l):						
Depth (ir emarks:	nches):						Hydric Soil Pres	sent? Yes <u>No X</u>
	form is revised from l 0 March 2013 Errata		-					S Field Indicators of Hydric Soils

Project/Site: Millstone Power Station	City/County: W	aterford/New London	Sampling Date: 3-25-22
Applicant/Owner: Mott-MacDonald			CT Sampling Point: T5B
Investigator(s): Eric Davison, Matthew Davison	Section, Towns		
Landform (hillside, terrace, etc.): coastal plain		ave, convex, none): convex	Slope (%): <u>0-3</u>
Subregion (LRR or MLRA): <u>LRR R</u>	Lat: <u>41° 19' 4.165" N</u>	Long: <u>72° 9' 56.104" W</u>	Datum: NAD83
Soil Map Unit Name: Ridgebury, Leicester and Wh	itman	NWI classifi	cation: <u>PFO1B</u>
Are climatic / hydrologic conditions on the site typi	cal for this time of year? Yes	X No (If no, explain	in Remarks.)
Are Vegetation, Soil, or Hydrolog	y significantly disturbed?	Are "Normal Circumstances" pre	esent? Yes X No
Are Vegetation, Soil, or Hydrolog		(If needed, explain any answers	in Remarks.)
SUMMARY OF FINDINGS – Attach site		int locations, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes	X No Is the Sam	npled Area	
Hydric Soil Present? Yes	X No within a W		No
Wetland Hydrology Present? Yes		onal Wetland Site ID:	
Remarks: (Explain alternative procedures here o Transect point located ca. 5ft downslope of Weth	,		
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indic	ators (minimum of two required)
Primary Indicators (minimum of one is required;	check all that apply)	Surface Sol	
Surface Water (A1)	<u>x</u> Water-Stained Leaves (B9)	Drainage Pa	. ,
<u>x</u> High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim I	Lines (B16)
<u>x</u> Saturation (A3)	Marl Deposits (B15)	Dry-Season	Water Table (C2)
<u>x</u> Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Bu	rrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Livi	ng Roots (C3)Saturation \	/isible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or S	Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled	Soils (C6)Geomorphic	c Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aqu	uitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopogr	aphic Relief (D4)
Sparsely Vegetated Concave Surface (B8)		X FAC-Neutra	al Test (D5)
Field Observations:			
Surface Water Present? Yes No	X Depth (inches):		
Water Table Present? Yes X No	Depth (inches): 7		
Saturation Present? Yes X No	Depth (inches): 5	Wetland Hydrology Present	? Yes X No
(includes capillary fringe)			
Describe Recorded Data (stream gauge, monitor	ng well, aerial photos, previous inspe	ections), if available:	
Remarks:			

Sampling Point: T5B

	Absolute	Dominant	Indicator	
<u>Tree Stratum</u> (Plot size: <u>30ft</u>) 1. <i>Acer rubrum</i>	% Cover 50	Species? Yes	Status FAC	Dominance Test worksheet:
	20		FAC FAC	Number of Dominant Species
2. <u>Betula alleghaniensis</u> 3.	20	Yes	FAC	That Are OBL, FACW, or FAC:5 (A)
				Total Number of Dominant Species Across All Strata: 5 (B)
4 5				
				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
6				
7	70	=Total Cover		Prevalence Index worksheet: Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15ft)	70			$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1. Clethra alnifolia	20	Yes	FAC	FACW species 20 $x 2 = 40$
2. Vaccinium corymbosum	20	Yes	FAC	FAC species $90 \times 3 = 270$
3.	20	163	TACW	FACU species $0 \times 4 = 0$
4.				$\begin{array}{c c} FACU \text{ species} & 0 & x 4 - & 0 \\ \hline UPL \text{ species} & 0 & x 5 = & 0 \end{array}$
5.				·
				Column Totals: 180 (A) 380 (B) Prevalence Index = $B/A = 2.11$
6.				
7		-Tetel Cever		Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5ft)	40	=Total Cover		X 2 - Dominance Test is >50%
/	70	Vee		
1. Symplocarpus foetidus	70	Yes	OBL	X 3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8. 9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				Sapling/shrub – Woody plants less than 3 in. DBH
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				Herb – All herbaceous (non-woody) plants, regardless
	70	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30ft)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				Hydrophytic
3.				Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	rate sheet.)			

