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EXECUTIVE	SUMMARY	
There	is	a	critical	need	to	develop	monitoring	tools	to	track	aerofauna	(birds	and	bats)	in	

three	dimensions	around	wind	turbines.	New	monitoring	systems	will	reduce	permitting	
uncertainty	by	increasing	the	understanding	of	how	birds	and	bats	are	interacting	with	wind	
turbines,	which	will	improve	the	accuracy	of	impact	predictions.	Biodiversity	Research	Institute	
(BRI),	The	University	of	Maine	Orono	School	of	Computing	and	Information	Science	(UMaine	SCIS),	
HiDef	Aerial	Surveying	Limited	(HiDef),	and	SunEdison,	Inc.	(formerly	First	Wind)	responded	to	
this	need	by	using	stereo-optic	cameras	with	near-infrared	(nIR)	technology	to	investigate	new	
methods	for	documenting	aerofauna	behavior	around	wind	turbines.	The	stereo-optic	camera	
system	used	two	synchronized	high-definition	video	cameras	with	fisheye	lenses	and	processing	
software	that	detected	moving	objects,	which	could	be	identified	in	post-processing.	The	stereo-
optic	imaging	system	offered	the	ability	to	extract	3-D	position	information	from	pairs	of	images	
captured	from	different	viewpoints.	Fisheye	lenses	allowed	for	a	greater	field	of	view,	but	required	
more	complex	image	rectification	to	contend	with	fisheye	distortion.	The	ability	to	obtain	3-D	
positions	provided	crucial	data	on	the	trajectory	(speed	and	direction)	of	a	target,	which,	when	the	
technology	is	fully	developed,	will	provide	data	on	how	animals	are	responding	to	and	interacting	
with	wind	turbines.	This	project	was	focused	on	testing	the	performance	of	the	camera	system,	
improving	video	review	processing	time,	advancing	the	3-D	tracking	technology,	and	moving	the	
system	from	Technology	Readiness	Level	4	to	5.	To	achieve	these	objectives,	we	determined	the	
size	and	distance	at	which	aerofauna	(particularly	eagles)	could	be	detected	and	identified,	created	
efficient	data	management	systems,	improved	the	video	post-processing	viewer,	and	attempted	
refinement	of	3-D	modeling	with	respect	to	fisheye	lenses.		

The	29-megapixel	camera	system	successfully	captured	16,173	five-minute	video	segments	
in	the	field.	During	nighttime	field	trials	using	nIR,	we	found	that	bat-sized	objects	could	not	be	
detected	more	than	60	m	from	the	camera	system.	This	led	to	a	decision	to	focus	research	efforts	
exclusively	on	daytime	monitoring	and	to	redirect	resources	towards	improving	the	video	post-
processing	viewer.	We	redesigned	the	bird	event	post-processing	viewer,	which	substantially	
decreased	the	review	time	necessary	to	detect	and	identify	flying	objects.	During	daytime	field	
trials,	we	determine	that	eagles	could	be	detected	up	to	500	m	away	using	the	fisheye	wide-angle	
lenses,	and	eagle-sized	targets	could	be	identified	to	species	within	350	m	of	the	camera	system.	We	
used	distance	sampling	survey	methods	to	describe	the	probability	of	detecting	and	identifying	
eagles	and	other	aerofauna	as	a	function	of	distance	from	the	system.	The	previously	developed	3-D	
algorithm	for	object	isolation	and	tracking	was	tested,	but	the	image	rectification	(flattening)	
required	to	obtain	accurate	distance	measurements	with	fish-eye	lenses	was	determined	to	be	
insufficient	for	distant	eagles.	We	used	MATLAB	and	OpenCV	to	improve	fisheye	lens	rectification	
towards	the	center	of	the	image,	but	accurate	measurements	towards	the	image	corners	could	not	
be	achieved.	We	believe	that	changing	the	fisheye	lens	to	rectilinear	lens	would	greatly	improve	
position	estimation,	but	doing	so	would	result	in	a	decrease	in	viewing	angle	and	depth	of	field.	
Finally,	we	generated	simplified	shape	profiles	of	birds	to	look	for	similarities	between	unknown	
animals	and	known	species.	With	further	development,	this	method	could	provide	a	mechanism	for	
filtering	large	numbers	of	shapes	to	reduce	data	storage	and	processing.	

These	advancements	further	refined	the	camera	system	and	brought	this	new	technology	
closer	to	market.	Once	commercialized,	the	stereo-optic	camera	system	technology	could	be	used	
to:	a)	research	how	different	species	interact	with	wind	turbines	in	order	to	refine	collision	risk	
models	and	inform	mitigation	solutions;	and	b)	monitor	aerofauna	interactions	with	terrestrial	and	
offshore	wind	farms	replacing	costly	human	observers	and	allowing	for	long-term	monitoring	in	
the	offshore	environment.	The	camera	system	will	provide	developers	and	regulators	with	data	on	
the	risk	that	wind	turbines	present	to	aerofauna,	which	will	reduce	uncertainty	in	the	
environmental	permitting	process. 	 	
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INTRODUCTION	
Biodiversity	Research	Institute	(BRI)	collaborated	with	the	University	of	Maine	School	of	
Computing	and	Information	Science	(UMaine	SCIS),	HiDef	Aerial	Surveying,	Limited	(HiDef),	and	
SunEdison,	Inc.	(formerly	First	Wind)	to	test	a	stereo-optic	camera	system	for	documenting	
aerofauna	interactions	with	wind	turbines.	The	team	also	further	developed	the	monitoring	system,	
which	uses	an	image-processing	algorithm	to	detect	and	track	daytime	and	nighttime	aerofauna	
and	assist	video	reviewers	in	parsing	large	amounts	of	visual	data.	Each	of	these	components	had	
not	been	tested	in	the	field,	so	we	had	an	opportunity	to	test	and	improve	these	components	based	
on	realistic	deployment	conditions.	These	developments	allowed	us	to	bring	this	technology	closer	
to	market	and	provide	additional	data	for	understanding	aerofauna	exposure	to	wind	turbines.	This	
project	supports	the	Department	of	Energy	(DOE)	Wind	Energy	Technologies	Office	(WETO)	goals	
of	lowering	the	unsubsidized,	levelized	cost	of	energy	(LCOE),	and	alleviates	a	significant	market	
barrier	to	wind	power	development	by	reducing	the	uncertainty	surrounding	avian	avoidance	
behavior	and	collision	risk.		

Potential	Applications	and	Impacts		

Current	methods	for	modeling	the	effects	of	offshore	wind	energy	development	on	birds	account	
for	uncertainty	by	taking	a	precautionary	approach	and	incorporating	conservative	assumptions	of	
avoidance	behavior	into	collision	risk	models.	These	assumptions	lack	empirical	support,	and	
because	avoidance	rates	are	a	primary	driver	of	these	models,	lead	to	increased	estimates	of	
mortality,	or	“take”	(Masden	and	Cook,	2016).	The	wind	industry	needs	data	on	species-specific	
avoidance	responses	for	both	terrestrial	and	offshore	turbines	to	increase	the	accuracy	of	collision	
risk	models	(Ferrer	et	al.,	2012;	Fox	et	al.,	2006).	Without	species-specific	and	condition-specific	
avoidance	probabilities	(as	avian	behaviors	differ	under	a	range	of	conditions,	e.g.,	breeding	vs.	
recently	fledged	birds),	the	accuracy	of	collision	risk	models	will	remain	poor	(Chamberlain	et	al.,	
2006).	The	stereo-optic	camera	system,	further	developed	in	this	project,	directly	addresses	this	
uncertainty	by	providing	developers	and	regulators	with	much	needed	data	on	how	aerofauna	
interact	with	wind	turbines,	and	thus	provides	more	accurate	estimates	of	avoidance	response.	

Specifically,	when	fully	developed,	the	stereo-optic	camera	system	will	bring	a	higher	level	of	
precision	to	avian	and	eagle	risk	analysis	by	being	able	to	monitor	bird	movements	around	turbines	
in	three	dimensions.	The	camera	system	will	provide	data	on	how	eagles	interact	with	turbines	in	
different	environmental	conditions,	which	could	be	used	to	design	effective	mitigation	options.	
Increased	precision	can	reduce	the	financial	and	temporal	uncertainty	associated	with	determining	
whether	an	incidental	take	permit	(ITP)	is	necessary	under	the	Bald	and	Golden	Eagle	Protection	
Act	(BGEPA),	and	if	a	permit	is	deemed	necessary,	what	level	of	take	can	be	estimated.	Both	Bald	
and	Golden	Eagles	have	been	injured	and	killed	at	wind	energy	facilities	across	the	United	States,	
particularly	Golden	Eagles	in	the	western	U.S.;	in	part,	this	may	be	because	terrestrial	regions	with	
high	wind	resources	in	the	western	U.S.	also	tend	to	include	habitats	important	to	Golden	Eagles	
(Pagel	et	al.,	2013).	The	stereo-optic	camera	system	also	has	the	potential	to	address	issues	related	
to	Migratory	Bird	Treaty	Act	(MBTA)	compliance,	state	and	local	wildlife	protection	standards,	and	
permitting	under	the	Endangered	Species	Act	(ESA).	In	the	future,	when	the	camera	system	is	
commercialized	it	will	provide	detailed	information	on	how	different	species	respond	to	individual	
turbines	in	various	seasons	and	weather	conditions,	potentially	allowing	for	operational	
adjustments	during	time	periods	when	eagles	or	other	sensitive	species	are	known	to	be	at	risk	of	
collision.	
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Brief	Description	of	Technology		

The	stereo-optic	camera	system	uses	two	29-megapixel	digital	video	cameras	with	fisheye	lenses	
installed	in	heavy-duty	stainless	steel	housing	able	to	withstand	marine	environments	(Figure	1).	
The	control	system	contains	an	uninterruptible	power	supply,	a	computer,	a	relay	box,	and	an	
emergency	buffer	storage	disk.	The	control	computer	preprocesses	the	data	to	enable	transmission	
back	to	a	base	station,	manages	the	data	until	it	is	successfully	transmitted,	and	operates	the	
camera	cleaning	system.	The	initial	data	processing	includes	masking	stationary	parts	of	the	image,	
so	that	only	sections	of	the	video	containing	moving	objects	are	recorded.	The	resulting	image	file	
sizes	are	typically	reduced	by	>90%	without	compressing	the	video,	requiring	less	than	10%	of	the	
bandwidth	for	transmission	that	would	be	needed	to	send	the	raw	video	in	its	entirety.	A	pair	of	
full-frame	color	images	is	stored	every	5	minutes	to	provide	contextual	information	(weather,	
visibility,	turbine	orientation).	Post-processing	includes	calibrating	the	images	for	object	distance	
estimates,	marking	avian	object	pairs	between	the	two	cameras,	calculating	3-D	positions	for	each	
stereo	pair,	and	then	manually	identifying	birds	to	species	or	species	grouping.		

	

Figure	1.	The	marinized	camera	system	deployed	for	testing.	

Commercialization	Status	and	Plans	

There	is	a	need	to	better	understand	bird	avoidance	around	wind	turbines.	We	lack	reliable	
estimates	of	avoidance	rates	of	animals	around	turbines	offshore,	which	can	significantly	alter	our	
understanding	of	the	effects	of	offshore	wind	power	on	aerofauna.	BRI	has	successfully	responded	
to	this	need	and	advanced	the	stereo-optic	camera	system	from	Technology	Readiness	Level	(TRL)	
4	to	5.	The	stereo-optic	camera	system	is	now	ready	to	be	advanced	to	TRL	6-8	and	to	be	validated	
at	terrestrial	and	offshore	wind	energy	projects.	With	further	field-testing	and	development,	the	
stereo-optic	camera	system	could	be	delivered	to	the	commercial	market.	Once	the	system	is	
commercially	ready,	it	could	be	used	to	reduce	permitting	time	and	inform	or	alter	wind	farm	
operational	practices	to	reduce	adverse	effects	of	wind	farms	on	aerofauna.	

We	have	identified	three	key	areas	for	further	system	development:	(1)	modify	the	system	to	accept	
different	lens	configurations,	which	would	improve	distance	estimates	and	allow	for	site-specific	
camera	system	configurations;	(2)	further	develop	algorithms	using	shape	recognition	and	machine	
learning,	to	reduce	time	spent	on	video	review	and	advance	the	system	towards	automatic	target	
detection	and	identification;	and	(3)	incorporate	use	of	a	thermal	imaging	system	instead	of	near-
Infrared	(nIR)	to	improve	nighttime	detection	of	aerofauna.	Further	testing	in	an	offshore	
environment,	while	employing	recommended	improvements,	would	also	be	needed	to	move	this	
technology	from	a	TRL	5	to	a	TRL	8.	
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BACKGROUND	
Project	Objectives	

The	goal	of	this	project	was	to	further	develop,	and	eventually	bring	to	market,	a	stereo-optic	
camera	system	designed	to	document	aerofauna	interactions	with	wind	turbines.	Our	objectives	
included:	(1)	increasing	the	resolution	of	a	HiDef-manufactured	prototype	stereo-optic	camera	
system	to	29-megapixels;	(2)	pairing	the	cameras	with	a	nIR	light	to	detect	aerofauna	at	night;	(3)	
determining	feasible	methods	for	exporting	data	from	remote	wind	farm	locations;	(4)	refining	the	
3-D	algorithm	for	object	isolation	and	tracking;	(5)	determining	the	percentage	of	eagles	that	can	be	
detected	at	specific	distances	from	the	camera;	and	(6)	using	a	distance-based	hierarchical	model	to	
estimate	detectability	of	aerofauna	by	the	camera	system.	To	achieve	these	objectives,	we	
conducted	field	trials	with	the	camera	to	determine	the	size	and	distance	at	which	aerofauna	
(particularly	eagles)	could	be	detected	and	identified,	created	efficient	data	management	systems,	
validated	three-dimensional	position	estimates,	and	explored	new	shape-processing	algorithms	to	
filter	large	amounts	of	data.	These	advancements	allowed	us	to	bring	this	technology	closer	to	
market.	Milestones	are	described	in	Table	1	and	detailed	objectives	are	as	follows:	

•	Objective	1:	Build	and	test	the	physical	components	of	the	camera	system,	including	the	
29-megapixel	high	definition	camera	and	the	nIR	lighting	system,	that	detects	all	objects	
encountered	in	a	laboratory	setting.	
	
•	Objective	2:	Validate	detection	rates	of	the	camera	system	to	assure	that	the	total	
detection	rate	of	targets	of	comparable	size	to	birds	and	bats	is	at	least	95%	within	10	m	of	
the	camera	system	and	25%	at	250	m	during	the	day	and	at	least	25%	detection	rates	
within	100	m	at	night.	
	
•	Objective	3:	Evaluate	three	different	methods	of	exporting	data	from	the	field	remotely:	
remotely	download	via	on-site	internet	connection,	remotely	download	via	point	to	point	
wireless	radio	transmission,	and	remotely	download	via	cellular	network.	
	
