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 A B S T R A C T

Offshore wind farms are emerging as a key power plant option for EU’s transition to net-zero emissions by 2050. 
With the growing trend of installing large turbines in multi-gigawatt farms, increasing attention is being given 
to the visual impact perceived from the coast. This study introduces an optimization method that incorporates 
visual impact as a social-acceptance indicator and the Levelized Cost of Energy to provide a comprehensive 
techno-economic sustainability assessment for offshore wind projects. The method resolves a multi-objective 
and multi-constrained wind farm layout optimization problem in a designated marine area. The number of 
turbines is one of the independent variables in each studied wind farm and multiple points of observation 
from the shoreline are contributing to the evaluation on visual impact. The case study is represented by a 
virtual wind farm located in the Mediterranean Sea, with 15 MW turbines. The results yield a Pareto front, 
with the trade-off solution represented by a farm with 13 turbines, distributed regularly, and a Levelized Cost 
of Energy of 110.73 e/MWh. Additionally, four comparative analyses are performed to evaluate the effect of 
(i) different turbine sizes, (ii) different wake loss models, (iii) different wind data source and (iv) different 
wind farm areas.
1. Introduction

To achieve the target of net zero emissions [1], underlined by the 
REpowerEU plan [2], the European Commission foresees an instal-
lation capacity of 300 GW for offshore wind by 2050 [3]. Interest 
in the development of offshore wind technologies is driven by the 
availability and quality of the wind energy source. Additionally, eco-
nomic sustainability of this technology is expected to grow by using 
fewer but larger wind turbines (WTs), which reduces costs associated 
with installation, substructures and maintenance. Larger turbines also 
minimize the number of required components, such as foundations, 
cables, and offshore substations, while simplifying project design. As 
a result, 15 MW turbines are becoming the industry standard and some 
manufacturers are exploring up to 22 MW [4].

However, offshore installations face multiple constraints as many 
coastal regions are nature protection areas, due to wildlife and land-
scapes, or areas with intense anthropic activities, either economic or 
social. Restrictions on areas used for human activities, such as fishing 
and navigation, combined with a non-negligible Visual Impact (VI) 
experienced from the coast, spark considerable public opposition to 
offshore wind installations [5], and for this reason are being considered 
more frequently as a key parameter in the process of offshore wind 
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projects allocation rounds [6]. Significant concerns about visual dis-
amenities, which may also affect tourism, continue to be a focal point 
when presenting offshore wind farm projects to local coastal commu-
nities. In contrast, other potential impacts, such as operational noise 
emissions, are of minor importance for offshore installations compared 
to onshore ones [7]. Consequently, it is essential to consider those 
social aspects when designing an offshore wind farm. Specifically, the 
deployment of large turbines can result in a significant VI experienced 
from the coast. At the same time, the effort to minimize VI may result in 
highly compact turbine clusters and a consequent reduction in energy 
yield due to a strong rotor-wake interaction. From the mentioned con-
siderations emerges the interest to evaluate alternative layouts beyond 
the conventional regular configurations commonly adopted in offshore 
installations. In regular layouts, as demonstrated by Hou et al. wind 
turbine wake interaction losses can lead to a reduction of Annual 
Energy Production (AEP) by approximately 15% compared to an ideal 
scenario without wake-rotor interactions [8]. More complex turbine 
distributions could enable greater exploitation of the wind resource 
without increasing the spatial footprint of wind farms.

Therefore, the aim of this work is to build an effective layout design 
method that balances both objectives by setting an adequate spacing 
https://doi.org/10.1016/j.enconman.2025.120204
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of turbines to reduce VI while enabling them to operate in wake-
free conditions for most of their operational time. When proposing 
alternative layouts, it is important to account for site-specific features, 
such as the bathymetric profile and the distance from the coast, which 
influence costs and impacts. At the same time, constraints such as the 
minimum and maximum number of turbines, as well as the minimum 
distance between them, must be respected. This allows the determina-
tion of an optimal layout within the available marine space perimeter, 
balancing various project objectives and spatial constraints, defining a 
multi-constrained and multi-objective optimization problem.

Wind farm layout optimization is a widely covered topic by the 
open literature to date. The various approaches differ in the objec-
tive functions chosen and in the selected optimization algorithms [9]. 
Many studies focus on maximizing the energy or power output of 
the wind farm [10], while others introduce methods to calculate in-
stallation and maintenance costs of the latter, to evaluate economic 
indicators, e.g. Net Present Value (NPV) [11] or the Levelized Cost of 
Energy (LCOE) [12]. Additionally, there are various examples of multi-
objective optimizations: Chen et al. [13], consider as objectives the cost 
per power unit and efficiency; Guirguis et al. [14] maximize the AEP 
while minimizing land use and transmission cable length; Li et al. [15] 
use the AEP, the Euclidean distance between turbines, and the layout 
perimeter as objective functions; Biswas et al. [16] consider the effi-
ciency and power output of the wind farm; Moreno et al. [17] include 
the occupied area, the LCOE, and the efficiency; Barnabei et al. [18] 
consider the AEP and the total costs. Dinçer et al. [19] integrate An-
alytical Hierarchy Process (AHP) and Geographic Information System 
(GIS) tools into a multi-objective optimization that considers energy 
production, costs, and environmental factors such as bird migration 
paths; Kim et al. [20] use a genetic algorithm to maximize energy 
production while minimizing hourly fluctuations caused by wind in-
termittency; Zhang et al. [21] optimize wind farm layout to maximize 
efficiency while minimizing turbine loads, estimated through a surro-
gate model. Moreover, many different kind of algorithms are proposed 
from literature: combinations of Mixed Integer Linear Programming 
(MILP) models and heuristic methods [22], Self-organizing Map (SOM) 
based methods [23], topology based algorithms [24], Particle Swarm 
Optimization (PSO) [25], and Genetic Algorithms (GA) [18].

While these studies have provided valuable insights, certain aspects 
still require further exploration. Wind farm layout optimization often 
focuses solely on turbine placement while keeping the total farm size 
fixed. In contrast, in this study the wind farm size is an optimization 
output, and it is obtained allowing the number of turbines to vary freely 
within a defined range. Therefore, this study presents a method to solve 
a multi-objective and multi-constrained layout optimization problem, 
aiming to maximize economic return, reducing LCOE, and minimize 
VI experienced by coastal communities without fixing the nominal 
power of the wind farm. The selection of LCOE and VI as the objective 
functions for the optimization algorithm is driven by the inherently 
adversarial nature of these targets. Minimizing LCOE typically involves 
increasing the number of turbines, as this increases AEP more than the 
associated costs. However, the same action simultaneously maximizes 
VI, saturating the field of view. On the other hand, a reduction in VI 
can be achieved by decreasing the number of turbines and arranging 
them in rows. However, this leads to increased wake losses and reduced 
AEP, which in turn drives up LCOE. For this purpose, the method relies 
on the non-deterministic genetic algorithm NSGA II [26], implemented 
in the open-source Python library PyMoo [27]. NSGA II generates a 
population of individuals (representing possible wind farm layouts) 
and allows them to evolve over generations, minimizing the values 
of the two objective functions of the problem (i.e., VI and LCOE). 
For a fixed external perimeter of the selected marine space, each 
layout represents a potential wind farm configuration characterized by 
a different number of turbines and their positions. Problem constraints 
are set on the minimum and maximum number of turbines, and the 
minimum distance between them. For each feasible layout, the LCOE 
2 
is obtained by calculating the energy production over the life cycle of 
the facility and the discounted costs of CAPital EXpenditures (CAPEX) 
and OPerational EXpenditures (OPEX).

