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ARTICLE INFO ABSTRACT

Keywords: Offshore wind farms are emerging as a key power plant option for EU’s transition to net-zero emissions by 2050.
Wind farm With the growing trend of installing large turbines in multi-gigawatt farms, increasing attention is being given
Layout optimization to the visual impact perceived from the coast. This study introduces an optimization method that incorporates
Z?SA 1 visual impact as a social-acceptance indicator and the Levelized Cost of Energy to provide a comprehensive

Visual impact techno-economic sustainability assessment for offshore wind projects. The method resolves a multi-objective
LCOE and multi-constrained wind farm layout optimization problem in a designated marine area. The number of
turbines is one of the independent variables in each studied wind farm and multiple points of observation
from the shoreline are contributing to the evaluation on visual impact. The case study is represented by a
virtual wind farm located in the Mediterranean Sea, with 15 MW turbines. The results yield a Pareto front,
with the trade-off solution represented by a farm with 13 turbines, distributed regularly, and a Levelized Cost
of Energy of 110.73 €/MWh. Additionally, four comparative analyses are performed to evaluate the effect of
(i) different turbine sizes, (ii) different wake loss models, (iii) different wind data source and (iv) different
wind farm areas.

Wind energy

1. Introduction projects allocation rounds [6]. Significant concerns about visual dis-

amenities, which may also affect tourism, continue to be a focal point

To achieve the target of net zero emissions [1], underlined by the
REpowerEU plan [2], the European Commission foresees an instal-
lation capacity of 300 GW for offshore wind by 2050 [3]. Interest
in the development of offshore wind technologies is driven by the
availability and quality of the wind energy source. Additionally, eco-
nomic sustainability of this technology is expected to grow by using
fewer but larger wind turbines (WTs), which reduces costs associated
with installation, substructures and maintenance. Larger turbines also
minimize the number of required components, such as foundations,
cables, and offshore substations, while simplifying project design. As
a result, 15 MW turbines are becoming the industry standard and some
manufacturers are exploring up to 22 MW [4].

However, offshore installations face multiple constraints as many
coastal regions are nature protection areas, due to wildlife and land-
scapes, or areas with intense anthropic activities, either economic or
social. Restrictions on areas used for human activities, such as fishing
and navigation, combined with a non-negligible Visual Impact (VI)
experienced from the coast, spark considerable public opposition to
offshore wind installations [5], and for this reason are being considered
more frequently as a key parameter in the process of offshore wind
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when presenting offshore wind farm projects to local coastal commu-
nities. In contrast, other potential impacts, such as operational noise
emissions, are of minor importance for offshore installations compared
to onshore ones [7]. Consequently, it is essential to consider those
social aspects when designing an offshore wind farm. Specifically, the
deployment of large turbines can result in a significant VI experienced
from the coast. At the same time, the effort to minimize VI may result in
highly compact turbine clusters and a consequent reduction in energy
yield due to a strong rotor-wake interaction. From the mentioned con-
siderations emerges the interest to evaluate alternative layouts beyond
the conventional regular configurations commonly adopted in offshore
installations. In regular layouts, as demonstrated by Hou et al. wind
turbine wake interaction losses can lead to a reduction of Annual
Energy Production (AEP) by approximately 15% compared to an ideal
scenario without wake-rotor interactions [8]. More complex turbine
distributions could enable greater exploitation of the wind resource
without increasing the spatial footprint of wind farms.

Therefore, the aim of this work is to build an effective layout design
method that balances both objectives by setting an adequate spacing
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of turbines to reduce VI while enabling them to operate in wake-
free conditions for most of their operational time. When proposing
alternative layouts, it is important to account for site-specific features,
such as the bathymetric profile and the distance from the coast, which
influence costs and impacts. At the same time, constraints such as the
minimum and maximum number of turbines, as well as the minimum
distance between them, must be respected. This allows the determina-
tion of an optimal layout within the available marine space perimeter,
balancing various project objectives and spatial constraints, defining a
multi-constrained and multi-objective optimization problem.

Wind farm layout optimization is a widely covered topic by the
open literature to date. The various approaches differ in the objec-
tive functions chosen and in the selected optimization algorithms [9].
Many studies focus on maximizing the energy or power output of
the wind farm [10], while others introduce methods to calculate in-
stallation and maintenance costs of the latter, to evaluate economic
indicators, e.g. Net Present Value (NPV) [11] or the Levelized Cost of
Energy (LCOE) [12]. Additionally, there are various examples of multi-
objective optimizations: Chen et al. [13], consider as objectives the cost
per power unit and efficiency; Guirguis et al. [14] maximize the AEP
while minimizing land use and transmission cable length; Li et al. [15]
use the AEP, the Euclidean distance between turbines, and the layout
perimeter as objective functions; Biswas et al. [16] consider the effi-
ciency and power output of the wind farm; Moreno et al. [17] include
the occupied area, the LCOE, and the efficiency; Barnabei et al. [18]
consider the AEP and the total costs. Dinger et al. [19] integrate An-
alytical Hierarchy Process (AHP) and Geographic Information System
(GIS) tools into a multi-objective optimization that considers energy
production, costs, and environmental factors such as bird migration
paths; Kim et al. [20] use a genetic algorithm to maximize energy
production while minimizing hourly fluctuations caused by wind in-
termittency; Zhang et al. [21] optimize wind farm layout to maximize
efficiency while minimizing turbine loads, estimated through a surro-
gate model. Moreover, many different kind of algorithms are proposed
from literature: combinations of Mixed Integer Linear Programming
(MILP) models and heuristic methods [22], Self-organizing Map (SOM)
based methods [23], topology based algorithms [24], Particle Swarm
Optimization (PSO) [25], and Genetic Algorithms (GA) [18].