•	Objective	4:	Video	reviewers	identifying	Bald	Eagles	at	10-50	m	result	in	90%	species-
level	identification,	50-100m=70%	species	level	identification,	100-200m=50%	species	
identification	and	200-500m=30%	species	identification.		
	
•Objective	5:	Generate	baseline	information	on	species	detection	and	identification	of	bats	
using	the	nIR	camera	system	
	
•	Objective	6:	Improve	the	3D	algorithm	for	object	isolation	and	tracking	by	reducing	
bandwidth	needs	for	data	transfer	and	including	real-time	distance	estimates.	
	
•	Objective	7:	Build	an	interactive	bird	event	viewer	that	reduces	the	manual	inspection	and	
analysis	time	by	70%	compared	to	the	current	software	configuration.	
	
•	Objective	8:	Use	statistical	modeling	techniques	to	describe	the	effective	strip	width	of	the	
camera	system	and	distance	detection	thresholds	for	target	species.	
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Table	1.	Milestone	summary	table.	
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Milestone Summary Table 
Recipient Name: Biodiversity Research Institute 

Project Title: Stero-Optic High Definition Imaging: A new technology to understand bird and bat avoidance of Wind Turbines 

Task 
Number 

Task or 
Subtask (if applicable) 

Title 

Milestone 
Type 

(Milestone 
or Go/No-

Go Decision 
Point) 

Milestone 
Number* 

(Go/No-Go 
Decision 

Point 
Number) 

Milestone Description 
(Go/No-Go Decision Criteria) 

Milestone Verification Process 
(What, How, Who, Where) 

Anticipated 
Date 

(Months 
from Start of 
the Project) 

Anticipated 
Quarter 

(Quarters from 
Start of the 

Project) 

1 Manufacture Camera & 
nIR  Milestone 1 

BRI takes delivery of functional camera and nIR system. BRI will test that the camera system 
functions for 24 hours at the Portland, 
Maine office prior to test deployment. 

3 1 

2 
Preliminary data 
collection and systems 
refinement 

Milestone & 
Go/No Go 2.1 

Testing has an outcome where total detection rates of 20 bird 
and bat-sized targets are at least 95% within 10 m during the 
day, 25% within 250 m during the day, and at least a 25% 
detection rate within 100m at night.    

BRI will place the camera system at a 
private test site in order to test the 
detection rates of the camera equipment. 4-6 2 

3 

Equipment deployment, 
maintenance, evaluation 
of data transfer methods 
and nIR limited trial 

Milestone 3 

Obtain sample size of 20 eagle images. BRI will place the camera system in 
locations with concentrations of eagles to 
meet analysis goals as well as place the 
camera at a turbine site for extended 
video capture. 

6-21 2015-Q2-4  
2016-Q1-3 

4 Data Management at BRI 
Video Lab Milestone  4 

The final method for data export results in no less than 95% 
of wildlife video images being transferred from the camera to 
a video catalog and associated database.  

BRI will perform audits to ensure that 
data delivery is no less than 95% of 
wildlife video images.  

8-15 2015-Q3-4 
2016-Q1 

5 Video Lab Analysis Milestone 5 

Video analysis of daytime eagle-sized objects at 10-50 m 
result in 90% species-level identification, 50-100m=70% 
species level identification, 100-200m=50% species 
identification and 200-500m=30% species identification.  

BRI will work within the confines and 
successes of the camera system such that 
identification goals are reached. 9-18 2015 Q3-4 

2016 Q1-2 

6 Data Analysis Milestone 6 
Quantify the error in ID rates and estimating 3D position. BRI will quantify the error in ID rates 

and estimating 3D position through data 
analysis. 

12-18 2015-Q4 
2016-Q1-2 

6.3 

Refine 3D model & build 
an interactive bird event 
viewer Milestone 6.3 

The 3D module reduces the information stream down to 1% 
of the original data and distinguishes bigger birds (>1m 
wingspan) from smaller birds with 90% reliability. Build an 
interactive bird event viewer that reduces the manual 
inspection and analysis time by 70% compared to the current 
software configuration. 

BRI/UMaine will collect data at a private 
test site during Task 2 activities in order 
to work towards 3D module development 
goals. 

12-18 
2015-Q4 

2016-Q1-2 
7 Reporting Milestone 7 Report to DOE BRI will provide a final report to DOE. 15-21 2016 Q1-3 

 



	

17	

State	of	the	Art	

A	number	of	methods	exist	to	measure	risk	to,	and	effects	of,	wind	energy	development	on	birds	
and	bats	including:	collecting	carcasses	(Pagel	et	al.,	2013),	posting	human	observers	(Ferrer	et	al.,	
2012),	conducting	aerial	and	boat-based	surveys	(Williams	et	al.,	2015),	collision	risk	modeling	
(Masden	and	Cook,	2016),	field	experiments	to	assess	turbine	avoidance	(Hull	and	Muir,	2013),	and	
observation	methods	using	video,	radar,	or	thermal	cameras	(Cullinan	et	al.,	2015;	Groom	et	al.,	
2013;	Maurer,	2016;	Sinclair	and	Degeorge,	2016).	Automated	monitoring	methods	that	are	
currently	commercially	available	or	in	development	are	as	follows:	

• HiDef	Stereo-optic	camera	system	(this	project):	Prior	to	this	DOE	funded	project,	the	
camera	system	was	at	Technology	Readiness	Level	(TRL)	4,	with	all	the	key	physical	
components	assembled	and	successfully	interfacing	with	control	software.	We	have	now	
moved	the	system	to	TRL	5.	TRL	5	is	defined	by	DOE	as	“the	basic	technological	components	
are	integrated	so	that	the	system	configuration	is	similar	to	the	final	application	in	almost	
all	respects.	Examples	include	testing	a	high-fidelity	system	in	a	simulated	environment.”	

• DeTect:	The	DeTect	Merlin	Avian	Radar	System1	uses	automated	radar	technology	to	detect	
birds	and	bats	passing	through	the	radar	swept	region	to	help	improve	collision	risk	
assessment	and	provide	warning	when	flocks	are	approaching.		

• DTBird:	DTBird2	records	video	of	birds	in	the	daytime	using	an	automated	system	that	can	
detect	flying	birds	and	take	programmed	actions	to	reduce	avian	fatalities.		

• WT-Bird:	WT-Bird	is	a	system	used	to	detect	bird	collisions	with	wind	turbines,	using	sound	
to	detect	the	impact	and	video	images	to	identify	species	(Wiggelinkhuizen	et	al.,	2007).		

• ATOM:	Normandeau's	Acoustic-Thermographic	Offshore	Monitoring	system	(ATOM™)	is	a	
bird	and	bat	detection	system	that	provides	day	and	night	monitoring	in	the	offshore	
environment	with	infrared	video	and	bird/bat	acoustic	monitors.	3	

• TADs:	Thermal	Animal	Detection	System	(TADS)	uses	thermal	cameras	to	detect	aerofauna	
interactions	with	wind	turbines.4	

• Laufer	Wind	Group:	Integration	of	radar	and	pan-tilt-zoom	cameras.5	
• Oregon	State	University:	360-degree	cameras	to	detect	birds	and	a	blade-mounted	collision	

detection	system		
• IdentiFlight:	Wide-angle	camera	array	integrated	with	high	magnification	stereo-optic	

cameras	for	detecting	and	classifying	wildlife	(specifically	designed	for	Golden	Eagles	at	the	
moment)	and	issuing	deterrence	signals.6	

• Thermal	cameras:	Thermal	and	nIR	cameras	have	been	tested	to	record	flight	tracks	
autonomously	and	classify	aerofauna	as	birds	or	bats	(Table	2).	

	
																																								 																					
1	http://www.detect-inc.com/avian.html	
2	http://www.dtbird.com/	
3	http://www.normandeau.com/pages/technology/atom.asp	
4	http://www.dmu.dk/1_viden/2_publikationer/3_fagrapporter/rapporter/FR440.pdf	
5	http://www.designworldonline.com/three-ways-doe-research-will-help-eagles-coexist-wind-energy-
deployment/#_	
6	http://www.res-group.com/en/services-products/identiflight/	
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Table	2.	nIR	and	thermal	imaging	systems	and	object	detection	distances.	

PI	 Illumination/
Camera	Type	

Distance	to	Object	
of	Interest	

Field	of	
View	
(FOV)	

Resolution	
(pixels)	

Reference	

Trevor	
Harrison,	U.	of	
Washington	

Thermal	
Infrared	(TIR)	

14.6	m	(mean)	 15°	x	
12°		

640	x	480	 NWCC	2014	Abstract	

Normandeau's	
ATOM	

TIR	 200m	(max)	 	 256	x	324	 NWCC	2014	Abstract	

Horn	et	al.	
(2008)	

TIR	 76	m	 24°	 320	x	240	 http://www.bioone.org/doi/
abs/10.2193/2006-465	

Cryan	et	al.	
(2014)	

TIR	 80	m	 	 	 http://www.pnas.org/conten
t/111/42/15126.short	

Cryan	et	al.	
(2014)	

nIR	with	
illumination	

12	-	60	m	(range)	 	 	 http://www.pnas.org/conten
t/111/42/15126.short	

Elliott	et	al.	
(2005)	

nIR	with	
illumination	

10	m	(max)	 	 	 http://www.nckms.org/2005
/pdf/Papers/Elliott-
mdcbats.pdf	

Desholm	et	al.	
(2006)	

TIR,	7-15	um	

Thermovision	
IRMV	320V	

150	m	waterbird	

30	m	passerine	
(max)	

7-24°	 	 http://onlinelibrary.wiley.co
m/doi/10.1111/j.1474-
919X.2006.00509.x/full	

Approaches	to	Accomplish	Objectives	

We	executed	the	project	in	five	phases:	(1)	HiDef	built	and	laboratory	tested	the	camera	in	the	U.K.;	
(2)	BRI	conducted	preliminary	field	tests	after	the	camera	was	shipped	and	reactivated	in	the	
United	States;	(3)	BRI	collected	video	data	at	a	terrestrial	wind	farm	and	at	sites	with	large	amounts	
of	eagle	activity;	(4)	BRI	and	UMaine	developed	data	management	and	viewer	processes;	and	(5)	
BRI	and	UMaine	reviewed	and	analyzed	the	data,	improved	the	3-D	modeling	algorithm,	and	
reported	on	the	findings.	Below	is	an	overview	of	each	phase.	Detailed	methods	are	presented	in	
the	results	and	discussion	section	of	the	report.	

Phase	1:	Camera	system	manufacturing	and	lab	testing	

HiDef	built	and	tested	two	stereo-optic	camera	systems	that	consisted	of	two	ultra	high-definition,	
29-megapixel	cameras	with	fisheye	lenses	and	near	infrared	(nIR)	capabilities.	Algorithms	for	
removing	non-static	parts	of	video	(e.g.,	motion	segmentation)	and	software	for	reviewing	video	
produced	by	the	camera	rig	were	provided	by	HiDef.	In	their	U.K.-based	laboratory,	HiDef	
conducted	the	following	tests	of	the	system:	proper	operation	of	the	electronics	and	mechanics	of	
the	camera	system;	proper	operation	of	the	software	in	a	lab	setting;	radio	frequency	(RF)	link	
patch	antenna	connectivity	to	the	local	area	network;	lens	focus	and	calibration;	day	and	night	
operation	of	cameras;	successful	collection	of	imagery	and	post-processing	of	test	imagery;	and	3-D	
track	estimation.	The	nIR	illumination	was	tested	in	HiDef’s	workshops	using	heated	inanimate	
targets	(bean	bags).	At	the	end	of	this	phase,	UMaine	engineer	Chris	Dorr	traveled	to	the	U.K.	to	
assist	in	initial	field-testing	and	was	trained	in	the	operation	of	the	camera	system.	
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Phase	2:	Preliminary	field-tests	

BRI	researchers	deployed	the	camera	system	at	several	test	sites	in	Maine	to	understand	the	
capabilities	of	the	system	in	an	environment	more	closely	approximating	future	deployment	
conditions.	The	camera	was	first	deployed	at	a	local	test	site	in	order	to	determine	the	system’s	
ability	during	daytime	to	detect	20	bird	and	bat-sized	targets	within	10	m	at	least	95%	of	the	time,	
and	to	detect	targets	within	250	m	at	least	25%	of	the	time.	We	also	tested	the	camera	at	night	to	
determine	whether	we	had	at	least	a	25%	detection	rate	within	100m.	The	camera	exceeded	the	
daytime	detection	criteria,	but	initial	nighttime	testing	resulted	in	100%	detection	at	0-30	m,	and	
no	detections	from	30-100	m.	BRI	modified	the	nIR	hardware	configuration	and	was	able	to	
improve	the	detectability	distance	to	60	m,	but	still	did	not	successfully	meet	the	Go/No-go	criteria	
for	this	objective.	Because	of	the	poor	results	of	the	nIR	system	tests,	and	in	consultation	with	DOE,	
it	was	decided	to	discontinue	testing	and	further	development	of	the	nIR	system	in	order	to	
reallocate	project	resources	to	redesign	the	video	post-processing	event	viewer.	
Phase	3:	Data	collection	and	maintenance	at	target	sites	

BRI	and	UMaine	researchers	deployed	the	camera	system	at	a	wind	energy	site	to	evaluate	camera	
performance	and	assess	remote	data	downloading	options.	Researchers	installed	the	stereo-optic	
camera	at	a	turbine	so	that	it	had	views	of	the	rotor-swept	zone	of	that	turbine	as	well	as	two	
additional	turbines	within	500	m	of	the	camera	system.	BRI	and	UMaine	conducted	routine	
maintenance	of	the	system	throughout	the	deployment	period.	Data	was	transferred	from	the	field	
site	to	BRI’s	video	review	lab	by	swapping	hard	drives.	In	anticipation	of	a	low	sample	size	of	eagle	
images	at	the	turbine	site,	and	to	meet	project	objectives	of	obtaining	at	least	20	eagle	images,	BRI	
placed	the	second	camera	system	at	a	non-turbine	test	site	with	high	eagle	activity.			
Phase	4:	Data	management	and	video	processing	improvements		

BRI	developed	data	management	and	video	review	protocols	based	on	field	test	results.	Protocols	
addressed	raw	data	collection,	preliminary	database	fields,	identification	criteria,	and	guidance	on	
video/image	analysis.	Species	identification	criteria	addressed	environmental	factors,	video	quality,	
and	target	behavior.	During	video	review,	each	analyst	used	the	same	identification	criteria	to	
ensure	accuracy,	identification	confidence,	and	repeatability	of	the	data.	BRI	biologists	developed	a	
storage	system	where	raw	data	were	archived	and	pertinent	analyzable	sections	or	subsets	were	
stored	on	local	drives	or	servers	for	data	analysis.	Data	entry	errors	were	reduced	through	data	
entry	templates	and	predefined	data	entry	lists	(pick-lists).		
In	order	to	improve	the	speed	of	target	detection	and	identification,	UMaine	developed	a	new	post-
processing	video	viewer	with	enhancements	such	as	manual	masking,	black-and-white	mode,	video	
playback	at	varying	speeds,	object	marking,	and	controllers	for	changing	brightness	and	contrast	
levels.	These	features	allowed	quicker	manual	inspection	of	low-light	video	segments	and	reliable	
documentation	of	objects	of	interest.		

