OCS Study
BOEM 2016-039

Modeling At-Sea Occurrence and
Abundance of Marine Birds to Support
Atlantic Marine Renewable Energy
Planning

Phase | Report

US Department of the Interior .
Bureau of Ocean Energy Management _

Office of Renewable Energy Programs B
UREAU OF UCEAN RGY ANAGEMENT







OCS Study
BOEM 2016-039

Modeling At-Sea Occurrence and
Abundance of Marine Birds to Support
Atlantic Marine Renewable Energy
Planning

Phase | Report

Authors

Brian P. Kinlan
Arliss J. Winship
Timothy P. White
John Christensen

Prepared under NCCOS IAA MOA-2013-046-8696, BOEM OCS Study 2016-039, and NCCOS
BOEM IAA M13PG00005

by

U.S. Department of Commerce

National Oceanic and Atmospheric Administration
National Ocean Service

National Centers for Coastal Ocean Science
Center for Coastal Monitoring and Assessment
Biogeography Branch

1305 East-West Hwy, SSMC-4, N/SCI-1

Silver Spring, MD 20910

Published by

U.S. Department of the Interior [
Bureau of Ocean Energy Management e

Office of Renewable Energy Programs —
May 2016

BIJ?E.'\IJ OF O{E»QN E\IERGY MANRGEME\IT



DISCLAIMER

This study was funded, in part, by the US Department of the Interior, Bureau of Ocean Energy
Management (BOEM), Environmental Studies Program, Washington, DC, through Inter-Agency
Agreement Number M13PG00005 with the US Department of Commerce, National Oceanic and
Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean
Science, Silver Spring, MD. This report has been technically reviewed by BOEM and it has been
approved for publication. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the opinions or policies of the US
Government, nor does mention of trade names or commercial products constitute endorsement
or recommendation for use.

REPORT AVAILABILITY

To download a PDF file of this Environmental Studies Program report, go to the US Department
of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program
Information System website and search on OCS Study BOEM 2016-039. You may request the
report from the BOEM Office of Renewable Energy Programs. The contact information is:

U.S. Department of the Interior

Bureau of Ocean Energy Management
Office of Renewable Energy Programs
45600 Woodland Road, VAM-OREP
Sterling, VA 20166

CITATION
Kinlan, B.P., A.J. Winship, T.P. White, and J. Christensen. 2016. Modeling At-Sea Occurrence
and Abundance of Marine Birds to Support Atlantic Marine Renewable Energy Planning: Phase
| Report. U.S. Department of the Interior, Bureau of Ocean Energy Management, Office of
Renewable Energy Programs, Sterling, VA. OCS Study BOEM 2016-039. xvii+113 pp.

ACKNOWLEDGEMENTS
We thank the many scientists who collected and contributed the survey data analyzed in this
study. We are grateful to Mark Wimer (USGS) and Allison Sussman (USGS) for processing the
data in the Avian Compendium database and providing those data to us. We thank Peter
Cornillon, Peter Miller, Matt Poti, and Tim Wynne for providing and helping with the processing
of some of the environmental predictor data. This project was funded by the Bureau of Ocean
Energy Management (BOEM) through Intra-agency Agreement M11PG00059 with the United
States Geological Survey (USGS) and Inter-agency Agreement M13PG00005 with the U.S.
Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean
Service, National Centers for Coastal Ocean Science (NCCOS), and by the United States
Geological Survey through Inter-agency Agreement G13PG00008 with NCCOS. Brian Kinlan,
Arliss Winship, and Tim White were supported by NOAA Contracts No. DG133C07NC0616 and
EA-133C-14-NC-1384 with CSS-Dynamac.

ABOUT THE COVER

Cover photo (Great Shearwater) courtesy of David Pereksta (BOEM). Used with permission.


http://www.boem.gov/ESPIS/
http://www.boem.gov/ESPIS/

Executive Summary

Marine birds have the potential to be affected by human activities in the marine environment such as
offshore wind energy development. This report describes the first phase of a project aimed at producing
maps of the spatial distributions of marine bird species in U.S. Atlantic Outer Continental Shelf (OCS)
waters that can be used to inform marine spatial planning in the region.

Visual sighting survey data from over three decades, contained in the ‘Compendium of Avian Occurrence
Information for the Continental Shelf waters along the Atlantic Coast of the U.S.” database, were
analyzed to derive seasonal and annual maps of the spatial distributions of 40 marine bird species in U.S.
Atlantic OCS waters from Florida to Maine.

Spatial predictive modeling was applied to the survey data to account for spatial and temporal
heterogeneity in survey effort, platform, and protocol. An ensemble machine-learning technique,
component-wise boosting of hierarchical zero-inflated count models, was used to relate the relative
occurrence and abundance of each species to multiple spatial and temporal environmental predictor
variables while accounting for survey heterogeneity and the aggregated nature of sightings. Dynamic
spatial environmental predictor variables were formulated as long-term climatologies. The modeling
technique allowed for complex non-linear relationships between response and predictor variables and
interacting effects among predictors. Bootstrapping was used to derive estimates of the uncertainty in
model predictions.

Model predictions are presented as seasonal and annual maps of the relative probability of occurrence and
relative abundance of study species throughout the U.S. Atlantic OCS. These maps indicate where species
are more or less likely to occur and where species are likely to be more or less abundant. The analysis was
not designed to estimate the absolute probability of occurrence or the absolute number/density of
individuals of a given species that would be expected in any location, so the maps should not be
interpreted that way. Also, the maps represent the spatial distributions of birds averaged over time (e.g.,
across days within a season and across years for a given season). The analysis was not designed to
provide predictions of the number of birds that would be expected in a specific location at a specific date
or time, so the maps should also not be interpreted that way. Furthermore, large variations in predicted
long-term relative occurrence and abundance at the 2-km spatial resolution of the study grid are not
necessarily realistic. Interpretation of the maps is probably more reliable at the regional scale (i.e., 10-100
km). The maps presented here provide preliminary broad-scale spatial information that can be used to
guide future data collection efforts and aid marine spatial planning in the region.

Four types of supplementary information are provided along with the maps of predicted relative
occurrence and abundance to indicate the quality of those predictions. First, the distribution of survey
effort is presented as a series of isopleths to indicate where the majority of the survey data were collected.
Model predictions in areas with few or no data should be interpreted with caution. Second, for each
species-season combination a ‘badge’ is included on the maps, representing the statistical fit of the model
to the data in terms of several performance metrics. The badge indicates the quality of model predictions
in areas with survey data but not in areas without survey data. Third, estimates of the precision of model
predictions are presented as maps of the variability, quantiles, and confidence interval width of the



bootstrapped distributions of model predictions. Less precise predictions should be interpreted with more
caution. Fourth, we present an expert assessment of how well the predictions for each species match what
is known about the species’ distribution. These four supplementary sources of information should be
considered in conjunction with the maps of predicted relative occurrence and abundance.

The relative importance of different predictor variables is presented, indicating which variables most
influenced the predicted distributions for each species in each season. While the primary objective of this
study was not to determine the ecological drivers and mechanisms behind the spatial distributions of
marine bird species in the study area, our model results may provide useful hypotheses for future studies
aimed more at ecological inference.

A second phase of this project is currently underway that will expand, refine, and improve the modeling
and results presented here. The second phase is projected to be completed by the fall of 2017.
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1. Introduction

Marine birds spend much of their time in coastal waters and on the open ocean. As a result, these species
have the potential to be affected by human activities in the marine environment such as offshore wind
energy development. A prerequisite for quantifying that potential is knowledge of the spatial distributions
of marine birds at sea. This report describes the first phase of a project aimed at producing maps of the
spatial distributions of marine bird species in U.S. Atlantic Outer Continental Shelf waters (Fig. 1) that
can be used to inform marine spatial planning in the region.

Some of the best available information about the at-sea distributions of marine birds comes from visual
sighting surveys conducted aboard boats and aircraft. For U.S. Atlantic Outer Continental Shelf waters
many data from past sighting surveys have been compiled in the ‘Compendium of Avian Occurrence
Information for the Continental Shelf waters along the Atlantic Coast of the U.S.’, hereinafter referred to
as the ‘Avian Compendium’ (O’Connell et al. 2009). The Avian Compendium database was developed by
the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center and is currently maintained by the
U.S. Fish and Wildlife Service (USFWS). The project described here analyzed sighting data from the
Avian Compendium to derive maps of the spatial distributions of 40 marine bird species in U.S. Atlantic
Outer Continental Shelf waters from Florida to Maine.

The data in the Avian Compendium represent numerous surveys over more than three decades. Survey
coverage and intensity is highly variable geographically (Fig. 2) and temporally, especially between
individual datasets. Furthermore, a wide range of survey platforms, observers, and protocols were used.
This heterogeneity complicates the quantification of the at-sea distribution of marine birds from these
data, and biases simple data summary approaches. To deal with this heterogeneity, the project described
here employed spatial predictive modeling. An ensemble machine-learning technique was used to model
counts of each species as a function of multiple predictor variables while accounting for heterogeneous
survey effort. The fitted models were then used to predict the spatial distribution of relative occurrence
and abundance of each species throughout the study area.

The distributions of marine birds at sea are a result of interactions between their behavior (e.g., foraging)
and the environment. Atmospheric and oceanographic features and processes across a range of spatial and
temporal scales influence the environmental conditions and prey availability experienced by marine birds,
and thus ultimately determine their at-sea distributions. The spatial predictive modeling framework
employed here relied on a wide suite of spatial and temporal environmental predictor variables to explain
and predict the distributions of marine birds. In particular, static environmental variables (e.g.,
bathymetry) and long-term climatologies of dynamic environmental variables (e.g., sea surface
temperature) were considered to explain spatial patterns of relative occurrence and abundance.

The project described here is designed to provide broad-scale spatial information that can be used to guide
future data collection efforts and aid marine spatial planning in the region. This report describes
preliminary results from the first phase of the project. A second phase of the project is currently underway
that will expand, refine, and improve the modeling and results presented here. It is important to note that
the results presented in this report represent the spatial distributions of birds averaged over time. The
project was not designed to provide precise predictions of the absolute number of individuals of a given
species that would be expected in a specific location at a specific time. The project was also not designed
to determine the ecological drivers of marine bird distributions, although the results provide related
hypotheses for future research.



2. Methods

2.1 Overview

A statistical modeling framework was used to relate bird sighting data from historical surveys to a range
of temporal and spatial environmental predictor variables. The estimated relationships between the
relative occurrence and abundance of birds and the predictor variables were then used to predict the
spatial distributions of birds across the entire study area. Separate models were developed for each
combination of species and season for which there were sufficient data. Seasons reflected major
transitions in environmental conditions in the study region: spring (March-May), summer (June-August),
fall (September-November), and winter (December-February).

2.2 Survey data

Bird sighting data were derived from a large relational database (hereinafter referred to as the ‘Avian
Compendium’) containing observational datasets on marine birds along the Atlantic Coast of the United
States (see O’Connell et al. 2009 for more details). These datasets were collected by a range of entities
including government agencies, hon-governmental organizations, academic researchers, and other
individuals. Developed and previously maintained by USGS Patuxent Wildlife Research Center, the
Avian Compendium is now maintained by USFWS through an intra-agency agreement with BOEM
(M14PG00014).

We analyzed science-quality, geographically-referenced, visual sighting data from the Avian
Compendium. The original data took the form of species-specific counts of birds along boat-based or
aerial strip transects. Counts were sometimes recorded continuously, and other times were aggregated into
recording bins of mostly 10 or 15 minute duration, with the majority (79%) being 15 minutes. Binned
data were only from boat surveys. To standardize effort across datasets, continuously recorded data were
discretized into transect segments 4.63 km long corresponding to the distance that would be covered in 15
minutes at a speed of 10 knots, which is a typical survey speed. Counts for each species were summed
within each transect segment. We excluded data from discrete recording bins with duration <10 minutes,
and we excluded transect segments <3.086 km that arose from the discretization of continuous data. Thus,
our unit of analysis was a transect segment, the majority of which represented 15 minutes or 4.63 km of
survey effort, and no less than 10 minutes or 3.086 km of effort. The response data were the numbers of
individual birds of each species counted on each transect segment.

We analyzed 75 datasets from the Avian Compendium representing 111,776 transect segments that had
survey effort within our study area (Table 1, Fig. 2, Appendix A). The datasets spanned 1978-2014 with
most survey effort occurring from 1978-1988 and from 2002 onward. The datasets with the largest
combined sample size and widest geographic coverage were collected by Manomet Bird Observatory in
coordination with the National Marine Fisheries Service and other cruises between 1978 and 1988
(datasets CSAP and NOAAMBO7880). More recent surveys by USFWS as part of the Atlantic Marine
Assessment Program for Protected Species also covered the entire U.S. Atlantic Coast (datasets
AMAPPS_FWS). Other multi-year survey efforts covered large sections of the coast including NOAA
ecosystem monitoring cruises from North Carolina to the Gulf of Maine (datasets EcoMon) and pelagic
surveys off Georgia, South Carolina, and Florida (dataset GeorgiaPelagic). The remaining datasets were
more localized, often from New England and the Gulf of Maine, but sometimes had large sample sizes
over multiple years (e.g., datasets CapeWind, HerringAcoustic, and MassAudNanAerial).



For analysis we considered species-season combinations that had >50 transect segments with sightings of
>1 individual. By this criterion 53 species and 144 species-season combinations were amenable to
analysis representing sightings of 2,622,023 individual birds. The five species with the greatest numbers
of transect segments with sightings in individual seasons were Wilson’s Storm-Petrel in summer, Herring
Gull in fall, Northern Gannet in winter, Great Shearwater in fall, and Great Black-backed Gull in fall. For
this first phase of the project, not all 144 species-season combinations could be modeled in the allotted
time, so a prioritized subset of 40 species (118 species-season combinations) were analyzed (Table 2).
Prioritization considered Atlantic Marine Bird Conservation Cooperative Species of Concern, US
Endangered Species Act listings, USFWS Birds of Conservation Concern (Florida, Southeast, Mid-
Atlantic/New England, and Gulf of Maine regions), state endangered species legislation listings, species
included in state Ocean Plans (NY, MA, or RI), Northeast Regional Ocean Planning Expert Working
Group input (NROC 2016), and relative vulnerability to offshore wind energy projects (Robinson
Willmott et al. 2013). For 5 of the modeled lower-priority species (Bonaparte’s Gull, Royal Tern, Manx
Shearwater, Common Murre, and Band-rumped Storm-Petrel) there was insufficient time to conduct
bootstrapping (see Section 2.4.9), so uncertainty estimates are not presented for those models. Also, some
seasonal models failed for 3 species (Common Eider — spring, summer, fall; Red-necked Phalarope —
spring; and Red Phalarope — fall). These errors will be investigated further in Phase Il of this project.
Nevertheless, the models for the seasons with the greatest numbers of sightings of these 3 species were
successful.

2.3 Predictor variables

A wide range of predictor variables were used to model variation in the number of birds sighted per
transect segment and to predict the spatial distributions of birds throughout the study area (Table 3, Fig. 3,
Appendix B). Predictor variables fell into one of six categories: survey, temporal, geographic, terrain,
physical oceanographic and atmospheric, and biological.

Survey predictor variables were designed to account for variation in counts arising from heterogeneity in
the type of survey platform, characteristics of the survey platform (e.g., observation height), observer
identity and expertise, species focus, and sighting conditions. These factors influence the probability that
individual birds will be detected and correctly identified to the species level. Of these factors, only the
type of survey platform (boat or plane) was consistently recorded in all datasets, and thus was directly
usable as a predictor variable. We attempted to account for the effects of the remaining factors through
two random-effect predictor variables representing survey identity (ID) and transect 1D, respectively. The
exact definition of transect ID differed somewhat between datasets, but unique transect identities
generally represented pre-defined survey transects or individual days of effort. The transect ID predictor
variable also allowed for an accounting of some of the variation in counts arising from variation in survey
effort (distance and strip width) among transect segments.

Temporal predictor variables were designed to account for variation in counts over time. Day of the year
was used to account for changes in the numbers of birds in the study area over time within a season, for
example arising from migratory movements in and out of the study area. Year was used to account for
changes in the number of birds in the study area across years, for example arising from changes in
population abundance or distributional shifts. Effects of day of the year and year were modelled as
smooth continuous changes over time. Four climate indices (Table 3) were also included as temporal
predictor variables to account for variation in counts across years arising from linkages between the
environment and population abundance and distribution. For each climate index two values were included
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as predictor variables: the value for the month and year of a given transect segment and the value for the
same month one year previous.

Geographic predictor variables were designed to account for variation in counts arising from spatial
location per se. Projected longitude and latitude were included as predictor variables and their effects
were modeled two ways. The first longitude-latitude predictor term allowed for smooth changes in
numbers across the study area arising from spatial factors not captured by the other predictor variables
(e.g., colonization history). The second longitude-latitude predictor term was formulated using radial
basis functions with the intent of capturing some of the spatial autocorrelation in the data after accounting
for the effects of other predictor variables. Distance to land and absolute distance to shelf break (200 m
isobath) were also included as geographic predictor variables.

Terrain variables were designed to account for variation in counts arising from the direct and indirect
effects of bathymetry on bird distributions. A depth predictor variable was developed by combining
information from four different bathymetric datasets (Table 3). Other terrain variables were derived from
depth including slope, slope of slope, and planform and profile curvature.

Physical oceanographic and atmospheric predictor variables were designed to account for variation in
counts arising from the direct and indirect effects of the physical state and dynamics of the ocean and air
above the ocean. Sixteen physical oceanographic and atmospheric predictor variables were developed
from a range of data sources (Table 3). Remote sensing data were used to characterize sea surface height,
temperature, turbidity, and wind stress. Other variables were derived from the remotely sensed variables
including sea surface height and temperature variability, probabilities of cyclonic and anticyclonic eddy
rings, probability of sea surface temperature fronts, wind divergence, and an index of upwelling.
Estimates from a data-assimilating ocean dynamics model were used to characterize water currents, and
divergence and vorticity were derived from current velocities.

One biological predictor variable was included to account for variation in counts arising from the direct
and indirect effects of ocean productivity. Remote sensing data were used to characterize sea surface
chlorophyll-a concentration.

All of the physical oceanographic and atmospheric and biological variables that we considered are
dynamic. We formulated these predictor variables to characterize long-term spatial patterns in average
values and variability. Long data time series ranging from 11-22 years were used (Table 3). To
characterize average values, monthly mean or median climatologies across years were developed and then
integrated to create seasonal climatologies. To characterize variability, standard deviations or
probabilities (frequencies) were calculated from the native temporal resolution of the corresponding
predictor variables.

Geographic, terrain, physical oceanographic and atmospheric, and biological predictor variables were
spatially explicit. Each variable was calculated on a standard study grid with a spatial resolution of 2 km
and an oblique Mercator projected coordinate system. When the native spatial resolution of a predictor
variable was finer than that of the study grid, predictor values were averaged within study grid cells.
When the native spatial resolution of a predictor variable was similar to or coarser than that of the study
grid, bilinear interpolation was used to derive predictor values at the center of study grid cells. Each
survey transect segment was matched to the predictor variable values from the study grid cell that
contained the midpoint of that segment.



Some of the spatially explicit predictor variables were highly correlated with each other (Table 4).
Predictor variables were chosen to avoid correlations >0.9, although a few pairs still had correlations
>0.9. All but one of the correlations >0.9 involved spatial coordinate variables that were a key structural
component of our model. The other correlation >0.9 was between the mean and standard deviation of sea
surface height during the summer. Because of the high correlations between some predictor variables,
inferences regarding relative variable importance should be made with caution. The accuracy of
predictions should be less affected by collinearity among predictor variables.

2.4 Statistical modelling framework

A boosted generalized additive modelling framework (Blihimann and Hothorn 2007; Hofner et al. 2012)
was used to estimate relationships between the numbers of birds counted per transect segment and the
predictor variables (Fig. 4). Those relationships were then used to predict the relative occurrence and
abundance of each species throughout the study area in each season. Our main objective was to provide
accurate predictions, so we chose a modelling framework that allowed for flexible relationships and
multi-way interactions between predictor variables while accounting for sampling heterogeneity between
and within datasets.

2.4.1 Likelihoods and model components

The number of individuals of a given species counted per transect segment was modelled using zero-
inflated Poisson (Eq. 1) and zero-inflated negative binomial likelihoods (Eg. 2) to account for the
overdispersed nature of the count data. Each component/parameter of the likelihood was modelled as a
separate function of the predictor variables (Schmid et al. 2008; Mayr et al. 2012). For the zero-inflated
Poisson likelihood, the two model components were the probability of an ‘extra’ zero (p) and the mean of
the Poisson distribution (p):

n
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The same components were modelled for the zero-inflated negative binomial likelihood in addition to the
dispersion parameter of the negative binomial distribution (6):
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The probability of an extra zero was modelled on the logit scale (symbolized by np) while the mean of the
Poisson/negative binomial distribution and the dispersion parameter of the negative binomial distribution
were modelled on the log scale (mu and th, respectively).