A strict requirement in layout optimization problems is the need 
to model the effects of wake-induced velocity reduction in order to 
evaluate the AEP of different configurations. This requirement can 
be met by adopting two alternative methods: Computational Fluid 
Dynamics (CFD) based tools and reduced-order analytical models. The 
former guarantees a high level of accuracy at the expense of highly 
demanding computational efforts. Hence, it is inferred that they are 
not well-suited for layout optimization purposes, which requires a 
high amount of different time-efficient evaluations of produced energy 
in extensive wind farms across numerous iterations. Reduced-order 
wake models, on the other hand, can easily tackle this computational 
challenge. Their definition and validation remain an open issue: since 
the introduction of the first linear wake expansion model proposed by 
Jensen in 1983 [28] to date, many models have been proposed. In 
particular, the most recent models advocate the modelling of velocity 
defect within the wake as a Gaussian distribution in the spanwise 
direction [29–31]. In the present work, the open-source tool ‘‘FLOw 
Redirection and Induction in Steady State’’ (FLORIS) [32] is used to 
estimate AEP. FLORIS includes different reduced-order wake models to 
evaluate wake losses under various wind conditions to which the farm 
is subjected. For the selected area, wind data is obtained from Global 
Wind Atlas (GWA) [33], as a wind frequency rose. Additionally, the 
AEP evaluation along the wind farm useful life incorporates a power 
derating model for erosion damage suffered by the turbine blades.

The cost model is based on models available in literature, merg-
ing the contributions by Martinez [34], Myhr [35], Cavazzi [36], 
Giglio [37], Allen [38] and Bjerk [39]. The model incorporates both 
site-specific factors and turbine positioning considerations, including 
the depth at each location to evaluate mooring costs. Other site-
dependent factors are included, such as the distance to the shore to 
evaluate the export cable cost and the distance from the deployment 
port to estimate installation costs.

The visual impact is assessed with the model proposed by Gonzalez 
et al. [40], enhanced to evaluate VI from multiple observation points 
and considering the orientation of each turbine.

Weaknesses and measurement inaccuracies of the proposed method 
are certainly present, mainly due to the wake model’s low fidelity and 
the variability in wind source data. Nevertheless, these choices were 
necessary to handle the complexity of such a large-scale optimization 
problem, where the number of possible layouts makes computational 
efficiency a priority. The developed method is particularly relevant 
for early-stage industrial wind farm design and large-scale marine 
spatial planning, offering a practical tool for decision-making. Unlike 
traditional approaches based solely on technical-economic assessments 
through LCOE, it also incorporates social considerations, introducing 
a novel perspective in the industrial context. By providing a struc-
tured approach to optimizing offshore wind farm layouts, this study 
contributes to improving resource planning and informing energy poli-
cies, offering insights that align with industry needs and facilitate the 
large-scale deployment of offshore wind projects.

The present paper is organized as follows: Section 2 describes the 
methods used. Specifically, Section 2.1 presents the problem formula-
tion and its implementation using NSGA II. Section 2.2 describes the 
visual impact model, Section 2.3 the wind farm performance model, 
and Section 2.4 the cost model (both for CAPEX and OPEX). Section 3 
introduces the case study, with a description of the specific optimiza-
tion parameters, wind conditions, bathymetric profile, and locations of 
observation points, offshore substation, and reference port. Section 4 
illustrates the main quantitative findings and presents sensitivity and 
scalability analyses. Finally, Section 5 summarizes the conclusions of 
the paper.
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2. Methods

The following section presents the optimization method, providing 
details of the implemented genetic algorithm and comprehensive def-
initions of the objective functions, describing VI, AEP and costs (thus 
LCOE) models.

2.1. Problem and algorithm description

The implemented optimization algorithm creates an initial random 
population of individuals, each representing a potential layout. The 
subsequent generations are then evolved by selecting individuals that 
demonstrate the best fit to the objective functions. In order to apply 
this method, the case study area is divided into a grid of nodes, each 
corresponding to a potential location for the turbines. The individual 
generated by the algorithm, given 𝑛 the number of grid nodes, consists 
of a binary list 𝑣 = {𝑣1,… , 𝑣𝑖,… , 𝑣𝑛}, where the elements are equal to 
1 if the turbine is present, zero if not. Fig.  1 shows the representation 
of a layout together with its respective binary list. In the figure, black 
digits represent the index position 𝑖 of each node in the list, while blue 
digits indicate the presence of the turbine. A bathymetric map of the 
selected area, obtained from Global Wind Atlas [33], is superimposed 
on this grid, with the aim of associating the depth of the water with 
each position. For each layout, the following objective functions are 
evaluated: 
𝑓1 = LCOE
𝑓2 = VI

(1)

where VI represents the visual impact indicator, defined in Section 2.2. 
LCOE is defined as the constant price per megawatt-hour (MWh) of 
energy required to recover the construction and operating costs of a 
generation plant over its lifecycle, and it is expressed as follows: 

LCOE =
∑𝐿𝑇
𝑖=1(CAPEX𝑖 + OPEX𝑖)(1 + 𝑟)−𝑖

∑𝐿𝑇
𝑖=1 AEP𝑖(1 + 𝑟)−𝑖

(2)

where 𝐿𝑇  is the life span of the wind farm and 𝑟 is the discount rate. 
The following functions act as constraints of the optimization problem: 

𝑔1 ∶ 𝑛tur −𝑁max ≤ 0

𝑔2 ∶ 𝑁min − 𝑛tur ≤ 0

𝑔3 ∶ min{dist(𝑖,𝑗)} − Distmin ≤ 0

(3)

where 𝑛𝑡𝑢𝑟 is the number of turbines within each farm; 𝑁𝑚𝑎𝑥 and 𝑁𝑚𝑖𝑛
are, respectively, the maximum and minimum numbers of turbines; 
𝑑𝑖𝑠𝑡(𝑖,𝑗) is the Euclidean distance from turbine 𝑖 to turbine 𝑗 and 𝐷𝑖𝑠𝑡𝑚𝑖𝑛
represents the minimum distance to include a safety margin to account 
for floater moorings and operations safety.

Following the random creation of the first generation, the evalua-
tion of individuals is carried out using the criterion outlined in [41]. 
Dominant individuals, also known as Pareto optimal, are those that 
meet all constraints and for which there is no other individual capable 
of outperforming them in both objective functions. Between two of such 
individuals, to preserve diversity, the one belonging to a less dense area 
in the space defined by 𝑓1 and 𝑓2 is preferred [41]. Once selected, 
the parents are mated with each other through the Binary Crossover 
mechanism illustrated in [42]. Thus, for each individual created, a 
mutation occurs with a probability determined by the 𝑃𝑚1 parameter. 
The probability that the 𝑖th element of the binary array that describes 
the individual undergoes mutation is given by the 𝑃𝑚2 parameter. The 
offspring generated are compared with the parent generation, and the 
best individuals from both groups are selected to compose the next 
generation. The number of individuals in each generation remains 
constant from the first to the last. This whole process is repeated until 
the last generation is created.
3 
Fig. 1. Binary list representation of layout.

Fig. 2. Hypervolume, dominated and non-dominated individuals representation in a 
two-dimensional objective space.