Phase	5:	Video	review	and	data	analysis		

The	focus	of	this	phase	was	to	conduct	video	review,	analyze	data,	improve	the	3-D	modeling	
algorithm,	and	report	on	findings.	BRI	biologists	identified	birds	in	randomized	video	segments	
using	established	protocols	and	identification	criteria.	Video	analysis	results	were	evaluated	for	
errors	and	audited.	Stereo-optic	algorithms	were	used	in	conjunction	with	pixel	counting	to	
determine	object	distances	for	identified	objects.	Using	real	bird	detection	data,	we	specified	a	
model	that	allowed	us	to	estimate	the	overall	rate	of	identification	of	an	animal,	conditioned	upon	
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detection.	Using	a	distance	detection	framework,	we	used	a	hazard	model	to	describe	the	decrease	
in	identification	rate	for	targets	with	increasing	distance	from	the	position	of	the	camera.	UMaine	
developed	techniques	for	estimating	stereo-optic	position	using	extreme	wide-angle	lenses,	and	for	
identifying	bird-like	shapes	that	pass	through	the	motion	segmentation.	 	
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RESULTS	AND	DISCUSSION		
PHASE	1:	CAMERA	SYSTEM	MANUFACTURING	AND	LAB	TESTING	

Objectives	

• Build	and	test	the	physical	components	of	the	camera	system,	including	the	29-	megapixel	
high	definition	camera	and	the	nIR	lighting	system	that	detects	all	objects	encountered	in	a	
laboratory	setting.	

Technical	Approach	

HiDef	fabricated	the	stereo-optic	camera	systems	from	a	combination	of	off-the-shelf	and	custom	
components	during	the	winter	2014-2015	in	the	U.K.	.	HiDef	completed	initial	camera	system	
testing	by	mid-March	2015,	with	a	focus	on	gross	function	in	anticipation	of	shipment	to	UMaine	
and	BRI	for	advanced	lab	and	field-testing	of	the	system.	HiDef	trained	a	collaborator,	Ph.D.	
Candidate	Chris	Dorr	from	UMaine	SCIS,	on	the	hardware	and	software	of	the	stereo-optic	high	
definition	cameras	prior	to	shipment	of	the	system	to	the	U.S.	in	March	2015.	

Results	

Results	of	system	testing	in	the	U.K.	showed	that	most	components	of	the	camera	system,	including	
the	critical	motion	segmentation,	worked	as	planned.	However,	near-infrared	(nIR)	lights	
illuminated	a	narrower	and	shallower	field	of	view	than	anticipated,	and	so	further	testing	was	
scheduled	after	arrival	in	the	U.S.	The	stereo-optic	cameras	captured	images	as	designed,	but	it	was	
determined	that	one	of	the	cameras	in	the	stereo-pair	intermittently	captured	images	at	half	the	
frame	rate	of	the	other	camera.	This	issue	was	identified	as	one	of	the	most	critical	problems	for	
successful	implantation	of	the	system	in	Phase	1,	and	further	investigations	were	made	after	the	
camera	shipped	to	the	U.S.	(see	below).		

Resolution	of	camera	trigger	issue	

The	project	team	identified	and	fixed	the	camera	trigger	issues	first	encountered	in	the	U.K.	The	
master	camera	was	able	to	run	at	predicted	speeds	of	~1.8	frames	per	second	(fps),	but	the	second	
camera	(‘slave’	camera)	was	often	and	unpredictably	dropping	frames	and	running	at	a	much	lower	
frame	rate.	Stable	synchronized	frame	rates	worked	consistently	when	the	triggering	system	was	
reset	and	when	running	cameras	at	night.	The	project	team	determined	that	there	was	a	data	
bandwidth	limitation	caused	by	the	very	high-resolution	cameras,	which	resulted	in	incomplete	
image	storage	prior	to	another	trigger	command	being	sent	from	the	master	to	the	second	camera.		

In	the	triggering	phase,	the	master	camera	would	both	initiate	camera	exposure	and	simultaneously	
send	a	short	pulse	across	to	the	second	camera	via	a	direct	connection	from	the	output	data	port	
from	the	master	through	the	input/output	(i/o)	connector.	The	second	camera	was	parameterized	
to	use	the	incoming	pulse	as	a	trigger	for	the	camera.	We	verified	by	oscilloscope	that	the	trigger	
impulse	was	sent	at	regular	intervals	from	the	master	camera	and	the	second	camera	was	correctly	
receiving	triggers.	However,	because	the	master	camera	was	set	to	continuous	run,	it	captured	
images	as	rapidly	as	it	could.	The	normal	course	of	image	capture	was:	trigger	pulse	->	exposure	->	
next	trigger.	Both	cameras	were	set	at	automatic	exposure	and	auto	gain	to	be	determined	by	each	
camera	independently,	such	that	the	time	from	image	to	image	could	be	different	between	cameras	
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depending	on	differences	in	camera	settings.	In	consulting	the	IMPERX™	camera	manual	we	
discovered	a	cautionary	note	about	triggering:	“the	time	interval	between	trigger	pulses	must	be	
greater	than	the	corresponding	frame	time.”	Therefore,	if	the	trigger	pulse	occurred	before	the	
image	was	exposed	fully,	the	cycle	would	be	interrupted	and	part	of	the	frame	lost,	presumably	
leading	to	image	drop.	The	independent	exposure	settings	and	other	parameters,	and	thus	
independent	frame	capture	times,	could	lead	to	slightly	different	image	capture	cycles	between	
cameras.	If	the	second	camera	was	exposed	for	less	time	than	the	master,	however,	it	would	be	able	
to	finish	image	capture	ahead	of	the	next	trigger	impulse	from	the	master	camera,	allowing	it	to	
keep	up	the	same	frame	rate.		

The	nighttime	capture	supported	this	theory;	at	night,	the	exposure	was	at	the	same	maximum	
value	for	both	cameras,	allowing	for	both	the	master	and	second	cameras	to	be	in	synchrony.	Also,	
restarting	the	cameras	led	to	camera	synchrony,	likely	because	a	restart	required	the	cameras	to	re-
evaluate	settings	that	could	have	led	to	the	second	camera	processing	faster	than	the	master.	Thus,	
it	was	possible	that	better	control	of	triggering	the	system	could	alleviate	the	problem.		

The	goal	was	to	slow	down	the	triggering	just	enough	to	allow	for	a	full	exposure	and	processing	of	
images	on	both	cameras,	and	for	each	camera	to	revert	to	a	wait-for-trigger	mode.	In	this	way,	both	
cameras	would	be	able	to	capture	full	images	without	frame	drop.	Together	with	engineers	in	the	
U.K.,	three	possible	approaches	to	repairing	the	trigger	problem	were	proposed:	

1) Use	an	external	trigger	impulse	from	a	third	party	device	connected	to	each	camera.	The	
trigger	would	be	sent	to	both	cameras	simultaneously,	removing	the	master	and	secondary	
relationship	between	cameras.	

2) Use	a	computer-based	trigger	from	the	attached	data	collection	computer	to	trigger	each	
camera.	The	trigger	would	be	sent	to	both	cameras	simultaneously,	removing	the	master	
and	secondary	relationship	between	cameras.	

3) Use	the	on-camera	pulse-generation	utility	built	into	the	IMPERX™	Bobcat	cameras	to	
trigger	the	master	camera,	which	would	also	be	passed	to	the	second	camera	for	triggering.	
This	is	similar	to	the	current	setup,	except	that	the	master	is	not	in	free-running	mode,	and	
instead	the	trigger	is	controlled	by	the	pulse-generator	and	is	simultaneously	passed	to	the	
second	camera.	

The	team	experimented	with	the	third	solution	first	because	this	was	the	easiest	to	implement	and	
test,	requiring	the	fewest	system	modifications	and	no	additional	equipment.	The	other	two	
solutions	would	have	required	input	wire	modification,	which	carried	risk	of	damaging	the	
connections	and	required	more	time	to	implement.	The	solution	was	initially	tested	by	using	the	
video	software	(Bobcat	GEV	player)	provided	by	IMPERX™	to	manually	configure	and	view	camera	
output.	Two	instances	of	the	software	were	initiated	to	monitor	both	cameras	simultaneously	and	
to	confirm	that	by	using	a	fixed	trigger	period,	both	cameras	were	stable	from	1.65-1.72	fps.	This	
solution	was	the	most	parsimonious,	and	these	parameters	for	signal	generation	and	trigger	input	
were	easily	passed	to	the	cameras	during	startup	from	the	proprietary	acquisition	software	that	
controlled	the	cameras	and	processed	imagery.	Additionally,	to	test	the	response	of	the	cameras	to	
this	change,	the	master	camera	was	disconnected	and	reconnected	to	the	second	camera	while	the	
master	camera	was	still	generating	pulses,	and	the	second	camera	came	back	online	quickly.	After	
some	additional	testing,	the	fix	was	integrated	into	the	acquisition	code	and	installed	on	each	
camera	system.	Camera	synchronization	and	trigger	timing	were	no	longer	issues	for	the	duration	
of	the	project.		 	
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PHASE	2:	PRELIMINARY	FIELD-TESTING	

Objectives	

• Validate	detection	rates	of	the	camera	system	to	assure	that	the	total	detection	rate	of	
targets	of	comparable	size	to	birds	and	bats	is	at	least	95%	within	10	m	of	the	camera	
system	and	25%	at	250	m	during	the	day	and	at	least	25%	detection	rates	within	100	m	at	
night.	

Technical	Approach	

The	project	team	installed	the	camera	system	at	two	sites	that	were	approved	by	DOE	through	the	
NEPA	process.	The	first	site,	located	on	a	coastal	estuary,	allowed	researchers	to	test	daytime	and	
nighttime	detection	rates	of	bird-	and	bat-sized	objects	and	collect	images	of	nontarget	birds	such	
as	gulls,	crows,	and	egrets.	The	second	site,	located	near	a	freshwater	reservoir,	allowed	the	team	to	
further	test	nIR	detection	rates,	obtain	a	nighttime	image	of	a	bat,	record	bat	calls	with	an	acoustic	
recording	unit,	and	obtain	bald	eagle	images.			

At	the	estuary	test	site,	the	camera	system	was	deployed	at	a	private	location	that	had	an	
unobstructed	airspace	at	least	250	m	from	the	camera	location.	The	primary	objective	was	to	
estimate	the	detection	rates	of	bird	and	bat-sized	objects	with	the	camera	system	and	determine	if	
they	were	above	the	predefined	thresholds	outlined	in	the	above	objective.		

To	determine	the	detection	rates	of	the	camera	system	within	250	m	(daytime)	and	100	m	
(nighttime),	standard	methodology	for	point	counts	were	used	with	detections	categorized	by	
distance	away	from	the	survey	point.	During	the	daytime,	researchers	tested	whether	the	camera	
could	detect	a	bird-sized	object	(a	ball	10	cm	in	diameter;	about	the	size	of	an	American	Robin)	at	
intervals	of	10,	25,	50,	100	and	200	m	away	from	camera	system	center	(Figure	2).	Each	distance	
was	tested	in	the	left,	center,	and	right	portions	of	the	field	of	view.	We	used	nIR	lighting	to	test	
nighttime	detections	of	the	same	object	at	five	distances:	10,	20,	30,	40,	and	50	m	from	the	camera	
system	center	(Figure	3).	The	system	was	tested	at	least	twice	at	each	distance	band,	with	the	
object	stationary	and	the	object	being	thrown.	After	the	data	were	captured	by	the	camera	system	
as	still	images,	a	video	analyst	reviewed	the	images	to	determine	if	the	object	was	present	within	
the	frame.	The	objectives	of	the	project	ask	us	to	evaluate	the	accuracy	of	the	system	within	250	m	
during	the	daytime,	so	we	will	be	conservative	and	assume	no	detections	were	possible	from	
distances	further	away	than	we	tested.	The	proportion	of	detections	over	attempts	will	be	
calculated	for	each	distance	band	to	estimate	how	detection	probability	changes	over	distance.		

At	a	second	private	site	overlooking	a	reservoir	(Figure	4),	we	made	improvements	to	the	nighttime	
field	of	view	by	repositioning	the	nIR	lighting	to	be	more	focused	in	the	middle	of	the	field.	With	the	
new	configuration	of	nIR	lights,	testing	was	performed	again	to	attempt	100	m	detection	of	a	bat-
sized	object.	However,	the	best	detection	that	could	be	achieved	on	a	bat-sized	object	was	60	m.	

	



	

24	

	

Figure	2.	Testing	at	first	site	with	bird-sized	object	(held	at	center	of	chest).	
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	 	Figure	3.	Nighttime	testing	of	bat-sized	object	(Softball	in	the	person’s	hand)	20	m	from	the	
camera.		Image	is	magnified	and	cropped	
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Figure	4.	View	from	camera	at	second	testing	location	with	a	Bald	Eagle	in	the	field	of	view.	

Results	

There	was	100%	detection	of	objects	50	m	or	less	from	the	camera	system	during	the	daytime.	
Objects	were	detected	out	to	200	m	away	from	the	camera	system,	the	furthest	range	tested,	but	
detection	probability	in	the	100-200	m	distance	bands	dropped	to	67%	(Figure	5).	It	was	assumed	
for	modeling	purposes	that	the	detection	probability	for	a	robin-sized	object	would	be	0%	past	200	
m	due	to	lack	of	data,	though	this	is	likely	an	underestimate	as	such	objects	could	be	seen	in	some	
circumstances.	This	outcome	was	considered	to	meet	our	overall	objective	for	detection	
probability.		

	

Figure	5.	The	change	in	detection	probability	with	distance	for	the	camera	system	during	daytime	of	a	
bird-sized	object.	

During	nighttime	testing,	objects	were	detected	out	to	30	m.	Unlike	during	daylight	testing,	
detection	within	each	distance	band	appeared	to	be	binary:	either	the	object	was	detected	all	the	
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time	(100%	detectability	at	a	given	distance)	or	it	was	not	detected	at	all	(Figure	6),	so	detectability	
was	100%	within	30	m	and	0%	thereafter.	This	was	not	considered	to	meet	our	overall	objective	
for	detection	for	this	system.	Given	the	all	or	nothing	aspects	of	detection,	we	were	not	able	detect	
animals	far	enough	out	to	be	useful	for	our	application	as	30	m	is	often	not	far	enough	to	reach	even	
part	of	the	turbine	rotor	swept	zone	from	a	ground-level	mounted	unit.	Improvements	to	the	nIR	
system	would	be	necessary	to	allow	detections	far	enough	away	to	be	useful	in	monitoring	turbines	
blades	in	the	field.	

	

Figure	6.	The	change	in	detection	probability	with	distance	for	the	camera	system	during	nighttime	of	
a	bat-sized	object.	
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PHASE	3:	DATA	COLLECTION	AND	MAINTENANCE	AT	TARGET	SITES	

Objectives	

• Collect	data	that	video	reviewers	can	use	to	assess	camera	performance	in	detecting	and	
identifying	birds	(bats	will	be	discussed	in	Phase	5).	