In Eqgs 1 and 2, yi represents the total count for transect segment i, n represents the total number of
segments, and I,,,_o and I, are indicators of whether yi is equal to or greater than zero, respectively
(1=1 when the condition is true and 1=0 when the condition is false).

2.4.2 Base-learners

Within the boosting framework, each model component was essentially modelled as a function of an
ensemble of ‘base-learners’. Each base-learner represented a specific functional relationship between a
model component and one or more predictor variables. We utilized a suite of base-learners each
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representing different predictor variables, and different sets of base-learners were employed for different
model components (Table 5).

All spatially explicit predictor variables except geographic coordinates were included together in a single
tree base-learner. The trees for that learner had a maximum depth of 5, which allowed for interacting
effects among the spatially explicit predictor variables. Projected longitude and latitude appeared in two
base learners, and those variables always entered the model as a pair. The remaining survey and temporal
predictor variables entered the model individually, either through their own base-learners or in the case of
climate indexes one at a time through a tree base-learner with a maximum depth of 1. Thus, our model
structure did not allow for interactions between temporal and spatial predictor variables.

2.4.3 Stochastic gradient boosting

Stochastic gradient boosting was used to fit models whereby a sub-sample of the data was fitted in each
boosting iteration (Friedman 2002). Rather than resampling the data for each boosting iteration, a set of
25 or 50 random samples was created before boosting, and one sample was randomly drawn from this set
for each boosting iteration. Root mean square error (RMSE) was used to select the base-learner that gave
the best fit to the gradient (all data) in each boosting iteration.

2.4.4 Boosting offsets

Model component estimates were initialized (‘offset” in boosting terminology; Hofner et al. 2012) by
conducting a preliminary generalized linear model (GLM) analysis. For that analysis, predictor variables
were first reduced through principal component and cluster analyses to a smaller set of derived predictors.
Those new predictors were then discretized into different numbers of classes. For each number of classes
a GLM with a zero-inflated negative binomial likelihood was fit, and the mean estimates for each model
component were calculated. Model component estimates were then averaged across the fitted models with
the different numbers of predictor classes, weighted by the Akaike Information Criterion for those
models.

2.4.5 Tuning of shrinkage rate and number of boosting iterations

A stratified (by transect ID) k-fold cross-validation approach was used to determine values for the
shrinkage rate (nu) and number of boosting iterations (mstop) that resulted in the best predictive
performance. The shrinkage rate was tuned first by fixing the number of boosting iterations and
evaluating out-of-bag model performance in terms of the thresholded continuous rank probability score
(CRPS_Zinf; Table 6) for different shrinkage rates. The number of boosting iterations was tuned second
by fixing the shrinkage rate and evaluating out-of-bag model performance in terms of the negative log-
likelihood. The number of boosting iterations at which performance was maximized was averaged across
cross-validation samples (excluding the top and bottom 5%) and used as the number of boosting iterations
for the final model fitting. If the number of boosting iterations was less than or greater than specified
values, the shrinkage rate was decreased or increased, respectively, and the number of boosting iterations
was tuned again. We allowed for a maximum of 8000 boosting iterations, so models with that number of
boosting iterations should be interpreted with caution as their performance may have improved with
additional boosting iterations. A suite of cross-validation performance metrics were calculated during the
tuning of mstop (Table 6).

2.4.6 Model selection and performance
The performance of each of the two fitted models for each species-season combination (Table 7) was
evaluated from a suite of performance metrics (Table 6). Cross-validation performance during the tuning
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of mstop in terms of the thresholded continuous rank probability score (CRPS_Zinf CV) was used to
select either the zero-inflated Poisson or the zero-inflated negative binomial model as the best final model
for each species and season.

The final model for each species and season was assigned an overall model performance category on the
basis of four of the performance metrics (Table 8). Performance categories were defined for each of these
performance metrics and assigned a numeric code (5=highest to 1=lowest; Table 8). The performance of
each final model was assigned an overall performance category equal to the average performance across
these four performance metrics. Model performance is displayed on each map figure using a ‘badge’.

It is important to recognize that the model performance metrics and badge mainly reflect the statistical fit
of the models to the data. They reflect only the data that were analyzed, and they do not reflect the quality
of model predictions away from the data. For example, the survey data did not cover everywhere within
the study area, so some model predictions are essentially interpolations/extrapolations from data in other
parts of the study area. The accuracy of those predictions is not necessarily reflected by the model
performance metrics. Nevertheless, the performance metrics and badge give an indication of how
accurately a model was able to predict the observed data, and good performance provides a measure of
confidence in the modelled distributions, especially within the temporal and spatial coverage of the
observed survey data.

As a second assessment of overall model quality the maps were reviewed by one of us (TPW), a marine
bird ecologist with substantial knowledge of and firsthand experience with the study area and species. For
each species and season the correspondence between the modeled distributions of relative occurrence and
abundance and independent expectations was assigned a quality class: ‘good’, ‘fair’, or ‘poor’. This
expert evaluation focused on the bootstrap median model predictions.

2.4.7 Spatial prediction

The final fitted model for each species and season was used to predict relative occurrence and abundance
throughout the study area. Relative occurrence was defined as the probability of observing >1 individuals
on a transect segment, and relative abundance was defined as the mean number of individuals per transect
segment. Both relative occurrence and abundance integrated the zero-inflated and Poisson/negative
binomial components of the likelihood.

Spatially explicit predicted values were calculated for each cell of the study grid from the values of the
spatially explicit predictor variables for that cell. Thus, the predicted relative occurrence and abundance in
a given grid cell correspond to predictions for a transect segment whose mid-point falls within that grid
cell. All other predictor variables except year were set to their mean values. Three different spatial
predictions were made with respect to the year predictor: 1) prediction for the mean year, 2) the average
of the predictions for each year, and 3) the average of the predictions for each of the last 10 years.

We excluded predictions outside of the observed geographic range of sightings for each species by
masking the spatial predictions. First, a ‘traveling salesperson’ algorithm was used to connect the
midpoints of all of the transect segments on which a given species was sighted in a given season (Hahsler
and Hornik 2015). The connecting lines were then buffered with a radius of 100 km and predictions
outside of the buffer area were omitted. An annual mask was derived for each species from the union of
the seasonal buffer areas.



2.4.8 Variable importance

While our primary objective was not to determine the ecological drivers and mechanisms behind the
spatial distributions of marine bird species in the study area, our model results do provide some indication
of which variables were most useful for predicting those distributions. Those variables may provide
useful starting points for future studies aimed more at ecological inference.

We calculated the relative importance of a given predictor variable in the final fitted models by summing
the decrease in the negative log-likelihood in each boosting iteration attributable to that predictor variable.
Thus, variable importance reflects the frequency with which a given predictor variable occurred in the
selected base-learners across boosting iterations and that variable’s ability to explain variation in the data
when it was selected. When multiple predictor variables occurred in the selected base-learner for a given
boosting iteration, the decrease in the negative log-likelihood was divided evenly among those predictor
variables. Relative variable importance was re-scaled so that it summed to 1 across predictor variables.

2.4.9 Uncertainty

Uncertainty in model predictions was estimated using a non-parametric bootstrapping framework. For
each bootstrap iteration, the set of unique transect IDs was resampled with replacement, and the data for
each transect ID were assigned weights proportional to the frequency of that ID in the sample. These data
weights were then applied when fitting the model during that bootstrap iteration. Predictor variables that
were not included in the final model were excluded from the bootstrap analysis. Two hundred bootstrap
iterations were conducted producing a sample of predictions from which we calculated quantiles and
confidence intervals to characterize uncertainty in the predictions.

2.4.10 Implementation
The analysis was coded in R (R Core Team 2014) and relied on multiple existing contributed packages
(e.g., mboost; Hothorn et al. 2014).

2.5 Map display

Model spatial predictions are displayed as maps (Figs 16-20 and Appendices K-M). A color spectrum is
employed to visualize relative occupancy and abundance ranging from blue (lower values) to red (higher
values). The number ranges corresponding to each color are indicated in the map legends. The break
points between the number ranges were evenly distributed on one of three scales: arithmetic, natural log,
or cumulative distribution. The scale chosen for each map depended on the distribution of model
predictions across the study area.

2.6 Warning regarding potentially spurious spatial predictions

A bug in the computer code used for the analysis presented here resulted in spurious spatial patterns in
some of the predictions. Essentially, one of the spatial coordinate predictors was scaled incorrectly when
making spatial predictions, which sometimes distorted spatial patterns. When present, this distortion is
evident as a dominant east-west trend in predicted occupancy and abundance (i.e., vertical banding in the
maps). It is difficult to quantify the amount of distortion in the predictions for any given model, but model
test results suggest that the potential for distortion was greatest in areas with few survey data or sightings
and when the relative importance of the spatial coordinate predictor variables in a model was high.
Predictions in areas with a lot of survey data and sightings were less impacted by the bug. The calculated
model performance metrics (see Section 2.4.6) reflect any distortion in predictions, so good performance
indicates that the model predictions more closely matched the observed data in areas with survey effort.
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The maps of predicted relative occurrence and abundance for Common Tern (Fig 16.1A-H) illustrate the
effect of this bug. Predictions nearshore where most Common Tern were sighted (Fig. 16.11) were a good
representation of the distribution of Common Tern (see Section 3.4.1.1). The model performance metrics
reflected this correspondence as did the expert assessment of model quality (Table 11; overall
performance category = 4, expert assessment = fair). However, in offshore areas where there were fewer
survey data and sightings the predictions of relative occurrence and abundance exhibit a vertical banding
pattern with a strong east-west gradient that is unrealistic.

All predictions in areas with few survey data (Fig. 2B) or sightings should be interpreted with caution,
and predictions in these areas that exhibit a vertical banding pattern are likely an artifact of the bug. The
bug has been corrected for the second phase of the project.

3. Results

3.1 Model selection and performance

3.1.1 Example species-season combinations

Detailed model selection and performance results are presented here for four example species-season
combinations: Common Tern (summer), Northern Gannet (fall), Razorbill (winter), and White-winged
Scoter (winter). We chose these examples to illustrate: 1) offshore distribution of a seasonal breeder
(Common Tern); concentrated migratory patterns (Northern Gannet); and highly aggregated wintertime
distributions of diving birds with disparate feeding ecologies (Razorbill — pelagic feeder; White-winged
Scoter — benthivore).

3.1.1.1 Model selection---The performances of the two models for each species and season (Table 7) in
terms of multiple performance metrics (Table 6) were compared, and the ‘best” model was selected on the
basis of the lowest thresholded continuous rank probability score from cross validation tuning of the
number of boosting iterations (CRPS_Zinf_CV).

Table 9 presents these model comparisons for the four example species-season combinations. The value
of CRPS_Zinf_CV was very similar between models for a given species and season, but this was not
always the case with other performance metrics. The zero-inflated Poisson model was selected for three
of the example species-season combinations, while the zero-inflated negative binomial model was
selected for White-winged scoter (winter). It is possible that the negative binomial distribution provided a
better description of the distribution of counts for the latter, highly aggregated species, although the zero-
inflated Poisson model performed better in terms of some performance metrics.

3.1.1.2 Cross validation performance during tuning of the number of boosting iterations---Figs
5.1-5.4 illustrate cross validation performance during the tuning of the number of boosting iterations
(mstop) for the final selected models for the four example species-season combinations (Table 9). Six
performance metrics (Table 6) were calculated with respect to out-of-bag data for each of 20 cross
validation replicates. The negative log-likelihood (risk) was minimized to determine the optimal number
of boosting iterations (indicated by the vertical red line in the figures).

The Brier score (CRPS_0), thresholded continuous rank probability score (CRPS_Zinf), and the negative
log-likelihood (risk) all decreased with the number of boosting iterations indicating improving
performance. Performance in terms of the other metrics as a function of the number of boosting iterations
was more variable.



3.1.1.3 Receiver Operating Characteristic (ROC) curves---Receiver operating characteristic (ROC)
curves and the area under them (AUC) were calculated to assess the ability of a model to classify transect
segments with at least one sighting versus segments with no sightings (i.e., occurrence), and to classify
numbers of individuals below versus above the median count on segments with sightings.

For the four example species-season combinations (Figs 7.1-7.4), AUC statistics indicated better
classification in terms of occurrence (0.91-0.95) than in terms of the median count (0.62-0.72).

3.1.1.4 Brier scores---Brier scores were calculated for zero and different quantiles of the observed non-
zero count distribution for each species-season combination. The Brier score for a given quantile indicates
the accuracy of the model when predicting the occurrence of a count above or below that value.

For the four example species-season combinations the Brier score decreased with increasing count values
indicating increasing prediction accuracy (Figs 8.1-8.4). For example, the predicted probability of a count
greater than a very high value is low, and the frequency of occurrence of a count greater than a very high
value is also consistently low, which means accurate prediction in the sense of the Brier score as
calculated here. Predictive accuracy would be lower near the mean or median where there is substantial
probability of counts above and below those values.

3.1.2 All species

Table 10 presents the best models for all species-combinations. Zero-inflated negative binomial models
were selected more frequently as the best model than zero-inflated Poisson models, but there were a
substantial number of the latter.

Table 11 and Fig. 6 present the performance of the final selected models across all species and seasons in
terms of a range of performance metrics (Table 6). In general, performance was highly variable among
species and seasons. About half of the best models did not converge within 8000 boosting iterations (the
maximum tried), and a large proportion of the remaining models may not have converged (m values close
or equal to 6000 or 7000 possibly indicate lack of convergence) (Fig. 6A). Performance metrics
calculated for both final fitted models and during cross-validation tuning of mstop were highly correlated
between the two versions (‘Fit’ and ‘CV’ columns in Table 11). Also, the Brier score calculated for
occupancy (CRPS_0) was highly correlated with the thresholded continuous rank probability score
(CRPS_Zinf or ‘CRPS’).

3.2 Predictor variable relative importance

Our modelling framework was designed to provide the most accurate predictions. It was not designed to
determine which environmental predictors were most ecologically relevant in determining the distribution
of birds. Ecological inferences from the variable importance results should be cautious. Nevertheless,
these results may suggest interesting hypotheses for future research.

3.2.1 Example species-season combinations

For the four example species-season combinations, a large number of predictor variables were ranked as
relatively important (Figs 9.1 - 9.4). For three of these combinations the same predictor variable was
ranked most important for both the np and mu model components, although which variable that was
varied among the combinations. The model for Northern Gannet (fall) had the most skewed distribution
of variable importance with day of the year accounting for about 40-60% of the total variable importance
for both the np and mu components.
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3.2.2 All species and seasons

The most important predictor variables varied across species (Fig. 10). Day of the year was relatively
important in the np and mu components of the best models for many species. Mean sea surface
temperature appeared as relatively important for some alcid species, particularly in the summer. Turbidity
appeared as relatively important for some nearshore species (e.g., ducks, Horned Grebe, Double-crested
Cormorant, Brown Pelican), at least during some seasons. Year was relatively important in the models for
many species and seasons. The Atlantic Multidecadal Oscillation (AMO) climate index appeared as
relatively important in the models for a few species-season combinations.

3.2.3 Seasonal

Averaged across species, day of the year was the most important predictor variable in spring and fall
models for both the np and mu model components (Figs 11-13). This result may reflect the movement of
migratory species in and out of the study area during the transition between summer and winter. Mean sea
surface temperature was the most important variable in summer, while turbidity ranked as first (np
component) or second (mu component) most important in winter.

3.3 Predictor variable effects (example species-season combinations)

As with predictor variable importance, our modelling framework was not designed to determine the
functional relationships between environmental predictors and the distribution of birds, so ecological
inferences from the predictor effect results should be cautious. However, again, these results may suggest
interesting hypotheses for future research.

3.3.1 Marginal effects

Estimated marginal univariate effects of predictor variables on the np (zero inflation) and mu (count
distribution mean) components of predictions exhibited a wide variety of patterns. Figs 14.1-14.4
illustrate some example effects for the four example species-season combinations. In some cases the
effect of a given predictor was consistent between the np and mu components. For example, in the best
Common Tern (summer) model the probability of an extra zero (np) decreased and the mean of the count
distribution (mu) increased at higher values of the upwelling index, both indicating an increase in the
expected number of birds sighted per transect segment. As another example, the probability of an extra
zero generally decreased and the mean of the count distribution generally increased throughout the fall in
the best Northern Gannet model suggesting an average increase in bird numbers in the study area, which
is consistent with birds migrating south from their more northern summer breeding areas.

3.3.2 Bivariate effect interactions

The tree base-learners in the model allowed for interactions among the effects of different spatially
explicit predictor variables. As a result, the marginal univariate effect of a given predictor variable was
sometimes different depending on the value of other predictor variables. Figs 15.1-15.4 illustrate some
example marginal bivariate effects of predictor variables on the np and mu components of predictions for
the four example species-season combinations.

3.4 Predicted spatial distributions

3.4.1 Example species-season combinations
In this section we present a very brief review of the ecology and what is known of the distribution of the
four example species: Common Tern (Sterna hirundo), White-winged Scoter (Melanitta fusca), Razorbill
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(Alca torda), and Northern Gannet (Morus bassanus). For each species’ example season we then present
eight prediction maps organized into two groups: relative occupancy (4 maps; Figs 16.1-16.4 ABCD), and
relative abundance (4 maps; Figs 16.1-16.4 EFGH). We also present two annual maps (relative occupancy
and abundance) for each of these species (Figs 17.1-17.4 AB), representing the predictions averaged
across seasons that were modeled. For species that were modeled in more than one season, these annual
maps represent their average spatial distribution during the year or part of the year during which they are
present in substantial numbers in the study area. Seasons in which a species was more abundant
contributed more to the annual pattern. Finally, we discuss the correspondence between these predicted
maps and what is known of the distribution of these species.

3.4.1.1 Common Tern--- Increasing population trend. Common Terns nest on islands, beaches, and
saltmarshes on the coast, where it is a common breeder from the Bay of Fundy to northern South Carolina
(Nisbet et al. 2013). During spring and fall migration, they generally occur on the entire Atlantic coast
and winter mainly in Central and South America. Small numbers winter on the Gulf Coast from Texas to
Florida and fewer to North Carolina; these are likely first winter birds from the Great Lakes (Nisbet 2002;
Nisbet et al. 2013).

Common Terns take live prey on the surface and usually forage within 20 km from shore during the
breeding season when they consume and provision chicks with small forage fish, of which American sand
lance (Ammodytes americanus) is a major food item (Nisbet 1983; Veit and Petersen 1993). In Long
Island Sound, large foraging groups of Common Terns had greater success than smaller groups when
exploiting dense patchy prey (Duffy 1986). Feeding associations may form with sub-surface predatory
fish, such as schools of blue fish that drive prey to the surface during feeding frenzies; also over tidal rips
(e.g., sand rips of Cape Cod, Nantucket, Tuckernuck, and Muskeget Islands) and shoals, where prey is
concentrated and brought to the surface by means of rapid tidal flux and convergent flow (Duffy 1986;
Safina et al. 1988; Schneider 1990; Veit and Petersen 1993 ).

Modeled relative occurrence and abundance of Common Tern in summer reflect this species’ breeding
distribution, a period when adults are nesting and provisioning chicks (Fig. 16.1). Bootstrapped median
occupancy and abundance models reveal similar patterns (Fig. 16.1 C,G). Highest predictions of
occupancy are closest to shore near documented nesting sites and local foraging areas; e.g., coastal
Maine; Grand Manan Archipelago; Petit Manan; Monomoy National Wildlife Refuge, Cape Cod,
Massachusetts; Nantucket Sound, Massachusetts; shoals surrounding Muskeget and Tuckernuck Islands,
Massachusetts; and Muskeget Channel, Massachusetts. East of Cape Cod, a local area of predicted high
relative occupancy and abundance is predicted in Franklin Basin over Franklin Swell (Fig. 16.1). This
shoal is within range of major breeding colonies on Cape Cod and may produce favorable foraging
conditions for nesting terns. Other areas of predicted high relative occupancy and abundance include east
of Long Island, New York; Sandy Hook, New Jersey; and barrier beaches of New Jersey, Delaware, and
Maryland. These coastal zones support local breeding colonies in spring and summer.

The average annual modeled distribution of Common Tern (average of spring, summer, and fall model
predictions) indicates high relative occupancy and abundance near the coast reflecting migratory
distributions and associations with breeding colonies, e.g. Maine’s coastal islands, Cape Cod, Long Island
and New Jersey (Fig. 17.1).