Samp	ling	Poin	t:	

SOIL								Sar	mpling Point:	T5B
Profile De	escription: (Describe	to the de	epth needed to docun	nent th	e indicato	or or con	firm the absence o	ofindicato	rs.)	
Depth Matrix				Feature						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-10	10yr 3/1	100					Muck			
10-16	10yr 5/1	90	10yr 4/6	10	С	М	Loamy/Clayey	Promir	nent redox conc	entrations
										_
						•				
			<u> </u>			·				
						•				
			·			·				
						·				
	Concentration D-Der	pletion Pl	M=Reduced Matrix, CS			ted Sand		ation: PI -	=Pore Lining, M	-Matrix
	bil Indicators:			-0000		leu Janu			atic Hydric Soi	
-	sol (A1)		Polyvalue Below	Surface	- (S8) (I R I	DD			RR K, L, MLRA	
	Epipedon (A2)		MLRA 149B)	ounace	, (00) (LIX	× 1X,		. , .	(A16) (LRR K ,	,
	Histic (A3)		Thin Dark Surfac	;e (S9) ((LRR R. M	ILRA 14			r Peat (S3) (LRI	. ,
	ogen Sulfide (A4)		High Chroma Sar	. ,	•			•	Irface (S8) (LRF	
-	fied Layers (A5)		Loamy Mucky Mi				•		S9) (LRR K, L)	. ,
X Deple	eted Below Dark Surfa	ce (A11)	Loamy Gleyed M	atrix (F2	2)		Iron-Man	ganese Ma	asses (F12) (LR	RR K, L, R)
Thick	Dark Surface (A12)		X Depleted Matrix	(F3)			Piedmon	t Floodplai	n Soils (F19) (M	ILRA 149B)
Sand	y Mucky Mineral (S1)		Redox Dark Surfa	ace (F6)		Mesic Sp	odic (TA6)	(MLRA 144A, [•]	145, 149B)
Sand	y Gleyed Matrix (S4)		Depleted Dark Su	urface (I	F7)		Red Pare	ent Materia	l (F21)	
	y Redox (S5)		Redox Depressio	• •					Surface (TF12)	
	oed Matrix (S6)		Marl (F10) (LRR	K , L)			Other (E>	oplain in Re	emarks)	
Dark	Surface (S7)									
31	f +	- 41		4 6	4 1 .					
			wetland hydrology mus	t be pre	sent, unie	ss disturi	bed or problematic.			
Type:	ve Layer (if observed)	/ -								
	·									
Depth (i	inches):						Hydric Soil Pre	esent?	Yes <u>X</u>	No
Remarks:		41 4	- Louis North Cost			(-1 4 	
			al and Northeast Regio /w.nrcs.usda.gov/Interr						dicators of Hydr	ric Solls
VCI3ION 7.		(1111).// 0000	w.mcs.usua.gov/mcm				cs142p2_001200.d	00,		

Wetland Determination Data Form Photo Locations

Photo 11: Transect 1, view of wetland boundary at Wetland Area A1, flag #80, looking northwest.

Photo 12: Transect 2, view of wetland boundary at Wetland Area A1 Flag #20, looking east.

Photo 13: Transect 3, Wetland D, view of wetland boundary at Flag #D12 looking north.

Photo 14: Transect 4, Wetland B, view of wetland boundary at Flag #B31 looking east.

Photo 15: Transect 5, Wetland C, view looking north at wetland boundary at Flag #C9.