• Obtain	20	eagle	images.	
• Evaluate	three	different	methods	of	exporting	data	from	the	field	to	BRI’s	video	review	lab,	

so	that	no	less	than	95%	of	the	wildlife	video	images	are	being	transferred:	remote	
download	via	on-site	internet	connection,	remote	download	via	point	to	point	wireless	
radio	transmission,	and	remote	download	via	cellular	network.		

Technical	Approach	

In	consultation	with	SunEdison	staff,	the	project	team	chose	a	turbine	area	for	testing	that	had	
unobstructed	views	and	was	in	proximity	to	an	eagle-use	area.	On	September	16,	2015,	the	stereo-
optic	camera	was	installed	underneath	an	operational	turbine	in	this	area.	The	stereo-optic	camera	
system	was	mounted	on	a	wooden	frame	to	enhance	stability	and	security	at	the	base	of	the	
turbine.	The	camera	system	was	positioned	so	that	the	angle	of	view	would	allow	for	filming	the	
rotor	swept	zone,	the	area	around	the	turbine,	and	other	turbines	within	500	meters	of	the	camera	
system	(Figure	7;	Figure	8).	Each	camera	on	the	camera	system	was	adjusted	for	optimal	daytime	
filming.	The	stereo-optic	camera	was	left	for	24	hours	and	checked	the	next	day	to	ensure	that	all	
processes	were	working	correctly.	Another	check	was	performed	on	September	29,	2015	to	ensure	
that	back-up	power	worked	properly	after	a	scheduled	power	down	of	the	turbines.	Data	collection	
had	not	been	interrupted	and	there	were	no	issues	noted	on	either	visit.	The	camera	system	was	
removed	from	the	site	in	December	2015.		

	

Figure	7.	Camera	installation	at	terrestrial	wind	farm.	
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In	November	2015,	a	second	camera	system	was	re-deployed	at	the	Reservoir	Site	to	capture	
images	of	eagles	using	the	area.	This	site	was	named	“Eagle	Test	Site”	for	the	remainder	of	the	
project.	We	removed	the	system	from	this	site	in	March	2016.	Both	sites	were	operating	
concurrently	during	November	and	December	2015.	

	

	

Figure	8.	Camera	view	at	turbine	test	site.	

Results		

A	total	of	16,173	video	segments	were	recorded	at	the	Turbine	Site	over	a	period	of	79	days.	At	the	
Eagle	Test	Site,	30,340	video	segments	were	recorded	over	114	days.	A	subset	consisting	of	10,354	
segments	were	placed	into	the	queue	for	video	analysis	(totaling	>4	TB	in	size).	Video analysis of 
2,508 video segments, described in Phase 5 below, resulted in 1,140 objects of interest. These included a 
total of 51 Bald Eagle observations in 2,033 Bald Eagle images. Other species observed included 
American Crow, Common Raven, Common Loon, Herring Gull, and American Goldfinch.	

Data	Transfer	

All	46,513	video	segments,	ranging	in	size	from	66	MB	to	2	GB,	were	transferred	from	the	field	to	
the	BRI	video	lab	through	physical	swapping	of	1	TB	hard	drives.	All	video	segments	(n=26,527)	
slated	for	video	analysis	were	saved	to	servers	as	well	as	archived	on	hard	drives	without	incident.	
Extra	video	segments,	recorded	at	the	Eagle	Test	Site	but	not	analyzed,	were	also	archived.	We	had	
no	loss	of	recorded	data	during	transfer	from	the	field	to	the	lab.		

BRI	staff	attempted	to	test	a	point-to-point	wireless	networking	method	to	transfer	data	remotely,	
rather	than	using	manual	swapping	of	hard	drives.	This	point-to-point	method	uses	long-range	
Ligowave	wireless	transmitting	equipment.	In	order	to	fully	test	this	method,	however,	a	clear	line	



	

30	

of	sight	with	some	distance	from	Point	A	to	Point	B,	a	transmitting	location,	and	a	receiving	location	
with	internet	are	all	required.	Without	a	proper	DOE-approved	testing	location	that	fulfilled	these	
criteria,	it	was	determined	that	long-range	wireless	testing	could	not	be	provided	under	the	scope	
of	this	project.	However,	this	method	is	commonly	used	for	line-of-site	wireless	communications,	
and	HiDef	has	successfully	tested	this	method	offshore	in	Europe.	We	are	confident	that	this	
method	of	communication	would	be	viable	if	distances	were	within	equipment	specifications	and	
clear	line-of-sight	was	available.	More	information	is	provided	in	the	Recommendations	section.		

Overall,	approximately	8	TB	of	video	were	recorded.	A	variety	of	factors	influenced	individual	file	
size,	such	as	time	of	day	(Figure	9),	visibility	(Figure	10),	and	weather	(Figure	11).	Nighttime	video	
segments	were	consistently	lower	in	average	size	than	daytime	video	segments	(Figure	9).	Clear	
conditions	produced	larger	file	sizes,	whereas	video	segments	with	lower	visibility	(Figure	10)	or	
inclement	weather	(Figure	11)	resulted	in	lower	file	sizes	on	average.	

	
*Three	outliers	were	removed	that	were	atypical	for	nighttime	file	size;	nIR-lit	swirling	leaves	in	water	activated	motion	
segmentation	throughout	the	entire	video	segments,	leading	to	larger	file	sizes.	

Figure	9.	Average	size	of	video	segments	based	on	time	of	day	showed	that	nighttime	video	segments	
are	typically	smaller	in	size.		
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Figure	10.	Video	segments	with	lower	visibility	resulted	in	smaller	video	sizes	than	video	segments	
with	clear	visibility.	

	

Figure	11.	Weather	that	resulted	in	lower	visibility	or	lower	bird	activity	resulted	in	lower	average	
file	size	than	clear	days.	

Camera	system	performance	and	maintenance	

Overall,	despite	months	in	the	field	under	highly	variable	weather	conditions	and	temperature	
regimes,	the	camera	systems	performed	well	with	few	issues	and	near	constant	uptime.	A	number	
of	issues	were	identified	and	addressed,	and	are	discussed	below.	

0

100

200

300

400

500

600

700

Hazy	(n=137) Clear	(n=1415)

Av
er
ag
e	
Si
ze
	(M

B)

Average	Size	(MB)	of	Video	Segments	based	on	
Visibility

0

100

200

300

400

500

600

700

800

Fog	(n=37) Drizzle	
(n=24)

Rain	
(n=113)

Snow/Sleet	
(n=47)

Cloudy	
(n=532)

Partly	
Cloudy	
(n=229)

Clear	
(n=568)

Av
er
ag
e	
	S
iz
e	
(M

B)

Average	Size	(MB)	of	Video	Segments	based	on	
Weather	Conditions



	

32	

Mechanical	issues	

Minor	equipment	and	software	maintenance	has	been	ongoing	since	the	start	of	the	project.	Aside	
from	the	aforementioned	trigger	issue	during	the	first	phase	of	the	project,	there	were	other	issues	
encountered	and	overcome	during	deployment:	
	

• Motherboard	failure	due	to	lightning	strike:	There	was	a	system	malfunction	on	September	
8,	2015.	Through	troubleshooting	with	HiDef	and	UMaine,	the	project	team	concluded	that	
the	motherboard	from	the	on-board	computer	failed,	most	likely	due	to	storm	activity	that	
occurred	at	the	Eagle	Test	Site.	In	order	to	stay	on	schedule	with	turbine	deployment,	the	
project	team	replaced	the	malfunctioning	hardware	with	the	on-board	camera	from	the	
other	camera	rig.	After	re-establishing	software	relationships	and	Windows-based	
interactions,	the	switched	motherboard/camera	rig	combination	was	ready	for	turbine	
deployment.	The	camera	rig	continued	to	perform	as	expected	without	data	interruptions	
through	the	end	of	the	quarter.	HiDef	was	able	to	ship	a	new	motherboard	from	the	U.K.	to	
the	U.S.	in	seven	business	days.	After	changing	a	cable	and	installing	the	new	motherboard,	
the	camera	rig	was	working	properly	and	the	project	team	was	able	to	hold	a	demonstration	
in	time	for	a	DOE	site	visit	on	September	24,	2015.	The	second	camera	rig	has	performed	as	
expected	through	the	end	of	the	project.	While	we	do	not	anticipate	another	motherboard	
failure,	we	did	order	another	motherboard	in	case	this	type	of	malfunction	occurs	again.	
	

• Outages	due	to	software	crash:	We	had	system	outages	from	an	unknown	source	during	the	
turbine	trial.	The	stereo-optic	cameras	were	in	operation,	but	data	collection	stopped	with	
no	information	or	errors	in	the	camera	or	computer	system	logs.	After	consultation	with	
UMaine	and	HiDef,	it	was	decided	that	scheduling	a	nightly	restart	of	the	system	would	be	
the	best	course	of	action.	This	resolved	the	problem,	but	this	issue	might	need	further	
troubleshooting	under	a	controlled	environment	to	look	for	possible	causes	such	as	
temperature	anomalies,	operating	system	disruptions,	or	onboard	memory	limitations.		

	
• Wiper	motor	failure:	Two	of	the	wiper	motors	ceased	to	function	properly.	One	shipped	

from	the	U.K.	in	a	nonworking	state,	and	another	experienced	mechanical	failure	in	the	
micro-switch	that	resulted	in	near	constant	movement	of	the	wiper	arm	without	wiper	
fluid.	We	worried	that	the	wiper	would	scratch	the	external	lens	surface	once	the	rubber	
was	degraded	enough,	so	we	disabled	this	wiper.	We	have	not	yet	sourced	a	replacement	
wiper	motor,	but	it	is	an	easy	replacement	with	the	correct	part.	
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PHASE	4:	DATA	MANAGEMENT	AND	VIDEO	PROCESSING	IMPROVEMENTS	

Objectives	 	

• Develop a Standard Operating Procedure (SOP) using a hierarchical system for: a) detecting 
an object; b) categorizing the object as bird or other; c) categorizing the bird into species 
group (e.g., waterfowl, raptor, passerine); and d) identifying to genus or species.  

• Build an interactive bird event viewer that reduces the manual inspection and analysis time by 
70% compared to the current software configuration. 

	

Data	Management:	Technical	Approach	and	Results		

Technical	Approach		

Method	for	selecting	images	for	analysis	

BRI	researchers	developed	a	database	to	store	detection	and	identification	data.	Data	entry	
consisted	of	categorical	values	that	characterized	the	video	segment	(visibility	and	weather)	as	well	
as	object	information	such	as	identification	to	the	lowest	taxonomic	level	and	behavior.	On-screen	
position	information	was	also	recorded.	

The	on-board	camera	system	software	organized	video	segments	in	a	folder	hierarchy,	based	on	
system	time.	The	file	naming	convention	used	epoch	time	(the	number	of	seconds	that	have	passed	
since	January	1,	1970)	as	part	of	the	file	name,	which	created	a	unique	filename	for	each	video	
segment.	This	consistent	file-naming	system	allowed	for	easy	programming	in	Microsoft	(MS)	
Access®	to	randomize,	prioritize,	and	retrieve	video	segments.	Dawn,	daytime,	and	dusk	video	were	
prioritized	for	analysis.	The	remaining	segments,	such	as	nIR-activated	segments,	were	archived	on	
hard	drives.	

Audit	

In	order	to	determine	the	rate	of	agreement	of	identification	between	video	analysts,	a	random	
audit	was	conducted	by	a	second	video	analyst	on	20%	of	objects.	For	instance,	objects	identified	as	
Bald	Eagle	by	the	original	reviewer	were	also	identified	as	Bald	Eagle	by	the	auditor	in	order	for	
that	object	to	count	as	an	agreement	or	match.	With	American	Goldfinch,	the	auditor	could	choose	
American	Goldfinch	or	Unidentified	Passerine	for	that	object	to	count	as	an	agreement.	A	successful	
random	audit	was	considered	to	result	in	≥90%	agreement.	All	species	identified	by	the	first	
observer	as	a	Threatened	or	Endangered	(T&E)	species	were	also	audited,	with	success	requiring	
100%	agreement	for	the	T&E	audit.		

Results	

A	total	of	26,527	video	segments	were	added	to	the	video	analysis	queue,	of	which	11,740	
nighttime	video	segments	were	removed	from	further	analysis.	Dawn,	dusk,	and	daytime	video	
segments	were	then	randomized	and	assessed	by	video	reviewers.	Due	to	time	constraints,	a	
combination	of	12,273	video	segments	from	both	sites	were	not	reviewed.	Of	the	2,514	that	were	
reviewed,	video	reviewers	further	eliminated	951	video	segments	where	nIR	lighting	was	activated.	
Of	the	1,563	video	segments	remaining,	337	video	segments	had	objects	detected	(251	at	the	Eagle	
Test	Site	and	86	at	the	Turbine	site).		
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A	total	of	228	objects	were	audited.	The	random	audit	resulted	in	93%	agreement,	while	the	T&E	
audit	resulted	in	67%	agreement.	Disagreements	primarily	occurred	for	eagles	at	greater	distances	
and	in	low	light	conditions.	Identification	criteria	were	amended	and	eagles	in	disagreement	were	
arbitrated	for	final	answers.	

Improving	the	System:	Technical	Approach	and	Results	

Technical	Approach		

Acquisition,	housekeeping	and	viewing	software		

In	order	to	collect	and	analyze	imagery,	the	camera	system	employs	two	main	software	
applications:	an	acquisition	and	storage	application	that	communicates	directly	with	the	cameras,	
and	a	viewer	application	that	allows	users	to	view	and	interact	with	recorded	data.	There	is	also	a	
smaller,	third	application	that	is	responsible	for	various	scheduled	housekeeping	tasks	such	as	
operating	the	washer-wiper	systems,	and	transferring	recorded	data	to	external	storage	devices.	

The	acquisition	software,	written	in	a	combination	of	C++	and	C#,	is	responsible	for	opening	and	
maintaining	communication	(via	the	GigE	Vision	framework)	with	both	of	the	IMPERX	Bobcat	
B6620	cameras.	This	software	runs	on	the	camera	system's	on-board	computer,	and	is	capable	of	
recording	motion-segmented	frames	(as	a	Bayer-encoded	stream)	from	both	cameras	in	real-time	
at	a	frame	rate	of	approximately	1.7	frames	per	second.	While	there	is	still	some	room	for	
improvement,	the	acquisition	software	operates	at	or	beyond	the	speed	at	which	the	cameras	can	
transmit	data	to	the	on-board	computer,	the	most	relevant	bottleneck	in	the	system.	