The convergence of the algorithm is evaluated through the cal-
culation of the hypervolume (HV), as defined in [43], for each gen-
eration. Fig.  2 shows, with reference to what has been explained, a 
two-dimensional objective space. Non-dominated individuals and dom-
inated individuals are respectively reported in red and blue. In yellow 
is highlighted the HV area in the case where the reference point is set to 
(1.2, 1.2). The dominated individuals do not contribute to the increase 
of HV, that is a global indicator of the quality of the solutions found.

2.2. Visual impact model

Visual impact is quantified using a model derived from [40]. In 
this work, multiple observation points are considered, and for each of 
them, the Visual Impact (VI) indicator, as defined below, is calculated. 
The algorithm starts determining the portion of the Field of View 
(FoV) occupied by the turbines, as represented in Fig.  3, specifically by 
projecting them onto the Surface of Projection (SoP), whose coordinates 
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Fig. 3. Projections of the turbines within the FoV.

Fig. 4. Geometric representation of visibility analysis, according to [40].

are defined according to [40] as: 

𝑥FOV = 120𝜋
180

[m]

𝑧FOV = 40𝜋
180

[m]
(4)

The main distances and angle used in the next steps are represented 
in Fig.  4. The distance of the horizon from the observation point (𝑙ℎ𝑜𝑟) 
can be expressed, as a function of the observation point height (ℎ𝑜𝑏𝑠), 
by the following formula: 

𝑙hor = 𝑅𝛾hor = 𝑅 arccos
(

𝑅
𝑅 + ℎobs

)

(5)

where 𝛾hor is the angle between the horizon and the observation point, 
while 𝑅 represents the Earth radius, estimated as 6.6371 × 103 𝑘𝑚. In 
case the turbine is located beyond 𝑙ℎ𝑜𝑟, it is necessary to consider the 
effect of the Earth’s curvature. As a result, a portion (ℎhidden𝑖 ) of the 
height of the vertical projection of the turbine (ℎ𝑡) will be obscured 
from the observers’ view. Therefore, the length of the visible projection 
can be evaluated as: 

𝑧𝑖 =
ℎ𝑡 + 𝑟𝑡 − ℎhidden𝑖

𝑙𝑖
(6)

where 𝑟𝑡 is the rotor radius and 𝑙𝑖 represents the distance from the 𝑖th 
turbine to the observation point. ℎhidden𝑖  can be computed as: 

ℎhidden𝑖 = 𝑅

cos
(

𝑙𝑖
𝑅 − 𝛾hor

) − 𝑅 (7)

The reference model [40] is extended to include the dependency of the 
width of the horizontal projection of the rotor on the orientation of the 
4 
rotors, as they point the axis in the direction of the upcoming wind. 
Therefore, the horizontal extent of the 𝑖th turbine is found as a function 
of the wind direction (𝜃) as: 

𝑥𝑖 =
𝐷
𝑙𝑖

cos(𝜑rot𝑖 ) (8)

with 𝐷 being the rotor diameter and 𝜑rot𝑖 = 𝜃 − 𝜓𝑖, where 

𝜓𝑖 = arctan
(

𝑋𝑖 − 𝑥obs
𝑌𝑖 − 𝑦obs

)

(9)

being 𝑋𝑖 and 𝑌𝑖 the geographical coordinates of the turbine and 𝑥𝑜𝑏𝑠
and 𝑦𝑜𝑏𝑠 the coordinates of the observation point. Finally, considering 
that the 𝑆𝑜𝑃  is cylindrical, the coordinate of the 𝑖th turbine (𝑋𝑆𝑜𝑃

𝑖 ) on 
the 𝑆𝑜𝑃  is obtained: 

𝑋SoP
𝑖 = 𝜓𝑖 − arctan

(

𝑥𝑐 − 𝑥obs
𝑦𝑐 − 𝑦obs

)

(10)

where (𝑥𝑐 , 𝑦𝑐) represents the position of the centre of the wind farm. 
From the coordinate of the single turbine on the SoP (𝑋𝑆𝑜𝑃

𝑖 ) and the 
horizontal extension of the surrounding rectangle (𝑥𝑖), the total area (𝐴) 
can be computed. Specifically, 𝐴 is the union of rectangles representing 
the approximated area occupied by each turbine on the 𝑆𝑜𝑃  for the 
𝑗th wind direction. Finally, visual impact is calculated for each of the 
12 wind directions considered, and then multiplied by the frequency 
of occurrence of that direction, denoted as 𝑓 (𝜃), through the following 
formula: 

VI =
∑12
𝑗=1 𝐴𝑗 ⋅ 𝑓 (𝜗𝑗 )

𝑥FOV𝑦FOV
(11)

Fig.  3 illustrates how the FoV portion is occupied by the turbines 
and how their orientation affects the horizontal footprint.

When multiple observation points are considered, final VI is ob-
tained by averaging the values calculated at each point. If all points 
are equally important as in this work, a simple arithmetic mean is used; 
otherwise, a weighted mean is applied to reflect their varying signifi-
cance. A possible further extension of the model is to apply a weighting 
methodology based on the so-called ‘‘Spanish method’’ [44], which 
accounts for factors such as public exposure, landscape relevance, and 
social acceptance.

Fig.  5 provides a view of a sample wind farm consisting of 20 
wind turbines, each with a capacity of 15 MW. In particular, Fig.  5(a) 
shows the locations of the turbines and the various observation points. 
Meanwhile, Fig.  5(b) provides a rendered visualization of the same 
wind farm along the horizon line from a point located 9 km from the 
centre of the farm.

2.3. Annual Energy Production model

FLORIS library [32] is used to compute the velocity field and the An-
nual Energy Production (AEP) of the wind farm corresponding to each 
individual. FLORIS is an open source tool developed by the National 
Renewable Energy Laboratory (NREL) and TU Delft to model turbine 
rotor-wake interactions within a wind farm using engineering wake 
models. In particular it is based on a discretization of the spatial domain 
through a grid of points located on the rotor plane. This approach 
accounts for heterogeneous inflow conditions due to the wind speed 
profile and the potential partial wake effects from upwind turbines by 
computing a spatially weighted average of the wind speeds across the 
grid points. This method allows for fast computation of the velocity 
fields and consequently of the farm’s power production under each 
wind condition. This tool has been validated in terms of the prediction 
of power and velocity deficits due to WT wake, comparing its results 
with those obtained by large eddy simulations (LES) performed with 
SOWFA (Simulator fOr Wind Farm Applications) and with Supervisory 
Control and Data Acquisition (SCADA) data [31,45].

Several wake models are available in FLORIS. Among them, the 
Gauss Curl Hybrid model (GCH) is used in this work, setting up the 
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Fig. 5. Visualization of observation points and wind farm arrangement along the horizon line.
model parameters as reported in [46]. It combines the advantages of 
the Gaussian model of Bastankhah and Porté-Agel [29] and Niayifar 
and Porté-Agel [30] derived from the Gaussian approximation of the 
wake, and the Curl model described in [47] which adds information 
regarding the presence of vortices.