While these studies have provided valuable insights, certain aspects
still require further exploration. Wind farm layout optimization often
focuses solely on turbine placement while keeping the total farm size
fixed. In contrast, in this study the wind farm size is an optimization
output, and it is obtained allowing the number of turbines to vary freely
within a defined range. Therefore, this study presents a method to solve
a multi-objective and multi-constrained layout optimization problem,
aiming to maximize economic return, reducing LCOE, and minimize
VI experienced by coastal communities without fixing the nominal
power of the wind farm. The selection of LCOE and VI as the objective
functions for the optimization algorithm is driven by the inherently
adversarial nature of these targets. Minimizing LCOE typically involves
increasing the number of turbines, as this increases AEP more than the
associated costs. However, the same action simultaneously maximizes
VI, saturating the field of view. On the other hand, a reduction in VI
can be achieved by decreasing the number of turbines and arranging
them in rows. However, this leads to increased wake losses and reduced
AEP, which in turn drives up LCOE. For this purpose, the method relies
on the non-deterministic genetic algorithm NSGA II [26], implemented
in the open-source Python library PyMoo [27]. NSGA II generates a
population of individuals (representing possible wind farm layouts)
and allows them to evolve over generations, minimizing the values
of the two objective functions of the problem (i.e., VI and LCOE).
For a fixed external perimeter of the selected marine space, each
layout represents a potential wind farm configuration characterized by
a different number of turbines and their positions. Problem constraints
are set on the minimum and maximum number of turbines, and the
minimum distance between them. For each feasible layout, the LCOE
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is obtained by calculating the energy production over the life cycle of
the facility and the discounted costs of CAPital EXpenditures (CAPEX)
and OPerational EXpenditures (OPEX).

A strict requirement in layout optimization problems is the need
to model the effects of wake-induced velocity reduction in order to
evaluate the AEP of different configurations. This requirement can
be met by adopting two alternative methods: Computational Fluid
Dynamics (CFD) based tools and reduced-order analytical models. The
former guarantees a high level of accuracy at the expense of highly
demanding computational efforts. Hence, it is inferred that they are
not well-suited for layout optimization purposes, which requires a
high amount of different time-efficient evaluations of produced energy
in extensive wind farms across numerous iterations. Reduced-order
wake models, on the other hand, can easily tackle this computational
challenge. Their definition and validation remain an open issue: since
the introduction of the first linear wake expansion model proposed by
Jensen in 1983 [28] to date, many models have been proposed. In
particular, the most recent models advocate the modelling of velocity
defect within the wake as a Gaussian distribution in the spanwise
direction [29-31]. In the present work, the open-source tool “FLOw
Redirection and Induction in Steady State” (FLORIS) [32] is used to
estimate AEP. FLORIS includes different reduced-order wake models to
evaluate wake losses under various wind conditions to which the farm
is subjected. For the selected area, wind data is obtained from Global
Wind Atlas (GWA) [33], as a wind frequency rose. Additionally, the
AEP evaluation along the wind farm useful life incorporates a power
derating model for erosion damage suffered by the turbine blades.

The cost model is based on models available in literature, merg-
ing the contributions by Martinez [34], Myhr [35], Cavazzi [36],
Giglio [37], Allen [38] and Bjerk [39]. The model incorporates both
site-specific factors and turbine positioning considerations, including
the depth at each location to evaluate mooring costs. Other site-
dependent factors are included, such as the distance to the shore to
evaluate the export cable cost and the distance from the deployment
port to estimate installation costs.

The visual impact is assessed with the model proposed by Gonzalez
et al. [40], enhanced to evaluate VI from multiple observation points
and considering the orientation of each turbine.

Weaknesses and measurement inaccuracies of the proposed method
are certainly present, mainly due to the wake model’s low fidelity and
the variability in wind source data. Nevertheless, these choices were
necessary to handle the complexity of such a large-scale optimization
problem, where the number of possible layouts makes computational
efficiency a priority. The developed method is particularly relevant
for early-stage industrial wind farm design and large-scale marine
spatial planning, offering a practical tool for decision-making. Unlike
traditional approaches based solely on technical-economic assessments
through LCOE, it also incorporates social considerations, introducing
a novel perspective in the industrial context. By providing a struc-
tured approach to optimizing offshore wind farm layouts, this study
contributes to improving resource planning and informing energy poli-
cies, offering insights that align with industry needs and facilitate the
large-scale deployment of offshore wind projects.

The present paper is organized as follows: Section 2 describes the
methods used. Specifically, Section 2.1 presents the problem formula-
tion and its implementation using NSGA II. Section 2.2 describes the
visual impact model, Section 2.3 the wind farm performance model,
and Section 2.4 the cost model (both for CAPEX and OPEX). Section 3
introduces the case study, with a description of the specific optimiza-
tion parameters, wind conditions, bathymetric profile, and locations of
observation points, offshore substation, and reference port. Section 4
illustrates the main quantitative findings and presents sensitivity and
scalability analyses. Finally, Section 5 summarizes the conclusions of
the paper.
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2. Methods

The following section presents the optimization method, providing
details of the implemented genetic algorithm and comprehensive def-
initions of the objective functions, describing VI, AEP and costs (thus
LCOE) models.

2.1. Problem and algorithm description

The implemented optimization algorithm creates an initial random
population of individuals, each representing a potential layout. The
subsequent generations are then evolved by selecting individuals that
demonstrate the best fit to the objective functions. In order to apply
this method, the case study area is divided into a grid of nodes, each
corresponding to a potential location for the turbines. The individual
generated by the algorithm, given » the number of grid nodes, consists
of a binary list v = {vy, ..., v;,...,v,}, where the elements are equal to
1 if the turbine is present, zero if not. Fig. 1 shows the representation
of a layout together with its respective binary list. In the figure, black
digits represent the index position i of each node in the list, while blue
digits indicate the presence of the turbine. A bathymetric map of the
selected area, obtained from Global Wind Atlas [33], is superimposed
on this grid, with the aim of associating the depth of the water with
each position. For each layout, the following objective functions are
evaluated:

f, = LCOE
fa=VI

(€8]

where VI represents the visual impact indicator, defined in Section 2.2.
LCOE is defined as the constant price per megawatt-hour (MWh) of
energy required to recover the construction and operating costs of a
generation plant over its lifecycle, and it is expressed as follows:

ST (CAPEX, + OPEX,)(1 + 1)

LCOE = — :
S AEP,(1 4 )~

(2)

where LT is the life span of the wind farm and r is the discount rate.
The following functions act as constraints of the optimization problem:

81 * Mur — Nax <0
8 Niin — e <0 3
g3 : min{dist ;)} — Disty, <0

where n,,, is the number of turbines within each farm; N,,,, and N,,;,
are, respectively, the maximum and minimum numbers of turbines;
dist ;) is the Euclidean distance from turbine i to turbine j and Dist,,;,
represents the minimum distance to include a safety margin to account
for floater moorings and operations safety.

