Impact of wind turbines on bat activity: an omitted long-distance concern

Poster - February 2017
DOI: 10.13140/RG.2.2.10411.9362

CITATION
1

READS
496

5 authors, including:

Kévin Barré
Muséum National d'Histoire Naturelle
28 PUBLICATIONS 13 CITATIONS
See Profile

Isabelle Le Viol
Muséum National d'Histoire Naturelle
98 PUBLICATIONS 912 CITATIONS
See Profile

Romain Julliard
Muséum National d'Histoire Naturelle
211 PUBLICATIONS 7,407 CITATIONS
See Profile

Yves Bas
Muséum National d'Histoire Naturelle
44 PUBLICATIONS 487 CITATIONS
See Profile

Some of the authors of this publication are also working on these related projects:

- Impact of anthropic pressures and international conservation policies on Mediterranean wintering waterbirds View project
- Citizens sciences and Biodiversity in Korea View project
Impact of wind turbines on bat activity: an omitted long-distance concern

Kévin BARRÉ, Romain JULLIARD, Isabelle LE VIOL, Yves BAS and Christian KERBIRIOU
Muséum National d’Histoire Naturelle, CESCO, UMR 7204, 61 rue Buffon, 75005 Paris, France – (kevin.barre@mnhn.fr)

INTRODUCTION

Wind farm setting-up project → Impact assessment: mitigation hierarchy application → Fail in mortality mitigation

To determine the loss of habitat by revulsion according to the distance to wind turbine, we performed a sampling design focused on hedgerows, known to be a structuring habitat widely used for moving and foraging.

METHODS

34 wind farm in North-west of France

Generalized Linear/Additive Mixed Models

Activity ~ dist. to turbine + landscape variables, random = 1

Sampling design:
(i) 10 simultaneously sampled sites/night on hedgerows at 10 different distances to wind turbine
(ii) 1 farm/night
(iii) 340 sites in autumn


212 906 recorded bat passes using the Song Meter
Bat on full nights

RESULTS

Results show for all species and groups, a significant negative impact of wind farms on bat activity. We found quadratic or linear positive relationship between bat activity and distance to wind farm, without threshold effects, except for Plecotus ssp. (around 750 meters). Predicted number of bat passes from models reveals activity losses of a minimum of 50% close to wind turbines compared to a distance of 1000 m.

CONSERVATION IMPLICATIONS

Some species known to be less sensitive to wind turbines in literature (i.e. mortality) are affected by long distances, although little taken into account in impact assessment studies. The distances of establishment to edges regarding the European recommendations and our results on the activity, appear to be highly unsatisfactory. Indeed more than 73% of the 889 wind turbines of the study area, in service since the 2008 Eurobats recommendations, were implemented at less than 100 m from the edges (see figure).

This concern should be considered in mitigation reflections and implementation ways, especially in wooded countryside areas.

REFERENCES


ACKNOWLEDGEMENTS

This work was supported by DIM ASTREA grants from Région Île-de-France. We sincerely acknowledge agrosolutions for funding field fees. We also especially thank farmers who agreed us to access their fields and hedgerows.