It is possible that the number of Common Tern sightings in the South Atlantic Bight (Cape Hatteras to
Southern Florida) in the survey dataset was biased low due to the challenges of identifying terns from
fixed-winged aircraft. Sightings of terns from aerial and ship surveys in spring, summer, and fall suggest
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that observers on ships positively identify Common Terns more often than observers on aerial surveys. A
total of 2883 terns were sighted from ship surveys of which 883 (31%) were identified as Common Tern,
765 (27%) were identified as other tern species, and 1235 (43%) were not identified to species. From
aerial surveys a total of 2361 terns were sighted of which none were identified as Common Tern, 673
(29%) were identified as other tern species, and 1688 (71%) were not identified to species. Because the
ratio of aerial survey effort to ship survey effort was higher in the South Atlantic Bight (Fig. 2A), the
information in the survey data about Common Tern in this region was lower, so model predictions for this
species in this area should be interpreted cautiously. In particular, predictions of high relative occupancy
and abundance offshore in this area are questionable (Fig. 17.1).

3.4.1.2 Northern Gannet--- Increasing population trend. In North America, breeding occurs on colonies
in the Gulf of St. Lawrence and off the coast of Newfoundland, Canada. Northern Gannets can form
dense feeding aggregations composed of 1000s individuals that frenetically plunge-dive into ephemeral
sub-surface schooling fish, such as herring and menhaden. In spring and fall, gannets form large
migratory groups that stream by headlands and are easily observed from shore-based vantage points.
Standardized counts and radar studies of gannets and other seabirds are organized along the coast; e.g.
Avalon Seawatch, where a high count of approximately 20,000 gannets occurred on 12 November 2008
(New Jersey Audubon 2006); however, migratory movements also occur over a broad swath of the
continental shelf (Powers 1984; Stenhouse et al. 2015). On Georges Bank, gannets were most abundant
during spring and fall (Powers and Brown 1987), with reported high concentrations in New York and
New Jersey waters during winter. Stenhouse et al. (2015) used satellite transmitters to track gannets
across three winter periods and observed core areas south of Gloucester, Massachusetts, an area known
for its commercial fishing fleet; Chesapeake and Delaware Bay; the Outer Banks, North Carolina; and in
the vicinity of a Frying Pan Shoals in southern North Carolina. Also in winter, Veit and Petersen (1993)
reported high concentrations at the shelf break in association with fishing trawlers. Data from Christmas
Bird Counts (CBCs) report 93% of observations between MA-NC (data available from National Audubon
Society 2016; Nisbet et al. 2013). Juveniles tend to travel farther south to offshore areas from North
Carolina to Florida (Palmer 1976, Nelson 1978; Nisbet et al 2013).

Model predictions of median relative occupancy and abundance generally support what has been reported
about the distribution and abundance of Northern Gannets in fall in US waters (Fig. 16.2). Relative
occupancy is predicted to be broad across the continental shelf, with highest probabilities in close
proximity to the coast, specifically east of New York, New Jersey, Delaware, and Virginia (Fig. 16.2 A-
D). Predicted median relative abundance reveals similar patterns close to the coast and offshore; e.g.,
Georges Bank (Fig. 16.2 E-H). Relative abundance predictions generally agree with reports of low
abundance off Cape Hatteras in autumn (Sep — Nov) and off east Florida (Nisbet et al. 2013). Predicted
higher relative abundance off southern NJ is generally supported by shore-based estimates during late fall
(New Jersey Audubon 2006; Nisbet et al. 2013). Predicted high relative occupancy and abundance east of
the shelf break and far offshore in the South Atlantic Bight are questionable (Nisbet et al. 2013).

The average annual modeled distribution of Northern Gannet (average of spring, summer, fall, and winter
model predictions) generally reflects patterns of spring and fall migration and the species’ winter
distribution (Fig. 17.2). Predicted high relative occupancy and abundance offshore of the shelf break and
slope likely do not reflect persistent areas of aggregation as they fall outside regions of concentrated
survey effort (Fig. 2).
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3.4.1.3 Razorbill---Increasing population trend. There are approximately 1000 breeding pairs on islands
in the Bay of Fundy and Gulf of Maine. The bulk of the North American breeding distribution is in low-
arctic waters of southern Labrador and the lower North Shore of the Gulf of St. Lawrence (Lavers et al.
2009; Nisbet et al. 2013). In winter, 94% of total birds reported on CBC surveys stretch between Nova
Scotia and Massachusetts (data available from National Audubon Society 2016; Nisbet et al. 2013). Birds
winter mainly in waters south to 40°, and are highly concentrated in the Bay of Fundy and in productive
waters of Georges Bank, Nantucket Shoals, Nantucket Sound, and east of Cape Cod (Powers and Brown
1987; Veit and Petersen 1993; Nisbet et al. 2013; White 2011; White et al. 2013); however, numbers have
increased off Cape Hatteras in recent years (Veit and Guris 2009). Razorbills often form highly
aggregative foraging flocks in association with tidal fronts that manifest in the vicinity of sloped
topography on shallow banks and ledges (Durazo et al. 1998; White 2011). Their diet is primarily
composed of small forage fish (e.g., sand lance, young herring) and crustaceans (e.g., krill), that also form
dense aggregations in association with hydrographic fronts (Huettmann et al. 2005; Gaston and Woo
2008; White 2011). Abundant sand lance populations occur in the Gulf of Maine and southern New
England where they burrow in sandy bottom, particularly in the waters of Cape Cod, Nantucket Shoals,
and Georges Bank. Strong topographically rectified currents, tidal fronts, and vertical mixing occur
within these regions and spatially correspond with high model predictions of Razorbills. In winter 2012-
2013, the Atlantic coast witnessed an incursion of Razorbills in unprecedented numbers that spanned
from the Gulf of Maine to the Gulf of Mexico. Many emaciated carcasses were found onshore indicating
a lack of suitable prey, which was likely due to anomalous warm water conditions in the Atlantic
(Brinkley 2013).

Model predictions of median relative occupancy and abundance of Razorbills in winter reveal similar
patterns (Fig. 16.3). Patterns of relative occupancy and abundance broadly agree with recent at-sea
surveys and published reports, especially in the vicinity Cape Cod (Nantucket Sound, east of outer Cape
Cod, Stellwagen Bank), Nantucket Shoals, Georges Bank, and the Bay of Fundy. Modeled median
relative occupancy appears to reflect increasing presence of Razorbills in the Mid-Atlantic Bight (Fig.
16.3).

The average annual modeled distribution of Razorbill (average of spring, summer, fall, and winter model
predictions) generally reflects the summer distribution associated with breeding islands in the Gulf of
Maine (Fig. 17.3). Winter, spring, and fall distributions coalesce around shallow banks and ledges and
Georges Bank in the Gulf of Maine; Cape Cod, Nantucket Sound and Nantucket Shoals in southern New
England; and to a lesser extent, off eastern Long Island, NY and southern New Jersey (Fig 17.3).

3.4.1.4 White-winged Scoter---Decreasing population trend. This largest scoter species nests in the
northwestern interior of North America and winters on both coasts. White-winged Scoters arrive to the
US east coast in September, increase in numbers throughout fall and winter, and depart for breeding areas
in mid-May. Also known as diving ducks, they prey mainly upon molluscs attached to substrate; e.g. blue
mussels, and infaunal clams embedded in the seafloor, and sometimes select soft-bodied crustaceans.
White-winged Scoters are generally found in close proximity to the coast between depths of 5 and 40 m.
They are highly gregarious and form patchy feeding flocks, which can comprise 1000s of individuals and
stretch across miles of ocean; e.g., Nantucket Shoals (White 2013; White et al. 2013). The Nantucket
Shoals feeding hotspot is associated with high concentrations of clams and pelagic crustaceans and
overlaps with a hotspot of wintering Long-tailed Ducks (White 2013). The majority or 86% of the total
number of White-winged Scoters reported on CBCs concentrate between Maine and New York (data
available from National Audubon Society 2016; Nisbet et al. 2013).
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Model predictions of median relative occupancy and abundance in winter are similar for White-winged
Scoters (Fig. 16.4). Both relative occupancy and abundance is predicted to be higher in and around Cape
Cod Bay, Nantucket Sound, and Nantucket Shoals and agree with reported areas of high abundance.
Reasonably high predicted relative occupancy and abundance also occur east of Long Island, NY and the
New Jersey coast. Use of these areas in winter is supported by satellite telemetry (birds fixed with GPS
transmitters; Environment Canada 2013), systematic surveys, and local reports (Nisbet et al. 2013).
Predictions of high relative occupancy and abundance of this species in offshore waters are questionable.
The model predicts White-winged Scoters in deep waters (> 90 m) and approximately 100 nm south of
Nova Scotia. These zones appear unlikely to be favored by White-winged Scoters given what is known of
their wintering ecology. Predictions of high relative occupancy and abundance south of Nantucket Shoals
and offshore of the shelf break are also questionable.

The average annual modeled distribution of White-winged Scoter (average of fall, winter, and spring)
reflects core winter foraging areas in the vicinity of Nantucket Island (Nantucket Sound and Nantucket
Shoals) and Cape Cod Bay (Fig. 7.4). Lower predicted coastal relative occupancy and abundance extend
south into the mid-Atlantic region, and reveal a peak along eastern Long Island, NY and in the vicinity of
Montauk Point. Predicted relative occupancy and abundance attenuates south until the barrier islands of
New Jersey, and mouths of Delaware and Chesapeake Bay. Higher predicted relative occupancy and
abundance greater than 20 nm from the New England coast suggest migratory groups travelling to
southern foraging destinations in fall, and should not be interpreted as persistent foraging areas.
Predictions of moderate relative occupancy and abundance far offshore from the mid-Atlantic coast are
almost certainly spurious (Fig. 17.4).

3.4.2 Species groups

Figs 18-20 show modeled annual distributions of relative occupancy and abundance averaged across
species within three species groups: nearshore, pelagic, and gulls and gannets (Table 12). Each species’
annual predictions were normalized (divided by their sum) prior to averaging so that each species
contributed equally to the multi-species average. Because each species’ predictions were divided by their
sum, the actual numeric values of these normalized predictions are very small. As with all predictions of
occupancy and abundance presented in this report, it is the relative differences in predictions across space
that are relevant, not the actual numbers themselves.

Figs 18-20 should be regarded as an exploratory exercise to generate multi-species products. These
species groupings were based on loosely similar spatial domains and should not be interpreted as
ecological groups. Some member species of the ‘pelagic’ group are more of a ‘nearshore’ species during
the breeding season (e.g. Atlantic Puffin, Razorbill) as revealed in the modeled distribution for this group
which exhibits predictions of high relative occupancy and abundance around breeding colonies in the
Gulf of Maine (Fig. 19).

4. Discussion

This report describes the first phase of a project aimed at producing maps of the spatial distributions of
marine bird species in U.S. Atlantic Outer Continental Shelf waters (Fig. 1) that can be used to inform
marine spatial planning in the region. Maps were developed for 40 species and 118 species-season
combinations.
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4.1 Interpretation of maps

The maps presented in this report represent spatial predictions of relative occurrence and relative
abundance averaged over time. The maps do not provide predictions of the absolute number of
individuals of a given species that would be expected in a specific location at a specific time. The maps
only provide information about where a given species may be more or less likely to occur and where a
species may be more or less abundant.

The maps presented here represent model predictions that ultimately rely on the underlying survey data
that the models were fit to. The distribution of survey effort was highly uneven across the study area (Fig.
2), so some areas were much better sampled than others. For example, there were many fewer data from
offshore areas than nearshore areas. Model predictions in areas with low survey effort should be
interpreted cautiously. The survey effort contours provided can be used to identify such areas. For
example, Fig. 21 shows the map of predicted relative abundance for Razorbill in winter with the survey
effort contours overlaid. The area of predicted high relative abundance off southern Nova Scotia at the
northeast end of the study area is outside of the 95% survey effort contour indicating that these model
predictions are based on few, if any local data.

Predictions very close to shore (i.e., within 1-2 km) should be interpreted with caution for several reasons.
First, survey effort was limited very close to shore (i.e., within 1-2 km). Second, the boundaries of the
square study grid cells did not perfectly align with the shoreline, so there may be gaps between the
shoreline and the nearest study grid cell. Third, data for some remotely-sensed predictor variables were
less reliable or missing (precluding prediction) very close to shore. As a result, predictions for species that
tend to be very close to shore (e.g., Brown Pelican, Laughing Gull, and Least Tern) should be interpreted
with caution.

Large variations in model predictions at the 2-km resolution of the prediction grid may not be realistic.
For example, the modeled annual average distribution of Common Tern exhibits patchy predictions in
offshore areas of the South Atlantic Bight and Gulf of Maine (Fig. 17.1). Such large variation in average
long-term relative occurrence and abundance at such fine spatial scales is likely unrealistic in many cases.
Management applications should not assume that fine-scale variation in model predictions from one grid
cell to the next is realistic. Interpretation of the maps presented here to inform spatial planning is probably
more reliable at the regional scale (i.e., 10-100 km).

Some model predictions of high relative occurrence and abundance may partially reflect large temporal
and spatial aggregations of birds coinciding with survey effort rather than average long-term spatial
patterns per se. For example, pockets of very high predicted relative occurrence and abundance in
offshore areas often reflect high counts on a limited number of survey transects (e.g., Audubon
Shearwater fall model). In many cases, it is unlikely that these are persistent areas of much higher relative
occurrence and abundance than adjacent areas that had no survey effort. While our spatial predictive
modeling framework theoretically accounts for effort and attempts to account for the aggregated nature of
animal distributions and sightings, limited sample size combined with extreme aggregations can unduly
influence model predictions.

The maps of predicted relative occurrence and abundance presented here are accompanied by
corresponding maps of the estimated uncertainty in those predictions including bootstrapped quantiles,
confidence intervals, and coefficients of variation. It is important that the uncertainty products are
considered alongside the prediction maps. In many cases the confidence intervals and coefficients of
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variation are very large indicating substantial statistical uncertainty and variability associated with the
corresponding predictions, and those predictions should be interpreted cautiously.

4.2 Model performance

The performance of the models varied among species and seasons (Table 11). We provide two
assessments of the quality of each model.

First, a suite of performance metrics were calculated to determine the statistical fit of each model to the
data. Four of these metrics were combined to provide an overall model performance class, and a badge
indicating this performance is included on the map products. It is important to recognize that the model
performance metrics and badge reflect only the statistical fit of the model to the data that were analyzed,
and they do not reflect the quality of model predictions away from the data. For example, the accuracy of
predictions in areas with little survey effort is not necessarily reflected by the model performance metrics.
Nevertheless, the performance metrics and overall performance class give a relative indication of how
accurately a model was able to predict the observed data, and better performance provides a measure of
confidence in the model predictions, especially within the temporal and spatial coverage of the observed
survey data. On the other hand, when metrics indicate poor performance (e.g., zero percent deviance
explained, negative Gaussian rank correlation coefficient, or extremely high median absolute error) those
models should be interpreted cautiously.

Second, we provide a judgement about the quality of each model based on an expert review of the maps
by one of the authors of this report (TPW). This assessment is more subjective than the performance
assessment, and it is the opinion of one expert, but it provides a broader evaluation of how the modeled
distributions of relative occurrence and abundance match what is known about the distributions of these
marine bird species in the study area.

4.3 Species identification

The survey data analyzed in this project were from a large number of surveys representing numerous
survey platforms and protocols. A fundamental assumption of the analysis presented here is that all
species, when present, were recorded. This assumption might have been violated on one or more surveys
if observers were focused on particular groups of species and failed to record occurrences of other
species. A related issue is the identification of observed birds to the species level. From some survey
platforms, or again if observers were more focused on some species than others, some birds might have
been less likely to be identified to species. For example, it can be difficult to identify the species of some
small birds from typical aerial surveys. Birds that were not identified to species were not included in the
analysis here. The result of failure to record some species or failure to identify the species of some types
of birds is the same: the expected count of those species will vary among survey datasets, independent of
other factors.

Our statistical modeling framework allowed for differences in the expected count of a given species
among survey platforms and transects, so theoretically the models could account for differences arising
from failure to record or identify species. However, if a geographic area is covered by a limited number of
surveys or platforms, then it would be difficult or impossible for the model to determine whether
differences in counts in that area were because of fewer birds in that area or because of differences in
species recording and identification in that area. Model predictions in such instances should be interpreted

17



cautiously. For example, model predictions for species that are difficult to identify from aircraft should be
interpreted cautiously in areas where most of the survey effort was aerial.

4.4 Project Phase Il

A second phase of this project is currently underway that will expand, refine, and improve the modeling
and results presented in this report. The results presented here should be considered preliminary. In
particular, an error in the computer code used for Phase | of the analysis resulted in spurious spatial
patterns in some of the predictions (Section 2.6). The error has been corrected for the second phase of the
project.
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Table 1. Datasets analyzed. Data from these surveys were extracted from the USGS Avian Compendium
Database (O’Connell et al. 2009) and standardized to 15-minute ship survey equivalent transect
segments as described in the text. Transect counts reflect all transect segments within the study area,
including some records that were later excluded from analysis due to incomplete records (missing

predictor data).

Number of transect segments surveyed®

Year ; - , d
(15-minute-ship-survey-equivalents”)

Source Dataset ID? Platform Method"® Start End Total Spring | Summer Fall Winter
OHATPS_FWS_ Aeral Fal | aerial ots 2012 | 2012 5157 0 0| 5157 0
AMAPPS_FWS Aerial_ Pr | = o cts 2010 | 2010 1863 0 1863 0 0
eliminary_Summer2010
AMAPPS_FWS_Aerial Sp | pgyig) cts 2012 | 2012 5270 | 5270 0 0 0
ring2012
AMAPPS_FWS_Aerial Su | pq g ots 2011 | 2011 5177 0 5177 0 0
mmer2011
oo yeo-AeraL W agriay ots 2010 | 2011 914 0 0 o| o4
éyggg;ﬁga?NNMFs—N Boat cts 2011 2011 1274 0 1274 0 0
iy OS&?(%A/ NMFS_N | goat cts 2013 | 2013 1318 0 1318 0 0
AMAPES DOPAINMESN | Boat ots 2014 | 2014 859 859 0 0 0
AVATES DOANNMFS.S | Boar ots 2011 | 2011 822 0 822 0 0
> DRVNMESS | Boat cts 2013 | 2013 813 0 582 231 0
BarHarborWwQ05 Boat cts 2005 2005 911 0 755 156 0
BarHarborWww06 Boat cts 2006 2006 1022 0 730 292 0
CapeHatteras0405 Boat cts 2004 2005 276 0 154 0 122
CapeWindAerial Aerial cts 2002 2004 4035 963 959 1014 1099
CapeWindBoat Boat cts 2002 2003 252 100 123 29 0
CDASMidAtlantic Aerial cts 2001 2003 1402 201 0 0 1201
CSAP Boat dts 1980 1988 26271 7640 7028 7368 4235
DOEBRIBoatApr2014 Boat cts 2014 2014 140 140 0 0 0
DOEBRIBoatApril2012 Boat cts 2012 2012 142 142 0 0 0
DOEBRIBoatAug2012 Boat cts 2012 2012 142 0 142 0 0
DOEBRIBoatAug2013 Boat cts 2013 2013 145 0 145 0 0
DOEBRIBoatDec2012 Boat cts 2012 2013 139 0 0 0 139
DOEBRIBoatDec2013 Boat cts 2013 2013 147 0 0 0 147
DOEBRIBoatJan2013 Boat cts 2013 2013 143 0 0 0 143
DOEBRIBoatJan2014 Boat cts 2014 2014 143 0 0 0 143
DOEBRIBoatJune2012 Boat cts 2012 2012 143 0 143 0 0
DOEBRIBoatJune2013 Boat cts 2013 2013 146 0 146 0 0
DOEBRIBoatMar2013 Boat cts 2013 2013 145 145 0 0 0
DOEBRIBoatMay2013 Boat cts 2013 2013 147 147 0 0 0
DOEBRIBoatNov2012 Boat cts 2012 2012 142 0 0 142 0
DOEBRIBo0atOct2013 Boat cts 2013 2013 147 0 0 147| 0
DOEBRIBoatSep2012 Boat cts 2012 2012 144 0 0 144 0
DOEBRIBoatSep2013 Boat cts 2013 2013 148 0 0 148 0
EcoMonAug08 Boat cts 2008 2008 411 0 411 0 0
EcoMonAug09 Boat cts 2009 2009 395 0 395 0 0
EcoMonAug10 Boat cts 2010 2010 427 0 415 12 0
EcoMonAug2012 Boat cts 2012 2012 560 0 560 0 0
EcoMonFeb10 Boat cts 2010 2010 292 0 0 0 292
EcoMonFeb2012 Boat cts 2012 2012 472 0 0 0 472
EcoMonJan09 Boat cts 2009 2009 341 0 0 0 341
EcoMonJun2012 Boat cts 2012 2012 389 27 362 0 0
EcoMonMay07 Boat cts 2007 2007 435 374 61 0 0
EcoMonMay09 Boat cts 2009 2009 543 173 370 0 0
EcoMonMay10 Boat cts 2010 2010 550 235 315 0 0
EcoMonNov09 Boat cts 2009 2009 379 0 0 379 0
EcoMonNov10 Boat cts 2010 2010 356 0 0 356 0
EcoMonNov2011 Boat cts 2011 2011 391 0 0 391 0
EcoMonOct2012 Boat cts 2012 2012 428 0 0 428 0
FWS_MidAtlanticDetection Aerial cts 2012 2012 456 456 0 0 0
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_Spring2012

Z:’;’gl—ZSOUther”BLSC—W'm Aerial cts 2012 | 2012 1582 0 0 o 1582
E%ggt'a”t'cw'merseaduc Aerial cts 2008 | 2011 | 14377 128 0 o 14249
GeorgiaPelagic Boat dts 1982 1985 2187 681 699 576 231
HatterasEddyCruise2004 Boat cts 2004 2004 93 0 93 0 0
HerringAcoustic06 Boat cts 2006 2006 243 0 0 243 0
HerringAcoustic07 Boat cts 2007 2007 283 0 0 283 0
HerringAcoustic08 Boat cts 2008 2008 710 0 0 710 0
HerringAcousticO9Leg1 Boat cts 2009 2009 109 0 0 109 0
HerringAcousticO9Leg2 Boat cts 2009 2009 245 0 0 245 0
HerringAcousticO9Leg3 Boat cts 2009 2009 227 0 0 227| 0
HerringAcoustic2010 Boat cts 2010 2010 482 0 0 482 0
HerringAcoustic2011 Boat cts 2011 2011 690 0 0 690 0
MassAudNanAerial Aerial cts 2002 2006 4131 753 604 1034 1740
NewEnglandSeamount06 Boat dts 2006 2007 66 61 4 1 0
NJDEP2009 Boat cts 2008 2009 4446 1094 1191 1272 889
;%ZN NMFS_NEFSCBoat Boat cts 2004 | 2004 1017 0 1017 0 0
;%;A’ NMFS_NEFSCBoat | g cts 2007 | 2007 516 0 516 o 0
NOAAMBO7880 Boat dts 1978 1979 6979 1682 2462 2044 791
PlattsBankAerial Aerial cts 2005 2005 732 0 732 0 0
RISAMPAerial Aerial cts 2009 2010 2158 849 663 0 646
RISAMPBoat Boat cts 2009 2010 716 185 239 142 150
SEFSC1992 Boat cts 1992 1992 674 0 0 0 674
SEFSC1998 Boat cts 1998 1998 1146 0 1146 0 0
SEFSC1999 Boat cts 1999 1999 1058 0 611 447 0
WHOIJuly2010 Boat cts 2010 2010 71 0 71 0 0
WHOISept2010 Boat cts 2010 2010 74 0 0 74 0
TOTALS ALL ALL 1978 2014 111776 22305 34298 24973 30200

®The Source Dataset ID can be used to look up datasets in Appendix A, Table A1, which gives detailed additional background
information about each survey. Table Al lists several additional datasets; these additional datasets are available but did not contain
any segments that fell within the study area.

