Appendix B: Spatial Analysis




Region of Interest (ROI)

The CalWind Region of Interest (ROI) is focused on San Luis Obispo, Santa Barbara, and Ventura
Counties. If you were to extend county boundaries out to sea, the offshore environment studied
as part of the spatial analysis includes areas that are north and south of county lines.

We limited our offshore ROI to the extent of available NREL wind data (see Figure 2). Next, we
converted our offshore ROl to a 10km x 10km cell fishnet for our multi-criteria decision analysis
(MCDA) (ROI Fishnet, below). We then erased our exclusion area (represented by the cross-
hatched area) to arrive at a final offshore ROI. The exclusion area was created by combining all
10km x 10km cells that intersected the channel shipping lanes or national marine sanctuaries
(obtained from marinecadastre.gov). All remaining cells in the ROI Fishnet polygon were
considered developable cells for the MCDA and Marxan analyses. We then calculated individual
cell values for each variable considered in those analyses, reclassified them into quantiles, and
assigned them a score of 1-5. These reclassified scores were then used for the weighted sum of
the MCDA and the weighted cost file for Marxan.
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Figure 1: Fishnet Grid Cells for CalWind Region of Interest

Wind Speeds and Interconnection Points

The wind speed data was obtained from the National Renewable Energy Laboratory (NREL).
NREL developed this data set by extrapolating onshore 50m wind recordings 50nm into the
offshore environment.*® Therefore, the accuracy of this data should be considered when
interpreting the results of our MCDA and Marxan analyses.
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Once wind speeds were calculated for each developable grid cell in our ROI, we reclassified
them. Whereas the other MCDA variables were reclassified into 5 quantiles, the wind value
reclassification differed slightly to reflect the inability of developers to utilize wind speeds below
~4 m/s for commercial energy generation (see Figure 3 and power curve in Figure 12).

We obtained the interconnection points from Platts Electric Transmission System Map dataset.™
Using the ‘near’ tool in ArcGIS, we determined the distance of every developable cell to the
nearest interconnection point and then reclassified these scores into five quantiles. Using this
tool assumes that developable cells can connect to the closest interconnection point on shore
by following a straight line. Clearly, this is not accurate, as many obstructions (e.g., the Channel
Islands) would impede those straight paths. We then created a weighted a wind development
score to be 75 percent wind reclassification value and 25 percent distance to shore. This wind
development score became the “developer” value for the MCDA.
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Figure 2: Wind Speeds (m/s) and Interconnection Points
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Figure 3: ArcGIS reclassification for wind speed scores

Benthic Substrate

Hard bottom substrate (primarily rocks and reefs) covers far less area than soft bottom (typically
sand or mud) in the ROI (see Figure 4). Given its importance as habitat for a wide range of
species, permitting agencies typically prioritize its conservation. An informal conversation with
the Pacific OCS Region office of BOEM relayed the opinion that offshore wind project proposals
would be considered over hard bottom substrate, but, for the purposes of our simplified spatial
analysis, we could consider a site’s feasibility as inversely proportional to the area of hard
bottom coverage.

Substrate coverage was estimated from data gathered for “A Biogeographic Assessment of the
Channel Islands National Marine Sanctuary” (November 2005)." We calculated the amount (m?)
of hard bottom coverage in each developable grid cell and then reclassified those values 1-5 (5
being 100 percent soft bottom; 1 being 100 percent hard bottom).
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Figure 4: Hard and Soft Bottom Substrate Coverage

Department of Defense Sea Range

The ‘Sea Range’ constitutes an area of extreme value to the Department of Defense (DoD)(see
Figure 5). The Range is the only place in the United States where the military has a controlled
laboratory setting to test weaponry and defense equipment.

Horizontal axis wind turbines cause a Doppler effect on land and air-based radar equipment for
up to 200 nautical miles. Essentially, radar noise (which can appear with signal strength larger
than a Boeing 747) created by spinning turbine blades can cause a loss of radar detection in the
air space above a wind farm. This problem extends to weather detection equipment, as blade
motion may result in the appearance of storm activity.'***

Interviews with DoD indicate the existence of the Range does not mean that there is no future
for offshore wind development in the ROI, but consultation and possibly curtailment would be
necessary. To capture this conflicting use in the spatial analysis, the team included the Range
extent shapefile provided by the U.S. Naval Air Systems Command (NAVAIR). We used binary
scoring for developable cells; inside or outside of the Sea Range. Cells outside the Range were
reclassified to a score of 5, and cells inside the Range were reclassified to 1.
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Figure 5: Department of Defense Sea Range