Following the random creation of the first generation, the evalua-
tion of individuals is carried out using the criterion outlined in [41].
Dominant individuals, also known as Pareto optimal, are those that
meet all constraints and for which there is no other individual capable
of outperforming them in both objective functions. Between two of such
individuals, to preserve diversity, the one belonging to a less dense area
in the space defined by f, and f, is preferred [41]. Once selected,
the parents are mated with each other through the Binary Crossover
mechanism illustrated in [42]. Thus, for each individual created, a
mutation occurs with a probability determined by the P, parameter.
The probability that the ith element of the binary array that describes
the individual undergoes mutation is given by the P,, parameter. The
offspring generated are compared with the parent generation, and the
best individuals from both groups are selected to compose the next
generation. The number of individuals in each generation remains
constant from the first to the last. This whole process is repeated until
the last generation is created.
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Fig. 2. Hypervolume, dominated and non-dominated individuals representation in a
two-dimensional objective space.

The convergence of the algorithm is evaluated through the cal-
culation of the hypervolume (HV), as defined in [43], for each gen-
eration. Fig. 2 shows, with reference to what has been explained, a
two-dimensional objective space. Non-dominated individuals and dom-
inated individuals are respectively reported in red and blue. In yellow
is highlighted the HV area in the case where the reference point is set to
(1.2,1.2). The dominated individuals do not contribute to the increase
of HV, that is a global indicator of the quality of the solutions found.

2.2. Visual impact model

Visual impact is quantified using a model derived from [40]. In
this work, multiple observation points are considered, and for each of
them, the Visual Impact (VI) indicator, as defined below, is calculated.
The algorithm starts determining the portion of the Field of View
(FoV) occupied by the turbines, as represented in Fig. 3, specifically by
projecting them onto the Surface of Projection (SoP), whose coordinates
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Fig. 3. Projections of the turbines within the FoV.

Fig. 4. Geometric representation of visibility analysis, according to [40].

are defined according to [40] as:

1207
Xrov = g ]
4)

Zpov = W [m]
180
The main distances and angle used in the next steps are represented
in Fig. 4. The distance of the horizon from the observation point (/,,,)
can be expressed, as a function of the observation point height (4,,,),
by the following formula:

Ihor = R¥hor = R arccos < 5)

R

R+ hobs >
where y;,,, is the angle between the horizon and the observation point,
while R represents the Earth radius, estimated as 6.6371 x 10° km. In
case the turbine is located beyond /,,,, it is necessary to consider the
effect of the Earth’s curvature. As a result, a portion (h?‘idde“) of the
height of the vertical projection of the turbine (,) will be obscured
from the observers’ view. Therefore, the length of the visible projection
can be evaluated as:

ht +r - h?idden
z; = l—

i

(6)

where r, is the rotor radius and /; represents the distance from the ith
turbine to the observation point. h}.“dde“ can be computed as:

phidden — —I_R -R ™
cos (;l - Yhor)

The reference model [40] is extended to include the dependency of the
width of the horizontal projection of the rotor on the orientation of the
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rotors, as they point the axis in the direction of the upcoming wind.
Therefore, the horizontal extent of the ith turbine is found as a function
of the wind direction () as:

3 = 2 cos(p!®) ®

i
1]
with D being the rotor diameter and (pf"t =6 — y;, where

X, —x
v, = arctan <’—°bs> 9
Y; — Yobs

being X; and Y; the geographical coordinates of the turbine and x,,,
and y,,, the coordinates of the observation point. Finally, considering
that the SoP is cylindrical, the coordinate of the ith turbine (X is"P ) on
the SoP is obtained:

Xl.SOP = y; — arctan <—xc — Xobs > (10)
Ye = Yobs

where (x,, y.) represents the position of the centre of the wind farm.
From the coordinate of the single turbine on the SoP (X ,.S"P ) and the
horizontal extension of the surrounding rectangle (x;), the total area (A)
can be computed. Specifically, A is the union of rectangles representing
the approximated area occupied by each turbine on the SoP for the
jth wind direction. Finally, visual impact is calculated for each of the
12 wind directions considered, and then multiplied by the frequency
of occurrence of that direction, denoted as f(6), through the following
formula:

XA TG)

XFovYFOv

VI (1D

Fig. 3 illustrates how the FoV portion is occupied by the turbines
and how their orientation affects the horizontal footprint.

When multiple observation points are considered, final VI is ob-
tained by averaging the values calculated at each point. If all points
are equally important as in this work, a simple arithmetic mean is used;
otherwise, a weighted mean is applied to reflect their varying signifi-
cance. A possible further extension of the model is to apply a weighting
methodology based on the so-called “Spanish method” [44], which
accounts for factors such as public exposure, landscape relevance, and
social acceptance.

Fig. 5 provides a view of a sample wind farm consisting of 20
wind turbines, each with a capacity of 15 MW. In particular, Fig. 5(a)
shows the locations of the turbines and the various observation points.
Meanwhile, Fig. 5(b) provides a rendered visualization of the same
wind farm along the horizon line from a point located 9 km from the
centre of the farm.

2.3. Annual Energy Production model

FLORIS library [32] is used to compute the velocity field and the An-
nual Energy Production (AEP) of the wind farm corresponding to each
individual. FLORIS is an open source tool developed by the National
Renewable Energy Laboratory (NREL) and TU Delft to model turbine
rotor-wake interactions within a wind farm using engineering wake
models. In particular it is based on a discretization of the spatial domain
through a grid of points located on the rotor plane. This approach
accounts for heterogeneous inflow conditions due to the wind speed
profile and the potential partial wake effects from upwind turbines by
computing a spatially weighted average of the wind speeds across the
grid points. This method allows for fast computation of the velocity
fields and consequently of the farm’s power production under each
wind condition. This tool has been validated in terms of the prediction
of power and velocity deficits due to WT wake, comparing its results
with those obtained by large eddy simulations (LES) performed with
SOWFA (Simulator fOr Wind Farm Applications) and with Supervisory
Control and Data Acquisition (SCADA) data [31,45].