°Survey method: cts, continuous-time strip transects; dts, discrete-time strip transects

‘Counts exclude segments whose midpoint falls outside the study area (as shown in Figure 1), and any partial segments that were
less than 60% of standard transect segment length (i.e., only segments >2.778km in length were included).

4A15-minute-ship-survey-equivalent is defined as the distance a ship would travel in 15 minutes at 10 knots.
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Table 2. List of species analyzed. Four-letter species codes in the first column are generally used in place

of the full common or scientific name throughout this report. For each season, only species with >=50

sightings were modeled. Number of sightings includes some records that were later excluded from

analysis due to incomplete records (missing predictor data). Shaded cells indicate model runs that were

successfully completed.

Number of sightings

Species . . 5 _
code Common name Scientific name Family T g £ = %
S - .
arte Arctic Tern Sterna paradisaea Sternidae 242 44 154 44 0
atpu Atlantic Puffin Fratercula arctica Alcidae 795 209 246 91 249
aush | Audubon's Puffinus Iherminieri Procellariidae 1460 | 129 | 876 | 286 | 169
Shearwater
bcpe Black-capped Petrel Pterodroma hasitata Procellariidae 689 158 356 92 83
blgu Black Guillemot Cepphus grylle Alcidae 141 7 93 7 34
biki | Black-legged Rissa tridactyla Laridae 6434 | 621 24 | 2083 | 3706
Kittiwake
blsc Black Scoter Melanitta americana Anatidae 1958 423 16 356 1163
bogu | Bonaparte's Gull Chroicocephalus Laridae 1678 | 397 20| 280 | 981
philadelphia
brpe Brown Pelican Pelecanus occidentalis Pelecanidae 356 66 127 87 76
brsp Eztnriirummd Storm- | 5 eanodroma castro Hydrobatidae 290 14 266 10 0
coei Common Eider Somateria mollissima Anatidae 3800 893 159 537 2211
colo Common Loon Gavia immer Gaviidae 6949 2367 182 1185 3215
comu Common Murre Uria aalge Alcidae 277 90 22 5 160
cosh Cory's Shearwater Calonectris diomedea Procellariidae 4579 106 | 2925 1547 1
cote Common Tern Sterna hirundo Sternidae 2713 488 1538 683 4
dcco Double-crested Phalacrocorax auritus Phalacrocoracidae 700 145 187 206 162
Cormorant
dove Dovekie Alle alle Alcidae 1675 260 49 404 962
gbbg gﬁat Black-backed | | ;s marinus Laridae 15654 | 3423 | 3186 | 5390 | 3655
grsh Great Shearwater Puffinus gravis Procellariidae 12907 586 | 6011 | 6176 134
herg Herring Gull Larus argentatus Laridae 21087 5721 2941 7439 4986
hogr Horned Grebe Podiceps auritus Podicipedidae 128 21 0 13 94
lagu Laughing Gull Leucophaeus atricilla Laridae 3987 711 1602 1560 114
lesp Leach's Storm-Petrel Oceanodroma leucorhoa | Hydrobatidae 2816 223 2140 452 1
lete Least Tern Sterna antillarum Sternidae 185 27 121 37 0
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Itdu Long-tailed Duck Clangula hyemalis Anatidae 4852 1152 1 485 3214
mash Manx Shearwater Puffinus puffinus Procellariidae 689 100 309 264 16
nofu Northern Fulmar Fulmarus glacialis Procellariidae 6613 | 2244 737 1823 1809
noga Northern Gannet Morus bassanus Sulidae 17270 | 5667 1187 | 4002 | 6414
poja Pomarine Jaeger Stercorarius pomarinus Stercorariidae 984 110 144 709 21
razo Razorbill Alca torda Alcidae 2527 720 78 170 1559
rbgu Ring-billed Gull Larus delawarensis Laridae 1243 181 46 312 704
reph Red Phalarope Phalaropus fulicarius Scolopacidae 1005 461 214 286 44
rnph Eﬁg[gﬁ)ﬂ?d Phalaropus lobatus Scolopacidae 469 132 167 156 14
rost Roseate Tern Sterna dougallii Sternidae 328 56 195 74 3
royt Royal Tern Sterna maxima Sternidae 842 269 283 279 11

rtlo Red-throated Loon Gavia stellata Gaviidae 3999 1699 11 387 1902
sosh Sooty Shearwater Puffinus griseus Procellariidae 2439 790 1542 104 3
susc Surf Scoter Melanitta perspicillata Anatidae 3260 745 8 761 1746
wisp Wilson's Storm-Petrel | Oceanites oceanicus Hydrobatidae 11400 1650 | 8392 1348 10
WWSC White-winged Scoter Melanitta fusca Anatidae 2302 415 5 550 1332
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Table 3. Predictor variables used in model with codenames, resolutions, and sources.

(approx. 92 m); ACUMEN:
approx. 25 m; CCOM:
approx. 111 m; GEBCO: 30
arc-seconds (approx. 927 m)

Predictor variable Codename Native resolution Source
Survey variables
Survey platform boatplane Categorical variable USGS/USFWS Compendium of Avian
Information Database
Survey ID sid Categorical variable USGS/USFWS Compendium of Avian
Information Database
Transect ID tid Categorical variable USGS/USFWS Compendium of Avian
Information Database
Temporal variables
Year yearscaled 1 year n/a
Day of year jday 1 day n/a
Atlantic Multidecadal index_amo, Monthly NOAA ESRL
Oscillation (AMO) index index_amo_lag1 http://www.esrl.noaa.gov/psd/data/correl
(current and 1 year lag) ation/amon.us.data
Multivariate El Nifio- index_mei, Monthly NOAA ESRL
Southern Oscillation Index index_mei_lag1 http://www.esrl.noaa.gov/psd/data/correl
(MEI) (current and 1 year ation/mei.data
lag)
North Atlantic Oscillation index_nao, Monthly NOAA ESRL
(NAOQ) index (current and 1 index_nao_lag1 http://www.esrl.noaa.gov/psd/data/correl
year lag) ation/naoc.data
Trans-Nifio Index (TNI) index_tni, Monthly NOAA ESRL
(current and 1 year lag) index_tni_lag1 http://www.esrl.noaa.gov/psd/data/correl
ation/tni.data
Geographic variables
Longitude projected prion n/a n/a
(obligue Mercator)
Latitude projected (oblique priat n/a n/a
Mercator)
Distance to land” dland 50 m Derived from Prototype Global
Shoreline Data
(http://msi.nga.mil/NGAPortal/DNC.port
al?_nfpb=true& pagelLabel=dnc_portal
age 72)
Distance to shelf break’ dshelf Same as depth (approx. 25 |Derived from depth (200-m isobath)
m to 927 m)
Terrain variables
Depth? depth CRM: 3 arc-seconds NOAA National Geophysical Data

Center Coastal Relief Model (CRM)
(http://www.ngdc.noaa.gov/mgg/coastal/
crm.html); NOAA Atlantic Canyons
Undersea Mapping Expeditions
(ACUMEN)
(http://oceanexplorer.noaa.gov/okeanos/
explorations/acumen12/summary/welco
me.html); University of New Hampshire
Center for Coastal and Ocean Mapping
(CCOM) / Joint Hydrographic Center
(http://ccom.unh.edu/about-ccomjhc);
General Bathymetric Chart of the
Oceans (GEBCO) GEBCO_08 grid
(http://www.gebco.net/data_and produc
ts/gridded bathymetry data/)
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http://www.esrl.noaa.gov/psd/data/correlation/amon.us.data
http://www.esrl.noaa.gov/psd/data/correlation/amon.us.data
http://www.esrl.noaa.gov/psd/data/correlation/mei.data
http://www.esrl.noaa.gov/psd/data/correlation/mei.data
http://www.esrl.noaa.gov/psd/data/correlation/nao.data
http://www.esrl.noaa.gov/psd/data/correlation/nao.data
http://www.esrl.noaa.gov/psd/data/correlation/tni.data
http://www.esrl.noaa.gov/psd/data/correlation/tni.data
http://msi.nga.mil/NGAPortal/DNC.portal?_nfpb=true&_pageLabel=dnc_portal_page_72
http://msi.nga.mil/NGAPortal/DNC.portal?_nfpb=true&_pageLabel=dnc_portal_page_72
http://msi.nga.mil/NGAPortal/DNC.portal?_nfpb=true&_pageLabel=dnc_portal_page_72
http://www.ngdc.noaa.gov/mgg/coastal/crm.html
http://www.ngdc.noaa.gov/mgg/coastal/crm.html
http://oceanexplorer.noaa.gov/okeanos/explorations/acumen12/summary/welcome.html
http://oceanexplorer.noaa.gov/okeanos/explorations/acumen12/summary/welcome.html
http://oceanexplorer.noaa.gov/okeanos/explorations/acumen12/summary/welcome.html
http://ccom.unh.edu/about-ccomjhc
http://www.gebco.net/data_and_products/gridded_bathymetry_data/
http://www.gebco.net/data_and_products/gridded_bathymetry_data/

Slope 1(derived at 1500 m slp1500m approx. 1500 m Derived from depth
scale)”
Slope (derived at 10 km slp10km approx. 10 km Derived from depth
scale)1’4
Slope of slope (derived at slpslp10km approx. 10 km Derived from depth
10 km s.ca1le)1’4
Planform curvature (derived plcurv10km approx. 10 km Derived from depth
at 10 km scale)1’3’4
Profile curvature (derived at prcurv10km approx. 10 km Derived from depth
10 km scale)”"4
Physical variables
(seasonal climatologies)
Sea surface height sshmean 1/3 degree (approx. 37km) |AVISO Global DT-Upd Merged MADT
weekly sea surface altimetry product
(1992-2013)
(http://www.aviso.altimetry.fr/en/data/pro
ducts/sea-surface-height-
roducts/global/madt.html; note that
‘Upd’ is now referred to as ‘all sat
merged’)
Sea surface height standard sshsd 1/3 degree (approx. 37km) |Derived from sea surface height
deviation
Probabilitgl of anticyclonic peddacyc 1/3 degree (approx. 37km) |Derived from sea surface height
eddy ring
Probability of cyclonic eddy peddcyc 1/3 degree (approx. 37km) |Derived from sea surface height
ring
Sea surface temperature sstmean approx. 1 km IAVHRR Pathfinder daily or sub-daily
ISST (1985-2010) from Peter Cornillon
(University of Rhode Island) served at
http://www.sstfronts.org/opendap/
Sea surface temperature sstsd approx. 1 km Derived from sea surface temperature
standard deviation
Probability of sea surface sstfront 0.011 degree (approx. 1.2 |Monthly ‘climatologies’ from Peter Miller
temperature front® km) (Plymouth Marine Laboratory) derived
from monthly front presence/absence in
turn derived from daily NASA MUR 1-
km SST data (2002-2013)
Current velocity (u direction) wateru 1/6 degree (approx. 19 km) Hybrid vertical coordinate system ocean
model (HYCOM) reanalysis (GLBu0.16
grid, experiments 19.0 and 19.1) 3-
hourly data (1992-2005)
(http://hycom.org/dataserver)
Current velocity (v direction) waterv 1/6 degree (approx. 19 km) [Hybrid vertical coordinate system ocean
model (HYCOM) reanalysis (GLBu0.16
grid, experiments 19.0 and 19.1) 3-
hourly data (1992-2005)
(http://hycom.org/dataserver)
Current divergence diverg 1/6 degree (approx. 19 km) |Derived from current velocity
Current vorticity vort 1/6 degree (approx. 19 km) |Derived from current velocity
Wind stress (x direction) windstrx 0.25 degrees (approx. 28 NOAA CoastWatch monthly grids
km) (1999-2009) derived from NASA Quick
Scatterometer (QuikSCAT) data
(http://coastwatch.pfeg.noaa.gov/erddap
griddap/erdQSstressmday.html)
Wind stress (y direction) windstry 0.25 degrees (approx. 28 NOAA CoastWatch monthly grids

km)

(1999-2009) derived from NASA Quick
Scatterometer (QuikSCAT) data
(http://coastwatch.pfeg.noaa.gov/erddap

griddap/erdQSstressmday.html)
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http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt.html
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt.html
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt.html
http://www.sstfronts.org/opendap/
http://hycom.org/dataserver
http://hycom.org/dataserver
http://coastwatch.pfeg.noaa.gov/erddap/griddap/erdQSstressmday.html
http://coastwatch.pfeg.noaa.gov/erddap/griddap/erdQSstressmday.html
http://coastwatch.pfeg.noaa.gov/erddap/griddap/erdQSstressmday.html
http://coastwatch.pfeg.noaa.gov/erddap/griddap/erdQSstressmday.html

Wind divergence

divw

0.25 degrees (approx. 28
km)

NOAA CoastWatch monthly grids
(1999-2009) derived from NASA Quick
Scatterometer (QuikSCAT) data
(http://coastwatch.pfeg.noaa.gov/erddap
griddap/erdQSdivmodmday.html)

Upwelling index

upwelling

0.25 degrees (approx. 28
km)

NOAA CoastWatch monthly grids
(1999-2009) derived from NASA Quick
Scatterometer (QuikSCAT) data
(http://coastwatch.pfeg.noaa.gov/erddap
griddap/erdQSstressmday.html)

Turbidity (reflectance at 670
nm)

turb

approx. 1 km

Monthly products (1997-2010) from Tim
Wynne (NOAA NCCOS) derived from
daily Sea-Viewing Wide Field of-View
Sensor (SeaWiFS) data processed
using the Naval Research Laboratories’
Automated Processing System software

Biological variables
(seasonal climatologies)

Surface chlorophyll-a

chla

approx. 1 km

Monthly products (1997-2010) from Tim
Wynne (NOAA NCCOS) derived from
daily Sea-Viewing Wide Field of-View
Sensor (SeaWiFS) data processed
using the Naval Research Laboratories’

Automated Processing System software

' Derived using ArcGIS 10.2 Spatial Analyst Tools.

2 Datasets were converted to a common 100-m grid then mosaicked in order of decreasing priority: CRM, ACUMEN,

CCOM, and GEBCO.

® Derived using the ArcGIS 10.2 extension DEM Surface Tools (Jenness 2012).

* Calculated from depth grids that were smoothed using a Gaussian low-pass filter for each spatial scale.

® Derived using Duke University’s Marine Geospatial Ecology Lab's Marine Geospatial Ecology Tools (MGET) for
ArcGIS 10.2 (Okubo-Weiss algorithm).

e A low-pass filter was applied to the climatologies to remove banding artifacts.
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Table 4a. Predictor correlation table (spring). Pairwise Spearman rank correlation coefficients for spatial predictor variables. High correlations are highlighted
([tau|>0.7 in yellow, |tau|>0.8 in orange, |tau|>0.9 in red).

[} o E E £ E
§ S § € g = = > z 2 3 % g S E]
o ) B i} 3 2 2 @ 7] < = 2 2 =3
5 ] kel € @ S 2 [ - 5] 3] k<] k=] ] 2 o 5 = c S 9 3
g1 2|2 38|s|5|¢|5|5|8%8|2|&8|s|s|s|e|¢c |5 |5|5|28|3|8&8|<¢|z=2]z|%t
(3] © © =% o 7] 7] ] 7] ] =2 =] > = = 2 2 ° k=] ° o a a a 7] [ 7]
chla 0. 0.28 -0.47 -0.59 -0.7 -0.48 0.06 -0.87 0.77 0.89 0.27 0.14 -0.22 -0.33 -0.04 -0.62 0.59 -0.53 -0.47 0.04 -0.08 0.8 0.47 -0.24 -0.22 -0.18
diverg 0.02 0 -0.11 -0.22 -0.04 0 -0.14 0.17 0.19 0.28 0.09 0.01 0.08 -0.04 -0.25 0.12 -0.12 -0.12 0.02 0.05 0.16 0.12 0 -0.01 0.04
divw -0.16 -0.17 -0.44 -0.37 0.16 -0.29 0.34 0.26 0.05 0.21 -0.23 -0.25 -0.23 -0.29 0.26 -0.19 -0.33 0.01 -0.06 0.12 0 -0.01 -0.06 0.05
peddacyc 0.24 0.21 0.53 0.09 0.29 -0.09 -0.38 0.03 -0.13 0.25 0.17 0.28 0.06 -0.61 0.55 0.45 -0.05 0.24 -0.21 0.1 0.27 0.27 0.11
peddeyc 0.59 0.61 -0.04 0.5 -0.39 -0.5 -0.36 0.14 0.12 0.04 0.2 0.46 -0.55 0.54 0.6 -0.01 0.02 -0.54 -0.26 0.07 0.08 0.02
sshmean 0.52 -0.29 0.66 -0.72 -0.64 -0.34 -0.32 0.18 0.22 0.23 0.77 -0.52 0.46 0.61 -0.03 0.02 -0.63 -0.35 -0.06 -0.04 -0.11
sshsd 0.15 0.43 -0.11 -0.35 -0.04 0.02 0.47 0.26 0.63 0.13 -0.72 0.69 0.68 -0.01 0.16 -0.27 0.07 0.2 0.24 0.01
sstfront 0.07 0.47 0.12 0.13 0.35 0.29 0.23 0.29 -0.47 0 0.01 -0.33 0.01 -0.01 0.1 0.03 0.53 0.44 0.35
-0.66 -0.76 -0.23 -0.07 0.38 0.54 -0.07 0.55 -0.29 0.24 0.22 -0.02 0.01 -0.9 -0.73 0.21 0.16 0.14
sstmean
sstsd 0.74 0.32 0.27 0.02 -0.19 0.18 -0.78 0.29 -0.24 -0.33 0.01 0.05 0.66 0.44 0.08 0.07 -0.02
turb 0.26 0.12 -0.14 -0.28 -0.01 -0.61 0.49 -0.42 -0.36 0.05 -0.06 0.7 0.43 -0.18 -0.16 -0.14
" -0.07 0.18 0.14 0.13 -0.43 0.17 -0.14 -0.24 0.05 0.06 0.35 0.26 -0.01 0 0
upwelling
vort 0.04 0.05 -0.08 -0.35 0.06 -0.09 -0.23 0.01 -0.09 0.01 -0.02 0.2 0.18 0.21
0.58 0.37 -0.12 -0.22 0.16 0.09 0.01 0.12 -0.15 -0.09 0.19 0.19 0.02
wateru
0.06 0.01 0.01 -0.05 -0.1 0 0.04 -0.36 -0.36 0.16 0.15 0.07
waterv
. -0.2 -0.63 0.61 0.39 0.02 0.15 0.3 0.53 0.22 0.26 0.01
windstrx
. -0.21 0.2 0.45 -0.06 -0.06 -0.65 -05 -0.19 -0.17 -0.12
windstry
-0.9 -0.76 0.07 -0.29 0.21 -0.26 -0.24 -0.29 -0.08
depth
0.76 -0.02 0.15 -0.18 0.3 0.16 0.2 0.07
dland
-0.06 0.16 -0.25 0.14 -0.14 -0.05 -0.21
dshelf
-0.21 . . .02 .01
pleurv10km 0 0.03 0.03 0.0 0.0 0
0.05 0.12 0.16 0.18 0.09
prcurv1Okm
0.84 -0.03 0.03 -0.04
prlat
0.03 0.11 -0.01
prlon
SIp10km 0.88 0.74
slp1500m 0.63
slpslp10km
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Table 4b. Predictor correlation table (summer). Pairwise Spearman rank correlation coefficients for spatial predictor variables. High correlations are highlighted
([tau|>0.7 in yellow, |tau|>0.8 in orange, |tau|>0.9 in red).
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S o = = c £ o 2 é é £ g 3