The streamwise velocity 𝑢𝐺 is defined by the function: 

𝑢𝐺(𝑥, 𝑦, 𝑧)
𝑈∞

= 1 − 𝐶𝑒
− (𝑦−𝛿)2

2𝜎2𝑦 𝑒
− (𝑧−𝑧ℎ )

2

2𝜎2𝑧 (12)

where 𝑈∞ is the freestream velocity, 𝛿 the wake deflection, 𝜎𝑦 and 𝜎𝑧
the wake width in the 𝑦 and 𝑧 directions respectively, 𝑧ℎ the hub height 
and 𝐶 is the velocity deficit, defined as: 

𝐶 = 1 −

√

1 −
𝐶𝑇 (𝜎𝑦0𝜎𝑧0)

𝜎𝑦𝜎𝑧
(13)

being 𝐶𝑇  the trust coefficient which is function of 𝑈∞ through the 
turbine thrust characteristic curve. The subscript ‘‘0’’ refers to the 
values at the beginning of the far wake, that corresponds to the point 
at which self-similarity is achieved [29]: 
𝑥0
𝐷

=
cos 𝑦(1 +

√

1 − 𝐶𝑇 )
√

2
[

4𝛼𝑇 𝐼 + 2𝛽(1 −
√

1 − 𝐶𝑇 )
]

(14)

here 𝑦 is the yaw offset, assumed to be zero; 𝛼 and 𝛽 are fixed 
parameters set to 0.58 and 0.077 respectively, and 𝑇 𝐼 is the turbulence 
intensity.

The wake widths can be estimated through: 
𝜎𝑧
𝐷

= 𝑘𝑧
𝑥 − 𝑥0
𝐷

+
𝜎𝑧0
𝐷

where
𝜎𝑧0
𝐷

= 1
2

√

𝑢𝑅
𝑈∞ + 𝑢0

(15)

𝜎𝑦
𝐷

= 𝑘𝑦
𝑥 − 𝑥0
𝐷

+
𝜎𝑦0
𝐷

where
𝜎𝑦0
𝐷

=
𝜎𝑧0
𝐷

cos 𝑦 (16)

where 𝑢𝑅 is the flow velocity immediately after the rotor, 𝑢0 the velocity 
at the start of the far wake region, and 𝑘𝑦 and 𝑘𝑧 are the wake expan-
sion rates in the lateral and vertical directions respectively. Assuming 
identical expansion rates in both lateral and vertical directions, these 
latter two parameters are set to be the same and derived from 𝑇 𝐼 : 
𝑘𝑦,𝑧 = 𝑘𝑎𝑇 𝐼 + 𝑘𝑏 (17)

With 𝑘 = 0.38 and 𝑘 = 0.004.
𝑎 𝑏
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𝑇 𝐼 is calculated as a function of the ambient turbulence intensity 
and considering an extra component accounting for the influence of 
upstream turbines operations, as proposed in [30,48]. Wake deflection 
is considered as the combination of yaw misalignment, set as zero, 
and rotor-boundary layer interaction, obtained by [45] from an em-
pirical relation. Wakes are finally combined with the sum-of-squares 
method [49]. In order to validate the model, in the Results section, 
findings obtained for the analysed case study with the aforementioned 
wake model are compared with those obtained using the simpler linear 
wake expansion model proposed by Jensen [28].

2.3.1. Wind turbine derating model
Another source of losses that affect the AEP of the wind farm is 

given by the performance derating associated to Leading Edge Erosion 
(LEE) on turbine blades. The erosion results from the high-speed col-
lisions of the blade with rain droplets and hail stones that frequently 
occur during the power plant’s operational lifetime. This phenomenon 
leads to a reduction in lift and an increase in the drag forces on the 
blade which results in a reduction in the torque at the rotor hub and 
in a decrease in the produced power. It is estimated that LEE can cause 
an AEP loss ranging from 1% to 4% [50–52].

In order to include the LEE effect in the computation of AEP, in 
this work, a modification of the turbine power curve is applied at a 
constant rate. In particular, losses related to the last operational year 
of turbines are derived from simulation results recently published in 
literature, and, in particular, available from [53]. In the latter work, the 
dependence of power losses with the wind speed have been computed 
and reported for a 5 MW wind turbine with severely damaged blades. 
This result is here assumed as occurring at the end of the turbine life. 
As a first approximation, the average power loss fraction (percentage 
of power loss per wind speed) at the end of turbine life is assumed to 
be of the same value for a 5 MW and a 15 MW wind turbine. The value 
of the power loss fraction at intermediate years is then obtained by 
linear interpolation between the nominal power curve (at the first year 
of operation) and the severely damaged power curve (at end of life) at 
the year of interest.

2.4. Cost model

Included within capital expenditures are development and consent 
costs, which cover all the pre-construction surveys, including environ-
mental, seabed and climate assessments, as well as project management 
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Table 1
Mooring components costs.
 Parameter Value Unit Reference 
 𝑛𝑙𝑖𝑛𝑒𝑠 3 – [38]  
 𝑀𝐵𝐿𝑙𝑖𝑛𝑒𝑠 22286 kN [38]  
 𝑀𝐵𝐿𝑎𝑛𝑐ℎ𝑜𝑟 9800 kN [37]  
 𝑓𝑈𝑆𝐷−𝑒 0.92 – [55]  

Table 2
Transmission components costs.
 Parameter Value Unit Reference 
 𝐶𝐸𝑥𝐶𝑎𝑏 2.336 Me/km [34]  
 𝐶𝑆𝑢𝑏𝑂𝑓𝑓 39 Me [34]  
 𝐶𝐼𝑛𝑡𝐴𝑟𝑟 303.5 ke/km [34]  

and consent services for the project. According to [34], their value is 
estimated to be 210 ke/MW. The major cost driver of CAPEX is related 
to the turbine and substructure. In this study, the average cost of a wind 
turbine and the semi-submersible platform are taken from [34] and set 
to 1.6 Me/MW and 8 Me respectively. To secure the turbine and sub-
structure to the seabed, a set of three catenary mooring lines per turbine 
is employed, anchored through Drag Embedment Anchors (DEA). The 
cost of this configuration can be computed according to [54] as: 

𝐶𝑚(𝑥, 𝑦) = 𝑛𝑡𝑢𝑟𝑛𝑙𝑖𝑛𝑒𝑠[(0.0591⋅𝑀𝐵𝐿𝑙𝑖𝑛𝑒𝑠−87.69)𝐻+10.198⋅𝑀𝐵𝐿𝑎𝑛𝑐ℎ𝑜𝑟]⋅𝑓𝑈𝑆𝐷−e

(18)

where 𝑛𝑙𝑖𝑛𝑒𝑠 is the number of lines per turbine, 𝐻 is the chain length, 
𝑀𝐵𝐿𝑙𝑖𝑛𝑒𝑠 and 𝑀𝐵𝐿𝑎𝑛𝑐ℎ𝑜𝑟 are the Minimum Breaking Loads of the chain 
and the anchor respectively and 𝑓𝑈𝑆𝐷−e the conversion factor from 
USD to e. Table  1 shows the values of these parameters. 

The total cost of the electric infrastructure can be expressed, accord-
ing to [34], as: 

𝐶𝑡(𝑥, 𝑦) = 𝑑(𝑥, 𝑦)𝑛𝐸𝑥𝐶𝑎𝑏𝐶𝐸𝑥𝐶𝑎𝑏 + 𝑛𝑆𝑢𝑏𝑂𝑓𝑓𝐶𝑆𝑢𝑏𝑂𝑓𝑓 + 𝑙𝐼𝑛𝑡𝐴𝑟𝑟𝐶𝐼𝑛𝑡𝐴𝑟𝑟 (19)

where 𝑑(𝑥, 𝑦) is the distance from the shore and 𝑛𝐸𝑥𝐶𝑎𝑏 and 𝑛𝑆𝑢𝑏𝑂𝑓𝑓
are the number of export cables and offshore substations respectively. 
The number of export cables (𝑛𝐸𝑥𝐶𝑎𝑏) is determined by assuming one 
cable every 300 MW of farm power. 𝑙𝐼𝑛𝑡𝐴𝑟𝑟 is the length of inter array 
cables, while the costs of export cables, offshore substation and inter 
array cables are denoted as 𝐶𝐸𝑥𝐶𝑎𝑏, 𝐶𝑆𝑢𝑏𝑂𝑓𝑓  and 𝐶𝐼𝑛𝑡𝐴𝑟𝑟 and their values 
are provided in Table  2. 