	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A B C C D E F G K		tland Flag IE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 <td>41.31602883 41.31597279 41.31597279 41.31589106 41.31589106 41.31589106 41.31589106 41.3158971 41.31585971 41.31550571 41.31550209 41.31550209 41.31540871 41.31540871 41.31540871 41.31540871 41.31540871 41.31542145 41.31530037 41.31542145 41.3153839 41.3154263 41.31521647 41.31517039 41.31517039 41.31517039 41.31517434 41.31517434 41.31508602 41.31504809 41.31504809 41.31504809 41.31504809 41.31504809 41.31504809 41.31494283 41.31494283 41.31494283 41.314471977 41.31457609 41.31448778 41.31448778 41.314482</td> <td>Longitude -72.16887672 -72.1687074 -72.1687058 -72.1686009 -72.1686009 -72.1686045 -72.1686045 -72.1685045 -72.1687119 -72.16871341 -72.16871341 -72.16871341 -72.16850097 -72.16855243 -72.16855243 -72.1685703 -72.1685703 -72.1682971 -72.1682973 -72.1682971 -72.16829833 -72.16824618 -72.16829823 -72.16815135 -72.16815135 -72.16815135 -72.1681514 -72.16815514 -72.16815514 -72.16827086 -72.16826082 -72.16826082 -72.16826082 -72.16826082 -72.16829521 -72.16826082 -72.16826082 -72.16829521 -72.16829521 -72.16829521 -72.16829521 -72.16829521 -72.16829823 -72.16826082 -72.16826082 -72.16826082 -72.16826082 -72.16826082 -72.16827882 -72.1684175 -72.16843388 -72.16843384 -72.16843384 -72.16843384 -72.16843384 -72.16845933 -72.16843384 -72.16856442 -72.1685053 -72.1685053 -72.1685053 -72.1685053 -72.16842389 -72.1685053 -72.16842389 -72.1685053 -72.1685053 -72.1685053 -72.16842389 -72.1685053 -72.1685053 -72.16842389 -72.1685053 -72.1685053 -72.1685053 -72.1685053 -72.1685053 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.168</td> <td>Wetland Flag 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111</td> <td>WETLAND A1 (Continued 41.31371536 41.31371536 41.31368649 41.31368649 41.31365862 41.31365862 41.31369713 41.31359713 41.31359713 41.31359713 41.31359713 41.31359713 41.31359238 41.31356893 41.31356893 41.31356893 41.3135646 41.31355446 41.31355446 41.31355446 41.31355446 41.31359103 41.3136039 41.31379386 41.31379386 41.31379386 41.31380739 41.31380739 41.31399703 41.31399703 41.3148026 41.31490426 41.31490428 41.3144023 41.3144023 41.31443728 41.31443728 41.31458960 41.31458961 41.31458962 41.31556832 41.31556832</td> <td>Longitude -72.16835567 -72.16822262 -72.16817146 -72.16813057 -72.1680872 -72.1680872 -72.1680872 -72.16790477 -72.16790477 -72.16790828 -72.16759587 -72.16759587 -72.16759587 -72.167598845 -72.16751698 -72.16751698 -72.16734814 -72.16734814 -72.16734814 -72.16734814 -72.16793465 -72.16793465 -72.16793465 -72.16790207 -72.16791974 -72.16790207 -72.1679047 -72.1679047 -72.1679047 -72.1679047 -72.1679047 -72.1679047 -72.1679558 -72.16782116 -72.1678045 -72.1678045 -72.1678045 -72.16802411 -72.16823404 -72.16823404 -72.16823404</td> <td>Wetland Flag I 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168</td> <td>41.3140826 41.31415723 41.31415723 41.31422606 41.31427984 41.31427984 41.31427984 41.314327984 41.314327984 41.314327984 41.314327984 41.31435709 41.3144282 41.3144282 41.3145263 41.3145263 41.3145263 41.3145263 41.3145263 41.3145263 41.31459018 41.3145929 41.3146929 41.3145928 41.3146929 41.3146929 41.31467017 41.31467017 41.31467017 41.3147781 41.3147781 41.3147781 41.31476592 41.31487966 41.31487966 41.31483574 41.31483576 41.31483576 41.31480461 41.31480461 41.31480061 41.3148059 41.3148029 <</td> <td>-72.16883233 -72.1689668 -72.16896249 -72.16890655 -72.16911458 -72.16911458 -72.16911458 -72.16911458 -72.16911458 -72.16911458 -72.16911458 -72.16914106 -72.1692905 -72.1692905 -72.16925159 -72.16925209 -72.16932555 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934784 -72.16934784 -72.16936794 -72.16936794 -72.16920053 -72.16920053 -72.1693013 -72.1693291 -72.1693291 -72.1693291 -72.1693885 -72.16938402 -72.16938402 -72.16938402 -72.16938402 -72.16938402 -7</td> <td>Wetland Flag ID 183 184 185 186 187 188 189 190 191 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 Wetland Flag ID D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 <!