o g ) 3 g 5 3 s 2 =z Z - = S 1S 3 2

s | 2| E| 5|5 | 5|2 |5 |5 |8 || & |s|¢|¢8 |5 |5 |58 |8 |2 |2 |e|e|&|2|z2]|¢z

5} kS kS o o a a a 8 a 2 i > = = 2 2 ° S ° =% S S S > > >
chla 0.24 02 | 052 07 | 078 06 | 067 | 066 | 063 | 048 039 | 014 | -003 | -0.14 | -015 | -0.72 | 0.76 | -0.71 | 066 | 005 | -011 | 072 | 031 02 | 019 | -013
diverg 0.07 | -0.07 | -0.14 202 | 007 0.1 01 | o011 | 006 019 | 008 | 001 | 012 | -0.02 02 | 016 | 018 | -0.09 0| 004 | 012 | 005 01 | -008 | -0.06
divw 024 | 011 | -0.24 03 | 006 | 007 | 011 | 004 | 009 | 017 | -023 | -015 | -0.25 | -027 | 028 | -023 | 026 | 002 | 014 | 003 | -013 | -0.09 | -0.15 0
peddacyc 037 | 029 06 | -017 | 013 | -041 | -052 | 004 | 012 | 009 | 003 04 | 033 | -065 | 059 048 | -004 | 023 | -0.14 | 016 | 039 0.4 0.2
peddeyc 057 | 065 | 046 | 039 | 039 | 027 | -037 | 014 | -0.06 | -0.05 | 022 06 | -061 | 061 065 | -001 | 006 | -0.48 | -0.18 01 | 011 | 005
sshmean 0.6 06 | 063 | 067 | 013 | -042 | -025 | 009 | 022 | 025 [ 087 | 061 | 055 | 064 | 003 | 005 | -064 | -0.32 0 | o002 01
sshsd 016 | 032 03 | 042 | 013 | 007 | 031 | 019 | 062 | 059 | -0.77 | 076 | 068 | -0.01 | 017 | -0.27 01 | 025 | 028 | 005
sstfront 055 06 | 011 0.45 02 | 022 | 001 | 024 | 058 | 032 | 028 | 048 | 003 | -0.02 0.7 0.5 02 | 018 | o014
sstmean -I 009 | -0.39 0.02 0.23 052 | -0.23 049 | -0.16 0.11 0.15 | 003 | -0.03 -I 0.84 0.11 0.05 0.08
sstsd 0.01 041 | 003 | -021 05 | 024 | 054 | 013 | -007 | 019 | 002 | 003 09 | 081 | -005 | -0.02 | -0.04
b 0.03 | -004 | -003 | -003 | 032 | 012 | 056 | 052 | 031 | 004 02 | 013 | 021 | 035 | -0.35 | -0.25
upwelling 013 | 021 | 009 | 016 | 037 | 018 | 016 | -0.26 | -0.01 | 011 | 051 | 038 | 007 | 009 | 005
vort 0.05 | 008 | -0.09 | 031 | 007 | 009 | 019 | 004 01 | 003 | 004 | 019 | 015 | 019
wateru 0.59 03 | 003 01 | 007 | 002 | 002 | 013 | 001 | -0.01 0.2 02 | 002
waterv 0 | 006 0 | -007 01 | 001 | 009 | 035 | 036 | 017 | 015 | 0.06
windstr 039 | -058 | 056 | 037 0| 016 | 033 | 055 | 021 | o024 0
windstry 06 | 058 0.7 | 006 | 006 | 051 | 022 | 008 | -0.04 | -0.14
depth 09 | 076 | 007 | -029 | 021 | 026 | 024 | 029 | 008
dland 0.76 | -0.02 | 015 | -0.18 03 | 016 02 | 007
dshelf 006 | 016 | 025 | 014 | 014 | -0.05 | -0.21
plourviokm 021 | 003 | 003 | 002 | 001 0
preunviokm 005 | 012 | 016 | 018 | 009
prlat 084 | -003 | 003 | -0.04
prlon 003 | 011 | -001
sIp10km 088 | o074
sIp1500m 0.63

slpslp10km
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Table 4c. Predictor correlation table (fall). Pairwise Spearman rank correlation coefficients for spatial predictor variables. High correlations are highlighted
([tau|>0.7 in yellow, |tau|>0.8 in orange, |tau|>0.9 in red).

[3) o E —‘E< £ ;Ec
§ 2 § IS g = S > z 2 S % £ S E|
o [2) B i} 3 2 2 @ 7] < = 2 2 =3
5 k] k] £ @ 2 ] [ - 5] 3] ] <] =] 2 @ 5 o c S 9 5
g1 2|2 38|s|5|¢|5|5|8%8|2|&8|s|s|s|e|¢c |5 |5|5|28|3|8&8|<¢|z=2]z|%t
(3] © © =% o 7] 7] ] 7] ] =2 =] > = = 2 2 ° k=] ° o a a a 7] [ 7]
chia 0.11 0.24 -0.57 -0.68 -0.77 -0.57 0.62 -0.74 0.68 0.49 0.16 0.14 0.09 -0.29 0.53 -0.43 0.77 -0.72 -0.66 0.04 -0.1 0.71 0.3 -0.21 -0.21 -0.13
diverg 0.05 -0.06 -0.06 -0.13 -0.04 0.07 -0.09 0.09 0.07 0.06 0.05 0.03 0.06 0.07 -0.08 0.06 -0.06 -0.04 0.01 0.06 0.13 0.11 -0.04 -0.03 0.02
divw -0.11 -0.24 -0.29 -0.3 0.05 -0.37 0.39 0.14 0.04 -0.03 -0.21 -0.34 0.21 -0.04 0.18 -0.15 -0.14 0.01 -0.03 0.26 0.16 -0.07 -0.08 0
peddacyc 0.37 0.28 0.54 -0.2 0.32 -0.21 -0.49 0.02 -0.04 0.06 0.21 -0.09 0.19 -0.61 0.54 0.45 -0.03 0.24 -0.24 0.05 0.36 0.35 0.2
peddeyc 0.54 0.68 -0.4 0.5 -0.44 -0.31 -0.32 0.17 -0.07 0.09 -0.36 0.27 -0.58 0.6 0.59 0 0.01 -0.5 -0.18 0.1 0.11 0.05
sshmean 0.56 -0.64 0.66 -0.71 -0.13 -0.13 -0.34 -0.01 0.29 -0.51 0.47 -0.58 0.53 0.64 -0.03 0.04 -0.63 -0.32 -0.03 -0.02 -0.12
sshsd -0.2 0.38 -0.32 -0.41 -0.14 0.06 0.3 0.32 -0.07 0.17 -0.73 0.72 0.68 -0.01 0.16 -0.26 0.08 0.21 0.24 0.01
sstfront -0.4 0.48 -0.01 0.14 0.33 0.34 0.04 0.45 -0.59 0.4 -0.35 -0.61 0.04 -0.07 0.52 0.29 0.25 0.19 0.2
-0.81 -0.4 -0.18 -0.03 0.1 0.52 -0.85 0.01 -0.29 0.24 0.22 -0.02 -0.01 -0.75 0.19 0.13 0.14
sstmean
sstsd 0.3 0.06 0.2 -0.1 -0.51 0.6 -0.26 0.31 -0.25 -0.26 -0.01 0.01 0.67 0.47 -0.12 -0.12 -0.1
turb 0.03 -0.09 -0.21 -0.35 0.1 0.13 0.46 -0.41 -0.13 0.03 -0.18 0.24 0.07 -0.51 -0.48 -0.34
" -0.33 0.15 0.07 0.28 -0.04 0.05 -0.04 -0.1 0.01 0.09 0.29 0.25 0.03 0.05 0
upwelling
vort 0.04 0.03 -0.03 -0.34 0.08 -0.09 -0.25 0.01 -0.09 0 -0.02 0.22 0.19 0.24
0.57 0.14 -0.33 -0.09 0.03 -0.07 0.04 0.12 0.14 0.11 0.22 0.23 0.05
wateru
-0.28 -0.22 -0.2 0.11 0.03 0 0.11 -0.31 -0.23 0.24 0.23 0.11
waterv
. 0.01 -0.01 0.05 -0.1 0.02 0.09 0.04 0.09 -0.01
windstrx
. -0.45 0.42 0.67 -0.05 0.04 -0.07 0.23 -0.2 -0.11 -0.13
windstry
-0.9 -0.76 0.07 -0.29 0.21 -0.26 -0.24 -0.29 -0.08
depth
0.76 -0.02 0.15 -0.18 0.3 0.16 0.2 0.07
dland
-0.06 0.16 -0.25 0.14 -0.14 -0.05 -0.21
dshelf
-0.21 0.03 0.03 0.02 0.01 0
plcurviOkm
0.05 0.12 0.16 0.18 0.09
prcurv1Okm
0.84 -0.03 0.03 -0.04
prlat
0.03 0.11 -0.01
prlon
sIp10km 0.88 0.74
slp1500m 0.63
slpslp10km
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Table 4d. Predictor correlation table (winter). Predictor correlation table (fall). Pairwise Spearman rank correlation coefficients for spatial predictor variables. High
correlations are highlighted (|tau|>0.7 in yellow, |tau|>0.8 in orange, |tau|>0.9 in red).

[} o E E £ E
§ 2 § IS g = S > z 2 S % £ S E|
o [2) B i} 3 2 2 @ 7] < = 2 2 =3
5 k] k] £ @ 2 ] [ - 5] 3] ] <] =] 2 @ 5 o c S 9 5
g1 2|2 38|s|5|¢|5|5|8%8|2|&8|s|s|s|e|¢c |5 |5|5|28|3|8&8|<¢|z=2]z|%t
(3] © © =% o 7] 7] ] 7] ] =2 =] > = = 2 2 ° k=] ° o a a a 7] [ 7]
chia 0.22 0.36 -0.5 -0.63 -0.74 -0.43 0.4 -0.79 0.74 0.71 0.38 0.09 -0.16 -0.35 0.22 -0.69 0.75 -0.68 -0.62 0.04 -0.12 0.7 0.3 -0.23 -0.24 -0.16
diverg 0.1 -0.02 -0.07 -0.21 0 0.07 -0.15 0.22 0.18 0.22 0.05 0.07 0.11 0.06 -0.19 0.14 -0.13 -0.11 0.02 0.03 0.17 0.12 -0.04 -0.06 0
divw -0.09 -0.13 -0.43 -0.19 0.33 -0.31 0.39 0.19 0.05 0.22 -0.16 -0.24 -0.06 -0.2 0.29 -0.22 -0.22 0 -0.05 0.12 -0.03 -0.06 -0.11 -0.04
peddacyc 0.29 0.2 0.5 -0.14 0.28 -0.07 -0.27 -0.05 -0.06 0.24 0.26 0.19 0.12 -0.62 0.58 0.48 -0.05 0.24 -0.18 0.13 0.24 0.25 0.08
peddeyc 0.59 0.64 -0.26 0.5 -0.39 -0.36 -0.41 0.16 0.11 0.19 -0.1 0.52 -0.57 0.55 0.59 0 0.04 -0.51 -0.21 0.07 0.09 0.01
sshmean 0.47 -0.51 0.66 -0.71 -0.39 -0.37 -0.32 0.19 0.31 -0.2 0.77 -0.57 0.5 0.64 -0.03 0.03 -0.61 -0.3 -0.06 -0.04 -0.12
sshsd -0.15 0.34 -0.04 -0.09 -0.17 0.05 0.46 0.3 0.37 0.15 -0.68 0.66 0.65 0 0.14 -0.18 0.11 0.16 0.2 -0.04
sstfront -0.04 0.48 0.07 0.21 0.35 0.14 0.15 -0.05 -0.44 0.43 -0.43 -0.58 0.02 -0.1 0.07 -0.2 0.32 0.21 0.22
-0.71 -0.7 -0.28 -0.03 0.34 0.63 -0.48 0.64 -0.35 0.3 0.25 -0.02 0.01 -0.89 -0.69 0.23 0.18 0.17
sstmean
sstsd 0.58 0.4 0.22 0.02 -0.25 0.54 -0.77 0.29 -0.23 -0.37 0.03 0.05 0.73 0.53 0.09 0.08 0
turb 0.22 -0.06 -0.09 -0.38 0.45 -0.47 0.32 -0.21 -0.13 0.06 -0.08 0.64 0.5 -0.28 -0.25 -0.24
" -0.11 0.1 0.07 0.27 -0.45 0.26 -0.22 -0.35 0.02 0.07 0.41 0.27 0.07 0.06 0.06
upwelling
vort 0.02 0.05 -0.03 -0.25 0.06 -0.08 -0.25 0.01 -0.06 -0.02 -0.04 0.26 0.24 0.26
0.66 0.17 -0.08 -0.24 0.18 0.14 0.01 0.12 -0.1 -0.04 0.18 0.19 0.01
wateru
-0.2 0.16 -0.14 0.06 0.04 -0.01 0.09 -0.44 -0.37 0.18 0.16 0.05
waterv
. -0.58 -0.37 0.42 0.15 0.04 0.14 0.71 0.84 0.19 0.24 0.05
windstrx
. -0.32 0.32 0.51 -0.05 -0.04 -0.76 -0.53 -0.17 -0.18 -0.12
windstry
-0.9 -0.76 0.07 -0.29 0.21 -0.26 -0.24 -0.29 -0.08
depth
0.76 -0.02 0.15 -0.18 0.3 0.16 0.2 0.07
dland
-0.06 0.16 -0.25 0.14 -0.14 -0.05 -0.21
dshelf
-0.21 . . .02 .01
pleurvi0km 0 0.03 0.03 0.0 0.0 0
0.05 0.12 0.16 0.18 0.09
prcurv1Okm
0.84 -0.03 0.03 -0.04
prlat
0.03 0.11 -0.01
prlon
sIp10km 0.88 0.74
slp1500m 0.63
slpslp10km
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Table 5. Base-learners employed in the boosted generalized additive modelling framework. Base-learner
names are from the ‘mboost’ package for R (Hothorn et al. 2014; R Core Team. 2014), and predictor

variable names are defined in Table 3.

Name Description Predictor variables Model
component
bols linear intercept np, mu, th
bols linear boatplane np, mu, th
brandom random effect sid th
brandom random effect tid np, mu
bbs penalized regression spline’ | yearscaled np, mu
bbs penalized regression spline’ | jday np, mu
btree tree” all climate indexes (current and lagged) np, mu
bspatial penalized tensor product” prlon np, mu
prlat
brad penalized radial basis® prlon np, mu
prlat
btree tree” dland np, mu
dshelf

all terrain, physical oceanographic and
atmospheric, and biological variables

! p-spline basis

Maximum depth = 1
3 Matern correlation function

Maximum depth =5
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Table 6. Model performance metrics. In this report performance metrics are presented for cross-validation
tuning of the number of boosting iterations and for the final fitted models. The former set of performance
metrics are indicated with the suffix °*_CV’ elsewhere in the report. Sometimes the suffix *_rel’ is used to
indicate that the performance metric is expressed relative to the mean of the data.

Name Description
loglikelihood log-likelihood
risk negative log-likelihood
RMSE root mean square error of residual errors
rankR_nz Spearman’s rank correlation coefficient
rankRG_nz Gaussian rank correlation coefficient™”
MeanAE_nz mean absolute residual error*
MedianAE_nz median absolute residual error"

MeanBias _nz

mean residual error”

MedianBias _nz

median residual error’

AUC area under the receiver operating characteristic (ROC) curve®
AUC nz area under the receiver operating characteristic (ROC) curve™”
Brier’ multinomial Brier score

CRPS_Zinf’ thresholded continuous rank probability score’

CRPS 0 Brier score®

CRPS nz_QO05 | Brier score™®

CRPS_nz_Q25 | Brier score™

CRPS nz Q50 | Brier score™®

CRPS_nz_Q75 | Brier score™

CRPS nz Q95 | Brier score™®

PDE’ percent deviance explained

! Non-zero observed values and corresponding fitted values

2 Boudt et al. (2012) and Bodenhofer et al. (2013)
® Classification as 0/>0
Classification above/below median non-zero observed value

This performance metric should be interpreted with caution because the categories are ordinal, so the
standard Brier score is not appropriate

Also simply referred to as ‘CRPS’
Classification thresholds at 150 equally spaced quantiles of the observed values

Classification as 0/>0 or indicated quantile of non-zero data (e.g., Q05 classified above/below 5"
guantile of non-zero observed values)

To calculate percent deviance explained, the saturated likelihood was assumed to be the maximum
possible likelihood value, and the null likelihood was calculated from an intercepts-only zero-inflated
model fit to the data (unpublished)
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Table 7. Models evaluated for each species/season.

Model Number Family Maximum Tree Depth Start Values
7 ZIP 5 gim
8 ZINB 5 gim
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Table 8. Performance metric thresholds used to define model performance categories. Performance

metrics are defined in Table 6.

Performance metric

Performance category

1 2 3 4 5
AUC x<06 |06<x<07|07<x<08[08<x<09| x=209
RankRG_nz x<01l [01<x<02[02<x<04|04<x<06| x206
MedianAE_nz_CV._rel x>=20 |20>x210[10>x20505>x2025 x<0.25
PDE x<01 |01<x<02|02sx<04|04<x<06| x206
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Table 9. Model selection table. The model selection process is illustrated for 4 example species/season combinations. Two models were

evaluated for each species/season combination (Table 7). Models are sorted in descending order of performance in terms of the thresholded

continuous rank probability score (CRPS) from cross-validation tuning of mstop (column marked with an * below). The selected model is in bold

font, and all subsequent analyses in this report use this selected model. Other model performance metrics are also provided (see Table 6 for

definitions). Note that risk is not directly comparable across model families (ZIP vs. ZINB). For similar model selection information for all
species/season combinations evaluated, please see the Digital Data Package (contents listed in Appendix N).

Rank

Rank

Median AE

Median bias

Species a . Max. Start m AUC AUC Brier (occup.) CRPS Log- Risk
Season Mod # Model Family . h PDE R RG (nz) (nz) Lo
code depth | values | (iterations) (occupancy) (nz) (n2) (n2) Fit v Fit v Fit v Fit v likelihood (Cv)
cote summer 7 ZIP 5 glm 6996 0.44 0.93 0.62 0.26 0.3 0.27 0.29 -0.2 | -0.21 0.031 0.034 0.03 0.033 -9439 2757
8 ZINB 5 glm 6999 0.43 0.93 0.63 0.28 0.32 0.27 0.3 -0.2 | -0.21 0.031 0.034 0.03 0.033 -6799 -973
noga fall
7 ZIP 5 glm 7901 0.52 0.91 0.72 0.48 0.52 0.21 0.22 | -0.14 | -0.14 0.082 0.088 0.075 0.08 -20417 5380
8 ZINB glm 7999 0.53 0.91 0.74 0.53 0.55 0.2 [ 023 | -0.15 | -0.16 0.084 0.089 0.076 0.081 -14239 -5690
razo winter
7 ZIP 5 glm 8000 0.44 0.93 0.72 0.45 0.47 029 | 031 | -0.24 | -0.24 0.038 0.038 0.037 0.037 -11365 3049
8 ZINB 5 glm 8000 0.38 0.93 0.71 0.44 046 | 0.26 | 0.25 | -0.22 | -0.23 0.038 0.039 0.037 0.038 -7816 -3389
wwse winter 8 ZINB 5 glm 8000 0.5 095 | 063 | 020 020 02| 018 | -0.01 | -0.03 | 0027 | 0028 | 0027 | 0.028 6766 | -22354
7 ZIP glm 5933 0.59 0.95 0.68 0.39 040 | 0.15 [ 0.14 | -0.06 | -0.08 0.028 0.03 0.027 0.029 -17676 4957

#Model number as in Table 7.
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Table 10. Final selected models for all species/season combination evaluated, with number of transect
segments with sightings, number of individuals sighted, proportion of transect segments with sightings
(prevalence), and mean number of individuals per transect segment with sightings. Numbers of sightings
and individuals exclude incomplete records (missing predictor data) that were excluded from the analysis,
and therefore may differ from Tables 1 and 2.