Installation costs are modelled as proposed by [34], incorporating 
adjustments suggested by [35]. In particular, the tower and floater are 
assumed to be preassembled onshore and transported on site by an 
Anchor Handling Tug Supply (AHTS) vessel, while the turbines are 
carried through a Platform Supply Vessel (PSV). The cost calculation 
is expressed as follows: 

𝐶𝐼𝑛𝑇 𝑢𝑟 = 𝐶𝑣𝑒𝑠𝑠𝑒𝑙

[

2𝑑(𝑥, 𝑦)
𝑉𝐴𝐻𝑇𝑆

𝑛𝑇 𝑟𝑖𝑝𝑠𝐹 𝑙 +
2𝑑(𝑥, 𝑦)
𝑉𝑃𝑆𝑉

𝑛𝑇 𝑟𝑖𝑝𝑠𝑇 𝑢𝑟 + 𝑇𝑖𝑛𝑛𝑡𝑢𝑟

]

(20)

where 𝐶𝑣𝑒𝑠𝑠𝑒𝑙 is the charter cost of a generic installation vessel, 𝑉𝐴𝐻𝑇𝑆
and 𝑉𝑃𝑆𝑉  are the velocities of AHTS and PSV, 𝑇𝑖𝑛 is installation time 
and 𝑛𝑇 𝑟𝑖𝑝𝑠𝐹 𝑙 and 𝑛𝑇 𝑟𝑖𝑝𝑠𝑇 𝑢𝑟 are the number of trips needed to transport 
floaters and turbines respectively. These last two values are com-
puted knowing the number of floaters and turbines that the boats can 
transport (𝑛𝐹 𝑙𝑃 𝑒𝑟𝑇 𝑟𝑖𝑝 and 𝑛𝑇 𝑢𝑟𝑃 𝑒𝑟𝑇 𝑟𝑖𝑝) as: 

𝑛𝑇 𝑟𝑖𝑝𝑠𝐹 𝑙 =
𝑛𝑓𝑙

𝑛𝐹 𝑙𝑃 𝑒𝑟𝑇 𝑟𝑖𝑝
(21)

𝑛𝑇 𝑟𝑖𝑝𝑠𝑇 𝑢𝑟 =
𝑛𝑡𝑢𝑟

𝑛𝑇 𝑢𝑟𝑃 𝑒𝑟𝑇 𝑟𝑖𝑝
(22)

being 𝑛𝑓𝑙 the total number of floaters, same as 𝑛𝑡𝑢𝑟. Table  3 lists the 
adopted quantities. 
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Table 3
Turbines installation components costs.
 Parameter Value Unit Reference 
 𝐶𝑣𝑒𝑠𝑠𝑒𝑙 0.012 Me/h [36]  
 𝑉𝐴𝐻𝑇𝑆 10 km/h [35]  
 𝑉𝑃𝑆𝑉 61.7 km/h [35]  
 𝑛𝐹 𝑙𝑃 𝑒𝑟𝑇 𝑟𝑖𝑝 2 – [35]  
 𝑛𝑇 𝑢𝑟𝑃 𝑒𝑟𝑇 𝑟𝑖𝑝 3 – [35]  
 𝑇𝑖𝑛 48 h [34]  

Table 4
Electric infrastructure installation components costs.
 Parameter Value Unit Reference 
 𝐶𝐼𝑛𝑆𝑢𝑏𝑂𝑓𝑓 20 Me [34]  
 𝐶𝐼𝑛𝐸𝑥𝐶𝑎𝑏 0.637 Me/km [34]  
 𝐶𝐼𝑛𝐼𝑛𝑡𝐴𝑟𝑟 0.115 Me/km [36]  

Installation costs of electric infrastructures is given by [34]: 
𝐶𝐼𝑛𝐸𝑙𝑒𝑐 = 𝐶𝐼𝑛𝑆𝑢𝑏𝑂𝑓𝑓 + 𝐶𝐼𝑛𝐸𝑥𝐶𝑎𝑏 ⋅ 𝑙𝐸𝑥𝐶𝑎𝑏 ⋅ 𝑛𝐸𝑥𝐶𝑎𝑏 + 𝐶𝐼𝑛𝐼𝑛𝑡𝐴𝑟𝑟 ⋅ 𝑙𝐼𝑛𝑡𝐴𝑟𝑟 (23)

here 𝐶𝐼𝑛𝑆𝑢𝑏𝑂𝑓𝑓 , 𝐶𝐼𝑛𝐸𝑥𝐶𝑎𝑏 and 𝐶𝐼𝑛𝐼𝑛𝑡𝐴𝑟𝑟 are installation costs of the 
offshore substations, the export cables and the inter array cables respec-
tively, while 𝑙𝐼𝑛𝑡𝐴𝑟𝑟 and 𝑙𝐸𝑥𝐶𝑎𝑏 are the length of inter array and export 
cables. The values are reported in Table  4. 

The installation cost of the mooring system is set to 240 ke per 
turbine as estimated in [34].

The decommissioning process consists of a reverse assembly process 
in which the components are dismantled, allowing for the sale of scrap 
metal and generating a minimal return. The value of the revenue is 
assumed as in the WindFloat project [39] as 230 ke/MW.

OPEX are influenced the most by the farm’s location, which affects 
the distance between the wind farm and the maintenance facility, and 
by the site’s metocean climate [54]. A value of 131 ke/MW is estimated 
as provided in [36]. The initial investment cost was validated against 
a planned offshore wind project along the Italian coast, showing a 
discrepancy of 2% [56].

3. Case study

In this work, the outlined method is employed for a virtual case 
study located in the Mediterranean Sea, 9 km off the coast of Civi-
tavecchia, Lazio. For the selected site wind data are sourced from the 
Global Wind Atlas [33]. From the wind data, a wind rose associates 
a joint frequency of occurrence for each combination of wind speed 
and direction, referring to the height corresponding to the rotor hub. 
Moreover, the wind speed profile is obtained by using the power-law 
with a value of the wind shear exponent equal to 0.12. The latter 
value is consistent with the literature [57] for stable atmospheric 
conditions. The ambient turbulence intensity is taken from the FINO1 
experiment [58], which relies on data collected from a mast positioned 
in the German Bight. This data comprises a series of turbulence values 
corresponding to different wind speeds. In particular, for wind speeds 
around 2 m/s, TI is 14%, decreasing to 5.9% as the wind speed reaches 
10 m/s. Beyond this point, TI increases due to the intensification of 
wavelike motions, rising to 8.5% at wind speeds near 30 m/s.

The study area spans 20𝐷 × 20𝐷, where D represents the rotor 
diameter of the turbine, equivalent to approximately 5 km × 5 km, 
and is characterized by the bathymetry shown in Fig.  6 together with 
the corresponding wind rose and the substation location. Moreover, 
the three numbered red crosses in figure indicate the locations of the 
observation points. The area is discretized with cells of 240 m side, 
leading to 441 possible locations for the turbines.