Given	the	volume	of	data	associated	with	pairs	of	6600	x	4400	px	(29-megapixel)	images,	the	
acquisition	software	is	heavily	focused	on	compression.	To	reduce	the	amount	of	storage	required	
and	the	amount	of	time	users	spend	analyzing	imagery,	the	acquisition	software	uses	a	motion-
segmentation	algorithm.	This	algorithm	captures	a	pair	of	full-frame	images	from	the	cameras	once	
every	five	minutes.	Subsequent	frames	are	compared	to	the	full-frame,	and	only	changes	that	
exceed	a	specified	threshold	are	recorded.	This	process	repeats	for	five	minutes,	until	a	new	full-
frame	image	is	captured.	As	configured,	the	smallest	measurable	area	of	change	is	a	16x16	pixel	
"tile."	At	the	end	of	five	minutes,	the	acquisition	software	produces	a	"chunk	file,"	which	contains	
one	pair	of	full-frame	bitmap	images,	and	510	image	“maps”	(5	minutes	*	60	seconds/minute	*	1.7	
frames/second	=	510;	note	that	different	frame-rates	or	recording	durations	affect	this	figure).	
Chunk	files	contain	the	motion-segmented	tiles	from	each	frame	along	with	indexing	information	
used	to	reassemble	tiles	in	the	viewer.		

The	effective	compression	rate	of	this	segmentation	approach	depends	on	the	amount	of	movement	
or	change	in	a	given	scene:	anywhere	from	100%	(no	differences	from	initial	reference	frame,	
completely	masked)	to	0%	(large	image	differences	or	changes	in	illumination,	no	masking).	In	
practice,	scene	features	such	as	fast	moving	clouds	or	large	reflective	areas	like	waterbodies	have	a	
detrimental	effect	on	compression	(see	Figure	12).		
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Figure	12.	Example	images	of	masking	differences	between	footage	with	little	background	motion	(a)	
and	considerable	background	motion	(b).	The	second	footage	chunk	was	truncated	at	273	frames,	
about	half	the	amount	usually	saved	in	a	chunk	file,	due	to	the	excess	amount	of	water	coming	through	
the	masking.		
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Figure	13.	Frame-pair	view	from	the	original	HiDef	viewer.		

The	initial	full-frame	images	are	ready	for	display	after	conversion	back	to	RGB	format	from	Bayer	
encoding,	but	the	motion-segmented	frames	require	some	reassembly.	This	process	involves:	(1)	
unpacking	motion-segmented	tiles	as	Bayer	encoded	byte	data;	(2)	computing	the	pixel	XY	
coordinates	of	the	tile	for	display;	and	(3)	converting	the	tile	Bayer	data	to	a	16x16	RGB	tile.	Once	a	
pair	of	segmented	frames	is	reassembled,	they	are	presented	to	the	user	for	review	(Figure	13).	

The	viewer	is	also	responsible	for	performing	stereo-calibration	between	the	cameras.	The	stereo-
calibration	process	is	critical	in	obtaining	reliable	3-D	location	estimates	from	pairs	of	stereo	
images,	and	requires	the	user	to	select	several	pairs	of	"match	points"	between	the	initial	full-frame	
images	in	a	chunk	(Figure	14).	The	goal	of	the	viewer	application	is	to	find	an	optimal	translation	
between	each	half	of	the	stereo-pair.	This	translation,	along	with	several	assumptions	about	the	
camera,	lens,	and	stereo	basis,	then	permits	the	triangulation	of	objects	in	a	scene.	
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Figure	14.	Frame-pair	view	of	image	calibration.		

Once	the	calibration	is	complete,	users	can	obtain	approximate	distance	estimates	of	objects	from	a	
stereo-pair	by	carefully	marking	the	same	object	in	each	half	of	the	pair.	Similarly,	size	estimates	
can	be	computed	by	exporting	and	comparing	several	pair	of	points.	Distance	estimates	are	saved	
by	the	viewer	as	plain	text	in	the	following	format:	

 [<left	xy>	<right	xy>	[estimated	x,	estimated	y,	estimated	z]]	

Users	navigate	a	chunk	file	by	either	moving	forwards/backwards	one	frame-pair	at	a	time,	or	by	
using	a	slider	to	move	more	quickly.	

Improving	the	viewer		

While	the	original	viewer	application	permitted	user-review	of	recorded	data,	early	discussion	
identified	a	number	of	changes	that	could	improve	both	the	efficiency	and	utility	of	the	viewer	
application.	We	identified	the	following	as	needed	improvements:	

(1) Provide	the	ability	to	bookmark	frames	of	interest	in	a	chunk.	

(2) Provide	the	ability	to	(a)	ignore	empty	frames,	and	(b)	mask	out	areas	of	a	scene.	

(3) Provide	the	ability	to	mark	and	save	locations	of	objects	of	interest.	

(4) Provide	the	ability	to	adjust	image	properties	such	as	contrast,	saturation,	and	brightness.	

(5) Provide	a	separate	reference	frame	displaying	the	current	zoom	window	relative	to	the	full	
frame.	

UMaine	SCIS	engineers,	in	cooperation	with	University	of	Maine	ASAP	Media	Services,	determined	
the	best	way	to	provide	users	with	the	desired	functionality	would	be	to	create	a	new	viewer	
application,	with	the	improvements	listed	above.	Beyond	providing	users	with	the	desired	



	

38	

functionality,	development	of	a	new	viewer	permitted	the	construction	of	an	application	that	could	
run	on	Windows,	MacOS,	or	Linux	systems.		

To	fulfill	the	objectives,	a	new	viewer	was	developed	in	C++,	with	a	Qt	GUI	to	allow	cross-platform	
portability.	UMaine	SCIS	engineers	initially	focused	on	creating	a	standalone	library	responsible	for	
opening,	parsing,	and	reconstructing	image	data	from	chunk	files,	while	ASAP	developers	designed	
and	implemented	a	Qt	GUI.	A	library	API	(chunkreaderlib)	allowed	the	viewer	GUI	application	to	
request	ready-to-display	frames,	both	simplifying	the	viewer	code	itself	and	enabling	easier	future	
modification.	

Development	of	“chunkreaderlib”	

The	library,	which	was	responsible	for	parsing	chunk	files,	fetching	full	frames,	and	reconstructing	
image	tile	data,	relied	on	the	open	source	computer	vision	programming	API,	OpenCV	
(http://OpenCV.org)	library	of	programming	functions	for	much	of	its	basic	functionality,	including:	

(1) OpenCV	data	types	were	widely	used,	from	storing	image	data	to	representing	2-D	point	or	
area	information.	

(2) OpenCV	cvtColor	method	was	used	to	convert	Bayer	encoded	image	data	to	RGB.	

(3) OpenCV	pointInPolygon	test	was	used	to	check	for	masked	tiles.	

As	development	of	the	viewer	GUI	progressed,	the	library	also	became	responsible	for	handling	
chunk	metafiles,	which	stored	user	frame	annotation	and	mask	information.	These	metafiles	
effectively	addressed	improvements	1,	2b,	and	3,	allowing	users	to	easily	share	and	store	areas	of	
interest	across	frames	in	a	chunk.	

With	the	inclusion	of	mask	data	from	the	metafiles,	the	library	was	also	responsible	for	
improvement	2a.	Beyond	ignoring	completely	empty	frames,	the	library	could	additionally	
determine	if	a	frame	was	empty	after	considering	user-applied	mask(s).		

Initially,	the	library	workflow	was	as	follows:	

(1) Open	chunk	file	and	parse	header	information	

(2) Fetch	full-frame	reference	images	

(3) Fetch	frame	locations	and	frame	headers	

(4) Reconstruct	each	frame	by	unpacking	and	debayering	tiles,	and	

(5) Return	all	rendered	frames	for	viewing.	

In	an	effort	to	improve	performance	of	both	the	library	and	viewer,	changes	to	(4)	and	(5)	have	
been	made	such	that	the	library	only	returns	RGB	image	tiles	and	their	locations,	leaving	the	viewer	
GUI	responsible	for	reassembly/placing	tiles	in	the	correct	location	on	screen.	

Development	of	“chunkreader_ui”	

The	viewer	GUI	was	written	around	the	Qt	framework,	and	provided	a	consistent	UI	across	all	three	
target	platforms.	Additionally,	the	application	used	OpenGL	(Open	Graphics	Library),	to	render	
image	data	on	screen,	perform	various	image	manipulation	tasks	as	proposed	in	improvement	4,	
and	provide	zoom	window	reference	panes	as	proposed	in	improvement	5.	
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To	improve	the	user	experience,	the	viewer	GUI	also	allowed	users	to	browse	the	frame	data	in	
several	ways.	As	with	the	initial	viewer	application,	users	could	navigate	forwards	or	backwards	
one	frame	at	a	time,	or	quickly	move	through	the	frames	with	a	slider.	Additionally,	users	could	
playback/pause,	jump	to	specific	frames	by	number,	or	quickly	jump	to	the	start	or	end	of	a	chunk.	

The	viewer	GUI	also	provided	users	with	the	ability	to	mask	out	areas	of	a	scene,	and	to	mark	areas	
of	interest	in	a	frame	(Figure	15).	This	information	was	saved	in	metafiles,	which	were	processed	
by	the	library	as	described	in	“Development	of	chunkreaderlib,”	above.	

	

Figure	15.	Image	of	the	new	GUI	zoomed	in	on	marked	gulls.	The	full	extent	is	visible	in	the	box	to	the	
right	of	the	image,	with	the	zoomed	portion	illustrated	with	a	red	box.	Marker	numbers	are	adjacent	
to	marker	boxes	drawn	around	gulls	observed	in	the	video	footage.		

Results	

The	new	viewer	application	successfully	provided	all	of	the	proposed	improvements,	along	with	
several	other	features	that	added	to	the	overall	utility.	These	included:	

(1) the	ability	to	"link"	or	"unlink"	halves	of	the	stereo	pair	view,	such	that	separate	areas	or	
zoom	levels	can	be	examined	in	each	half	at	the	same	time,	

(2) a	"black	and	white"	render	mode,	which	renders	tiles	in	a	two-color	mask	mode	instead	of	
as	RGB	image	data,	

(3) a	reference	frame	toggle,	which	allows	users	to	quickly	see	what	the	current	view	area	is	in	
the	initial	reference	frame,	and		

(4) a	status	bar	displaying	human-readable	date-time	information.	
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PHASE	5:	VIDEO	REVIEW	AND	DATA	ANALYSIS	

Objectives	

• Generate	baseline	information	on	species	detection	and	identification	of	bats	using	the	nIR	
camera	system.	

• Video	reviewers	identifying	Bald	Eagles	at	10-50	m	result	in	90%	species-level	
identification,	50-100	m=70%	species	level	identification,	100-200	m=50%	species	
identification	and	200-500	m=30%	species	identification.	

• Quantify	the	error	in	ID	rates	and	estimating	3-D	position	
• Improve	the	3-D	algorithm	for	object	isolation	and	tracking	by	reducing	bandwidth	needs	

for	data	transfer	and	including	real-time	distance	estimates.	
• Use	statistical	modeling	techniques	to	describe	the	volume	of	space	the	camera	system	

surveys	effectively	and	how	identification	rates	vary	with	distance	to	the	camera.	

Testing	to	Detect	Bats:	Technical	Approach	and	Results	

Technical	approach	

During	the	Go/No-Go	review,	DOE	determined	that	given	the	limitations	of	the	nIR	technology	on	
the	camera	system,	further	nighttime	testing	of	the	system	should	be	scaled	back.	However,	we	
were	encouraged	by	the	collection	of	a	nighttime	bat	image	(Figure	16),	and	therefore,	a	limited	nIR	
trial	was	proposed	in	which	three	species	of	bats,	captured	during	a	separate	federally	funded	
project,	were	released	at	varying	distances	from	the	camera	system	in	order	to	obtain	baseline	
photographic	images	using	nIR	technology	and	determine	nighttime	detectability.	

	

Figure	16.	Nighttime	image	of	a	bat	captured	during	field	testing	at	the	Reservoir/Eagle	Test	Site.	
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The	study	on	bat	detectability	was	conducted	at	Parker	River	National	Wildlife	Refuge	in	
northeastern	Massachusetts,	USA,	September	8-9,	2015,	in	collaboration	with	another	research	
effort	focused	on	attaching	nanotags	to	bats.	The	study	site	was	selected	along	a	refuge	road	to	
catch	a	large	number	of	tree	bats	breeding	on	or	migrating	through	the	island.	Bats	were	captured	
using	standard	protocols,	which	included	mist-netting	with	multiple	stacked	nets	along	bat	
movement	corridors.	Approved	safety	protocols	were	implemented,	including	handling	of	bats	with	
fresh	nitrile	gloves	every	capture,	holding	of	bats	in	sanitary	bags,	and	sanitization	of	nets	between	
capture	periods	to	prevent	the	spread	of	disease	among	bats.	All	protocols	were	compliant	with	the	
US	Fish	and	Wildlife	Service	National	White-nose	Syndrome	Decontamination	Protocol	designed	to	
prevent	the	further	spread	of	the	disease	by	researchers	and	spelunkers	
(https://www.fws.gov/midwest/endangered/mammals/BatDisinfectionProtocol.html).	

After	a	bat	was	captured,	the	researchers	collected	a	range	of	morphometric	and	health	data	and	a	
nanotag	was	attached	to	the	animal	for	the	concurrent	study.	If	the	individual	was	determined	to	be	
in	good	condition	for	further	testing	(as	determined	by	reproductive	status	and	body	mass),	we	
used	the	animal	in	a	test	to	determine	the	detection	range	of	the	camera	system.	Each	bat	was	
brought	to	a	set	distance	from	the	camera	system	(0.5,	10,	25,	50,	and	100	m).	At	each	distance,	
both	the	front	and	the	back	of	the	bat	were	shown	to	the	camera	system	for	15	seconds	while	video	
was	taken	continuously	over	that	time	period.	After	video	was	collected	from	each	of	the	distance	
treatments,	the	bat	was	released	at	a	randomly	selected	distance	step	(e.g.,	0.5,	10,	25,	50,	and	
100m)	from	the	camera	system.	Because	the	bat	was	being	held	by	a	person	who	was	also	reflective	
to	the	cameras,	each	individual	bat	was	positioned	above	the	researcher’s	head	(Figure	17).	The	nIR	
illuminators	were	positioned	in	the	middle	of	the	system	to	expose	the	area	in	front	of	the	camera	
with	direct	nIR	luminance	to	focus	maximum	illumination	in	the	area	of	greatest	overlap	of	the	
stereo	camera	pair.		

	

Figure	17.	An	example	image	showing	a	Red	Bat	at	25	m	from	the	camera	system	on	September	9,	
2015	in	Parker	River	National	Wildlife	Refuge.	

Results:	detection	rates	and	distance	measurements	for	known	bat	species	

Over	the	course	of	the	two	study	nights,	we	tested	six	individuals	with	the	camera	system	across	
the	range	of	distances	(0.5-100	m).	We	captured	only	two	different	species:	the	big	brown	bat	
(Eptesicus	fuscus,	n=5)	and	the	eastern	red	bat	(Lasiurus	borealis,	n=1).	The	big	brown	bats	were	
caught	on	September	8	and	the	eastern	red	bat	was	caught	on	September	9.	Only	two	bats	were	not	
tested	at	all	distance	treatments—two	big	brown	bats	on	September	8.	These	bats	were	released	
before	the	100	m	treatment	to	ensure	a	safe	departure	for	those	individuals.	
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None	of	the	tested	bats	were	clearly	seen	further	than	25	m	from	the	camera	system.	Past	the	25	m	
treatment,	the	researchers	holding	the	bat	and	monitoring	the	experiment	could	often	be	seen,	but	
the	bat	could	not.	The	alignment	of	the	nIR	illuminators	appeared	to	extend	the	range	of	the	
nighttime	vision	of	the	system	more	than	the	previous	configuration	(with	the	illuminators	placed	
on	the	outside	of	the	camera	bar	to	give	a	more	diffuse	nIR	illumination	to	the	study	area)	but	not	
so	much	so	that	animals	could	be	clearly	seen	50	m	away	(Figure	17).	Placing	the	illuminators	in	the	
middle	of	the	system	also	had	another	effect,	where	large	objects	in	the	images	were	reflecting	a	
large	amount	of	nIR	illumination	(in	this	case,	the	researchers	holding	the	bats	and	administering	
the	experiment).	In	some	cases,	this	high	reflectance	could	make	the	bat	more	difficult	to	detect	in	
the	image.	