Several wake models are available in FLORIS. Among them, the
Gauss Curl Hybrid model (GCH) is used in this work, setting up the
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(a) Observation points and their relative posi-

tioning along the coastline.

(b) Rendered representation of the wind farm along the horizon line.

Fig. 5. Visualization of observation points and wind farm arrangement along the horizon line.

model parameters as reported in [46]. It combines the advantages of
the Gaussian model of Bastankhah and Porté-Agel [29] and Niayifar
and Porté-Agel [30] derived from the Gaussian approximation of the
wake, and the Curl model described in [47] which adds information
regarding the presence of vortices.

The streamwise velocity u; is defined by the function:
=9 @zp)?

=1-Ce ¥ ¢ 2 12)

ug(x,y,z)
U,

o

where U, is the freestream velocity, 6 the wake deflection, ¢, and o,
the wake width in the y and z directions respectively, z, the hub height
and C is the velocity deficit, defined as:

Cr (0,0
c:1_1/1_M 13)
6,0,

being C; the trust coefficient which is function of U, through the
turbine thrust characteristic curve. The subscript “0” refers to the
values at the beginning of the far wake, that corresponds to the point
at which self-similarity is achieved [29]:

Xq cos y(1 ++4/1—=C7p)

0= (14)

\/2 [4aTI +25(1 - M)]

here y is the yaw offset, assumed to be zero; a and p are fixed
parameters set to 0.58 and 0.077 respectively, and T'I is the turbulence
intensity.

The wake widths can be estimated through:

[0} X — X (o2 (o} u
==k, 04220 where -2 = L S (15)
D D D D 2\ U, +u
X —X o o [0
By =k, 5 0 +3y0 where %0 = %Ocosy (16)

where uy, is the flow velocity immediately after the rotor, u, the velocity
at the start of the far wake region, and k, and k, are the wake expan-
sion rates in the lateral and vertical directions respectively. Assuming
identical expansion rates in both lateral and vertical directions, these
latter two parameters are set to be the same and derived from T1:

ky, =k, TI+k, a7n

With k, = 0.38 and k, = 0.004.

T1 is calculated as a function of the ambient turbulence intensity
and considering an extra component accounting for the influence of
upstream turbines operations, as proposed in [30,48]. Wake deflection
is considered as the combination of yaw misalignment, set as zero,
and rotor-boundary layer interaction, obtained by [45] from an em-
pirical relation. Wakes are finally combined with the sum-of-squares
method [49]. In order to validate the model, in the Results section,
findings obtained for the analysed case study with the aforementioned
wake model are compared with those obtained using the simpler linear
wake expansion model proposed by Jensen [28].

2.3.1. Wind turbine derating model

Another source of losses that affect the AEP of the wind farm is
given by the performance derating associated to Leading Edge Erosion
(LEE) on turbine blades. The erosion results from the high-speed col-
lisions of the blade with rain droplets and hail stones that frequently
occur during the power plant’s operational lifetime. This phenomenon
leads to a reduction in lift and an increase in the drag forces on the
blade which results in a reduction in the torque at the rotor hub and
in a decrease in the produced power. It is estimated that LEE can cause
an AEP loss ranging from 1% to 4% [50-52].

In order to include the LEE effect in the computation of AEP, in
this work, a modification of the turbine power curve is applied at a
constant rate. In particular, losses related to the last operational year
of turbines are derived from simulation results recently published in
literature, and, in particular, available from [53]. In the latter work, the
dependence of power losses with the wind speed have been computed
and reported for a 5 MW wind turbine with severely damaged blades.
This result is here assumed as occurring at the end of the turbine life.
As a first approximation, the average power loss fraction (percentage
of power loss per wind speed) at the end of turbine life is assumed to
be of the same value for a 5 MW and a 15 MW wind turbine. The value
of the power loss fraction at intermediate years is then obtained by
linear interpolation between the nominal power curve (at the first year
of operation) and the severely damaged power curve (at end of life) at
the year of interest.

2.4. Cost model

Included within capital expenditures are development and consent
costs, which cover all the pre-construction surveys, including environ-
mental, seabed and climate assessments, as well as project management
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Table 1 Table 3
Mooring components costs. Turbines installation components costs.
Parameter Value Unit Reference Parameter Value Unit Reference
iines 3 - [38] Coessel 0.012 M€/h [36]
MBLy, 22286 kN [38] Viurs 10 km/h [35]
MBL . por 9800 kN [37] Vesy 61.7 km/h [35]
Jusp-e 0.92 - [55] NE1perTrip 2 - (351
NTurPerTrip 3 - [35]
T, 48 h [34]
Table 2
Transmission components costs.
Parameter Value Unit Reference Table 4
Electric infrastructure installation components costs.
Crrcas 2.336 M€/km [34] -
Cswoys 39 ME [34] Parameter Value Unit Reference
Cloar 303.5 k€/km [34] Chruswors 20 M€ [34]
ClaExCab 0.637 M€/km [34]
Cltniare 0.115 M€/km [36]

and consent services for the project. According to [34], their value is
estimated to be 210 k€/MW. The major cost driver of CAPEX is related
to the turbine and substructure. In this study, the average cost of a wind
turbine and the semi-submersible platform are taken from [34] and set
to 1.6 ME/MW and 8 M<€ respectively. To secure the turbine and sub-
structure to the seabed, a set of three catenary mooring lines per turbine
is employed, anchored through Drag Embedment Anchors (DEA). The
cost of this configuration can be computed according to [54] as:

Cou(X, ¥) = 1y 1y15[(0.0591- M BLy,,, —87.69)H +10.198- M BL 3010, fusp_e
(18)

where n;;,,, is the number of lines per turbine, H is the chain length,
MBL,,, and MBL,,,. are the Minimum Breaking Loads of the chain
and the anchor respectively and f;;5p_e the conversion factor from
USD to €. Table 1 shows the values of these parameters.