. No. No. Mean Model Max. m.
Species | Season sightings | individuals Prevalence non-zero Family depth Start values _(boo_stlng
count iterations)
arte summer 154 507 0.005 3.3 ZIP 5 glm 5623
atpu spring 209 472 0.009 2.3 ZIP 5 glm 8000
atpu summer 245 528 0.007 2.2 ZINB 5 glm 8000
atpu fall 91 129 0.004 1.4 ZIP 5 glm 8000
atpu winter 248 444 0.008 1.8 ZINB 5 glm 6999
aush spring 129 443 0.006 3.4 ZINB 5 glm 6994
aush summer 876 2664 0.026 3 ZINB 5 glm 6999
aush fall 286 965 0.012 34 ZINB 5 glm 5765
aush winter 163 330 0.006 2 ZINB 5 glm 5548
bcpe spring 158 314 0.007 2 ZINB 5 glm 5999
bcpe summer 356 987 0.01 2.8 ZINB 5 glm 5397
bcpe fall 92 243 0.004 2.6 ZINB 5 glm 5967
bcpe winter 83 212 0.003 2.6 ZINB 5 glm 5999
blgu summer 87 159 0.003 1.8 ZINB 5 glm 8000
blki spring 621 3149 0.028 5.1 ZIP 5 glm 5677
blki fall 2080 14453 0.084 6.9 ZIP 5 glm 4184
blki winter 3684 32431 0.126 8.8 ZINB 5 glm 6999
blsc spring 406 9549 0.018 235 ZINB 5 glm 8000
blsc fall 346 8605 0.014 24.9 ZINB 5 glm 8000
blsc winter 1091 55798 0.037 51.1 ZINB 5 glm 8000
bogu spring 394 5425 0.018 13.8 ZINB 5 glm 8000
bogu fall 269 1963 0.011 7.3 ZINB 5 glm 6998
bogu winter 959 9163 0.033 9.6 ZIP 5 glm 5998
brpe spring 62 290 0.003 4.7 ZINB 5 glm 7999
brpe summer 114 413 0.003 3.6 ZIP 5 glm 5959
brpe fall 80 268 0.003 34 ZIP 5 glm 5287
brpe winter 65 291 0.002 4.5 ZINB 5 glm 8000
brsp summer 266 552 0.008 2.1 ZINB 5 glm 7999
coei winter 2031 553969 0.069 272.8 ZINB 5 glm 8000
colo spring 2306 5943 0.105 2.6 ZINB 5 glm 8000
colo summer 178 239 0.005 1.3 ZINB 5 glm 6851
colo fall 1158 2715 0.047 2.3 ZIP 5 glm 8000
colo winter 3044 8213 0.104 2.7 ZINB 5 glm 7999
comu spring 90 252 0.004 2.8 ZIP 5 glm 6902
comu winter 158 499 0.005 3.2 ZIP 5 glm 8000
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cosh spring 106 235 0.005 2.2 ZINB 5 glm 6999
cosh summer 2924 13128 0.086 4.5 ZINB 5 glm 8000
cosh fall 1546 7574 0.063 4.9 ZINB 5 glm 8000
cote spring 467 2182 0.021 4.7 ZINB 5 glm 8000
cote summer 1470 6958 0.043 4.7 ZIP 5 glm 6996
cote fall 663 6509 0.027 9.8 ZINB 5 glm 8000
dcco spring 114 1232 0.005 10.8 ZIP 5 glm 5896
dcco summer 168 848 0.005 5 ZIP 5 glm 6999
dcco fall 196 4600 0.008 235 ZIP 5 glm 4735
dcco winter 138 1933 0.005 14 ZINB 5 glm 8000
dove spring 259 1919 0.012 7.4 ZINB 5 glm 5902
dove fall 404 3927 0.016 9.7 ZINB 5 glm 6999
dove winter 959 7630 0.033 8 ZINB 5 glm 6999
gbbg spring 3375 26602 0.153 7.9 ZIP 5 glm 5893
gbbg summer 3138 11222 0.093 3.6 ZINB 5 glm 6998
gbbg fall 5333 35763 0.216 6.7 ZINB 5 glm 5992
gbbg winter 3578 31540 0.122 8.8 ZINB 5 glm 6999
grsh spring 585 5121 0.027 8.8 ZINB 5 glm 7998
grsh summer 6001 178900 0.177 29.8 ZINB 5 glm 8000
grsh fall 6175 93255 0.25 151 ZINB 5 glm 6998
grsh winter 133 580 0.005 4.4 ZINB 5 glm 5861
herg spring 5644 53900 0.256 9.5 ZINB 5 glm 5999
herg summer 2880 10669 0.085 3.7 ZINB 5 glm 6998
herg fall 7359 59576 0.298 8.1 ZINB 5 glm 5942
herg winter 4805 30569 0.164 6.4 ZINB 5 glm 8000
hogr winter 82 142 0.003 17 ZIP 5 glm 8000
lagu spring 673 1642 0.031 2.4 ZIP 5 glm 8000
lagu summer 1562 5230 0.046 3.3 ZINB 5 glm 7999
lagu fall 1512 8343 0.061 5.5 ZINB 5 glm 6978
lagu winter 110 324 0.004 2.9 ZIP 5 glm 7877
lesp spring 223 780 0.01 3.5 ZINB 5 glm 8000
lesp summer 2138 9504 0.063 4.4 ZINB 5 glm 8000
lesp fall 452 1317 0.018 2.9 ZINB 5 glm 7999
lete summer 113 414 0.003 3.7 ZIP 5 glm 5890
Itdu spring 1121 81577 0.051 72.8 ZINB 5 glm 5656
ltdu fall 473 18625 0.019 394 ZINB 5 glm 8000
ltdu winter 3046 139620 0.104 45.8 ZINB 5 glm 8000
mash spring 100 152 0.005 15 ZIP 5 glm 5987
mash summer 308 878 0.009 2.9 ZINB 5 glm 8000
mash fall 264 452 0.011 1.7 ZINB 5 glm 8000
nofu spring 2244 30593 0.102 13.6 ZINB 5 glm 6964
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nofu summer 737 12835 0.022 174 ZINB 5 glm 5999
nofu fall 1823 10055 0.074 55 ZINB 5 glm 5997
nofu winter 1809 24327 0.062 13.4 ZIP 5 glm 5999
noga spring 5585 37629 0.253 6.7 ZINB 5 glm 8000
noga summer 1162 2412 0.034 2.1 ZINB 5 glm 8000
noga fall 3961 19213 0.16 4.9 ZIP 5 glm 7901
noga winter 6298 45486 0.215 7.2 ZIP 5 glm 7999
poja spring 110 142 0.005 1.3 ZIP 5 glm 8000
poja summer 144 173 0.004 12 ZINB 5 glm 8000
poja fall 709 999 0.029 1.4 ZINB 5 glm 8000
razo spring 712 4373 0.032 6.1 ZINB 5 glm 8000
razo summer 78 217 0.002 2.8 ZINB 5 glm 8000
razo fall 169 1246 0.007 7.4 ZINB 5 glm 6998
razo winter 1535 11661 0.052 7.6 ZIP 5 glm 8000
rbgu spring 172 412 0.008 2.4 ZINB 5 glm 8000
rbgu fall 285 998 0.012 35 ZINB 5 glm 8000
rbgu winter 642 2647 0.022 4.1 ZINB 5 glm 6998
reph spring 461 85772 0.021 186.1 ZINB 5 glm 8000
reph summer 214 26267 0.006 122.7 ZINB 5 glm 6999
rnph summer 167 2272 0.005 13.6 ZINB 5 glm 8000
rnph fall 156 1105 0.006 7.1 ZIP 5 glm 6999
rost spring 53 195 0.002 3.7 ZIP 5 glm 8000
rost summer 176 738 0.005 4.2 ZINB 5 glm 7990
rost fall 73 467 0.003 6.4 ZINB 5 glm 8000
royt spring 262 732 0.012 2.8 ZINB 5 glm 5513
royt summer 272 629 0.008 23 ZINB 5 glm 8000
royt fall 259 624 0.01 2.4 ZINB 5 glm 6993

rtlo spring 1644 4927 0.075 3 ZINB 5 glm 6992

rtlo fall 360 1363 0.015 3.8 ZINB 5 glm 8000

rtlo winter 1802 5583 0.061 3.1 ZINB 5 glm 8000
sosh spring 788 5925 0.036 7.5 ZIP 5 glm 3901
sosh summer 1540 35148 0.045 22.8 ZINB 5 glm 5883
sosh fall 104 284 0.004 2.7 ZINB 5 glm 6632
susc spring 718 14302 0.033 19.9 ZINB 5 glm 8000
susc fall 748 28091 0.03 37.6 ZINB 5 glm 5999
susc winter 1664 48178 0.057 29 ZINB 5 glm 7999
wisp spring 1650 14890 0.075 9 ZINB 5 glm 7999
wisp summer 8383 96536 0.247 115 ZINB 5 glm 5998
wisp fall 1348 7214 0.055 5.4 ZINB 5 glm 8000
WWSC spring 400 4889 0.018 12.2 ZINB 5 glm 8000
WWSC fall 533 9954 0.022 18.7 ZINB 5 glm 8000
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‘ wwsc ‘ winter | 1270‘ 20061 0.043 15.8| ZINB | 5 | gim 8000
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Table 11. Best models with model performance metrics. All model performance metrics were calculated on the full dataset, except for columns
divided into ‘Fit’ and ‘CV’, which denote metrics calculated separately for the full dataset and for out-of-bag data during cross-validation tuning of
mstop, respectively. The overall model performance category is the rounded average of performance categories across four performance metrics
(PDE, AUC, Rank RG_nz, and MedianAE_nz_CV _rel; see Section 2.4.6). Particularly poor performance in terms of individual performance metrics

is indicated in red.

MedianAE_nz_rel MedianBias_nz_rel CRPS_0 CRPS_Zinf Overall Model
Species Season Mod_el Max. Start poE | Auc AUC RankR RankRG model quality
code Family | depth | values _nz _nz _nz performance (expert
category opinion)
Fit CVv Fit CcVv Fit (&Y Fit (&)
arte summer ZIP 5 glm 0.11 | 094 | 0.74 0.44 0.41 0.36 0.41 -0.32 -0.37 0.000 0.000 0.000 0.000 4 FAIR
atpu spring ZIP 5 glm 034 | 093 | 071 0.41 0.4 0.44 0.44 -0.44 -0.44 0.010 0.010 0.010 0.010 4 GOOD
atpu summer ZINB 5 glm 0.53 | 0.98 0.7 0.41 0.47 0.44 0.46 -0.44 -0.46 0.010 0.010 0.010 0.010 4 GOOD
atpu fall ZIP 5 glm 04 | 0.96 0.7 0.32 0.37 0.69 0.7 -0.69 -0.7 0.000 0.000 0.000 0.000 4 FAIR
atpu winter ZINB 5 glm 04 | 095 | 0.58 0.17 0.22 0.55 0.55 -0.55 -0.55 0.010 0.010 0.010 0.010 4 FAIR
aush spring ZINB 5 glm 0.41 | 0.99 0.7 0.44 0.49 0.43 0.38 -0.16 -0.26 0.000 0.000 0.000 0.000 4 FAIR
aush summer ZINB 5 glm 0.51 0.95 0.73 0.44 0.46 0.32 0.32 -0.3 -0.31 0.020 0.020 0.020 0.020 4 GOOD
aush fall ZINB 5 glm 053 | 095 | 0.76 0.52 0.54 0.29 0.3 -0.29 -0.29 0.010 0.010 0.010 0.010 4 FAIR
aush winter ZINB 5 gim 0.76 1 0.84 0.61 0.63 0.38 0.48 -0.32 -0.45 0.000 0.000 0.000 0.000 5 FAIR
bcpe spring ZINB 5 glm 054 | 099 | 079 0.51 0.49 0.5 0.5 -0.32 -0.48 0.000 0.000 0.000 0.000 4 GOOD
bcpe summer ZINB 5 gim 0.63 0.98 0.78 0.53 0.54 0.34 0.35 -0.32 -0.35 0.010 0.010 0.010 0.010 5 GOOD
bcpe fall ZINB 5 gim 0.33 1 0.82 0.59 0.59 0.36 0.38 -0.17 -0.38 0.000 0.000 0.000 0.000 4 GOOD
bcpe winter ZINB 5 glm 0.28 1] 0.95 0.84 0.81 0.39 0.66 -0.28 -0.39 0.000 0.000 0.000 0.000 4 GOOD
blgu summer ZINB 5 glm 0.33 0.99 0.58 _— 0.000 0.000 0.000 0.000 3 FAIR
blki spring ZIP 5 gim 0.45 0.93 0.59 0.18 0.22 0.19 0.2 -0.19 -0.19 0.020 0.020 0.020 0.020 4 FAIR
blki fall ZIP 5 glm 058 | 094 | 0.69 0.38 0.4 0.18 0.19 -0.09 -0.1 0.050 0.050 0.040 0.050 5 GOOD
blki winter ZINB 5 gim 0.57 0.95 0.75 0.51 0.53 0.18 0.18 -0.06 -0.07 0.060 0.060 0.050 0.050 5 GOOD
blsc spring ZINB 5 gim 0.43 0.94 0.61 0.3 0.33 0.18 0.17 -0.11 -0.12 0.010 0.020 0.010 0.020 4 FAIR
blsc fall ZINB 5 glm 0.47 0.96 0.55 0.18 0.21 0.23 0.26 -0.09 -0.13 0.010 0.010 0.010 0.010 4 FAIR
blsc winter ZINB 5 gim 0.38 0.91 0.64 0.26 0.28 0.11 0.1 -0.05 -0.06 0.030 0.030 0.030 0.030 4 FAIR

41




bogu spring ZINB glm 0.27 0.9 0.54 0.08 0.11 0.12 0.13 -0.11 -0.13 0.020 0.020 0.020 0.020

bogu fall ZINB glm 0.4 0.92 0.67 0.34 0.39 0.25 0.26 -0.22 -0.24 0.010 0.010 0.010 0.010

bogu winter ZIP glm 0.87 0.68 0.39 0.43 0.18 0.18 -0.13 -0.14 0.030 0.030 0.030 0.030 FAIR
brpe spring ZINB glm 0.98 0.66 0.13 0.15 0.24 0.43 -0.21 -0.37 0.000 0.000 0.000 0.000 FAIR
brpe summer ZIP glm 0.92 0.58 0.23 0.31 0.28 0.28 -0.28 -0.28 0.000 0.000 0.000 0.000

brpe fall ZIP glm 0.99 0.65 0.29 0.3 0.3 0.33 -0.29 -0.3 0.000 0.000 0.000 0.000
brpe winter ZINB glm 0.93 0.65 0.35 0.35 0.45 0.34 -0.45 -0.34 0.000 0.000 0.000 0.000

brsp summer ZINB glm 0.96 0.7 0.39 0.46 0.46 0.47 -0.46 -0.47 0.010 0.010 0.010 0.010 GOOD
coei winter ZINB glm 0.55 0.97 0.55 0.1 0.1 0.33 0.35 0.24 0.27 0.030 0.040 0.030 0.030 FAIR
colo spring ZINB glm 0.42 0.9 0.7 0.4 0.41 0.35 0.36 -0.32 -0.34 0.060 0.070 0.060 0.070 FAIR
colo summer ZINB glm 0.36 0.95 0.63 0.21 0.25 0.73 0.73 -0.73 -0.73 0.000 0.000 0.000 0.000 FAIR
colo fall ZIP glm 0.41 0.94 0.68 0.33 0.33 0.4 0.41 -0.37 -0.39 0.030 0.030 0.030 0.030 FAIR
colo winter ZINB glm 0.36 0.83 0.65 0.29 0.31 0.32 0.33 -0.32 -0.32 0.080 0.080 0.070 0.070 FAIR
comu spring ZIP glm 0.24 0.95 0.69 0.4 0.46 0.48 0.36 -0.48 -0.36 0.000 0.010 0.000 0.010 FAIR
comu winter ZIP glm 0.34 0.96 0.74 0.52 0.53 0.5 0.61 -0.45 -0.61 0.000 0.010 0.000 0.010 FAIR
cosh spring ZINB glm 0.48 0.98 0.66 0.27 0.27 0.43 0.44 -0.43 -0.44 0.000 0.000 0.000 0.000 GOOD
cosh summer ZINB glm 0.33 0.87 0.66 0.33 0.34 0.2 0.21 -0.18 -0.19 0.060 0.070 0.060 0.070 GOOD
cosh fall ZINB glm 0.46 0.91 0.72 0.46 0.48 0.22 0.23 -0.19 -0.19 0.040 0.050 0.040 0.040 GOOD
cote spring ZINB glm 0.53 0.97 0.6 0.23 0.24 0.34 0.38 -0.29 -0.35 0.010 0.010 0.010 0.010 GOOD
cote summer ZIP glm 0.44 0.93 0.62 0.26 0.3 0.27 0.29 -0.2 -0.21 0.030 0.030 0.030 0.030 FAIR
cote fall ZINB glm 0.44 0.93 0.66 0.38 0.39 0.24 0.21 -0.15 -0.18 0.020 0.020 0.020 0.020 FAIR
dcco spring ZIP glm 0.26 0.93 0.55 0.08 0.11 0.17 0.24 -0.15 -0.22 0.000 0.010 0.000 0.010

dcco summer ZIP glm 0.06 0.92 0.56 0.18 0.24 0.2 0.2 -0.2 -0.2 0.000 0.010 0.000 0.010
dcco fall ZIP glm 0.42 0.88 0.63 0.27 0.3 0.08 0.08 -0.04 -0.06 0.010 0.010 0.010 0.010

dcco winter ZINB glm 0.34 0.92 0.72 0.47 0.52 0.13 0.09 -0.07 -0.07 0.000 0.000 0.000 0.000 FAIR
dove spring ZINB glm 0.41 0.93 0.75 0.56 0.58 0.26 0.27 -0.26 -0.26 0.010 0.010 0.010 0.010 GOOD
dove fall ZINB glm 0.62 0.99 0.71 0.46 0.47 0.28 0.28 -0.1 -0.13 0.010 0.010 0.010 0.010 GOOD
dove winter ZINB glm 0.49 0.93 0.68 0.45 0.49 0.22 0.23 -0.14 -0.17 0.020 0.020 0.020 0.020 GOOD
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gbbg spring ZIP glm 0.6 0.87 0.69 0.41 0.44 0.17 0.17 -0.09 -0.09 0.090 0.100 0.090 0.090 GOOD
gbbg summer ZINB glm 0.47 0.91 0.67 0.34 0.35 0.26 0.26 -0.21 -0.21 0.060 0.070 0.060 0.060 GOOD
gbbg fall ZINB glm 0.37 0.84 0.67 0.36 0.38 0.2 0.2 -0.07 -0.08 0.130 0.130 0.110 0.120 GOOD
gbbg winter ZINB glm 0.53 0.9 0.73 0.45 0.48 0.13 0.13 -0.07 -0.07 0.070 0.070 0.070 0.070 FAIR
grsh spring ZINB glm 0.72 0.98 0.78 0.59 0.62 0.19 0.21 -0.08 -0.09 0.010 0.010 0.010 0.010 FAIR
grsh summer ZINB glm 0.56 0.92 0.72 0.44 0.45 0.1 0.09 0.01 0 0.080 0.090 0.080 0.080 GOOD
grsh fall ZINB glm 0.59 0.95 0.72 0.47 0.48 0.26 0.26 0.05 0.04 0.080 0.080 0.080 0.080 GOOD
grsh winter ZINB glm 0.71 0.98 0.85 0.65 0.66 0.23 0.23 -0.23 -0.23 0.000 0.000 0.000 0.000 FAIR
herg spring ZINB glm 0.41 0.84 0.71 0.47 0.49 0.18 0.18 -0.05 -0.06 0.130 0.140 0.120 0.120 FAIR
herg summer ZINB glm 0.48 0.91 0.68 0.37 0.39 0.25 0.25 -0.21 -0.2 0.060 0.060 0.050 0.060 FAIR
herg fall ZINB glm 0.38 0.84 0.67 0.39 0.41 0.21 0.21 -0.03 -0.03 0.150 0.150 0.130 0.130 GOOD
herg winter ZINB glm 0.43 0.87 0.69 0.41 0.44 0.17 0.16 -0.1 -0.1 0.100 0.100 0.090 0.090 FAIR
hogr winter ZIP glm 0.24 0.95 0.71 0.32 0.33 0.57 0.58 -0.57 -0.58 0.000 0.000 0.000 0.000