While	the	bats	were	detectable	in	the	video	footage	in	many	cases,	it	was	never	possible	to	identify	
species.	Defining	marks	or	silhouettes	were	not	observable	on	the	images,	and	the	size	differences	
between	the	two	species	were	not	large	enough	for	wingspan	to	be	differentiated	with	the	stereo-
optic	estimation	processes.	In	addition,	when	the	bats	were	released	by	the	BRI	researcher,	the	
camera	system	recorded	a	distorted	image	of	the	flying	bat.	This	motion	blur	is	likely	caused	by	the	
high	flight	speed	of	the	bat,	the	low	frame	rate	of	the	system	(1.7	fps),	and	the	low	light	conditions.	
Combined	with	the	poor	resolution	of	the	nIR	images,	the	motion	blur	made	it	impossible	to	
identify	the	target	as	a	flying	bat.		

In	summary,	bats	could	only	be	reliably	detected	within	25	m	of	the	camera	system,	and	it	was	
difficult	to	assess	differences	between	species.	These	results	match	our	earlier	results	when	using	
non-bat	test	objects	to	test	the	range	of	the	system.	While	nIR	illumination	has	proved	useful	in	
other	studies	monitoring	bat	movements	around	turbines	(Cryan	et	al.,	2014),	they	will	likely	not	
be	useful	for	this	system	unless	the	nIR	illuminators	are	mounted	on	the	turbine	structure	or	
blades,	due	to	the	distance	between	the	camera	system	mounting	surface	and	the	nacelle	in	current	
wind	power	technology.		

Testing	to	Detect	Birds:	Technical	Approach	and	Results	

Technical	approach	

Video	Analysis	

When	conducting	video	analysis,	reviewers	proceeded	through	video	footage	and	recorded	and	
marked	any	animals	observed	within	the	segment.	The	reviewer	marked	every	instance	where	the	
animal	was	present	in	both	cameras	(though	marking	methods	depended	on	the	version	of	the	
review	software	used).	In	cases	where	the	review	took	more	than	one	hour	for	one	5-minute	video	
segment,	the	reviewer	would	stop	searching	for,	marking,	and	recording	non-eagle	birds	to	
facilitate	review	of	a	large	number	of	segments.		

When	Bald	Eagles	were	observed,	the	identifier	recorded	the	age	and	plumage	of	the	bird.	In	cases	
where	the	identifier	wasn’t	able	to	distinguish	the	exact	plumage	class,	the	categories	<Basic	III	and	
>Basic	II	were	used.	Where	no	age	and/or	plumage	categorization	could	be	made,	the	identifier	
noted	the	age	and/or	plumage	as	“Unknown”.	

In	order	to	assess	identification	criteria	and	analyst	identification	variance,	an	audit	was	conducted	
on	20%	of	the	non-eagle	animals	observed	with	the	aim	to	have	agreement	rates	≥90%.	All	Bald	
Eagles	were	audited	as	part	of	a	complete	Threatened	and	Endangered	Species	audit.	
Disagreements	were	arbitrated	to	come	to	a	final	assessment	of	species	identification.	
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While	fisheye	image	rectification	methods	were	being	refined,	the	team	used	an	alternative	method	
of	calculating	object	distance	from	the	camera	by	using	pixel	measurements	of	wingspan	or	body	
length	from	the	image	combined	with	camera	specifications	(sensor	size	and	focal	length).	If	the	
actual	measurement	of	the	target	object	was	known,	and	the	proportion	of	pixel	measurements	in	
an	image	of	a	certain	size	was	known,	then	distance	could	be	calculated	(Kendal,	2007).	There	are	
few	published	accounts	of	Bald	Eagle	wingspans,	and	most	wingspan	ranges	include	the	smaller,	
southern	US	population	of	Bald	Eagles.	In	order	to	obtain	the	best	calculated	distances	for	the	pixel	
count	method,	wing	chord	to	wingspan	ratios	were	calculated	from	the	Imler	study	(Imler	and	
Kalmbach,	1955)	and	applied	to	wing	chords	recorded	for	northern	populations	of	Bald	Eagles	
(Buehler,	2000).	Pixel	measurements	of	target	object	wingspans	or	body	lengths	were	obtained	for	
the	first	frame	of	camera	detection	and	the	first	frame	where	species	identification	was	possible.	If	
neither	were	possible,	a	measurement	was	taken	of	a	frame	with	an	eagle	with	flat	extended	wings	
or	a	clear	body	length	visible	(see	Figure	18	for	a	full	body	length	example,	and	Figure	24	for	a	fully	
extended	wingspan	example).	Pixel	counts	used	for	the	measurements	were	made	using	the	New	
Media	video	viewer	developed	for	this	project.		

In	the	final	weeks	of	the	project,	while	UMaine	SCIS	continued	to	work	on	fish-eye	rectification	
methods,	stereo-optic	position	estimates	were	calculated	to	track	animal	movement	throughout	the	
video	footage.	Effort	was	focused	on	tracking	those	animals	that	had	recorded	pixel	count	
measurements	as	a	means	for	comparison,	though	additional	animals	were	tracked	where	possible.		

Bird	flight	tracks	were	estimated	using	the	HiDef	viewer	software.	Calibration	is	necessary	first	to	
allow	for	track	estimation.	However,	calibration	of	the	video	review	files	required	specific	“partly	
cloudy”	conditions,	which	was	not	available	during	the	recording	of	every	chunk.	Therefore	
additional	software	development	work	was	performed	on	the	HiDef	viewer	software	to	allow	
calibration	data	to	persist	between	chunk	files,	allowing	a	single	calibration	routine	to	be	
performed	for	each	placement	of	the	camera	system.	Markers	were	placed	on	the	object	of	interest	
in	both	the	left	and	right	cameras	in	each	frame	in	which	the	animal	was	observed,	and	then	
exported	to	a	.csv	file,	including	X	Y	and	Z	coordinates	for	the	animal	of	interest.		

Daytime	Detection	Probability	

Detectability	in	camera	systems	is	often	assessed	using	objects	that	are	positioned	at	a	known	
distance	from	the	system.	This	is	a	useful	approach,	and	one	we	used	in	early	testing	of	the	system,	
but	it	is	difficult	to	know	if	these	results	are	representative	of	how	the	camera	system	performs	
with	animals	where	the	shapes	and	behaviors	deviate	from	the	test	objects.		

In	an	attempt	to	reconcile	this	issue,	we	decided	to	evaluate	animal	detection	probability	using	
distance	sampling,	a	standard	method	for	independently	testing	the	proficiency	of	human	
surveyors.	This	method	has	been	used	for	over	15	years	in	ecology,	and	was	pioneered	for	use	with	
surveys	that	employ	line	transects	(e.g.,	seabird	boat	surveys,	Buckland	et	al.,	2001).	In	this	
approach,	the	distance	from	the	observed	animals	to	the	transect	center	line	can	be	used	to	
estimate	the	probability	of	detecting	any	animal	within	a	certain	distance	to	the	center	line.	The	
core	idea	is	that	the	probability	of	detecting	an	animal	will	decrease	with	increasing	distance	
between	the	animal	and	the	transect	center	line.	In	the	application	of	this	idea	to	camera	
observations,	we	would	say	that	the	estimated	true	density	of	objects	within	a	circular	area	around	
the	camera	system	is	expressed	as:	
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Where	the	numerator	n	is	the	number	of	objects	detected	in	the	survey	area	and	the	integral	
represents	the	summed	unconditional	probability	of	detecting	an	animal	across	all	distance	classes	
(ω,	which	vary	by	distance	r	from	the	camera	system).	The	detection	function,	g(r),	is	flexible	in	the	
distance	detection	framework,	allowing	multiple	key	functions	to	describe	the	change	in	detection	
over	r.	In	this	study,	we	used	a	hazard	detection	function	where:	

' & = 1 − exp	(− &
2

3
)	

In	this	relationship,	σ	and	ϑ	govern	the	decrease	in	detection	probability	with	r.	We	choose	this	
distance	detection	function	because	detection	probability	because	a	visual	inspection	of	the	data	
indicated	a	broad	shoulder,	which	hazard	functions	can	fit	well.	These	types	of	curves	have	patterns	
where	detection	probability	remains	high	for	some	period	before	decreasing	fairly	rapidly.	

To	parameterize	this	model,	we	gathered	distance	of	first	detection	data	from	59	eagles	and	other	
birds	using	the	pixel	count	method	due	to	its	increased	accuracy	at	larger	distances	from	the	
camera	(see	Results	-	Video	Analysis	below).	Note	that	because	the	distance	to	the	animal	was	
estimated	only	after	the	animal	was	identified,	what	we	are	really	measuring	is	the	probability	an	
animal	is	detected	by	the	system	and	can	subsequently	be	identified	by	a	researcher.	Thus,	we	are	
not	estimating	detection	probability,	and	the	true	detection	probability	is	higher	than	the	marginal	
detectability	and	identifiability	estimate	we	are	obtaining	here.		

We	divided	the	area	observed	by	the	camera	into	five	distance	categories	(0-50	m,	50-100	m,	100-
200	m,	200-300	m,	300-500	m)	and	assigned	each	observation	to	a	distance	category.	Additionally,	
we	were	interested	in	what	the	detection	curve	of	the	camera	would	look	like	if	all	large	birds	
larger	than	14	pixels	were	identified,	so	we	used	the	average	body	size	of	large	birds	to	set	a	
distance	threshold	to	meet	that	criteria	(400	m),	and	simulated	a	data	set	where	an	observation	
was	equally	likely	from	0-400m,	corrected	for	the	area	of	the	distance	bins,	then	estimated	the	
detection	curve	for	these	data.	Essentially,	this	simulated	a	400	m	strip	transect	where	all	animals	
were	detected	that	we	could	provide	context	for	our	results	given	the	assumed	theoretical	
maximum	distance	that	a	large	bird	could	be	identified.	

We	used	a	Bayesian	modeling	framework	to	set	uninformative	priors	for	parameters	of	interest	(σ	
and	ϑ),	then	calculated	the	posterior	probability	based	on	the	likelihood	of	the	data	given	the	
parameters	and	the	prior	information	(in	this	case	uninformative	priors	that	assumed	minimal	
knowledge)		using	Markov	Chain	Monte	Carlo	(MCMC)	sampling	methods	with	the	programs	JAGS	
(http://mcmc-jags.sourceforge.net/)	and	R	(R	Core	Team,	2016).	The	MCMC	sampler	was	adapted	
for	500	iterations	then	a	burn-in	of	5,000	iterations	was	used	before	we	sampled	10,000	iterations	
with	a	thinning	rate	of	3.	Stability	of	the	parameter	estimates	was	assessed	visually	and	by	using	
the	Gelman-Rubin	convergence	diagnostic.	

Results	

Video	Review	

Video	review	took	place	from	November	16,	2015	to	June	23,	2016	on	video	footage	recorded	from	
September	15,	2015	to	January	15,	2016.	During	that	time,	1,141	objects	of	interest	were	found	in	
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331	video	segments	while	1,225	reviewed	video	segments	contained	no	birds.	A	total	of	51	bald	
eagles	were	found	in	30	video	segments	(Table	3).	Birds	were	categorized	by	observer	confidence	
in	the	identification	(Definite,	Probable,	and	Possible),	and	eagles	were	also	categorized	by	age	
(Adult,	Subadult,	and	Unknown;	see	Table	4	and	Figure	18-Figure	28).	There	were	49	Bald	Eagles	
observed	at	the	Eagle	Test	Site,	and	two	observed	at	the	Turbine	Site.		

Table	3.	Animals	identified	in	the	video	analysis	at	two	
observation	locations	recorded	from	September	15,	2015	
to	January	15,	2016	

Table	4.	Bald	Eagles	identified	in	the	video	footage	from	
September	15,	2015	to	January	15,	2016.	Observations	are	
broken	down	into	age	ranges	(Adult,	Subadult,	and	
Unknown)	and	by	observer	confidence	in	the	identification	
(Definite,	Probable,	Possible).	See	Figure	18-Figure	28	for	
example	images	for	eagles	in	each	category.	

Species	 Total	

Common	Loon	 6	

Unidentified	Loon	 4	

Herring	Gull	 1	

Ring-billed	Gull	 4	

Unidentified	Gull	 338	

Mallard	 2	

Common	Eider	 1	

Canada	Goose	 17	

Unidentified	Duck	 43	

Bald	Eagle	 51	

American	Crow	 33	

Common	Raven	 1	

American	Crow	or	Common	Raven	 6	

American	Goldfinch	 6	

Unidentified	Swallow	 3	

Cedar	Waxwing	 3	

American	Robin	 1	

Unidentified	Passerine	 28	

Unidentified	Bird	 484	

Unidentified	Invertebrate	 34	

Unidentified	flying	object	(animal-origin)	 75	

	 	
	

Species	 Total	 Number	Observed	

Adult	
Definite	 10	

Probable	 6	

Possible	 1	

Subadult	
Definite	 5	

Probable	 6	

Possible	 4	

Unknown	
Definite	 2	

Probable	 8	

Possible	 9	

Total	 Total	 51	
	

	

Review	Time	

In	order	to	assess	video	review	time,	we	compared	number	of	video	segments,	number	of	objects,	
and	number	of	marked	frames	per	hour.	Processing	of	video	includes	searching,	marking,	and	
identifying	targets.	The	mean	processing	time	was	4.4	video	segments	(5	minutes	each)/hour	and	
the	analyst	marked	62	pairs	of	marked	objects/hour.	Within	a	year	(365	days)	for	daytime	video	
segments	(12	hours	per	day),	the	camera	system	can	generate	144	video	segments	per	day	and	
52,560	daytime	video	segments	per	year.	Therefore,	processing	an	entire	year	of	data,	in	the	
software's	current	configuration	(no	recognition	modules	or	specialized	algorithms),	would	take	an	
analyst	5.97	years,	where	a	year	is	defined	by	250	business	days	at	8	hours	a	day.	Four	months	of	
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video	segments	would	take	2	years.	One	goal	of	the	project	was	to	reduce	manual	inspection	and	
video	analysis	by	70%.	Tools	in	the	new	video	review	software,	namely	the	unique	marking,	
masking,	and	the	video	playback	features,	improved	the	chunk	processing	per	hour	by	16%	from	
3.8	video	segments	per	hour	to	4.4	per	hour.		