The characteristics of the site are listed in Table  5. 
The values chosen for the constraints are 36 and 5 for the maximum 

and minimum number of turbines respectively and 3D for the minimum 
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Fig. 6. Bathymetry map and wind rose for the case study.
Table 5
Site characteristics.
 Parameter Value  
 Most frequent wind direction 120◦  
 Mean wind speed (at hub height) 7 m/s  
 Ambient turbulence intensity [58]  
 Depth range 100–250 m 
 Shore distance 9 km  
 Port distance 10 km  

distance between them. The first generation contains 1500 possible 
layout configurations and evolves for a total of 4000 generations. The 
mutation is defined by 𝑃𝑚1 = 0.5 and 𝑃𝑚2 = 0.01.

The selected turbine is the IEA 15 MW [59] reference turbine, oper-
ating in the wind speed range between 3 and 25 m/s (cut-in and cut-off 
wind speed). This turbine is characterized by a rotor diameter of 240 m, 
an hub height of 150 m and a rated wind speed of 10.59 m/s. Moreover, 
the turbine characteristic curves necessary for the calculation of the 
farm’s power production under different inflow conditions, including 
the power coefficient and thrust coefficient, are known. For the wind 
farm, an expected lifespan of 25 years is assumed. Moreover, a discount 
rate of 5% is assumed for offshore wind projects.

Results obtained using the 15 MW turbine are finally compared with 
those obtained using the smaller NREL 5 MW wind turbine [60].

4. Results

Algorithm convergence is verified by evaluating the trend of the 
value assumed by the hypervolume indicator, which shows negligible 
variations at 4000 generations. Fig.  7(a) presents the convergence 
history in terms of the hypervolume indicator, while Fig.  7(b) shows a 
heatmap of the cumulative distribution of occupied positions by wind 
turbines within the optimization history. Fig.  7(b) clearly highlights 
how each available position has been occupied by turbines, thus each 
location has been part of an individual, and evaluated. In the picture, 
greater occurrence values indicate layout positions that survived the 
most over the generations. The definition of the clustered regions is 
in accordance with the steep growth of the HV curve in Fig.  7(a), 
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indicating that the Pareto front consolidated around a solid population 
quite early.

Fig.  8 presents a graphical representation of the two objective func-
tions, LCOE and VI, plotted against the number of turbines. Each point 
of both curves corresponds to the best-performing individual among all 
generations in terms of the lowest objective function value for a given 
number of turbines. Moreover, for turbine counts ranging from 5 to 
19, the best-performing individuals among all generations also belong 
to the final generation and, so, to the final Pareto front. In contrast, 
individuals with a number of turbines greater than 19 (i.e. character-
ized by 20 WTs) do not appear in the final generation and have been 
discarded by the algorithm over successive generations. In the picture, 
non-optimal layouts characterized by a number of turbines greater 
than 19 are represented with crosses, while layouts belonging to the 
final generation are represented with circles. The blue line represents 
LCOE while the red line VI. Values of both functions are normalized 
by their maximum value. The LCOE curve reaches the minimum value 
corresponding to the case with 19 turbines. The initial steep slope of 
the curve is related to two factors: the almost direct proportionality 
between AEP and the number of turbines, due to the almost absence 
of wake losses, and the high impact of amortization of costs related 
to base infrastructure (substation, export cables). As the number of 
turbines increases, the latter factor gradually loses importance while 
the magnitude of wake losses increases. This leads to flattening of the 
curve until the point where the effect of the wakes completely offsets 
the advantage of amortizing infrastructure expenses. Therefore, this 
value represents the number of turbines that maximizes the economic 
potential of the area. Conversely, the visual impact exhibits a continu-
ously rising trend together with turbines count. As shown in later Fig. 
10(a), the layout with the lowest visual impact features a single row 
of turbines positioned along the side farthest from the coast. Given 
the length of this side and the minimum rotor-spacing constraint, five 
turbines fully occupy the available space along this edge. Consequently, 
as the number of turbines increases, additional turbines must be placed 
in a row closer to the coast, explaining the steep increase in visual 
impact when moving from five to six turbines. Conversely, further 
increasing turbine count results in a smaller increment in visual impact 
as additional rows are progressively filled. This process continues until 
the second row is filled and so on, with subsequent rows being added 
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Fig. 7. Convergence history.
Fig. 8. Normalized LCOE (blue) and VI (red) for different number of turbines.

and completed. However, as the number of turbines increases beyond 
17, the algorithm progressively prioritizes the LCOE minimization, 
which explains the irregular trend in the final part of the curve.

Moreover, considering results obtained in a previous work [18], 
where AEP and total costs were used as objective functions, it can be 
inferred that layouts characterized by the lowest LCOE values, given the 
same number of turbines, are the same ones that achieve the highest 
AEP values despite higher costs associated with turbine placement. 
Specifically, the benefit of reducing rotor interactions by increasing the 
spacing between turbines outweighs the additional costs related to the 
longer cable lengths or the greater local depth of the seabed.

Fig.  9 shows the Pareto front of optimal individuals belonging 
to the last generation. On the axes the two objective functions are 
represented. The colour of the plotted points indicates the number of 
turbines characterizing each layout. In the front there is no layout 
with more than 19 turbines despite the maximum limit being set at 
36 rotors. Layouts with a greater number of turbines, in fact, present 
a higher VI, and, as previously explained, they turn out to be less 
cost-efficient. Furthermore, the Pareto front exhibits two areas with 
high sensitivity to the two objective functions: in the upper-left zone, 
a significant reduction in visual impact is achieved at the expense of a 
small increase in LCOE, while in the lower-right zone, the opposite is 
true. Fig.  9 also highlights three points of interest: the square denotes 
the point with the lowest VI (Case ‘‘a’’); the triangle indicates the point 
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Table 6
Comparison of the optimal individuals.
 Min VI Trade-off Min LCOE 
 𝑛𝑡𝑢𝑟 5 13 19  
 LCOE (e/MWh) 128.67 110.73 105.72  
 VI (normalized) 0 0.25 1  
 AEP (GWh) 232.17 603.64 895.05  
 Wake Losses (%) 4.57 4.56 3.18  

with the lowest LCOE (Case ‘‘c’’); and the cross represents the trade-off 
solutions representative (Case ‘‘b’’). The latter is defined as the layout 
characterized by the minimum distance from the origin of the axis in 
the objective space. The decision to highlight this point is to display the 
most appealing solution in scenarios where the two objective functions 
are of equal interest.

Fig.  10 displays these three layouts and Table  6 lists their corre-
sponding values of the objective functions. In Table  6 are also reported 
AEP and wake losses, defined as the percentage of energy lost due to 
interactions among the rotors.

In the layout with the minimum visual impact turbines are arranged 
along the side furthest from the coast. Case ‘‘b’’ exhibits a regular 
structure characterized by three rows of turbines. In this configuration, 
turbines visually shield each other, resulting in high wake losses. Case 
‘‘c’’, on the opposite, features an irregular distribution, driven by the 
need to maximize the energy production and minimize the rotor-wake 
interactions at the expenses of a significant VI.