--</td--><td>41.31541022 41.3153984 41.31532852 41.31532852 41.31532852 41.31518852 41.31518852 41.31518852 41.31518852 41.31518852 41.31518852 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31578182 41.315761 41.315761 41.31577834 41.31577834 41.31578182 41.31578182 41.31578182 41.31578182 41.31578182 41.3157834 41.3157834 41.3157834 41.3157833 41.31568645 41.31640256 41.31646256 41.31643054 41.31640293 41.31640293 41.31604293 41.31604293 41.3159617 41.31596454 41.31609732 4</td><td>Longitude -72.1688986 -72.16874801 -72.16874925 -72.16874925 -72.16889541 -72.16889541 -72.16889541 -72.16419912 -72.16419912 -72.16424052 -72.1642052 -72.1642054 -72.1640008 -72.16400565 -72.16400668 -72.16404668 -72.16918097 -72.16918501 -72.16918097 -72.16923457 -72.16923457 -72.16923457 -72.16938657 -72.16938657 -72.16938052 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16944983 -72.16944983 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16917189 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.16918 -72.16918</td><td>Wetland Flag ID TWF1 TWF2 TWF3 TWF4 TWF5 TWF6 TWF7 TWF8 TWF9 TWF10 TWF12 TWF13 TWF14 TWF9 TWF10 TWF11 TWF12 TWF13 TWF14 TWF15 TWF16 TWF17 TWF18 TWF20 TWF21 TWF22 TWF23 TWF24 TWF25 TWF26 TWF27 TWF28 TWF29 TWF30 TWF31 TWF32 TWF33 TWF34 TWF38 TWF39</td><td>Latitude 41.31413578 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.3144037 41.31461533 41.31461859 41.31461533 41.31461533 41.31465022 41.31406502 41.3140502 41.31490159 41.31501424 41.31508761 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520982 41.31520982 41.31557277 41.31557277 41.31561692 41.31573574 41.31573574 41.31573574<</td><td>Longitude -72.17200821 -72.17201816 -72.17201823 -72.1720382 -72.17204323 -72.17205847 -72.17205847 -72.17205897 -72.17205897 -72.17205897 -72.1720549 -72.17216793 -72.17220549 -72.17225955 -72.17229481 -72.17225955 -72.17229481 -72.1725633 -72.1725633 -72.1725633 -72.17262149 -72.1726632 -72.172694 -72.172694 -72.172694 -72.172694 -72.172804 -72.17290341 -72.17300484 -72.17300484 -72.17300484 -72.17308022 -72.17311602</td><td>А В С С В С В С С С С С С С С С С С С С</td><td></td></td>	41.31602883 41.31597279 41.31597279 41.31589106 41.31589106 41.31589106 41.31589106 41.3158971 41.31585971 41.31550571 41.31550209 41.31550209 41.31540871 41.31540871 41.31540871 41.31540871 41.31540871 41.31542145 41.31530037 41.31542145 41.3153839 41.3154263 41.31521647 41.31517039 41.31517039 41.31517039 41.31517434 41.31517434 41.31508602 41.31504809 41.31504809 41.31504809 41.31504809 41.31504809 41.31504809 41.31494283 41.31494283 41.31494283 41.314471977 41.31457609 41.31448778 41.31448778 41.314482	Longitude -72.16887672 -72.1687074 -72.1687058 -72.1686009 -72.1686009 -72.1686045 -72.1686045 -72.1685045 -72.1687119 -72.16871341 -72.16871341 -72.16871341 -72.16850097 -72.16855243 -72.16855243 -72.1685703 -72.1685703 -72.1682971 -72.1682973 -72.1682971 -72.16829833 -72.16824618 -72.16829823 -72.16815135 -72.16815135 -72.16815135 -72.1681514 -72.16815514 -72.16815514 -72.16827086 -72.16826082 -72.16826082 -72.16826082 -72.16826082 -72.16829521 -72.16826082 -72.16826082 -72.16829521 -72.16829521 -72.16829521 -72.16829521 -72.16829521 -72.16829823 -72.16826082 -72.16826082 -72.16826082 -72.16826082 -72.16826082 -72.16827882 -72.1684175 -72.16843388 -72.16843384 -72.16843384 -72.16843384 -72.16843384 -72.16845933 -72.16843384 -72.16856442 -72.1685053 -72.1685053 -72.1685053 -72.1685053 -72.16842389 -72.1685053 -72.16842389 -72.1685053 -72.1685053 -72.1685053 -72.16842389 -72.1685053 -72.1685053 -72.16842389 -72.1685053 -72.1685053 -72.1685053 -72.1685053 -72.1685053 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.16842389 -72.168	Wetland Flag 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	WETLAND A1 (Continued 41.31371536 41.31371536 41.31368649 41.31368649 41.31365862 41.31365862 41.31369713 41.31359713 41.31359713 41.31359713 41.31359713 41.31359713 41.31359238 41.31356893 41.31356893 41.31356893 41.3135646 41.31355446 41.31355446 41.31355446 41.31355446 41.31359103 41.3136039 41.31379386 41.31379386 41.31379386 41.31380739 41.31380739 41.31399703 41.31399703 41.3148026 41.31490426 41.31490428 41.3144023 41.3144023 41.31443728 41.31443728 41.31458960 41.31458961 41.31458962 41.31556832 41.31556832	Longitude -72.16835567 -72.16822262 -72.16817146 -72.16813057 -72.1680872 -72.1680872 -72.1680872 -72.16790477 -72.16790477 -72.16790828 -72.16759587 -72.16759587 -72.16759587 -72.167598845 -72.16751698 -72.16751698 -72.16734814 -72.16734814 -72.16734814 -72.16734814 -72.16793465 -72.16793465 -72.16793465 -72.16790207 -72.16791974 -72.16790207 -72.1679047 -72.1679047 -72.1679047 -72.1679047 -72.1679047 -72.1679047 -72.1679558 -72.16782116 -72.1678045 -72.1678045 -72.1678045 -72.16802411 -72.16823404 -72.16823404 -72.16823404	Wetland Flag I 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168	41.3140826 41.31415723 41.31415723 41.31422606 41.31427984 41.31427984 41.31427984 41.314327984 41.314327984 41.314327984 41.314327984 41.31435709 41.3144282 41.3144282 41.3145263 41.3145263 41.3145263 41.3145263 41.3145263 41.3145263 41.31459018 41.3145929 41.3146929 41.3145928 41.3146929 41.3146929 41.31467017 41.31467017 41.31467017 41.3147781 41.3147781 41.3147781 41.31476592 41.31487966 41.31487966 41.31483574 41.31483576 41.31483576 41.31480461 41.31480461 41.31480061 41.3148059 41.3148029 <	-72.16883233 -72.1689668 -72.16896249 -72.16890655 -72.16911458 -72.16911458 -72.16911458 -72.16911458 -72.16911458 -72.16911458 -72.16911458 -72.16914106 -72.1692905 -72.1692905 -72.16925159 -72.16925209 -72.16932555 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934721 -72.16934784 -72.16934784 -72.16936794 -72.16936794 -72.16920053 -72.16920053 -72.1693013 -72.1693291 -72.1693291 -72.1693291 -72.1693885 -72.16938402 -72.16938402 -72.16938402 -72.16938402 -72.16938402 -7	Wetland Flag ID 183 184 185 186 187 188 189 190 191 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 Wetland Flag ID D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 </td <td>41.31541022 41.3153984 41.31532852 41.31532852 41.31532852 41.31518852 41.31518852 41.31518852 41.31518852 41.31518852 41.31518852 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31578182 41.315761 41.315761 41.31577834 41.31577834 41.31578182 41.31578182 41.31578182 41.31578182 41.31578182 41.3157834 41.3157834 41.3157834 41.3157833 41.31568645 41.31640256 41.31646256 41.31643054 41.31640293 41.31640293 41.31604293 41.31604293 41.3159617 41.31596454 41.31609732 4</td> <td>Longitude -72.1688986 -72.16874801 -72.16874925 -72.16874925 -72.16889541 -72.16889541 -72.16889541 -72.16419912 -72.16419912 -72.16424052 -72.1642052 -72.1642054 -72.1640008 -72.16400565 -72.16400668 -72.16404668 -72.16918097 -72.16918501 -72.16918097 -72.16923457 -72.16923457 -72.16923457 -72.16938657 -72.16938657 -72.16938052 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16944983 -72.16944983 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16917189 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.16918 -72.16918</td> <td>Wetland Flag ID TWF1 TWF2 TWF3 TWF4 TWF5 TWF6 TWF7 TWF8 TWF9 TWF10 TWF12 TWF13 TWF14 TWF9 TWF10 TWF11 TWF12 TWF13 TWF14 TWF15 TWF16 TWF17 TWF18 TWF20 TWF21 TWF22 TWF23 TWF24 TWF25 TWF26 TWF27 TWF28 TWF29 TWF30 TWF31 TWF32 TWF33 TWF34 TWF38 TWF39</td> <td>Latitude 41.31413578 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.3144037 41.31461533 41.31461859 41.31461533 41.31461533 41.31465022 41.31406502 41.3140502 41.31490159 41.31501424 41.31508761 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520982 41.31520982 41.31557277 41.31557277 41.31561692 41.31573574 41.31573574 41.31573574<</td> <td>Longitude -72.17200821 -72.17201816 -72.17201823 -72.1720382 -72.17204323 -72.17205847 -72.17205847 -72.17205897 -72.17205897 -72.17205897 -72.1720549 -72.17216793 -72.17220549 -72.17225955 -72.17229481 -72.17225955 -72.17229481 -72.1725633 -72.1725633 -72.1725633 -72.17262149 -72.1726632 -72.172694 -72.172694 -72.172694 -72.172694 -72.172804 -72.17290341 -72.17300484 -72.17300484 -72.17300484 -72.17308022 -72.17311602</td> <td>А В С С В С В С С С С С С С С С С С С С</td> <td></td>	41.31541022 41.3153984 41.31532852 41.31532852 41.31532852 41.31518852 41.31518852 41.31518852 41.31518852 41.31518852 41.31518852 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31528676 41.31578182 41.315761 41.315761 41.31577834 41.31577834 41.31578182 41.31578182 41.31578182 41.31578182 41.31578182 41.3157834 41.3157834 41.3157834 41.3157833 41.31568645 41.31640256 41.31646256 41.31643054 41.31640293 41.31640293 41.31604293 41.31604293 41.3159617 41.31596454 41.31609732 4	Longitude -72.1688986 -72.16874801 -72.16874925 -72.16874925 -72.16889541 -72.16889541 -72.16889541 -72.16419912 -72.16419912 -72.16424052 -72.1642052 -72.1642054 -72.1640008 -72.16400565 -72.16400668 -72.16404668 -72.16918097 -72.16918501 -72.16918097 -72.16923457 -72.16923457 -72.16923457 -72.16938657 -72.16938657 -72.16938052 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16945032 -72.16944983 -72.16944983 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16940483 -72.16917189 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918481 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.16918484 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.1691848 -72.16918 -72.16918	Wetland Flag ID TWF1 TWF2 TWF3 TWF4 TWF5 TWF6 TWF7 TWF8 TWF9 TWF10 TWF12 TWF13 TWF14 TWF9 TWF10 TWF11 TWF12 TWF13 TWF14 TWF15 TWF16 TWF17 TWF18 TWF20 TWF21 TWF22 TWF23 TWF24 TWF25 TWF26 TWF27 TWF28 TWF29 TWF30 TWF31 TWF32 TWF33 TWF34 TWF38 TWF39	Latitude 41.31413578 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.31420547 41.3144037 41.31461533 41.31461859 41.31461533 41.31461533 41.31465022 41.31406502 41.3140502 41.31490159 41.31501424 41.31508761 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520963 41.31520982 41.31520982 41.31557277 41.31557277 41.31561692 41.31573574 41.31573574 41.31573574<	Longitude -72.17200821 -72.17201816 -72.17201823 -72.1720382 -72.17204323 -72.17205847 -72.17205847 -72.17205897 -72.17205897 -72.17205897 -72.1720549 -72.17216793 -72.17220549 -72.17225955 -72.17229481 -72.17225955 -72.17229481 -72.1725633 -72.1725633 -72.1725633 -72.17262149 -72.1726632 -72.172694 -72.172694 -72.172694 -72.172694 -72.172804 -72.17290341 -72.17300484 -72.17300484 -72.17300484 -72.17308022 -72.17311602	А В С С В С В С С С С С С С С С С С С С	
L	NOTES:									Μ						PLANT BEACON WI DRAWING TITLE: WETLANDS AND SOIL		
M	1						PI FO	RELIMINARY R CONSTRU	- NOT CTION		A 04/27/2022 ISSUED FOR	R REVIEW		CONTR. NO -	luinor	C283-MM-Q-XE-000	DE TABLES	
BORDER, CP_ANSI	1		2	3	4	5	6	7	8	9	REV. DATE REASON FOR	ISSUE 11	PREPARED CH	ECKED APPROVED SCALE 13	SIZE AREA SYSTEM 14	DRAWING NUMBE	R REV.	