There	were	several	factors	that	affected	the	amount	of	time	it	took	to	review	video	footage.	
Reviewing	footage	that	did	not	contain	any	birds	was	a	quicker	process	than	reviewing	footage	that	
did	contain	birds.	Review	times	were	impacted	by	weather,	as	windier	footage	resulted	in	more	
movement	of	water	and	trees.	Tree	and	water	movement	often	impacted	viewer	playback	speeds	
due	to	increased	image	file	size.	The	amount	of	cloud	cover	also	impacted	video	review	time,	as	
days	with	broken	cloud	cover	and	wind	again	caused	more	of	the	background	image	to	come	
through	the	mask.	Tree,	water,	and	cloud	movement	also	made	searching	for	objects	of	interest	
more	difficult,	as	less	of	the	background	was	masked	and	the	reviewer	had	to	differentiate	between	
background	images	and	animal	movement.	For	footage	with	birds	present,	the	amount	of	time	the	
individual	or	groups	of	birds	were	on	the	screen	and	their	flight	behavior	both	impacted	the	
amount	of	time	it	took	to	review.	Birds	flying	directly	across	the	screen	took	less	time	to	mark	than	
birds	that	flew	in	circular	milling	or	soaring	patterns	further	from	the	camera.	The	number	of	birds	
present	in	video	footage	increased	the	amount	of	time	it	took	to	review,	especially	with	multiple	
soaring	or	milling	birds.	Footage	recorded	on	overcast	or	rainy	days	impacted	the	ability	to	identify	
birds	to	species,	and	often	slowed	the	review	process	as	any	bird	images	would	be	of	lower	quality	
or	color	rendition.	
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Figure	18.	Bald	eagle	adult	
observed	on	January	13,	
2016.	Identified	as	a	definite	
Bald	Eagle	adult,	older	than	
Basic	II	plumage,	at	the	Eagle	
Test	Site.	Pixel	measure	
distance	was	27–34	m	at	1st	
and	ID	frame.	The	stereo-
optic	position	distance	
measurement	at	that	point	
was	16.8	m.			

	

Figure	19.	Bald	Eagle	adult	
observed	on	January	13,	2016.	
Identified	as	a	probable	Bald	Eagle	
adult,	plumage	greater	than	basic	
II.	No	pixel	distance	possible.	The	
stereo-optic	position	distance	
measurement	in	the	identification	
frame	was	113.9	m.	

Figure	20.	Bald	
Eagle	adult	
observed	on	
October	30,	2015.	
Identified	as	a	
possible	Bald	
Eagle	adult	of	
greater	than	basic	
II	plumage.	Pixel	
distance	
measured	at	225-
271	m	in	the	1st	
frame,	202-243	m	
in	the	ID	frame.	No	
stereo-optic	
position	distance	
measurement	was	
calculated.		

	

Figure	21.	Bald	eagle	
subadult	observed	on	
March	28,	2016.	
Identified	as	a	definite	
Bald	Eagle	subadult,	
plumage	less	than	
Basic	III.	Pixel	
distance	in	first	frame	
measured	at	31-40	m,	
and	identified	at	26-
33	m.	The	stereo-optic	
position	distance	
measurement	in	the	
first	frame	was	25.8	
m,	and	22	m	at	the	
identification	frame.		

	

Figure	22.	Bald	Eagle	
subadult	observed	on	
January	6,	2016.	
Identified	as	a	definite	
Bald	Eagle	subadult,	
plumage	less	than	Basic	
III.		Pixel	distance	in	
first	frame	measured	at	
46-59	m,	and	was	
identified	in	the	same	
frame.	The	stereo-optic	
position	distance	
measurement	was	at	
29.7	m.		

	

Figure	23.	Bald	Eagle	observed	
on	December	28,	2015.	
Identified	as	a	definite	Bald	
Eagle	subadult	of	unknown	
plumage.		Pixel	distance	when	
identified	was	54-69	m.	The	
stereo-optic	position	distance	
measurement	when	identified	
was	44.7	m.		
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Figure	24.	Bald	Eagle	
observed	on	January	13,	
2016.	Identified	as	a	
probable	Bald	Eagle	
subadult	of	unknown	
plumage.	Pixel	distance	
when	identified	was	215–
258	m.	The	stereo-optic	
position	distance	
measurement	when	
identified	was	90	m.		

	

Figure	25.	Bald	Eagle	observed	
on	November	13,	2015.	
Identified	as	a	possible	Bald	
Eagle	subadult	with	plumage	
less	than	III.	Pixel	distance	
when	identified	was	223–268	
m.	The	stereo-optic	position	
distance	measurement	was	
123.8	m	in	the	identification	
frame.		

	

Figure	26.	Bald	Eagle	
observed	on	December	
25,	2015.	Identified	as	a	
definite	Bald	Eagle	of	
unknown	age	and	
plumage.	Pixel	distance	
for	the	first	and	
identified	frame	was	43–
51	m.	The	stereo-optic	
position	distance	
measurement	was	24.6	
m	in	the	identification	
frame.		

	

Figure	27.	Bald	Eagle	observed	on	
January	13,	2016.	Identified	as	a	
probable	Bald	Eagle	of	unknown	
age	and	plumage.	The	pixel	
measurement	for	the	
identification	frame	was	47–60	m,	
and	the	eagle	was	measured	at	
49–63	m	in	another	adjacent	
frame.	The	stereo-optic	position	
distance	measurement	was	46.1	m	
in	the	identification	frame	and	the	
measurement	was	45.4	m	in	the	
adjacent	frame.		

	

Figure	28.	Bald	Eagle	observed	on	
March	21,	2016.	Identified	as	a	possible	
Bald	Eagle	of	unknown	age	and	
plumage.	No	pixel	measurements	were	
possible	for	the	first	or	identification	
frames,	but	the	eagle	was	measured	at	
473–568	m	in	another	frame.	The	
stereo-optic	position	distance	
measurement	was	158.7	m	in	the	same	
frame.		
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Audit	results	

The	20%	random	audit	passed	at	a	93%	agreement	rate.	The	T&E	audit,	which	consisted	of	all	

identified	Bald	Eagles,	resulted	in	a	67%	agreement	rate.	Disagreements	primarily	occurred	for	

eagles	that	were	further	away	and	in	low	light	conditions.	Identification	criteria	were	amended	and	

eagles	in	disagreement	were	arbitrated	for	final	answers.		

Detection	and	identification	distances	

We	made	separate	measurements	of	wingspans	for	birds	based	on	pixel	count	methods	and	stereo-

optic	estimation	methods	for	comparison.	Pixel	distance	measurements	were	possible	for	41	birds	

identified	to	the	species	level.	Results	showed	that	small	birds	(wingspan	<	400	mm)	were	

identified	to	species	at	distances	of	20–44	m;	medium	birds	(wingspan	850–1,110	mm)	were	

identified	to	species	at	12–88	m;	and	larger	non-eagle	birds	(wingspan	1,270	–1,485	mm)	were	

identified	to	species	at	32–123	m.	Eagles	with	wingspans	ranging	2,036–2,446	mm	(Buehler,	2000;	

Imler	and	Kalmbach,	1955)	were	identified	to	species	at	26–352	m.	The	furthest	camera	detection	

with	motion	segmentation	was	a	Bald	Eagle	estimated	at	509	m.		

Pixel	count	distances	for	both	the	first	stereo-optic	frame	(detection	distance)	and	first	frame	of	

positive	species-level	identification	were	possible	for	eleven	Bald	Eagles	and	six	other	birds.	These	

distances	are	represented	in	Figure	29	and	Figure	30.	For	eight	of	the	eagles,	species-level	

identification	was	possible	when	the	bird	was	closer	to	the	camera,	while	the	other	three	were	

detected	and	identified	in	the	same	frame.	Eagles	first	detected	at	farther	distances	from	the	camera	

tended	not	to	be	identified	at	first	detection,	but	rather	to	be	identified	once	the	individual	had	

flown	closer	to	the	camera	system	(Figure	29).	
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Figure	29.	Distance	from	camera	for	1st	detection	and	identification	detection	of	eagles.	
Measurements	shown	are	for	pixel	distance	ranges.	

Stereo-optic	position	estimates	were	made	for	601	non-eagle	bird	images	of	43	individual	birds.	

Stereo-optic	position	estimates	were	made	for	2,033	eagle	images	of	51	individual	eagles.	Using	the	

stereo-optic	position	estimation	method,	small	birds	were	identified	to	species	from	3–73	m;	

medium	birds	were	identified	to	species	at	2–58	m;	and	larger	non-eagle	birds	were	identified	to	

species	at	29–67	m.	Using	the	stereo-optic	position	estimation	method,	eagles	were	identified	to	

species	at	16–146	m.	The	furthest	detection	with	motion	segmentation	measured	using	the	stereo-

optic	position	estimation	method	was	218	m.	See	Figure	31	for	examples	of	stereo-optic	position	

estimation	tracks	of	American	Crows	moving	through	the	study	area.	
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Figure	30.	Outlier	box	plot	of	distances	from	the	camera	for	birds	first	detected	in	the	camera	system	
and	Distance	identified	to	species	(AMCR	=	American	Crow,	AMGO	=	American	Goldfinch,	CANG	=	
Canada	Goose).	Distances	are	based	on	pixel	count	calculations.	Single	lines	for	AMGO	and	CANG	
indicate	only	one	observation.	
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Figure	31.	Stereo-optic	position	estimates	of	a	flock	of	crows	flying	through	the	turbine	site.	Each	crow	
image	represents	an	observation	of	a	crow	in	a	specific	frame.	The	different	colors	are	used	to	identify	
individual	crows	that	were	tracked.	

	

As	shown	in	Figure	32,	there	were	44	instances	where	eagle	distances	were	measured	using	both	

the	stereo-optic	position	estimate	and	pixel	count	methods.	In	Figure	33,	there	were	51	instances	

where	distances	were	measured	using	both	the	stereo-optic	position	estimate	and	pixel	count	

methods.	In	both	cases,	measurements	became	less	accurate	the	further	the	birds	were	from	the	

camera.	There	was	a	notable	divergence	between	the	distances	calculated	using	the	two	methods	

when	the	pixel	measurements	indicated	that	eagles	were	observed	further	from	the	camera	system,	

beginning	around	80–100	meters.	These	differences	highlight	some	of	the	problems	we	have	had	

with	the	stereo-optic	position	estimation,	which	stem	in	large	part	from	the	fisheye	lenses	and	the	

difficulty	in	rectifying	these	images	accurately.	Stereo-optic	depth	calculations	become	less	precise	

the	further	the	animal	is	from	the	camera,	as	dictated	by	the	lateral	distance	between	the	two	

cameras	(Yu	et	al.,	2013)	and	the	nature	of	fisheye	camera	lens	resolution.		
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Figure	32.	Distance	from	the	camera	as	measured	by	two	methods:	the	stereo-optic	distance	
algorithm	(blue)	and	using	the	known	wing	length	of	the	species	(green).	
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Figure	33.	A	Box	plot	of	distance	from	camera	measured	using	pixel	distance	calculations	and	stereo-
optic	position	distance	estimations	for	birds	at	the	Eagle	Test	and	turbine	sites.	AMRO	is	american	
robin,	AMGO	is	American	Goldfinch,	AMCR	is	American	Crow,	RBGU	is	Ring-billed	Gull,	HERG	is	
Herring	Gull,	COLO	is	Common	Loon,	CANG	is	Canada	Goose;	in	order	from	smallest	to	largest	average	
animal	size.	

	

Influence	of	weather	

Weather	affected	the	probability	that	an	animal	would	be	identified	once	detected	(Figure	34).	

There	were	similar	percentages	of	birds	identified	to	species	and	the	group	level	in	clear,	cloudy,	

partly	cloudy,	and	snowy	weather,	with	a	lower	percentage	identified	in	drizzle,	and	the	lowest	

percentages	identified	in	rain	and	fog.	Notably	there	were	also	fewer	observations	of	animals	

during	the	periods	of	weather	where	identification	was	difficult,	suggesting	these	conditions	were	

relatively	rare,	fewer	animals	were	flying	under	those	conditions,	or	that	they	reduced	the	chances	

that	animals	would	be	detected	by	the	system.	
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Figure	34.	The	percentage	of	birds	identified	to	the	group	or	individual	species	level,	broken	out	by	
weather	condition	during	observations.	Footage	with	no	animals	observed	is	also	included	(empty).		

	

Daytime	Detection	Probability	

The	overall	detection	probability	of	eagles	within	500	m	of	the	camera	system	was	estimated	to	be	

6%	(95%	credible	interval:	1.2-13.2%)	based	on	estimates	of	72.6	(95%	Credible	Interval:	19.6,	

130.2)	and	2.6	(95%	CI:	1.8,	3.9)	for	σ	and	ϑ,	respectively.	Detection/identification	probability	

stayed	near	100%	for	the	first	40-50m	then	descended	quickly	(Figure	35).	The	strip	half	width	was	

104	m	(95%	CI:	38-156),	which	indicated	50%	of	all	detections	were	before	that	distance.		

The	overall	detection/identification	probability	was	estimated	to	be	about	20%	over	the	entire	500	

m	range.	The	instantaneous	detection	probability	approached	zero	around	400m,	suggesting	that	

detections	were	rare	past	400	m.	To	understand	how	the	rates	of	identification	might	influence	

these	detection	curves,	we	simulated	data	under	ideal	conditions	where	all	animals	detected	at	less	

than	400	m	were	successfully	identified.	The	detection	probability	of	the	idealized	data	was	67%,	

which	suggested	that	we	were	both	detecting	and	identifying	about	9%	of	the	total	number	of	

eagles	that	we	could	within	the	500	m	sampling	area.	
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Figure	35.	Detection	curve	for	Bald	Eagles	observed	by	the	camera	system	(green)	with	95%	credible	
interval	(grey).	The	theoretical	identification	limit	for	eagles	is	shown	in	blue.	

Non-eagle	detectability	was	lower	than	what	we	saw	with	eagles.	The	overall	probability	of	

detecting	a	non-eagle	in	a	500	m	area	around	the	camera	was	1.5%	(95%	CI:	0.004–2.2%),	which	

was	governed	by	an	estimate	for	σ	of	48.3	(95%	CI:	9.5–62.4)	and	ϑ	estimate	of	4.2	(95%	CI:	2.8–

6.2).	Detection	probability	held	near	100%	up	to	30–40	m	from	the	camera	system	then	decreased	

rapidly	and	approached	0%	detection	near	150	m	(Figure	36).	The	strip	half-width	was	estimated	

to	be	55.1	m	(95%	CI:	13.7–70.6).	Correcting	for	the	idealized	detection	curve	over	500	m,	as	above,	

suggests	that	we	both	detected	and	identified	about	2.2%	of	animals	that	we	could	within	the	

sampling	area.	
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Figure	36.	Detection	curve	for	non-eagle	birds	observed	by	the	camera	system	(green)	with	95%	
credible	interval	(grey).	The	detection	curve	for	the	theoretical	case	of	perfect	detection	within	400m	
from	the	camera	system	is	shown	in	blue.	