Marine Bird Biodiversity

Our CalWind stakeholder analysis indicate that avian impacts are of high concern for offshore
wind development; however no clear metric exists to measure expected impacts to avian life
from offshore turbines. The best marine bird data we could find for our analyses were
generated from 6 sea surveys (1975-1997), which produced transect measures of diversity
measured by the Shannon Index (balance of the number of species and distribution of individual
species). These data were interpolated for “A Biogeographic Assessment of the Channel Islands
National Marine Sanctuary” (November 2005).” These interpolated data were downloaded and
employed for our spatial analyses. Measures of biodiversity are not a substitute for abundance
data, but we felt it was better to include the data than ignore a large stakeholder concern.
Developable cells containing areas with the highest interpolated Shannon Index received a 1,
and those with the lowest Shannon Index score received a 5.
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Figure 6: Interpolated Marine Bird Biodiversity (scored using Shannon Index)

Marine Mammal Presence

Potential impacts of an offshore wind farm are numerous, ranging from disturbance during
construction to entanglement during operation. Similar to the marine bird data, we employed
transect survey data (USGS and Humboldt State University) for marine mammal presence (see
Figure 7). The data relay the percent of time that marine mammals (20 species in all) were
observed in a transect area (5 minute of latitude by 5 minute of longitude) across all surveys
(102 days of flights). Transect data were provided for all species across three different months
(May, June, and September). To come up with a relative measure of overall mammal presence
value for each transect area, we summed the presence of all mammals for every transect cell
and then averaged those values across the months. We then interpolated the data using
ArcGIS’s Empirical Bayesian Kriging tool to cover the ROI (see Figure 8). The density value
portrayed in Figure 8 is unitless, and just represents relative differences in estimated mammal
presence scores.

After running a ‘union’ tool to translate transect scores to our fishnet cells, developable cells
containing areas with the highest interpolated values received a 1, and those with the lowest
mammal presence score received a 5.
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Figure 7: Marine Mammal Presence Observations
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Figure 8: Marine Mammal Presence Interpolation

Dragging and Salmon Fishing Grounds

To present the interests of commercial fisheries in our analyses, we relied upon spatial survey
data produced by Impact Assessment, Inc. and Ecotrust (Open Ocean Map) as part of the Central
Coast MPA Baseline Program. Based on available spatial layers, the team focused on dragging
(rockfish, halibut, sole, sablefish, and crustaceans) and gillnet (salmon) fishery data, as these
gear types would likely be restricted within an offshore wind farm (see Figure 9).*” The logic
behind this gear exclusion is the risk of entanglement of dragging nets with anchor lines of
turbine platforms. Dragging fisheries and salmon layers are areas designated as important
fishing grounds by fishermen who participated in the survey, and do not incorporate values
based on landings. Separate dragging and salmon ground scores were calculated for all
developable cells. Cells with the longest measured distance (m) of dragging grounds and largest
area of salmon fishing area (m?) received a score of 1, while cells not containing fishing grounds
received a score of 5.

We recognize that the inclusion of these fishing ground layers in our analyses do not remotely
capture the interests of commercial fishermen in our ROI. Instead, the application of these
fishing grounds in the MCDA and Marxan demonstrate the importance of incorporating fishery
considerations into wind development site selection.



Bren School of Environmental Science & Management
CalWind: 2014 Group Masters Project

[

Sactame y e, ;
= NEVADA
CALIFORN

\—‘ \ _1: rlf:lemenEP'vgo"'Er;EEi?C?
\ \\“—\ .""‘..I‘: | LISGS, FAD, NPS, NRTAN,
T 1 "
\ ¢ G
"\‘\ ""\_{ I
\ Ny =S A k>
' LI/ s T
o BN
59\ NN ,L| Oy s e -
/) [ ——L
N B |
\\I g /
AN
/,-} N k\::\ A
L«v——’_'_'\—‘\\x

EsfiiBeLorme. GEBCO. NOASKGDC, and other contributors

Legend

Dragging Fishery Routes
Salmon Habitat

0510 20 30 40
SO Filometers

Figure 9: Important Dragging and Salmon Fishing Grounds

MCDA Analysis

For each variable included in the MCDA, we reclassified the scores to values 1-5 for every
developable cell, and then calculated a comprehensive weighted sum score (1-5) (see Error!
Reference source not found. and Error! Reference source not found.). Weighted values used to
produce different ‘stakeholder scenarios’ (where the estimated preferences of different
stakeholder groups were weighted more heavily) were chosen somewhat arbitrarily (40 percent
weighting for single variable prioritization; 50 percent combined weighting for two variable
prioritization). The weightings are simply a way to demonstrate how development scenarios
vary when decisionmakers prioritize the interests of different stakeholders groups.

An example of the MCDA weighting calculation is included below for Scenario 1 (DoD):

Development Score = (0.1* 3 1) + (0.1* 3 ,) + (0.1* B 3) + (0.4* B 4) + (0.1* 8 5) + (0.1* B ¢) + (0.1*
B 1)

Where:
e [3;=Reclassified Substrate Score
e 3, =Reclassified Dragging Score
e [3;=Reclassified Salmon Score
e [ ,=Reclassified DoD Score
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e [3;=Reclassified Marine Bird Score
e 3¢ =Reclassified Marine Mammal Score
e [ ;=Reclassified Wind Score (75 percent wind, 25 percent distance to interconnection)

We isolated five cells (shown in pink in Figure 10) that scored the highest across the four
weighting scenarios. Given the limitations of our approach, these cells represent the areas with
the highest development potential (commercially viable wind speeds and least conflict).