The total cost of the electric infrastructure can be expressed, accord-
ing to [34], as:

Ci(x,») =dx, MpcayCrxcas + Nsubosr Csuvors + LinarrCintarr 19)

where d(x,y) is the distance from the shore and ng,c,, and ng,or ¢
are the number of export cables and offshore substations respectively.
The number of export cables (np,¢,;) is determined by assuming one
cable every 300 MW of farm power. I}, 4. is the length of inter array
cables, while the costs of export cables, offshore substation and inter
array cables are denoted as Cg,cup, Csuposr @nd Cyy 4, and their values
are provided in Table 2.

Installation costs are modelled as proposed by [34], incorporating
adjustments suggested by [35]. In particular, the tower and floater are
assumed to be preassembled onshore and transported on site by an
Anchor Handling Tug Supply (AHTS) vessel, while the turbines are
carried through a Platform Supply Vessel (PSV). The cost calculation
is expressed as follows:

2d(x,y)

2d(x, y)
CInTur = Cvessel 1%
AHTS

NTyipsFI + V—nTriprur + Liphyy (20)
PSV
where C,,,,,; is the charter cost of a generic installation vessel, V1
and Vpg, are the velocities of AHTS and PSV, T,, is installation time
and nr,;,.p and ny, e, are the number of trips needed to transport
floaters and turbines respectively. These last two values are com-
puted knowing the number of floaters and turbines that the boats can
transport (nFlPerTrip and ”TurPerTrip) as:
nﬂ

NyipsFl = ——— (21)
’ NEPerTrip

_ Ptur
=_wr (22)

Ny ing
TripsTur nTurPerTrip

being ny, the total number of floaters, same as n,,,. Table 3 lists the
adopted quantities.

Installation costs of electric infrastructures is given by [34]:

Crnetec = Crusubof f + Cruexcas * lExcab * "Excab + Cintnarr  Linare  (23)

here Cj,su0/rs Crnexcar @04 Cpypya, are installation costs of the
offshore substations, the export cables and the inter array cables respec-
tively, while /;,, 4. and /g,c,, are the length of inter array and export
cables. The values are reported in Table 4.

The installation cost of the mooring system is set to 240 k€ per
turbine as estimated in [34].

The decommissioning process consists of a reverse assembly process
in which the components are dismantled, allowing for the sale of scrap
metal and generating a minimal return. The value of the revenue is
assumed as in the WindFloat project [39] as 230 k€/MW.

OPEX are influenced the most by the farm’s location, which affects
the distance between the wind farm and the maintenance facility, and
by the site’s metocean climate [54]. A value of 131 k€/MW is estimated
as provided in [36]. The initial investment cost was validated against
a planned offshore wind project along the Italian coast, showing a
discrepancy of 2% [56].

3. Case study

In this work, the outlined method is employed for a virtual case
study located in the Mediterranean Sea, 9 km off the coast of Civi-
tavecchia, Lazio. For the selected site wind data are sourced from the
Global Wind Atlas [33]. From the wind data, a wind rose associates
a joint frequency of occurrence for each combination of wind speed
and direction, referring to the height corresponding to the rotor hub.
Moreover, the wind speed profile is obtained by using the power-law
with a value of the wind shear exponent equal to 0.12. The latter
value is consistent with the literature [57] for stable atmospheric
conditions. The ambient turbulence intensity is taken from the FINO1
experiment [58], which relies on data collected from a mast positioned
in the German Bight. This data comprises a series of turbulence values
corresponding to different wind speeds. In particular, for wind speeds
around 2 m/s, TI is 14%, decreasing to 5.9% as the wind speed reaches
10 m/s. Beyond this point, TI increases due to the intensification of
wavelike motions, rising to 8.5% at wind speeds near 30 m/s.

The study area spans 20D x 20D, where D represents the rotor
diameter of the turbine, equivalent to approximately 5 km x 5 km,
and is characterized by the bathymetry shown in Fig. 6 together with
the corresponding wind rose and the substation location. Moreover,
the three numbered red crosses in figure indicate the locations of the
observation points. The area is discretized with cells of 240 m side,
leading to 441 possible locations for the turbines.

The characteristics of the site are listed in Table 5.

The values chosen for the constraints are 36 and 5 for the maximum
and minimum number of turbines respectively and 3D for the minimum
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Fig. 6. Bathymetry map and wind rose for the case study.

Table 5

Site characteristics.
Parameter Value
Most frequent wind direction 120°
Mean wind speed (at hub height) 7 m/s
Ambient turbulence intensity [58]
Depth range 100-250 m
Shore distance 9 km

Port distance 10 km

distance between them. The first generation contains 1500 possible
layout configurations and evolves for a total of 4000 generations. The
mutation is defined by P, = 0.5 and P,,, = 0.01.

The selected turbine is the IEA 15 MW [59] reference turbine, oper-
ating in the wind speed range between 3 and 25 m/s (cut-in and cut-off
wind speed). This turbine is characterized by a rotor diameter of 240 m,
an hub height of 150 m and a rated wind speed of 10.59 m/s. Moreover,
the turbine characteristic curves necessary for the calculation of the
farm’s power production under different inflow conditions, including
the power coefficient and thrust coefficient, are known. For the wind
farm, an expected lifespan of 25 years is assumed. Moreover, a discount
rate of 5% is assumed for offshore wind projects.

Results obtained using the 15 MW turbine are finally compared with
those obtained using the smaller NREL 5 MW wind turbine [60].

4. Results

Algorithm convergence is verified by evaluating the trend of the
value assumed by the hypervolume indicator, which shows negligible
variations at 4000 generations. Fig. 7(a) presents the convergence
history in terms of the hypervolume indicator, while Fig. 7(b) shows a
heatmap of the cumulative distribution of occupied positions by wind
turbines within the optimization history. Fig. 7(b) clearly highlights
how each available position has been occupied by turbines, thus each
location has been part of an individual, and evaluated. In the picture,
greater occurrence values indicate layout positions that survived the
most over the generations. The definition of the clustered regions is
in accordance with the steep growth of the HV curve in Fig. 7(a),

indicating that the Pareto front consolidated around a solid population
quite early.