lagu spring ZIP glm 0.47 0.94 0.67 0.32 0.36 0.38 0.39 -0.38 -0.39 0.020 0.020 0.020 0.020 FAIR
lagu summer ZINB glm 0.53 0.95 0.72 0.44 0.47 0.29 0.29 -0.27 -0.28 0.030 0.030 0.030 0.030 FAIR
lagu fall ZINB glm 0.52 0.94 0.68 0.42 0.45 0.25 0.27 -0.16 -0.17 0.040 0.040 0.040 0.040 GOOD
lagu winter ZIP glm 0.42 0.98 0.74 0.51 0.54 0.34 0.37 -0.34 -0.34 0.000 0.000 0.000 0.000 FAIR
lesp spring ZINB glm 0.53 0.97 0.69 0.34 0.37 0.28 0.28 -0.27 -0.28 0.010 0.010 0.010 0.010 GOOD
lesp summer ZINB glm 0.54 0.94 0.7 0.43 0.47 0.26 0.28 -0.2 -0.21 0.040 0.040 0.040 0.040 GOOD
lesp fall ZINB glm 0.59 0.97 0.72 0.45 0.47 0.33 0.34 -0.31 -0.33 0.010 0.010 0.010 0.010 GOOD
lete summer ZIP glm 0.03 0.91 0.62 0.29 0.36 0.27 0.27 -0.27 -0.27 0.000 0.000 0.000 0.000 FAIR
Itdu spring ZINB glm 0.64 0.98 0.75 0.55 0.55 0.13 0.14 0.03 0.03 0.020 0.020 0.020 0.020 GOOD
Itdu fall ZINB glm 0.72 0.99 0.81 0.62 0.62 0.16 0.15 0.01 0 0.010 0.010 0.010 0.010 GOOD
Itdu winter ZINB glm 0.6 0.97 0.73 0.47 0.48 0.23 0.23 0.1 0.08 0.040 0.040 0.040 0.040 GOOD
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mash spring ZIP glm 0.2 0.89 0.6 0.16 0.25 0.65 0.65 -0.65 -0.65 0.000 0.000 0.000 0.000 GOOD
mash summer ZINB glm 0.25 0.83 0.68 0.29 0.33 0.34 0.34 -0.34 -0.34 0.010 0.010 0.010 0.010 FAIR
mash fall ZINB glm 0.31 0.9 0.74 0.38 0.41 0.57 0.57 -0.57 -0.57 0.010 0.010 0.010 0.010 GOOD
nofu spring ZINB glm 0.62 0.96 0.76 0.57 0.58 0.14 0.14 -0.03 -0.04 0.050 0.050 0.040 0.050 GOOD
nofu summer ZINB glm 0.7 0.98 0.72 0.48 0.52 0.07 0.07 -0.04 -0.05 0.010 0.010 0.010 0.010 GOOD
nofu fall ZINB glm 0.61 0.95 0.77 0.58 0.59 0.19 0.19 -0.15 -0.15 0.040 0.040 0.040 0.040 GOOD
nofu winter ZIP glm 0.62 0.98 0.73 0.49 0.52 0.18 0.17 -0.03 -0.05 0.020 0.020 0.020 0.020 GOOD
noga spring ZINB glm 0.39 0.85 0.7 0.44 0.46 0.2 0.19 -0.07 -0.08 0.140 0.150 0.120 0.130 GOOD
noga summer ZINB glm 0.47 0.93 0.72 0.41 0.45 0.43 0.45 -0.42 -0.44 0.030 0.030 0.020 0.030

noga fall ZIP glm 0.52 0.91 0.72 0.48 0.52 0.21 0.22 -0.14 -0.14 0.080 0.090 0.070 0.080 GOOD
noga winter ZIP glm 0.55 0.85 0.72 0.45 0.48 0.16 0.18 -0.07 -0.07 0.120 0.130 0.110 0.110 GOOD
poja spring ZIP glm 0.31 0.93 0.69 0.27 0.31 0.76 0.76 -0.76 -0.76 0.000 0.000 0.000 0.000 FAIR
poja summer ZINB glm 0.12 0.83 0.63 0.17 0.2 0.83 0.83 -0.83 -0.83 0.000 0.000 0.000 0.000 FAIR
poja fall ZINB glm 0.29 0.89 0.66 0.26 0.28 0.66 0.66 -0.66 -0.66 0.030 0.030 0.020 0.020 GOOD
razo spring ZINB glm 04| 094 0.7 0.4 0.44 0.35 0.37 -0.33 -0.32 0.020 0.030 0.020 0.030 FAIR
razo summer ZINB glm 0.44 0.98 0.8 0.6 0.63 0.71 0.71 -0.6 -0.6 0.000 0.000 0.000 0.000 GOOD
razo fall ZINB glm 0.51 0.97 0.74 0.54 0.57 0.26 0.24 -0.2 -0.15 0.010 0.010 0.010 0.010 FAIR
razo winter ZIP glm 0.44 | 0.93 0.72 0.45 0.47 0.29 0.31 -0.24 -0.24 0.040 0.040 0.040 0.040 GOOD
rbgu spring ZINB glm 0.31 0.91 0.67 0.3 0.32 0.41 0.41 -0.41 -0.41 0.010 0.010 0.010 0.010

rbgu fall ZINB glm 0.36 0.9 0.75 0.46 0.5 0.28 0.28 -0.28 -0.28 0.010 0.010 0.010 0.010

rbgu winter ZINB glm 0.28 0.86 0.61 0.2 0.23 0.24 0.24 -0.24 -0.24 0.020 0.020 0.020 0.020 FAIR
reph spring ZINB glm 0.48 0.96 0.66 0.35 0.39 0.1 0.09 0 -0.01 0.010 0.020 0.010 0.010 GOOD
reph summer ZINB glm 0.51 0.96 0.73 0.45 0.45 0.04 0.05 -0.01 -0.01 0.000 0.000 0.000 0.000 GOOD
rmph summer ZINB glm 0.33 0.93 0.65 0.33 0.38 0.31 0.33 -0.26 -0.3 0.000 0.000 0.000 0.000 GOOD

44



rmph fall ZIP glm 0.87 0.6 0.2 0.23 0.29 0.31 -0.28 -0.31 0.010 0.010 0.010 0.010

rost spring ZIP glm 0.97 0.56 0.08 0.13 0.31 0.52 -0.31 -0.52 0.000 0.000 0.000 0.000

rost summer ZINB glm 0.45 0.96 0.58 0.25 0.31 0.48 0.48 -0.22 -0.23 0.000 0.010 0.000 0.010 FAIR
rost fall ZINB glm 0.54 0.97 0.61 0.27 0.31 0.29 0.29 -0.16 -0.27 0.000 0.000 0.000 0.000 FAIR
royt spring ZINB glm 0.49 0.96 0.57 0.15 0.2 0.35 0.36 -0.35 -0.35 0.010 0.010 0.010 0.010 FAIR
royt summer ZINB glm 0.52 0.97 0.74 0.47 0.51 0.42 0.43 -0.42 -0.43 0.010 0.010 0.010 0.010 GOOD
royt fall ZINB glm 0.44 0.96 0.68 0.39 0.4 0.41 0.41 -0.41 -0.41 0.010 0.010 0.010 0.010 GOOD
rtlo spring ZINB glm 0.41 0.9 0.69 0.39 0.42 0.3 0.31 -0.29 -0.3 0.050 0.060 0.050 0.060 FAIR
rtlo fall ZINB glm 0.51 0.96 0.72 0.48 0.51 0.26 0.26 -0.25 -0.26 0.010 0.010 0.010 0.010 FAIR
rtlo winter ZINB glm 0.34 0.87 0.69 0.39 0.43 0.3 0.31 -0.3 -0.31 0.050 0.050 0.050 0.050 FAIR
sosh spring ZIP glm 0.45 0.95 0.67 0.38 0.41 0.17 0.17 -0.11 -0.12 0.020 0.020 0.020 0.020 GOOD
sosh summer ZINB glm 0.56 0.93 0.72 0.45 0.48 0.05 0.06 -0.04 -0.04 0.030 0.030 0.030 0.030 GOOD
sosh fall ZINB glm 0.22 0.9 0.65 0.29 0.34 0.36 0.36 -0.36 -0.36 0.000 0.000 0.000 0.000 GOOD
susc spring ZINB glm 0.54 0.97 0.62 0.24 0.27 0.22 0.23 -0.06 -0.08 0.020 0.020 0.020 0.020 FAIR
susc fall ZINB glm 0.62 0.97 0.7 0.42 0.38 0.34 0.32 0.07 0.07 0.010 0.010 0.010 0.010 FAIR
susc winter ZINB glm 0.6 0.97 0.73 0.44 0.45 0.28 0.3 0.02 -0.01 0.020 0.030 0.020 0.020 FAIR
wisp spring ZINB glm 0.61 0.97 0.69 0.39 0.4 0.21 0.2 -0.01 -0.03 0.040 0.040 0.030 0.040 GOOD
wisp summer ZINB glm 0.46 0.86 0.68 0.4 0.42 0.2 0.2 0 -0.01 0.130 0.130 0.110 0.120 FAIR
wisp fall ZINB glm 0.5 0.96 0.63 0.3 0.31 0.21 0.21 -0.11 -0.13 0.030 0.040 0.030 0.030 GOOD
WWsC spring ZINB glm 0.44 0.95 0.59 0.22 0.24 0.11 0.14 -0.08 -0.12 0.010 0.020 0.010 0.020 FAIR
wwsc fall ZINB glm 0.54 0.97 0.74 0.51 0.54 0.21 0.2 -0.07 -0.1 0.010 0.010 0.010 0.010 FAIR
wwsc winter ZINB glm 0.5 0.95 0.63 0.29 0.29 0.2 0.18 -0.01 -0.03 0.030 0.030 0.030 0.030 FAIR

45



Table 12. Groups of species with similar spatial distributions chosen for averaging®.

Group Family Number Species in group Types of species
Number of
Species
1 Nearshore | 15 arte, blisc, brpe, coei, colo, Seaducks, Loons, Terns,
cote, dcco, hogr, lete, Itdu,
rost, rovt, rtlo, susc, wwsc
2 Pelagic 18 atpu, aush, bcpe, blgu, Petrels, Shearwaters,
brsp, comu, cosh, dove, Jaegers, Phalaropes, Alcids
grsh, lesp, mash, nofu,
poja, razo, reph, rnph,
sosh, wisp
3 Gullsand |7 blki, bogu, gbbg, herg, lagu, | Small gulls, Large gulls,
Gannets noga, rbgu Gannets

Note that the groups described in this table are not based on similar taxonomy or ecological traits, but
rather on broad similarities in patterns of spatial distribution as reflected in species model results.
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Figure 1. Study area with Wind Energy Planning and Lease Areas overlaid
(approximate boundaries current as of 05 Feb 2015).
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a b
spring summer
¢ d

fall winter

Figure 2A. Map of survey effort. Midpoints of standardized transect segments within
the study area are plotted in blue (boat surveys) and red (aerial surveys) for each
season analyzed. For complete list of datasets, see Appendix A.
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Figure 2B. Map of survey effort. Number of survey midpoints of standardized
transect segments summed across 10 x 10 km cells within the study area for each
season analyzed: a) winter b) spring c) summer d) fall. Colored contours indicate
survey intensity. For complete list of datasets, see Appendix A.

49



Atlantic Multidecadal Oscillation Index

04

AMO

-04

UV UL U R LU R R
1978 1983 1988 1993 1998 2003 2008

Year

- | ontaro ~ { N
S TT R
2N 7‘\ /j’/ . { “. ~ /-

. SST Front Probability
""‘P?, e High : 99,1881
(G oo

Bathymetry

o High : 00184623

Kilometers

’
o s S\

Gl C e \L - 0 10 220 30 40 N
ob b >y [ S|

2en] il S, \ 7~ I ]

ey 0 50 100 150 200
Nautical Mies

2w 0°W W W 747 W 737 W72 W 71° W 70° W 60° W 68° W 67° W 66° W 65° W 64° W 63’ W

Figure 3. Examples of temporal and spatial predictors used in models; a) Climate
index time series (AMO); b) static spatial predictor (depth); c) seasonal spatial
predictor (front probability climatology for spring). For complete set of predictor plots,
see Appendix B.
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Zero-inflated Negative Binomial GAMLSS model (Generalized Additive Modeling of location, scale, and shape)

Tuning:

Determine optimal
shrinkage rate (nu) for
each component by
cross-validation

Determine optimal global
ensemble size (Mstop) by
cross-validation

Counts
Poisson(mu)

or
Binomial(mu, th)

fit using Component-wise Ensemble Stochastic Gradient Boosting

Occupancy Model Prediction:

g oy Expected long-term

Izef:otid ‘ — ~ b’ OO average number of
nflation - . .
i) - 3 birds sighted

in standardized

Boosting:
Initialize
separate
ensembles
for each
component

Stochastic
Gradient
Descent

Optimize
Cross-
validation
CPRS*

survey transect

Uncertainty:
*Assessed via

bootstrap

Abuhdance Model

*CPRS = Continuous Ranked Probability Score, a metric of model predictive performance on out-of-set observations

Figure 4. Schematic overview of statistical modeling process. See Section 2

Methods for details.
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Figure 5.1. Cross-validation model performance metrics during stochastic gradient
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boosting for example model 7 (COTE/summer). a) Brier score, b) thresholded

continuous rank probability score (CRPS), ¢) Median Absolute Error for non-zero

data, d) Median Bias for non-zero data, €) root mean square error (RMSE), f)

negative log-likelihood (risk). The optimized metrics were CRPS (panel b) and risk

(panel f). For complete set of gradient descent plots, see Appendix C.
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Figure 5.2. Cross-validation model performance metrics during stochastic gradient
boosting for example model 7 (NOGA/fall). a) Brier score, b) thresholded continuous
rank probability score (CRPS), c) Median Absolute Error for non-zero data, d)
Median Bias for non-zero data, e) root mean square error (RMSE), f) negative log-
likelihood (risk). The optimized metrics were CRPS (panel b) and risk (panel f). For
complete set of gradient descent plots, see Appendix C.
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Figure 5.3. Cross-validation model performance metrics during stochastic gradient
boosting for example model 7 (RAZO/winter). a) Brier score, b) thresholded
continuous rank probability score (CRPS), ¢) Median Absolute Error for non-zero
data, d) Median Bias for non-zero data, e) root mean square error (RMSE), f)
negative log-likelihood (risk). The optimized metrics were CRPS (panel b) and risk
(panel f). For complete set of gradient descent plots, see Appendix C.
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Figure 5.4. Cross-validation model performance metrics during stochastic gradient
boosting for example model 8 (WWSC/winter). a) Brier score, b) thresholded
continuous rank probability score (CRPS), ¢) Median Absolute Error for non-zero
data, d) Median Bias for non-zero data, e) root mean square error (RMSE), f)
negative log-likelihood (risk). The optimized metrics were CRPS (panel b) and risk
(panel f). For complete set of gradient descent plots, see Appendix C.
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Figure 6AB. Comparison of model performance metrics for the best models (the final
selected model out of the two compared) for each species/season combination. a)

bestm, number of iterations to model convergence

b) rankR, Spearman rank

correlation of observed non-zero data vs. predicted values. See also Tables 10 and

11 and Appendix E.
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Species

Figure 6CD. Comparison of model performance metrics for the best models (the final selected
, AUC calculated for non-zero data categorized as < the median or > the median. See

also Tables 10 and 11 and Appendix E.

model out of the two compared) for each species/season combination. c) AUC, area under the

receiver operating characteristic curve calculated for all data categorized as 0 or >0; d)

AUC nz
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Figure 6EF. Comparison of model performance metrics for the best models (the final selected
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Figure 6GH. Comparison of model performance metrics for the best models (the final
selected model out of the two compared) for each species/season combination. g)

, median error for non-zero data relative to their mean; h)

MedianBias nz rel

MedianBias nz rel

, median error for non-zero data relative to their mean during

cross-validation tuning. See also Tables 10 and 11 and Appendix E.
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Figure 6KL. Comparison of model performance metrics for the best models (the final
selected model out of the two compared) for each species/season combination. k)

CRPS_Zinf

, thresholded continuous rank probability score (CRPS); I)
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, CRPS during cross-validation tuning. See also Tables 10 and 11
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Figure 6MN. Comparison of model performance metrics for the best models (the final selected
model out of the two compared) for each species/season combination. m) rankRG_nz,

Gaussian rank correlation of observed non-zero data vs. predicted values
deviance explained. See also Tables 10 and 11 and Appendix E.
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Figure 7.1. Receiver Operating Characteristic (ROC) curves for assessment of predictive
accuracy of example model 7 (COTE/summer). a) ROC curve and area under the curve
(AUC) statistic for prediction of median-thresholded non-zero data (i.e., non-zero data
above/below median observed value), b) ROC curve and AUC statistic for prediction of
presence/absence. For complete set of ROC curves for selected models, see Appendix F.
For complete set of AUC statistics for selected models, see Table 11.
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Figure 7.2. Receiver Operating Characteristic (ROC) curves for assessment of
predictive accuracy of example model 7 (NOGA/fall). a) ROC curve and area under
the curve (AUC) statistic for prediction of median-thresholded non-zero data (i.e.,
non-zero data above/below median observed value), b) ROC curve and AUC
statistic for prediction of presence/absence. For complete set of ROC curves for
selected models, see Appendix F. For complete set of AUC statistics for selected
models, see Table 11.
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Figure 7.3. Receiver Operating Characteristic (ROC) curves for assessment of predictive
accuracy of example model 7 (RAZO/winter). a) ROC curve and area under the curve
(AUC) statistic for prediction of median-thresholded non-zero data (i.e., non-zero data
above/below median observed value), b) ROC curve and AUC statistic for prediction of
presence/absence. For complete set of ROC curves for selected models, see Appendix F.
For complete set of AUC statistics for selected models, see Table 11.
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Figure 7.4. Receiver Operating Characteristic (ROC) curves for assessment of
predictive accuracy of example model 8 (WWSC/winter). a) ROC curve and area
under the curve (AUC) statistic for prediction of median-thresholded non-zero data
(i.e., non-zero data above/below median observed value), b) ROC curve and AUC
statistic for prediction of presence/absence. For complete set of ROC curves for
selected models, see Appendix F. For complete set of AUC statistics for selected
models, see Table 11.
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Figure 8.1. Brier score calculated at quantile thresholds of non-zero data for example
model 7 (COTE/summer). For complete set of Brier score plots for selected models,
see Appendix G. For complete set of Brier score statistics and related thresholded
continuous rank probability scores (CPRS) for selected models, see Table 11.
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Figure 8.2. Brier score calculated at quantile thresholds of non-zero data for example
model 7 (NOGA/fall). For complete set of Brier score plots for selected models, see
Appendix G. For complete set of Brier score statistics and related thresholded
continuous rank probability scores (CPRS) for selected models, see Table 11.
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Figure 8.3. Brier score calculated at quantile thresholds of non-zero data for example
model 7 (RAZO/winter). For complete set of Brier score plots for selected models,
see Appendix G. For complete set of Brier score statistics and related thresholded
continuous rank probability scores (CPRS) for selected models, see Table 11.
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Figure 8.4. Brier score calculated at quantile thresholds of non-zero data for example
model 8 (WWSC/winter). For complete set of Brier score plots for selected models,
see Appendix G. For complete set of Brier score statistics and related thresholded
continuous rank probability scores (CPRS) for selected models, see Table 11.
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Figure 9.1. Variable importance bar plots for top variables in example model 7 (COTE/summer).
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Figure 9.2. Variable importance bar plots for top variables in example model 7
(NOGAV/fall). a) np component; b) mu component. For complete set of variable importance
bar plots, see Appendix H.
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Figure 9.3. Variable importance bar plots for top variables in example model 7
(RAZO/winter). a) np component; b) mu component. For complete set of variable
importance bar plots, see Appendix H.

71



Random Variable np
a. WWSC (winter)

sstmeanwi
sstfrontwi
dshelf
sstsdwi
slp10km
divergwi
windstrywi
tid
sshmeanwi
wateruwi
upwellingwi
turbwi
chlawi
vortwi

jday
slp1200m
windstrxwi
prlon

priat

dland
slpslp10km
depth
divewwi
plcurv10km
preurviOkm

sshsdwi

| |
0.00 0.05 0.10 0.15 0.20
Percent Importance

Figure 9.4. Variable importance bar plots for top variables in example model 8 (WWSC/winter).
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importance bar plots, see Appendix H.

72



sstmeanwi
tid

prlon

prlat
index_mei
index_amo_lag1
plcurv10km
jday
index_amo
upwellingwi
slp10km
sstfrontwi
boatplane
divergwi

index_tni

Figure 9.4. Continued.