Moreover, Fig.  11 provides insights into the effect of rotor orienta-
tion on visual impact. The three subplots, each corresponding to one of 
the three selected individuals, illustrate the variations in visual impact 
as a function of wind direction and, consequently, rotor orientation. 
The blue, orange, and green lines represent, referring to Fig.  6, the 
observation points ‘‘1’’, ‘‘2’’ and ‘‘3’’, respectively. The red line indicates 
the visual impact averaged across the three observation points, while 
the constant violet line represents the overall visual impact charac-
teristic of the individual, computed as a frequency-weighted average. 
To maintain consistency with the results presented in Table  6, the 
values on the 𝑦 axis are normalized using a min–max scaler, where the 
minimum and maximum values correspond to the global visual impact 
of the layout ‘‘a’’ and ‘‘c’’, respectively. The curves clearly exhibit 
symmetry with respect to a 180◦ shift in wind direction, since for two 
wind directions separated by 180◦, the rotor orientation remains the 
same. Moreover, it can be observed that observation point 1, which is 
located closer to the centre of the wind farm, consistently exhibits the 
highest maximum visual impact across all layouts. More interestingly, 
it also shows the largest variation in visual impact as wind direction 
changes. This is due to the greater influence of horizontal turbine 
visual footprint, particularly when turbines are positioned closer to 
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Fig. 9. Pareto front of dominant individuals.
Fig. 10. Comparison of wind farm optimal layout configurations according to diverse optimum criteria: (a) minimum VI, (b) trade-off solution, and (c) minimum LCOE (colour 
scale and symbol diameter represent AEP).
the coastline. In addition, the curve trends remain quite similar across 
the different layouts, with maximum and minimum values occurring 
in the same wind directions. Finally, the average visual impact across 
the observation points (red line) exhibits significant oscillations in 
all three cases compared to the overall impact averaged across wind 
directions. In particular, focusing on the minimum LCOE layout, for a 
wind direction of 60◦, the visual impact is 44% higher than the global 
average.

4.1. Effect of wake model choice

Results obtained with the previously discussed Gaussian wake
model are compared with results obtained with the simpler and more 
established Jensen model [28]. For this model, an uncertainty anal-
ysis is conducted in [61] using bootstrap method, comparing results 
obtained with the analytical model with SCADA data from 10 offshore 
wind farms. The study reports an uncertainty range of 1.4% to 5% for 
9 of the 10 wind farms, with one outlier exhibiting a value of 15%.

The value of the wake expansion coefficient is set to 0.05. The 
comparison is made with all parameters and constrains held constant. 
Fig.  12 illustrates the two fronts of optimal individuals: in red the 
individuals obtained with the GCH model, and in blue those obtained 
with the Jensen model. The VI values are normalized against the 
maximum obtained value. The two fronts almost overlap, particularly 
in the areas where the two objective functions exhibit high sensitivity. 
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Moreover, in the area surrounding the knee point, the two curves 
diverge slightly: the Jensen model yields lower LCOE values due to its 
underestimation of wake losses compared to the GCH model. In both 
cases, the layouts that minimize LCOE consist of 19 turbines and result 
in very similar LCOE values: 105.39 e/MWh for the Jensen model and 
105.72 e/MWh for the GCH model. Moreover, the similarity of the 
results obtained with the two models allows the uncertainty estimates 
derived for the Jensen model in [61] to be applied to the GCH model 
as well.

4.2. Effect of turbine choice

This section discusses and validates how the optimization can be 
affected if a smaller size turbine model is considered in the design of the 
wind farm. The NREL 5 MW reference turbine [60] is then selected to 
make a comparative study for the same test case. Throughout this study, 
all parameters set for optimization and constraints remain unchanged, 
while the substructure used is of the spar-buoy type, the cost of which 
is set at 3.74 Me [35].

Fig.  13 displays the Pareto fronts obtained in both cases. In this 
graph, the VI values are normalized against the maximum value of 
the results obtained considering the 15 MW turbine. Layouts featuring 
15 MW turbines are indicated with circles, while those using 5 MW 
turbines are marked with crosses. The colour of the markers indicates 
the number of turbines. The graph confirms the economic advantage 
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Fig. 11. Analysis of VI with the site wind rose distribution for the optimal wind farm layouts according to diverse optimum criteria. From top to bottom: (a) minimum VI, (b) 
trade-off solution, and (c) minimum LCOE.
Fig. 12. Comparison of the Pareto fronts of the different wake models: Jensen (blue) 
and GCH (red).

of installing larger turbines. This choice, in fact, allows for significant 
reduction in infrastructure and installation costs. On the other hand, 
the size of the turbines significantly affects their visual impact from the 
coast: configurations with 36 turbines of 5 MW have a visual impact 
that is comparable to configurations with less than half that number 
of 15 MW turbines. Furthermore, the layout with the lowest LCOE 
10 
Fig. 13. Comparison of the Pareto fronts from individuals defined by different turbine 
models: IEA 15 MW (circle), NREL 5 MW (cross).

(169.05 e/MWh) in the case of choosing 5 MW turbines presents 36 
turbines, corresponding to the maximum number allowed by the con-
straints of the problem. This results from the reduced wake interactions 
encountered with smaller rotors, coupled with the need to amortize 
infrastructure and installation costs.
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Fig. 14. Wind roses from different data sources.
Fig. 15. Weibull probability density functions of wind speed obtained from GWA and ERA5 data.
4.3. Effect of using different wind data sources

This section discusses the impact of using different data sources 
on the optimization results. In addition to the statistical data de-
rived from the Global Wind Atlas, historical wind data from the ERA5 
database [62] are also used. For the latter, ten years of wind data 
are retrieved, including the east–west and north–south wind speed 
components at a height of 100 m. From these components, time series 
of wind direction and wind speed at hub height are derived using the 
power law with an exponent of 0.12. Based on these time series, two 
wind roses are generated. In the first case, the wind direction is divided 
into 12 bins of 30◦ each, while in the second, 24 bins of 15◦ are used. In 
both cases, wind speed bins are set to 1 m/s. Fig.  14 presents the three 
resulting wind roses: the red wind rose corresponds to data from GWA, 
the green wind rose represents the ERA5 dataset with 12 directional 
bins, and the orange wind rose corresponds to the ERA5 dataset with 
24 directional bins.

Moreover, Fig.  15 shows the Weibull distributions obtained from 
the two sources. The solid line represents the distribution derived from 
the GWA, while the dashed line corresponds to the one obtained from 
ERA5. The latter distribution exhibits a higher peak at lower wind 
speeds, indicating a greater frequency of low winds compared to GWA. 
Conversely, the GWA distribution has a slightly broader tail, suggesting 
a higher probability of stronger wind events. In particular, as shown in 
the figure, the GWA distribution is characterized by a shape parameter 
of 1.63 and a scale parameter of 7.9, while the ERA5 distribution has 
a shape parameter of 1.58 and a scale parameter of 6.49. Furthermore, 
the mean wind speed obtained from GWA is 7.06 m/s, which is more 
than 1 m/s higher than the value derived from ERA5, equal to 5.87 m/s.

Fig.  16 presents the fronts obtained from the three wind roses. 
The red points represent the layouts derived from the GWA dataset, 
the green points correspond to the layouts obtained from the ERA5 
11 
dataset using 12 wind direction bins, and the orange points repre-
sent the layouts derived from the same dataset using 24 bins. The 
VI values are normalized against the maximum obtained value. The 
observations regarding wind speed distributions are confirmed by the 
results obtained for the LCOE objective function values, as shown in 
the plot. Specifically, the ERA5 historical data series, which exhibit a 
higher occurrence of low wind speeds compared to the GWA dataset, 
result in higher LCOE values. Moreover, using narrower wind direction 
bins allows the algorithm to identify solutions with lower objective 
function values, particularly in the region of the front that is highly 
sensitive to LCOE and around the knee point. In contrast, in the 
region characterized by high VI sensitivity, the smaller bin width leads 
to an underestimation of wake losses compared to the 24-bin case, 
especially for solutions with a high number of turbines. The solution 
with the lowest LCOE in the ERA5 case with 12 bins consists of 16 
turbines, an AEP of 556.17 GWh, wake losses of 2.6%, and an LCOE of 
147.71 e/MW. In the ERA5 case with 24 bins, the most economically 
advantageous layout consists of 15 turbines, an AEP of 509.66 GWh, 
wake losses of 4.8%, and an LCOE of 152.03 e/MW.