Fig. 8 presents a graphical representation of the two objective func-
tions, LCOE and VI, plotted against the number of turbines. Each point
of both curves corresponds to the best-performing individual among all
generations in terms of the lowest objective function value for a given
number of turbines. Moreover, for turbine counts ranging from 5 to
19, the best-performing individuals among all generations also belong
to the final generation and, so, to the final Pareto front. In contrast,
individuals with a number of turbines greater than 19 (i.e. character-
ized by 20 WTs) do not appear in the final generation and have been
discarded by the algorithm over successive generations. In the picture,
non-optimal layouts characterized by a number of turbines greater
than 19 are represented with crosses, while layouts belonging to the
final generation are represented with circles. The blue line represents
LCOE while the red line VI. Values of both functions are normalized
by their maximum value. The LCOE curve reaches the minimum value
corresponding to the case with 19 turbines. The initial steep slope of
the curve is related to two factors: the almost direct proportionality
between AEP and the number of turbines, due to the almost absence
of wake losses, and the high impact of amortization of costs related
to base infrastructure (substation, export cables). As the number of
turbines increases, the latter factor gradually loses importance while
the magnitude of wake losses increases. This leads to flattening of the
curve until the point where the effect of the wakes completely offsets
the advantage of amortizing infrastructure expenses. Therefore, this
value represents the number of turbines that maximizes the economic
potential of the area. Conversely, the visual impact exhibits a continu-
ously rising trend together with turbines count. As shown in later Fig.
10(a), the layout with the lowest visual impact features a single row
of turbines positioned along the side farthest from the coast. Given
the length of this side and the minimum rotor-spacing constraint, five
turbines fully occupy the available space along this edge. Consequently,
as the number of turbines increases, additional turbines must be placed
in a row closer to the coast, explaining the steep increase in visual
impact when moving from five to six turbines. Conversely, further
increasing turbine count results in a smaller increment in visual impact
as additional rows are progressively filled. This process continues until
the second row is filled and so on, with subsequent rows being added



V.F. Barnabei et al.

Energy Conversion and Management 344 (2025) 120204

'106

= =
o o
S w
N Occurrences

=
o
)

] IlO2

(b) Occupied positions

Fig. 7. Convergence history.

1.2
o
£ 11
=]
21.0
2
8
>0.9
I
0.8
0 1 2 3 4 5 6
Function Evaluations e
(a) Hypervolume indicator
1.0 ° @® Optimal Layouts LCOE X
X Non-Optimal Layouts ~ ——- Vi s
d
0.8
e
0.6
[ ] [ ]
,\.\ )
0.4
[} /
R ) o
0.2
e e T .y
0.0{ @ i SR
6 8 10 12 14 16 18 20

Turbines number

Fig. 8. Normalized LCOE (blue) and VI (red) for different number of turbines.

and completed. However, as the number of turbines increases beyond
17, the algorithm progressively prioritizes the LCOE minimization,
which explains the irregular trend in the final part of the curve.

Moreover, considering results obtained in a previous work [18],
where AEP and total costs were used as objective functions, it can be
inferred that layouts characterized by the lowest LCOE values, given the
same number of turbines, are the same ones that achieve the highest
AEP values despite higher costs associated with turbine placement.
Specifically, the benefit of reducing rotor interactions by increasing the
spacing between turbines outweighs the additional costs related to the
longer cable lengths or the greater local depth of the seabed.

Fig. 9 shows the Pareto front of optimal individuals belonging
to the last generation. On the axes the two objective functions are
represented. The colour of the plotted points indicates the number of
turbines characterizing each layout. In the front there is no layout
with more than 19 turbines despite the maximum limit being set at
36 rotors. Layouts with a greater number of turbines, in fact, present
a higher VI, and, as previously explained, they turn out to be less
cost-efficient. Furthermore, the Pareto front exhibits two areas with
high sensitivity to the two objective functions: in the upper-left zone,
a significant reduction in visual impact is achieved at the expense of a
small increase in LCOE, while in the lower-right zone, the opposite is
true. Fig. 9 also highlights three points of interest: the square denotes
the point with the lowest VI (Case “a”); the triangle indicates the point

Table 6
Comparison of the optimal individuals.
Min VI Trade-off Min LCOE
Ny, 5 13 19
LCOE (€/MWh) 128.67 110.73 105.72
VI (normalized) 0 0.25 1
AEP (GWh) 232.17 603.64 895.05
Wake Losses (%) 4.57 4.56 3.18

with the lowest LCOE (Case “c”); and the cross represents the trade-off
solutions representative (Case “b”). The latter is defined as the layout
characterized by the minimum distance from the origin of the axis in
the objective space. The decision to highlight this point is to display the
most appealing solution in scenarios where the two objective functions
are of equal interest.

Fig. 10 displays these three layouts and Table 6 lists their corre-
sponding values of the objective functions. In Table 6 are also reported
AEP and wake losses, defined as the percentage of energy lost due to
interactions among the rotors.

In the layout with the minimum visual impact turbines are arranged
along the side furthest from the coast. Case “b” exhibits a regular
structure characterized by three rows of turbines. In this configuration,
turbines visually shield each other, resulting in high wake losses. Case
“c”, on the opposite, features an irregular distribution, driven by the
need to maximize the energy production and minimize the rotor-wake
interactions at the expenses of a significant VI.

Moreover, Fig. 11 provides insights into the effect of rotor orienta-
tion on visual impact. The three subplots, each corresponding to one of
the three selected individuals, illustrate the variations in visual impact
as a function of wind direction and, consequently, rotor orientation.
The blue, orange, and green lines represent, referring to Fig. 6, the
observation points “1”, “2” and “3”, respectively. The red line indicates
the visual impact averaged across the three observation points, while
the constant violet line represents the overall visual impact charac-
teristic of the individual, computed as a frequency-weighted average.
To maintain consistency with the results presented in Table 6, the
values on the y axis are normalized using a min—-max scaler, where the
minimum and maximum values correspond to the global visual impact
of the layout “a” and “c”, respectively. The curves clearly exhibit
symmetry with respect to a 180° shift in wind direction, since for two
wind directions separated by 180°, the rotor orientation remains the
same. Moreover, it can be observed that observation point 1, which is
located closer to the centre of the wind farm, consistently exhibits the
highest maximum visual impact across all layouts. More interestingly,
it also shows the largest variation in visual impact as wind direction
changes. This is due to the greater influence of horizontal turbine
visual footprint, particularly when turbines are positioned closer to
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the coastline. In addition, the curve trends remain quite similar across
the different layouts, with maximum and minimum values occurring
in the same wind directions. Finally, the average visual impact across
the observation points (red line) exhibits significant oscillations in
all three cases compared to the overall impact averaged across wind
directions. In particular, focusing on the minimum LCOE layout, for a
wind direction of 60°, the visual impact is 44% higher than the global
average.