Random Variable mu
WWSC (winter)

| |
0.10 0.15
Percent Importance

73



Random Variable th
C. WWSC (winter)

bintercept

sid

| | | | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Percent Importance

Figure 9.4. Continued.

74



Predictor variable
a. np

lawxapul
‘owe xepul

0y xepul
oeUXepul

Buyerdn
wyopanosd
wyoranod

ueawyss
okoeppad

yoa
woogLdis

ey
qm

wap
Anspuim
xaspum
psiss
Juoiss
psuss
ofoppad
Bienp
Aajem
nisjem
wxoLdis
uidep
sousp
puelp
Jeud
opd
16y

" xepur
oeuTXapul
16e"
Bwxepul
16

1Bef
owe xepul

pajessieak
Kepl

o

pis
sue(dieoq
deaseiula

Razorbill

Dovekie

Black guillemot

D1 ueawnss

Atlantic puffin

Common murre

Long-tailed duck ©

Black scoter

White-winged scoter
Surf scoter
Common eider
Common loon

Red-throated loon

jison's petrel O
Band-rumped storm-petre|
Leach's petrel

ul

Herring gull

Ring-billed gull

Great black-backed gull

Laughing gull

Black-legged kittiwake

Brown pelican ——4
Double-crested cormorant

Homed grebe

Cory's shearwater

Northern fulmar

Black-capped petrel

Great shearwater g

sai0adg

5

shearwater

Audubon's shearwater

Manx shearwater

Red phalarope

ked phalarope 3
Pomarine jaeger

Least tern

©

Roseate tern -
Common tern

Northern gannet 4

b. mu

@

uyxep
owe™x

oeuTXBpU

ey
qm
Buyjomdn
wap
Anspuim
xajspumm.
psiss
@’_ ueaunss
woiss
psuss
ueawyss
okoppad
ofoeppad
Joa
Bianp
neojem
nisien
wyoidisdis
woogidis
unjoLdis
unjorainasd
wyopanold
yidop
Jiousp
pueip
Jepd
vopd
1Be|”]
1" xepul
1Beoeuxe
1Be low e
fouiTxepul
16l
owe xepul
pajessieal
Kept
L)
pis
sueidieoq
1dsoseluiq

Razorbill
Dovekie

Black guillemot
Atlantic puffin
Common murre
Long-tailed duck
Black scoter

¢
©-

Q
\

i
o

Surf scoter D
Common eider
Common loon
Red-throated loon

Wilson's p
Band-rumped storm-pet
Leach's

gul
Herring gull
Ring-billed guil
ked guil

Laughi gu‘: @D
aughing gul é

Great bl:

Black-legged kittiwake

seadg

wn pelican ——4
.

Brown pi
Double-crested cormorant
Horned grebe
Cory's shearwater
Northern fulmar
Black-capped petrel
Great shearwater

shearwater > 4
Audubon's shearwater

Manx shearwater &
Red phalarope &5
ked phalarope
Pomarine jaeger
Least tern

D
€
vy
€

!
&

Roseate tern O
Common tern
Royal tem
Arctic tern
Northern gannet

&
©

c. th

ey
Buniamdn
P
Anspui
yxep.
"oeuTxe
oeuTxepUI
Tlew™xe
JBWixepul
Towe™x

qny
wyoLdisdis

xajspuim
psiss
ueawjss
omss
psyss
ueawyss
okoppad
okoeppad
o
6ionp
naem
nisjem
woogdis
unfoLdis
wyoanoid
wnyoLminad
uidep
sousp
puejp
tepd
uopd
1Be”
" xeput
1Be| ¢
\Be
16y
owexepul
pojeosieak
fept
)
pis
sue(dieoq
1dedseluiq

Razorbill

Dovekie
Black guillemot
Afiantic puffin -
Common murre &)
Long-tailed duck
Black scoter

scoter

Surf scoter
Common eider
Common loon

Wiison's petrel
Band-rumped storm-petrel
Leach's petrel

parte’s gull
Herring gull

Ring-billed gull

Great black-backed gull
Laughing gull
Black-legged kittiwake
Brown pelican
Double-crested cormorant
Horned grebe

Cory's shearwater
Northern fulmar
Black-capped petrel
Great shearwater

sal0adg

Sooty shearwater
Audubon's shearwater
Manx shearwater
Red phalarope
Red-necked phalarope ¥
Pomarine jaeger

Least tern
Roseate tern
Common tern
Royal tern

[T

Northern gannet I

Figure 10. Summary of variable importance across all variables, species, and
seasons modeled. a) np component; b) mu component; ¢) theta component. For
complete set of variable importance plots, see Appendix H.
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Figure 11. Variable importance for np model component: average importance of each variable
calculated over all final selected models in each season. Note that average importance values
have been sorted in descending order for each season, so that the order of variables along the
x-axis varies from season to season. Also note that the species modeled in each season, and
therefore the species included in the average for each seasonal panel of this plot, vary as
shown in Table 2. For complete set of variable importance plots, see Appendix H.
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therefore the species included in the average for each seasonal panel of this plot, vary as
shown in Table 2. For complete set of variable importance plots, see Appendix H.
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Figure 13. Variable importance for theta (th) model component: average importance of each
variable calculated over all final selected models in each season. Note that average importance
values have been sorted in descending order for each season, so that the order of variables
along the x-axis varies from season to season. Also note that the species modeled in each
season, and therefore the species included in the average for each seasonal panel of this plot,
vary as shown in Table 2. Only species for which the ZINB model (Model 8) was selected are
included in the average for the theta component (see Table 10 for the selected model for each
species/season combination). Predictors used in the theta ensemble were limited to survey
variables (sid, boatplane) and an intercept. For complete set of variable importance plots, see
Appendix H.
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a. selected bootstrap marginal plots from np model component

frpliday)

frp(sshmeansu)

O

Fru(iday)
04

frmu(sshmeansu)

0.0 0.2 04

-0.2

05

0.0

-0.5

-1.0

T IO OTTTTTOI T IO I O T ITIITITToITooT
153 168.469 186.75 205.031 224.719 243

jday

-0.142 0.032 0.19 0.348 0.522 0.68 0.838

sshmeansu

fop(diand)

Frp(upwellingsu)

0.4

0.2

-0.2 0.0

-04

-0.2 0.0 0.2 0.4

04

L LR LR RN R RN RN RN
2000 82489.12 180225.908 283711.92

dland

000O0O0OOOOOOOODO

upwellingsu

frp(index_amo_lag1)

frp(Windstrysu)

0.4 0.6 0.8

0.2

-01 00 01 02 03 04 05

LR R RN RN RN ER NIRRT
-0.301 -0.142 0.004 0.15 0.283 0.429

index_amo_lag1

[

0.001 0.007 0.012 0.017 0.022 0.028

windstrysu

. selected bootstrap marginal plots from mu model component

0.8

0.6

0.2

0.0

1.0

0.8

00 02 04 06

I T I T T T TITITTooorT—
153 168.469 186.75 205.031 224.719 243

jday

\

-0.142 0.032 0.19 0.348 0.522 0.68 0.838

sshmeansu

fmu(chlasu)

fnu(upwellingsu)

0.6

04

0.2

=
=]

0.8

0.6

0.2 04

0.0

T IO I T oo
0.071 1.091 211 3.037 4.057 5.076

chlasu

| /

LR AR RN R RN RN RN R AR RN
00O0OO0OOOOOOOGO OO

upwellingsu

fnu(index_amo)

0.2 0.3 0.4

0.1

0.0

LR RN RN IR R RN IR
-0.316 -0.154 0.008 0.157 0.305 0.44

index_amo

Figure 14.1. Selected bootstrap marginal plots for example model 7
(COTE/summer). Solid line is bootstrap mean and grey shading indicates +/- 1

bootstrap standard deviation. a) np component of model; b) mu component of model.

Full sets of marginal plots in Appendix I.

79



QO

. selected bootstrap marginal plots from np model component

10.69 13.486 16.536 19.586 22.636 25.686

sstmeanfa

9.168 23.545 39.229 54.913 69.29 83.666

sstfrontfa

0
2 4
o | o |
< ° o
S
©
2 - 2
5
= 2 & o
= T < & .
g o 2 q 5 o
£ 3 g e £ ﬁ\/_ﬂ\
e o = = 4
£ R P
2 < o
S
o
o s 7 —
2 4
o~ o~
<1 S
I T AT + T AT T
245 256 267 278 289 300 311 322 333 1978 1985.109 1993.859 2002.609 2011.359 0.139 0.949 1.759 2569 3.379 4.19
jday yearscaled chlafa
<
S
<
=]
24 o
° @
S
g g S g 94
§ v | 2 ]
g S g - —— % -
g g < B
B g = °
W u~ o | “w o
=
o | -
S _ S 4
<7 o~
g

-0.119 -0.008 0.094 0.197 0.299 0.401

sshmeanfa

b. selected bootstrap marginal plots from mu model component

T T T

-0.119 -0.008 0.094 0.197 0.299 0.401

sshmeanfa

T T
9.168 23.545 39.229 54.913 69.29 83.666

sstfrontfa

] <
< 7 ] °
2
=) m
- 7 ~ o 7|
=
0 )
= ° s = s o1
g o g ° £
= 24 <1 s = |
3 e g 5 35S
34 <o s |
? 5 S
e
N g S
© 7
<4 o 3
LR R LR R L R R R I AR R R RN LA O, B T R R AR QT
245 256 267 278 289 300 311 322 333 1978 1985.109 1993.859 2002.609 2011.359 0.139 0.949 1.759 2569 3.379 4.19
jday yearscaled chlafa
< 4
=]
© @
S s @
~ o~
= o -~ o7
& =
é = g g =3
E © £ S E —
3 o & z
Z°] £ 2 T3
oF =] =)
S -
S 4
o~ 7 o
S 7 e
? ~ T
3 -

TITTTTTIT T
0 0.001 0.001 0.002 0.002 0.003 0.003

turbfa

Figure 14.2. Selected bootstrap marginal plots for example model 7 (NOGA/fall).
Solid line is bootstrap mean and grey shading indicates +/- 1 bootstrap standard
deviation. a) np component of model; b) mu component of model. Full sets of
marginal plots in Appendix I.
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a. selected bootstrap marginal plots from np model component
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Figure 14.3. Selected bootstrap marginal plots for example model 7 (RAZO/winter).
Solid line is bootstrap mean and grey shading indicates +/- 1 bootstrap standard
deviation. a) np component of model b) mu component of model. Full sets of
marginal plots in Appendix I.
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Figure 14.4. Selected bootstrap marginal plots for example model 8 (WWSC/winter).
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a. selected two-way interaction plots from np model component
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Figure 15.1. Selected two-way interaction plots for example model 7
(COTE/summer). a) np component of model; b) mu component of model. Full sets of
two-way interaction plots in Appendix J.
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a. selected bootstrap marginal plots from np model component

< P
Jf'fﬂiﬂﬂmllllllﬂ//”///f/

Figure 15.2. Selected two-way interaction plots for example model 7 (NOGA/fall). a)
np component of model; b) mu component of model. Full sets of two-way interaction
plots in Appendix J.
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a. selected bootstrap marginal plots from np model
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Figure 15.3. Selected two-way interaction plots for example model 7 (RAZO/winter) .
a) np component of model; b) mu component of model. Full sets of two-way
interaction plots in Appendix J.
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a. selected bootstrap marginal plots from np model component
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Figure 15.4. Selected two-way interaction plots for example model 8 (WWSC/winter). a) np
component of model; b) mu component of model. Full sets of two-way interaction plots in
Appendix J.
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Figure 16.1 ABCD. Relative occupancy prediction maps for example model 7
(COTE/summer) from full model (a) and bootstrap (b,c) with bootstrap uncertainty map (d).

For complete set of prediction and uncertainty maps, see Appendix K.
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Figure 16.1 EFGH. Relative abundance prediction maps for example model 7
(COTE/summer) from full model (e) and bootstrap (f,g) with bootstrap uncertainty map (h).

For complete set of prediction and uncertainty maps, see Appendix K.

88



I. average count per 10 x 10 km grid cell

Model performance = 4

44° N

PDE = 44% AUC =0.93
(a¥ data) | (atf data,
presenca-absence)

-

Perf.=4 | Perf.=5

Rankr=0.30 | % error = 29%
(non-zero data) | (non-zero data)

42° N

Perf.=3 | Perf.=4

40° N+

38° N+

36° N+

34° N+

32° N+

Wind Energy Lease Areas (as of 05 Feb 2015)
Wind Energy Planning Areas (as of 05 Feb 2015)
: Study Area

cote summer average count per 10x10 km bin
. o

I 0.0196-0.0276

B 0.0276-0.0388

o
[ 0.0388-0.0545 {@%
K 4

30° N

28° N é?f

Kilometers

\y 0 10 220 330 440 (W 0.0545-0.0766
W Lt 4 (4 1 4y [E5 007660108 ==
[ 1 0.108-0.151
26° N \ & / T 17T
< ’ . 18 0 50 100 150 200 [ 01510213
Nk : LY AL Nautical Miles [ 02130299
o Gl [ 0.299-0.421
: L7 oinase BOEM
24° N % \\ 2, [ 1 0.592-0.832 Buseus o Ocea Exersr st
3 [ ] 0.832-1.17
NOAA Atlantic ] 1.17-1.64
Marine Bird Mapping \:' 1.64-2.31
Statistical Model Predictions ¢ 2
22° N Release version 1.0 [ ] 231325
Release date: 2016-03-21 ] 3.25-4.57
Contact: Brian Kinlan, Ph.D. | 457643
NOAA National Centers ! B 6.439.03
for Coastal Ocean Science >
SHERL brian.kinlan@noaa.gov B ©.03-12.7
a 12.7-17.9
82° W 80° W 78° W 76° W 74° W 72°W 70° W 68° W 66° W 64° W

Figure 16.1 1. Average count per 10 x 10 km grid cell (COTE/summer).
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Figure 16.2 ABCD. Relative occupancy prediction maps for example model 7 (NOGA/fall) from
full model (a) and bootstrap (b,c) with bootstrap uncertainty map (d). For complete set of
prediction and uncertainty maps, see Appendix K.
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Figure 16.2 EFGH. Relative abundance prediction maps for example model 7 (NOGA/fall)
from full model (e) and bootstrap (f,g) with bootstrap uncertainty map (h). For complete set
of prediction and uncertainty maps, see Appendix K.
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Figure 16.2 I. Average count per 10 x 10 km grid cell (NOGA/fall).
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Figure 16.3 ABCD. Relative occupancy prediction maps for example model 7

(RAZO/winter) from full model (a) and bootstrap (b,c) with bootstrap uncertainty map (d).

For complete set of prediction and uncertainty maps, see Appendix K.
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Figure 16.3 EFGH. Relative abundance prediction maps for example model 7
(RAZO/winter) from full model (e) and bootstrap (f,g) with bootstrap uncertainty map (h).
For complete set of prediction and uncertainty maps, see Appendix K.
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Figure 16.3 |. Average count per 10 x 10 km grid cell (RAZO/winter).
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Figure 16.4 ABCD. Relative occupancy prediction maps for example model 8
(WWSC/winter) from full model (a) and bootstrap (b,c) with bootstrap uncertainty map (d).
For complete set of prediction and uncertainty maps, see Appendix K.
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Figure 16.4 EFGH. Relative abundance prediction maps for example model 8 (WWSC/winter)
from full model (e) and bootstrap (f,g) with bootstrap uncertainty map (h). For complete set of
prediction and uncertainty maps, see Appendix K.

97



I. average count per 10 x 10 km grid cell

44° N

42° N

40° N

38° N

36° N+

34° N

32° N+

30° N

28° N /!

26° N

24° N

22° N+

Model performance = 4

PDE = 50%
fall dtata)

AUC =0.95
(o data,
presence-shssrice)

Perf.=4 | Perf.=5

Rankr=0.29
(non-zoro data)

% error = 18%
{non-zero data)

Perf.=3 | Perf.=5

Kilometers

| Wind Energy Lease Areas (as of 05 Feb 2015)
Wind Energy Planning Areas (as of 05 Feb 2015)

[ Study Area
wwsc winter average count per 10x10 km bin

- o
P
&

I 0.0156-0.023
I 0.023-0.034
I 0.034-0.0501
I 0.0501-0.0738

0 110 220 330 440

T P PR 007380109
% N ] 0.109-0.16
. Vv 9 0 50 100 150 200 1 o16-0.236

3 L Nautical Miles 1 0.236-0.349

N <= [ 0.349-0514

€2 Yy [ 05140757 BOE M
‘ \ 3 y D 0.757-1.12 Busaos Ocuan Eneioy Massaes
- 1 1.12-1.65
NOAAAtlantic ] 165243
Marine Bird Mapping |:| 243.3.58
Statistical Model Predictions e
Release version 1.0 [ 3.58-5.27
Release date: 2016-03-21 I 5.27-7.77
Contact: Brian Kinlan, Ph.D. 1 7.77-11.5
NOAA National Centers 11.5-16.9
for Coastal Ocean Science i :
brian _kinlan@noaa.gov B 16.9-24.9
T T T T T T 249-367
82°W 80° W 78° W 76° W 74°W 72°W 70°W 68° W 66° W 64° W

Figure 16.4 |. Average count per 10 x 10 km grid cell (WWSC/winter).
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Figure 17.1A. Annual average relative occupancy prediction for example species 1
(COTE). For complete set of annual prediction maps, see Appendix L.
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b. Annual average abundance
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Figure 17.1B. Annual average relative abundance prediction for example species 1
(COTE). For complete set of annual prediction maps, see Appendix L.
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Figure 17.2A. Annual average relative occupancy prediction for example species 2 (NOGA). For

complete set of annual prediction maps, see Appendix L.
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b. Annual average abundance
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Figure 17.2B. Annual average relative abundance prediction for example species 2
(NOGA). For complete set of annual prediction maps, see Appendix L.
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Figure 17.3A. Annual average relative occupancy prediction for example species 3 (RAZO). For
complete set of annual prediction maps, see Appendix L.
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b. Annual average abundance
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Figure 17.3B. Annual average relative abundance prediction for example species 3
(RAZO). For complete set of annual prediction maps, see Appendix L.
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Figure 17.4A. Annual average relative occupancy prediction for example species 4 (WWSC).
For complete set of annual prediction maps, see Appendix L.
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b. Annual average abundance
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Figure 17.4B. Annual average relative abundance prediction for example species 4
(WWSClwinter). For complete set of annual prediction maps, see Appendix L.
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a. Annual average occupancy - Nearshore Group
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Figure 18A. Annual average relative occupancy prediction for group 1 (nearshore species). For
complete set of group prediction maps, see Appendix M. For group definitions, see Table 12.
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b. Annual average abundance — Nearshore Group
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Figure 18B. Annual average relative abundance prediction for group 1 (nearshore
species). For complete set of group prediction maps, see Appendix M. For group
definitions, see Table 12.
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a. Annual average occupancy - Pelagic Group
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Figure 19A. Annual average relative occupancy prediction for group 2 (pelagic
species). For complete set of group prediction maps, see Appendix M. For group

definitions, see Table 12.
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b. Annual average abundance — Pelagic Group
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Figure 19B. Annual average relative abundance prediction for group 2 (pelagic
species). For complete set of group prediction maps, see Appendix M. For group
definitions, see Table 12.
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a. Annual average occupancy — Gulls and Gannets Group
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Figure 20A. Annual average relative occupancy prediction for group 3 (gulls and gannets). For
complete set of group prediction maps, see Appendix M. For group definitions, see Table 12.
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b. Annual average abundance — Gulls and Gannets Group
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Figure 20B. Annual average relative abundance prediction for group 3 (gulls and gannets).
For complete set of group prediction maps, see Appendix M. For group definitions, see
Table 12.
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Figure 21. Intensity of winter survey effort and predicted bootstrap median relative
abundance of RAZO in winter.
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BOEM

Bureau or Ocean Enerey Manacement

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has
responsibility for most of our nationally owned public lands and natural
resources. This includes fostering sound use of our land and water resources;
protecting our fish, wildlife, and biological diversity; preserving the
environmental and cultural values of our national parks and historical places; and
providing for the enjoyment of life through outdoor recreation. The Department
assesses our energy and mineral resources and works to ensure that their
development is in the best interests of all our people by encouraging stewardship
and citizen participation in their care. The Department also has a major
responsibility for American Indian reservation communities and for people who
live in island territories under US administration.

The Bureau of Ocean Energy Management

As a bureau of the Department of the Interior, the Bureau of Ocean Energy
(BOEM) primary responsibilities are to manage the mineral resources located on
the Nation's Outer Continental Shelf (OCS) in an environmentally sound and safe
manner.

The BOEM Environmental Studies Program

The mission of the Environmental Studies Program (ESP) is to provide the
information needed to predict, assess, and manage impacts from offshore energy
and marine mineral exploration, development, and production activities on
human, marine, and coastal environments.
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