10	11	12	13	14	15	16	

Wetland Flag ID	Latitude	Longitude
183	41.31541022	-72.16888986
184	41.3153984	-72.16884463
185	41.31532852	-72.16874801
186	41.3152486	-72.16878677
187	41.31518852	-72.16874925
188	41.31517173	-72.16880833
189	41.31522528	-72.16889418
190	41.31528676	-72.16890967
404	41.31533182	-72.16889541
<u>191</u>	1	
	/ETLAND B	
И Wetland Flag ID	/ETLAND B Latitude	Longitude
И Wetland Flag ID B27	/ETLAND B Latitude 41.31560098	-72.16413841
И Wetland Flag ID B27 B28	/ETLAND B Latitude 41.31560098 41.31565274	-72.16413841 -72.16419912
И Wetland Flag ID B27	/ETLAND B Latitude 41.31560098	-72.16413841
И Wetland Flag ID B27 B28	/ETLAND B Latitude 41.31560098 41.31565274	-72.16413841 -72.16419912
И Wetland Flag ID B27 B28 B29	/ETLAND B Latitude 41.31560098 41.31565274 41.31570196	-72.16413841 -72.16419912 -72.16425056
И Wetland Flag ID B27 B28 B29 B30	/ETLAND B Latitude 41.31560098 41.31565274 41.31570196 41.31574361	-72.16413841 -72.16419912 -72.16425056 -72.16424052
И Wetland Flag ID В27 В28 В29 В30 В31	/ETLAND B Latitude 41.31560098 41.31565274 41.31570196 41.31574361 41.315761	-72.16413841 -72.16419912 -72.16425056 -72.16424052 -72.16419227
И Wetland Flag ID В27 В28 В29 В30 В31 В32	/ETLAND B Latitude 41.31560098 41.31565274 41.31570196 41.31574361 41.315761 41.31578182	-72.16413841 -72.16419912 -72.16425056 -72.16424052 -72.16419227 -72.1640354
И Wetland Flag ID В27 В28 В29 В30 В31 В32 В33	/ETLAND B Latitude 41.31560098 41.31565274 41.31570196 41.31574361 41.315761 41.31578182 41.31577834	-72.16413841 -72.16419912 -72.16425056 -72.16425056 -72.16424052 -72.16419227 -72.1640354 -72.16398808

	WETLAND D						
Wetland Flag ID	Latitude	Longitude					
D1	41.3166055	-72.16912257					
D2	41.31654623	-72.16916501					
D3	41.31646256	-72.16916509					
D4	41.31643054	-72.16918097					
D5	41.31636396	-72.16923457					
D6	41.3163109	-72.16924231					
D7	41.31624973	-72.16929009					
D8	41.31618403	-72.16932373					
D9	41.31610355	-72.16936147					
D10	41.31607101	-72.1693895					
D11	41.31604293	-72.16939062					
D12	41.31598303	-72.16938657					
D13	41.31595119	-72.16945032					
D14	41.31590483	-72.16947632					
D15	41.3159167	-72.16951374					
D16	41.31596454	-72.16952629					
D17	41.31603356	-72.16948078					
D18	41.31610953	-72.16944941					
D19	41.31609732	-72.16940483					
D20	41.31614673	-72.16936782					
D21	41.31624499	-72.16932076					
D22	41.31629878	-72.16926335					
D23	41.31633688	-72.1692396					
D24	41.316428	-72.16919477					
D25	41.3164773	-72.16917632					
D26	41.31651359	-72.16917189					
D27	41.31656977	-72.16918481					
D28	41 31658566	-72 16918102					

TIDAL WETLANDS					
Wetland Flag ID	Latitude	Longitude			
TWF1	41.31413578	-72.1720082			
TWF2	41.31420547	-72.1720127			
TWF3	41.31427714	-72.1720181			
TWF4	41.31439162	-72.1720162			
TWF5	41.31446037	-72.172038			
TWF6	41.31461859	-72.1720743			
TWF7	41.31461533	-72.1720432			
TWF8	41.31465022	-72.1720584			
TWF9	41.31475317	-72.1720742			
TWF10	41.31480722	-72.1720791			
TWF11	41.31490159	-72.1720859			
TWF12	41.31494502	-72.1720886			
TWF13	41.31501424	-72.1720979			
TWF14	41.31508761	-72.1721360			
TWF15	41.31514196	-72.1721679			
TWF16	41.31520963	-72.1722054			
TWF17	41.31523257	-72.1722189			
TWF18	41.31528693	-72.1722595			
TWF19	41.3152982	-72.1722948			
TWF20	41.31536952	-72.172351			
TWF21	41.31541614	-72.1723874			
TWF22	41.31548369	-72.172423			
TWF23	41.3155222	-72.1724573			
TWF24	41.31557277	-72.1725160			
TWF25	41.31561692	-72.1725563			
TWF26	41.31568229	-72.1726214			
TWF27	41.31573574	-72.1726563			
TWF28	41.31577933	-72.172694			
TWF29	41.3158641	-72.1727532			
TWF30	41.31591327	-72.172780			
TWF31	41.31595134	-72.1728159			
TWF32	41.31604328	-72.1728677			
TWF33	41.31610726	-72.1729006			
TWF34	41.31616787	-72.1729834			
TWF35	41.31622582	-72.1730048			
TWF36	41.31629241	-72.1730205			
TWF37	41.3163582	-72.1730331			
TWF38	41.31644144	-72.1730802			
TWF39	41.31650527	-72.1731160			