4.1. Effect of wake model choice

Results obtained with the previously discussed Gaussian wake
model are compared with results obtained with the simpler and more
established Jensen model [28]. For this model, an uncertainty anal-
ysis is conducted in [61] using bootstrap method, comparing results
obtained with the analytical model with SCADA data from 10 offshore
wind farms. The study reports an uncertainty range of 1.4% to 5% for
9 of the 10 wind farms, with one outlier exhibiting a value of 15%.

The value of the wake expansion coefficient is set to 0.05. The
comparison is made with all parameters and constrains held constant.
Fig. 12 illustrates the two fronts of optimal individuals: in red the
individuals obtained with the GCH model, and in blue those obtained
with the Jensen model. The VI values are normalized against the
maximum obtained value. The two fronts almost overlap, particularly
in the areas where the two objective functions exhibit high sensitivity.

Moreover, in the area surrounding the knee point, the two curves
diverge slightly: the Jensen model yields lower LCOE values due to its
underestimation of wake losses compared to the GCH model. In both
cases, the layouts that minimize LCOE consist of 19 turbines and result
in very similar LCOE values: 105.39 €/MWh for the Jensen model and
105.72 €/MWh for the GCH model. Moreover, the similarity of the
results obtained with the two models allows the uncertainty estimates
derived for the Jensen model in [61] to be applied to the GCH model
as well.

4.2. Effect of turbine choice

This section discusses and validates how the optimization can be
affected if a smaller size turbine model is considered in the design of the
wind farm. The NREL 5 MW reference turbine [60] is then selected to
make a comparative study for the same test case. Throughout this study,
all parameters set for optimization and constraints remain unchanged,
while the substructure used is of the spar-buoy type, the cost of which
is set at 3.74 M€ [35].

Fig. 13 displays the Pareto fronts obtained in both cases. In this
graph, the VI values are normalized against the maximum value of
the results obtained considering the 15 MW turbine. Layouts featuring
15 MW turbines are indicated with circles, while those using 5 MW
turbines are marked with crosses. The colour of the markers indicates
the number of turbines. The graph confirms the economic advantage
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of installing larger turbines. This choice, in fact, allows for significant
reduction in infrastructure and installation costs. On the other hand,
the size of the turbines significantly affects their visual impact from the
coast: configurations with 36 turbines of 5 MW have a visual impact
that is comparable to configurations with less than half that number
of 15 MW turbines. Furthermore, the layout with the lowest LCOE
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Fig. 13. Comparison of the Pareto fronts from individuals defined by different turbine
models: IEA 15 MW (circle), NREL 5 MW (cross).

(169.05 €/MWh) in the case of choosing 5 MW turbines presents 36
turbines, corresponding to the maximum number allowed by the con-
straints of the problem. This results from the reduced wake interactions
encountered with smaller rotors, coupled with the need to amortize
infrastructure and installation costs.
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4.3. Effect of using different wind data sources

This section discusses the impact of using different data sources
on the optimization results. In addition to the statistical data de-
rived from the Global Wind Atlas, historical wind data from the ERA5
database [62] are also used. For the latter, ten years of wind data
are retrieved, including the east-west and north-south wind speed
components at a height of 100 m. From these components, time series
of wind direction and wind speed at hub height are derived using the
power law with an exponent of 0.12. Based on these time series, two
wind roses are generated. In the first case, the wind direction is divided
into 12 bins of 30° each, while in the second, 24 bins of 15° are used. In
both cases, wind speed bins are set to 1 m/s. Fig. 14 presents the three
resulting wind roses: the red wind rose corresponds to data from GWA,
the green wind rose represents the ERA5 dataset with 12 directional
bins, and the orange wind rose corresponds to the ERA5 dataset with
24 directional bins.

Moreover, Fig. 15 shows the Weibull distributions obtained from
the two sources. The solid line represents the distribution derived from
the GWA, while the dashed line corresponds to the one obtained from
ERAS. The latter distribution exhibits a higher peak at lower wind
speeds, indicating a greater frequency of low winds compared to GWA.
Conversely, the GWA distribution has a slightly broader tail, suggesting
a higher probability of stronger wind events. In particular, as shown in
the figure, the GWA distribution is characterized by a shape parameter
of 1.63 and a scale parameter of 7.9, while the ERA5 distribution has
a shape parameter of 1.58 and a scale parameter of 6.49. Furthermore,
the mean wind speed obtained from GWA is 7.06 m/s, which is more
than 1 m/s higher than the value derived from ERA5, equal to 5.87 m/s.

Fig. 16 presents the fronts obtained from the three wind roses.
The red points represent the layouts derived from the GWA dataset,
the green points correspond to the layouts obtained from the ERAS5

11

dataset using 12 wind direction bins, and the orange points repre-
sent the layouts derived from the same dataset using 24 bins. The
VI values are normalized against the maximum obtained value. The
observations regarding wind speed distributions are confirmed by the
results obtained for the LCOE objective function values, as shown in
the plot. Specifically, the ERA5 historical data series, which exhibit a
higher occurrence of low wind speeds compared to the GWA dataset,
result in higher LCOE values. Moreover, using narrower wind direction
bins allows the algorithm to identify solutions with lower objective
function values, particularly in the region of the front that is highly
sensitive to LCOE and around the knee point. In contrast, in the
region characterized by high VI sensitivity, the smaller bin width leads
to an underestimation of wake losses compared to the 24-bin case,
especially for solutions with a high number of turbines. The solution
with the lowest LCOE in the ERAS5 case with 12 bins consists of 16
turbines, an AEP of 556.17 GWh, wake losses of 2.6%, and an LCOE of
147.71 €/MW. In the ERA5 case with 24 bins, the most economically
advantageous layout consists of 15 turbines, an AEP of 509.66 GWh,
wake losses of 4.8%, and an LCOE of 152.03 €/MW.