Table 1: Multi-Criteria Decision Analysis Variables and Scores

Variable

Score Description

Score

Benthic Substrate

Area (mz) of hard bottom
substrate

1 (100 percent hard
bottom) — 5 (0 percent
hard bottom)

Commercial Dragging Fishing
Grounds

Area (m?) of fishing grounds

1 (100 percent fishing
grounds) — 5 (0 percent
fishing grounds)

Commercial Salmon Fishing
Grounds

Area (m?) of fishing grounds

1 (100 percent fishing
grounds) — 5 (0 percent
fishing grounds)

Department of Defense Sea Range

Binary (in or out)

1 (in the Range) or 5
(outside the Range)

Marine Birds

Shannon Index score of species
richness and evenness

1 (highest measured
biodiversity) — 5 (lowest
measured biodiversity)

Marine Mammals

Average observed presence of
all species across survey months

1 (highest measured
presence) — 5 (lowest
measured presence)

Wind Development Potential

Weighted Sum: 75 percent of
score = average wind speed (ms’
1); 25 percent of score = distance

(m) to nearest transmission
substation

1 (low wind and long
distance to substation) —
5 (high wind and short
distance to substation)

Table 2: Weighting Scenarios for MCDA

Scenario Substrate | Dragging | Salmon DoD Bird Mammal Wind
Weight Weight Weight Weight Weight Weight Weight
Dt:D 10 percent | 10 percent | 10 percent pe:‘Toent 10 percent | 10 percent | 10 percent
2 10 percent | 10 percent | 10 percent | 10 percent | 10 percent | 10 percent 40
Developer percent
Fish:r:men 10 percent pe%oent pef?oent 10 percent | 10 percent | 10 percent | 10 percent
& 25 25
Bird & 10 percent | 10 percent | 10 percent | 10 percent = = 10 percent
percent percent
Mammal
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Figure 10: MCDA Output for Different Weighting Scenarios

Marxan Analysis

Practically all of the assumptions from the GIS-MCDA were carried over to the Marxan analysis.
To use Marxan input file terminology, developable cells became planning units, all
stakeholder/environmental variables except wind speed became development costs, and the
number of turbines per cell (33) remained constant. We derived wind generation per cell by
fitting an equation to the NREL power curve for a 5SMW turbine (includes capacity factor, and
average wind speed (see Figure 12).** Using this equation, any grid cell that generated 239.7kW
(the y-intercept value) of electricity was reclassified as producing OkW of electricity (otherwise,
the y-intercept term from the fitted equation would superficially inflate the wind generation
potential of these cells). Turbine efficiency data are often considered proprietary information, so
the team was unable to secure a power curve for a 6MW turbine (the size modeled in the spatial
analysis footprint).

CalWind assigned a 200MW annual wind generation target. While the rated capacity of our
modeled wind farm is 198MW, turbines do not operate at 100 percent capacity. Instead, a 39.7
percent capacity factor was assigned.** With that assumption, it would take at least three
planning units with high wind speeds (¥8-9m/s) to produce 200MW. The team tested several
cost weighting scenarios, and found results to be particularly sensitive to the distance to
interconnection. Ultimately, the following cost weighting structure was included in this report:

11
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hard bottom substrate (30 percent); DoD Sea Range (20 percent); distance to interconnection
(10 percent); marine mammal presence (10 percent); marine bird biodiversity (10 percent);
dragging fishing grounds (10 percent); and salmon fishing grounds (10 percent). Lastly, a
boundary length modifier of 0.0001 was used. Boundary length is the, “the sum of the planning
units that share a boundary with planning units outside the reserve system,” or in this case, the
wind farm.?* Marxan’s boundary length modifier setting penalizes boundary length (adds it to
the planning unit cost) to encourage ‘clustering’ of planning unit selections. Clustering is
desirable in the wind development context, as farms spaced far apart would increase
construction and operation costs. We created the boundary file using ABPmer’s tool for
ArcGlS.”

Table 3: Marxan Input Files

Marxan i .
File Marxan Description CalWind Usage
Species file Potential annual wind generation per planning unit
1: (function of the turbine power curve as it relates to
(typically population or habitat area | average wind speed, multiplied by the number of
of species in every planning unit) turbines in each cell)
Target file
2: (percentage of the population or Total desired annual generation of wind power
habitat of the species you want to try
to protect)
. Weighted sum calculated as development cost per
Cost file . . . . . .
5 planning unit (Consists of all variables described in
: ]
(costs associated with conserving :Ej.rror. Reference:ource not floqnd.l, as well as _
each planning unit) |s.tatr)1ce to a onshore transmission interconnection
poin

12
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Figure 11: Marxan Summed Solutions
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Figure 12: NREL Power Curve for 5MW Turbine®
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