4.4. Scalability

In order to explore the scalability of the proposed method, a scal-
ability test is performed for increasing occupied sea areas. The area 
of the case study is considered as the reference area (A), and three 
additional optimization problems are solved, where the area increases 
linearly from 0.5 A to 2 A. Each layout optimization problem presents 
a discretization grid with larger side length, but the grid resolution is 
kept the same. Thus, the number of available locations for the wind 
turbines is increasing with the area, while the impact of the minimum 
distance constraint is reducing for larger areas. Table  7 presents the 
details of the four problem setups. 
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Fig. 16. Comparison of the Pareto fronts obtained from different data sources and 
using different wind directions bins: GWA (red), ERA5 with 12 direction bins (green) 
and ERA5 with 24 direction bins (orange).

Table 7
Comparison of the scalability tests.
 0.5 Area 1 Area 2 Area  
 Area 11.52 23.04 45.96  
 Available locations 225 441 900  
 𝑛𝑡𝑢𝑟 (min–max) 2–13 5–19 10-21  
 𝐿𝐶𝑂𝐸𝑚𝑖𝑛 (e/MWh) 109.01 105.72 104.12  
 𝐴𝐸𝑃𝑚𝑎𝑥 (GWh) 613.34 895.05 1000.04 
 𝑊 𝑎𝑘𝑒 𝐿𝑜𝑠𝑠𝑒𝑠𝑚𝑖𝑛 (%) 3.03 3.18 2.19  

Fig.  17 shows the comparison of the Pareto fronts of the three 
populations resulting from the scalability tests. The shape of the Pareto 
fronts is in general similar amongst the three different areas. Optimal 
population for the larger area is presenting reduced LCOE for equiva-
lent VI, for wind farms with a slightly larger number of turbines with 
respect to the benchmark case. On the other hand, optimal population 
for the smaller area is presenting, for the same LCOE, a higher VI 
with a comparable number of turbines. The former is explained by 
the possibility for turbines to be placed in larger numbers due to the 
increased available area while still being in the furthest portion of 
the wind farm with respect to the observers. The latter is explained 
considering that the same number of turbines can only be placed 
in a smaller area by gradually filling regions closer to the observer, 
increasing VI.

The individuals for the three fronts can be compared by observing 
the cumulative distributions of turbine positions for the entire Pareto 
populations. Fig.  18 shows the three populations corresponding to the 
three areas of the scalability test, where each heatmap is representing 
on a 𝑛 × 𝑛 grid the discretized areas, while colour is representing the 
number of occurrences a turbine occupies that specific grid position 
within the whole Pareto population. It is possible to observe that the 
most frequent occupied positions are in general in the same regions for 
the three areas.

In Fig.  17 it is possible to highlight a cluster of individuals in 
the region close to the origin representing the trade-off populations, 
specifically in the LCOE range between 110 and 113 e/MWh and VI 
between 0.1 and 0.2, where the three populations present individuals 
with a similar number of turbines. Fig.  19 shows the cumulative layouts 
12 
for the three different areas including individuals in the trade-off region 
comprised in the aforementioned objective function range. Specifically, 
the three heatmaps are counting respectively 27, 32 and 31 individuals 
in the described range. In contrast with the smaller areas, the larger 
area presents wind turbines concentrated in the furthest regions of the 
wind farm with respect to the observers. This is due the fact that for a 
comparable LCOE (and consequently number of turbines) with respect 
to the others, the larger wind farm is allowing for longer parallel rows 
of wind turbines that are minimizing VI being at a greater distance from 
the shore.

5. Conclusion

This work addresses the optimization of offshore wind farm layouts 
to support industrial-scale planning, providing a more size-agnostic 
approach than traditional designs. In fact, in the proposed method 
the number of turbines (thus the wind farm nominal power) is an 
independent variable of the optimization problem, and an output of 
the algorithm. This allows the wind farm to be better coupled with the 
site given the provided constraints and objectives. Additionally, unlike 
standard layouts driven primarily by economic considerations, this 
approach integrates both economic and social factors, specifically the 
visual impact from the coast. Given the growing importance of public 
acceptance in the deployment of offshore wind energy, incorporating 
social aspects into the design process is essential. To achieve this, 
the multi-objective optimization algorithm NSGA-II is applied using 
PyMoo, minimizing both LCOE and visual impact of a wind farm 
near the port of Civitavecchia (RM). Visual impact is quantified as 
the average portion of the field of view effectively occupied by the 
turbines calculated from three distinct observation points located along 
the coast, while the AEP estimation is made using the GCH engineering 
wake model implemented in FLORIS. The constraints are set as the 
minimum distance between turbines (equal to 3 diameters) and the 
admissible interval of turbines (between 5 and 36). Results show that 
the layout with the minimum VI consists of 5 turbines aligned along 
the side furthest from the coast, with LCOE of 128.67 e/MWh, and 
4.57% wake losses. The layout closer to the origin of the axes can be 
considered as a representative of the trade-off region of the Pareto front 
is composed of 13 turbines positioned with a regular structure, with 
LCOE equal to 110.73 e/MWh, a normalized VI of 0.25 and 4.56% 
wake losses. Finally, the layout with minimum LCOE is characterized 
by 19 turbines irregularly positioned, with a LCOE of 105.72 e/MWh, 
the maximum VI and 3.18% wake losses, reflecting the prioritization 
of resource utilization over visual impact.

Additionally, four sensitivity analysis are performed to assess the 
impact of changing the wake model, the turbine size, the wind data 
source and the wind farm area. In the first case, the comparison of 
the Pareto fronts revealed a slight difference, with LCOE values being 
slightly lower when the Jensen wake model is selected instead of the 
Gaussian Curl Hybrid model. The second comparison indicates that 
the Pareto front shifts towards greater economic advantages when 
installing 15 MW turbines instead of 5 MW turbines, while the visual 
impact is significantly reduced with smaller turbines. Regarding the 
impact of different wind data sources, the analysis reveals the ability 
of the method to adapt to different wind speeds and directions, given 
that the wind derived from ERA5 exhibits a lower wind intensity 
compared to Global Wind Atlas, leading to higher LCOE values. Fur-
thermore, the comparison between ERA5 wind discretized with 12 and 
24 wind direction bins highlights that using narrower bins allows the 
algorithm to identify solutions characterized by lower values of the 
objective functions, particularly in the LCOE-sensitive region of the 
Pareto front. However, in the high visual impact sensitivity region, 
which includes layouts with a high number of turbines, the 12-bin case 
underestimates wake losses compared to the 24-bin case. Finally, the 
analysis performed to evaluate the adaptation capacity of the method 
to variation in the size of the occupied area of the wind farm, led to 
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Fig. 17. Comparison of the different Pareto fronts for the scalability tests.
Fig. 18. Cumulative distribution of the layouts within each Pareto population for the three different areas: (a) 0.5 Area, (b) 1 Area and (c) 2 Area.
Fig. 19. Cumulative distribution of the layouts in the trade-off region for the three different areas.
further confirmation of the behaviour of the optimizer in the trade-off 
region of the function space.
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