SOIL DATA POINTS							
Latitude	Longitude						
41.3138	-72.1677						
41.3138	-72.1677						
41.3152	-72.1684						
41.3152	-72.1684						
41.316	-72.1694						
41.316	-72.1694						
41.3158	-72.1642						
41.3158	-72.1642						
	Latitude 41.3138 41.3138 41.3152 41.3152 41.3152 41.316 41.316 41.3158						

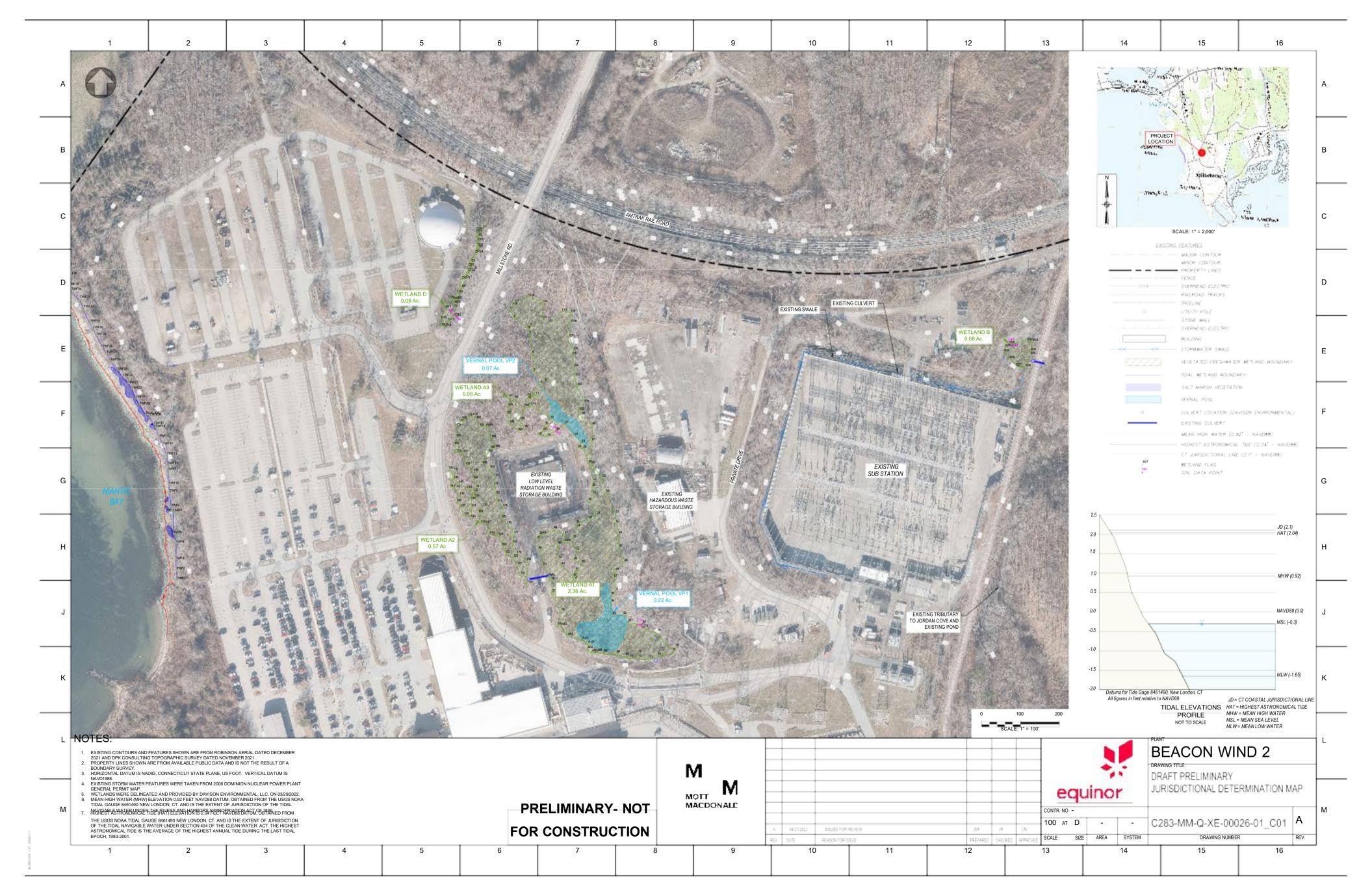


Photo credit: Matt Goldsmith, Equinor