4.4. Scalability

In order to explore the scalability of the proposed method, a scal-
ability test is performed for increasing occupied sea areas. The area
of the case study is considered as the reference area (A), and three
additional optimization problems are solved, where the area increases
linearly from 0.5 A to 2 A. Each layout optimization problem presents
a discretization grid with larger side length, but the grid resolution is
kept the same. Thus, the number of available locations for the wind
turbines is increasing with the area, while the impact of the minimum
distance constraint is reducing for larger areas. Table 7 presents the
details of the four problem setups.
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Table 7
Comparison of the scalability tests.

0.5 Area 1 Area 2 Area
Area 11.52 23.04 45.96
Available locations 225 441 900
n,, (min-max) 2-13 5-19 10-21
LCOE,,, (€/MWh) 109.01 105.72 104.12
AEP,,. (GWh) 613.34 895.05 1000.04
Wake Losses,,, (%) 3.03 3.18 2.19

Fig. 17 shows the comparison of the Pareto fronts of the three
populations resulting from the scalability tests. The shape of the Pareto
fronts is in general similar amongst the three different areas. Optimal
population for the larger area is presenting reduced LCOE for equiva-
lent VI, for wind farms with a slightly larger number of turbines with
respect to the benchmark case. On the other hand, optimal population
for the smaller area is presenting, for the same LCOE, a higher VI
with a comparable number of turbines. The former is explained by
the possibility for turbines to be placed in larger numbers due to the
increased available area while still being in the furthest portion of
the wind farm with respect to the observers. The latter is explained
considering that the same number of turbines can only be placed

in a smaller area by gradually filling regions closer to the observer,
increasing VI.

The individuals for the three fronts can be compared by observing
the cumulative distributions of turbine positions for the entire Pareto
populations. Fig. 18 shows the three populations corresponding to the
three areas of the scalability test, where each heatmap is representing
on a n x n grid the discretized areas, while colour is representing the
number of occurrences a turbine occupies that specific grid position
within the whole Pareto population. It is possible to observe that the

most frequent occupied positions are in general in the same regions for
the three areas.

In Fig. 17 it is possible to highlight a cluster of individuals in
the region close to the origin representing the trade-off populations,
specifically in the LCOE range between 110 and 113 €/MWh and VI
between 0.1 and 0.2, where the three populations present individuals
with a similar number of turbines. Fig. 19 shows the cumulative layouts
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for the three different areas including individuals in the trade-off region
comprised in the aforementioned objective function range. Specifically,
the three heatmaps are counting respectively 27, 32 and 31 individuals
in the described range. In contrast with the smaller areas, the larger
area presents wind turbines concentrated in the furthest regions of the
wind farm with respect to the observers. This is due the fact that for a
comparable LCOE (and consequently number of turbines) with respect
to the others, the larger wind farm is allowing for longer parallel rows

of wind turbines that are minimizing VI being at a greater distance from
the shore.

5. Conclusion

This work addresses the optimization of offshore wind farm layouts
to support industrial-scale planning, providing a more size-agnostic
approach than traditional designs. In fact, in the proposed method
the number of turbines (thus the wind farm nominal power) is an
independent variable of the optimization problem, and an output of
the algorithm. This allows the wind farm to be better coupled with the
site given the provided constraints and objectives. Additionally, unlike
standard layouts driven primarily by economic considerations, this
approach integrates both economic and social factors, specifically the
visual impact from the coast. Given the growing importance of public
acceptance in the deployment of offshore wind energy, incorporating
social aspects into the design process is essential. To achieve this,
the multi-objective optimization algorithm NSGA-II is applied using
PyMoo, minimizing both LCOE and visual impact of a wind farm
near the port of Civitavecchia (RM). Visual impact is quantified as
the average portion of the field of view effectively occupied by the
turbines calculated from three distinct observation points located along
the coast, while the AEP estimation is made using the GCH engineering
wake model implemented in FLORIS. The constraints are set as the
minimum distance between turbines (equal to 3 diameters) and the
admissible interval of turbines (between 5 and 36). Results show that
the layout with the minimum VI consists of 5 turbines aligned along
the side furthest from the coast, with LCOE of 128.67 €/MWh, and
4.57% wake losses. The layout closer to the origin of the axes can be
considered as a representative of the trade-off region of the Pareto front
is composed of 13 turbines positioned with a regular structure, with
LCOE equal to 110.73 €/MWh, a normalized VI of 0.25 and 4.56%
wake losses. Finally, the layout with minimum LCOE is characterized
by 19 turbines irregularly positioned, with a LCOE of 105.72 €/MWh,
the maximum VI and 3.18% wake losses, reflecting the prioritization
of resource utilization over visual impact.

Additionally, four sensitivity analysis are performed to assess the
impact of changing the wake model, the turbine size, the wind data
source and the wind farm area. In the first case, the comparison of
the Pareto fronts revealed a slight difference, with LCOE values being
slightly lower when the Jensen wake model is selected instead of the
Gaussian Curl Hybrid model. The second comparison indicates that
the Pareto front shifts towards greater economic advantages when
installing 15 MW turbines instead of 5 MW turbines, while the visual
impact is significantly reduced with smaller turbines. Regarding the
impact of different wind data sources, the analysis reveals the ability
of the method to adapt to different wind speeds and directions, given
that the wind derived from ERAS5 exhibits a lower wind intensity
compared to Global Wind Atlas, leading to higher LCOE values. Fur-
thermore, the comparison between ERA5 wind discretized with 12 and

24 wind direction bins highlights that using narrower bins allows the
algorithm to identify solutions characterized by lower values of the
objective functions, particularly in the LCOE-sensitive region of the
Pareto front. However, in the high visual impact sensitivity region,
which includes layouts with a high number of turbines, the 12-bin case
underestimates wake losses compared to the 24-bin case. Finally, the
analysis performed to evaluate the adaptation capacity of the method
to variation in the size of the occupied area of the wind farm, led to
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Fig. 19. Cumulative distribution of the layouts in the trade-off region for the three different areas.

further confirmation of the behaviour of the optimizer in the trade-off
region of the function space.
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