Overall,	these	results	were	lower	than	expected.	While	our	ability	to	detect	and	identify	animals	

within	100	m	of	the	system	appears	reasonable,	our	probability	to	detect	and	identify	an	animal	

decreased	rapidly	past	that	point.	The	primary	reason	for	this	result	was	that	we	were	not	

measuring	detectability	and	identifiability	separately,	as	we	initially	planned	in	the	project.	The	

stereo-optic	position	estimation	process	proved	to	be	less	accurate	past	100-150	m	than	we	

anticipated,	and	we	were	not	able	to	use	these	position	(and	thus	size)	estimates	in	our	assessment	

of	detectability	or	identifiability	over	distance	from	the	camera.	As	such,	we	were	left	with	pixel	

estimation	as	our	source	of	distance	information,	which	relies	on	species	identification	to	calculate	

an	estimate.	Thus,	we	know	that	probability	of	detection	and	identification	is	fairly	low,	but	it	is	

difficult	to	know	what	each	of	these	probabilities	are	in	reality.	Testing	with	simulated	data	with	

100%	detection	within	400	m	suggested	what	we	could	achieve	under	ideal	identification	and	

detection	conditions,	but	it	is	impossible	for	us	to	disentangle	our	probabilities	of	detection	and	

identification	in	the	current	analysis.	Anecdotal	evidence	suggested	that	the	camera	detects	objects	

consistently	out	to	350-400	m,	so	we	can	speculate	that	our	identification	rates	are	lower	than	the	

detection	rates,	but	we	lack	data	to	strongly	support	this	hypothesis.	

The	choice	of	lens	of	the	camera	system	is	another	possibility	for	why	our	detection/identification	

probabilities	were	low.	Fisheye	lenses	have	many	advantages	(excellent	depth	of	field	and	field	of	

view)	but	range	is	not	one	of	them.	Objects	far	away	from	the	camera	are	perceived	as	smaller	we	

compared	to	similarly	far	away	objects	in	rectilinear	lenses,	and	thus	make	up	a	proportionally	
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smaller	number	of	pixels	for	such	lenses	with	a	similar	camera	sensor.	This	could	influence	both	

detectability	and	identifiability	for	our	system,	and	would	be	an	easy	change	to	implement	and	test	

in	future	projects.	

Table	5.	Bird	distances	calculated	using	the	pixel	count	and	stereo-optic	position	estimate	methods.	
Smaller	birds	include	American	Goldfinch	and	American	Robin;	Medium	birds	include	American	
Crow,	Common	Loon,	and	Ring-billed	Gull;	and	Large	birds	include	Canada	Goose	and	Herring	Gull.	WS	
=	Wing	span.	

	 Pixel	Count	 Stereo-optic	

Bird	size	 ID	distance	range	
(m)	

Furthest	camera	
detection	(m)	

ID	distance	range	(m)	 Furthest	camera	
detection	(m)	

Eagles	(2036-2446	
mm	WS)	

26-352	 509	 16.0-145.5	 218.3	

Large	(1270-1485	
mm	WS)	

32-123	 194.4	 29-67	 125.2	

Medium	(850-1175	
mm	WS)	

12-88	 132.5	 2-58	 99.5	

Small	(<400	mm	
WS)	

20-44	 70.3	 3-73	 129.5	
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Improving	the	camera	calibration:	Technical	Approach	and	Results	

Technical	Approach	

We	determined	that	the	calibration	routine	employed	by	the	HiDef	Viewer	used	a	simple	model	for	

the	fisheye	lens	characteristics	with	multiple	sample	points	and	local	pin-hole	camera	assumptions.	

The	assumptions	made	in	this	model	resulted	in	a	coarse	calibration	with	extremely	low	accuracy	in	

depth	estimates.	In	order	to	improve	on	this	for	the	new	viewer	and	get	better	3-D	estimates	at	

distance,	we	used	methods	provided	from	OpenCV	and	Matlab	(for	more	detailed	information	on	

the	camera	calibration	processes,	see	the	Matlab	documentation7).	While	the	initial	(HiDef)	viewer	

performed	a	basic	calibration,	a	more	thorough	approach	through	OpenCV	or	MATLAB	was	thought	

to	be	likely	to	yield	an	improved	set	of	calibration	parameters.	However,	until	recently	neither	

toolset	provided	sufficient	support	for	calibration	of	cameras	equipped	with	fisheye	lenses.	OpenCV	

later	supported	such	calibration,	but	initial	results	were	mixed,	so	we	were	challenged	in	using	

these	systems	to	achieve	our	goals.	

Camera	calibration	is	typically	performed	by	capturing	several	sets	of	images	containing	a	test	

pattern	of	known	size	and	shape	from	multiple	views.	Given	these	images,	the	calibration	process	

attempts	to	estimate	a	camera’s	intrinsics,	extrinsics,	and	distortion	parameters.	The	calibration	

process	searches	these	test	pattern	images	and	attempts	to	compute	a	series	of	camera	parameters	

further	described	below.		

We	used	an	enlarged	checkerboard	for	our	trials	to	cover	the	wider	space	necessary	for	extreme	

wide-angle	lenses.	These	images	were	used	by	a	learning/training	algorithm	to	approximate	the	

camera	parameters.	Once	each	camera	was	calibrated	separately,	the	resulting	parameters	could	be	

used	to	perform	a	stereo	calibration.	Most	importantly,	this	process	produced	the	rotation	and	

translation	matrices	between	the	two	cameras	later	used	to	perform	3-D	reconstruction.	Once	each	

camera	is	calibrated	separately,	the	resulting	parameters	can	be	used	to	perform	a	stereo	

calibration.	Most	importantly,	this	process	produced	the	rotation	and	translation	matrices	between	

the	two	cameras,	later	used	to	perform	3-D	reconstruction.	

Individual	camera	calibration	involved	determining	three	primary	sets	of	parameters:	camera	

intrinsics,	camera	extrinsics,	and	distortion	coefficients.	Camera	intrinsics	effectively	captured	the	

focal	length	of	the	lens,	the	optical	center	of	the	image	(principal	point),	and	any	skew	introduced	

by	differences	in	the	camera's	CCD	(image	capture	sensor	array).	The	extrinsic	parameters	related	

the	camera's	coordinate	system	to	the	image	plane,	and	consisted	of	a	rotation	and	translation	

matrix.	Distortion	coefficients	reflected	the	two	types	of	image	distortion	often	introduced	by	the	

lens:	radial	distortion	and	tangential	distortion.	Radial	distortion	occurs	with	most	lenses,	and	

refers	to	distortion	near	the	edges	of	the	image.	Tangential	distortion	occurs	less	frequently,	but	

can	be	present	in	cameras	where	the	lens	and	image	planes	are	not	parallel.	

																																								 																					

7	http://www.mathworks.com/help/vision/ug/camera-calibration.html	



	

60	

	

Figure	37.	Types	of	radial	distortion.	Source:	http://www.mathworks.com/help/vision/ug/camera-
calibration.html	

	

Figure	38.	Tangential	distortion	occurs	when	the	image	plane	and	camera	lens	are	not	parallel.	
Source:	http://www.mathworks.com/help/vision/ug/camera-calibration.html	

Distortion	coefficients	were	particularly	important,	as	most	camera	calibration	methods	operate	

around	a	pinhole	camera	model,	which	has	no	lens.	Camera	calibration,	once	completed,	enables	the	

measurement	of	distances	and	sizes	of	objects	in	a	scene.	
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Figure	39.	Matlab	camera	calibration.	Shown	is	a	list	of	calibration	images	(left),	the	pattern	as	
identified	by	the	calibration	application	(center)	in	one	such	image,	and	rough	3-D	estimates	(and	
errors)	of	the	pattern’s	location	relative	to	the	camera	(right).	

Results	

Although	the	OpenCV	camera	calibration	tools	now	support	a	fisheye	camera	lens	model,	lenses	

with	a	high	FOV	(>170	degrees)	produce	more	distortion	than	the	model	can	compensate	for.	As	

such,	efforts	to	obtain	a	reliable	calibration	using	the	standard	approach	proved	impossible	during	

our	2016	trials.	Future	versions	of	OpenCV	and	MATLAB	modules	might	have	better	support.	
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Improving	the	3-D	modeling:	Technical	Approach	and	Results	

Technical	approach	

The	ability	to	compute	three-dimensional	geometric	information	from	two	or	more	traditional,	two-

dimensional	images	is	central	to	a	successful	stereo-optic	imaging	system.	In	the	context	of	this	

project,	3-D	information	was	obtained	via	a	triangulation	process:	given	a	complete	stereo-camera	

calibration,	the	distance	to	an	object	(or	its	depth	in	a	scene)	could	be	computed	by	examining	the	

difference	in	its	location	(relative	to	the	optical	center)	in	each	half	of	the	stereo-pair.	The	success	

of	this	disparity-based	approach	relies	heavily	on	the	accuracy	of	the	calibration	processes	as	

described	in	the	previous	section	(Improving	the	camera	calibration).		

The	triangulation	depicted	in	Figure	40	is	simplified,	and	assumes	a	pinhole	camera	model.	In	the	

real	world	(and	in	our	application),	lens	distortion	introduces	a	rather	significant	amount	of	error.	

Much	of	this	error	can	be	compensated	for	if	the	camera	parameters	as	described	in	the	previous	

section	are	well	defined.	Lacking	adequate	camera	parameters,	this	process	is	unlikely	to	produce	

reliable	distance	estimates.	

	

	

Figure	40.	Triangulation	of	a	3-D	point	x	is	performed	by	projecting	intersecting	lines	from	image	
points	y1	and	y2	with	each	camera’s	focal	point	O1	and	O2.		

As	noted,	the	triangulation	process	requires	a	pair	of	“matching”	points	–	one	from	each	camera.	

These	points	can	be	manually	derived,	by	having	a	user	select	a	point	from	each	image,	or	more	

typically,	through	a	process	known	as	cross-correlation.	Computing	the	cross-correlation	of	two	

images	!	and	"	is	a	way	to	measure	the	similarity	of	"	to	a	segment	of	!.	This	is	also	known	as	a	
sliding	dot	product,	since	it	calculates	the	dot	product	of	the	image	vectors	at	all	positions	within	!	
and	finds	the	closest	match	to	".	For	image	processing,	it	is	useful	to	use	normalized	cross-
correlation,	which	accounts	for	some	exposure	and	perspective	differences	between	images.	In	the	

normalized	cross	correlation	formula8		

																																								 																					

8	https://en.wikipedia.org/wiki/Cross-correlation#Normalized_cross-correlation	
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x	and	y	are	the	horizontal	and	vertical	positions	in	the	frame,	σ	is	the	standard	deviation	of	the	

values	of	either	the	f	or	t	function,	and	n	is	the	sample	size.		

The	goal	of	this	approach	is	to	take	a	template	image—say	the	object	of	interest	from	one	image—

and	find	the	matching	region	in	the	other	image.	Effectively,	this	is	done	by	sliding	a	window	the	

size	of	the	template	across	the	other	image	and	comparing	the	contents,	until	a	best	match	is	found.			

	

	

Figure	41.	Normalized	cross-correlation	was	used	to	successfully	match	the	rear	tire	of	a	vehicle	
across	a	pair	of	images	captured	by	the	camera	system.	The	template	used	is	the	area	selected	in	blue	
on	the	left	image,	and	the	red	region	in	the	right	image	depict	s	the	resulting	match.	

While	the	template	matching	approach	is	viable	for	many	applications,	it	proved	somewhat	

problematic	with	our	camera	system.	Part	of	this	was	due	to	the	size	of	the	source	images	relative	

to	the	size	of	the	templates	of	birds:	there	may	be	many	similar	16x16	pixel	regions	in	a	4400x6600	

image.	Additionally,	given	the	masking	and	motion	segmentation	process,	there	may	be	cases	where	

the	corresponding	match	may	not	be	fully	or	equally	captured	by	both	cameras.	As	such,	initial	

efforts	to	triangulate	points	in	3-D	were	based	around	user-selected	pairs	of	points.	Even	with	

carefully	selected	points,	camera	calibration	issues	prevented	reliable	distance	(and	hence	size)	

estimates	using	the	system.	
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Given	a	more	successful	stereo-calibration,	researchers	at	BRI	and	UMaine	SCIS	proposed	a	number	

of	additional	improvements	to	the	viewer	software,	focused	on	further	increasing	user	efficiency	

and	software	utility.	Beyond	the	suggestions	posed	in	the	section	above	on	“Improving	the	viewer”,	

an	improved	3-D	module	would	offer	the	following:		

• Ability	to	produce	reliable	distance	and	size	estimates	for	objects	of	interest.	

• Ability	to	model	the	locations	of	objects	in	3-D	across	multiple	frames.	

• Potential	to	filter	data	by	distance	criteria.	

The	initial	viewing	software	does	provide	some	support	for	estimating	3-D	locations	of	objects,	but	

calibration	issues	limit	the	reliability	of	this	information	(Figure	42).	Accurate	3-D	position	

calculations	would	greatly	improve	the	viewer,	and	could	enable	object	size	estimates	or	filtering	of	

data	by	size	or	distance.	Size	estimates	can	be	obtained	by	computing	the	linear	distance	between	a	

pair	of	3-D	points,	such	as	wingtips.	Masking	or	filtering	a	scene	based	on	distance	criteria	is	more	

computationally	intensive,	but	fundamentally	similar:	stereo	calibration	enables	the	creation	of	a	

disparity	(depth)	map,	which	effectively	captures	the	distance	to	all	points	in	a	stereo	image	(see	

https://www.mathworks.com/help/vision/examples/depth-estimation-from-stereo-video.html	for	

more	information	and	an	example	of	this	approach).		

Such	improvements	could	allow	users	to	effectively	"query"	a	scene,	requesting	only	objects	or	

regions	that	meet	a	set	of	predefined	criteria	(e.g.,	objects	larger	than	2	m	in	size	at	distances	

between	200	and	400	m).	Improvements	to	calibration	would	also	further	users’	ability	to	examine	

an	object's	trajectory	over	time,	as	captured	in	a	series	of	images.	

	

Figure	42.	Example	flight	path	of	an	eagle	estimated	using	a	stereo-optic	position	algorithm.	
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Objective	(3)	is	not	strictly	tied	to	the	3-D	module,	but	stems	from	ongoing	work	by	UMaine	

researchers	focused	on	a	qualitative	shape	representation	approach.	Unlike	many	traditional	object	

recognition	methods	such	as	template	matching	(described	above),	which	focus	on	heavily	

quantitative	visual	information	such	as	color	or	texture,	this	approach	instead	centers	on	a	flexible,	

qualitative	shape	representation.	A	qualitative	approach	provides	several	unique	advantages:	(1)	it	

is	robust	to	the	scale	and	the	rotation	of	the	shape;	(2)	you	can	adjust	the	level	of	detail	you	want	to	

describe	in	the	shape;	and	(3)	the	shapes	that	are	observed	do	not	have	to	be	perfectly	described	

for	them	to	be	assigned	a	best	match.	In	order	to	evaluate	the	shape	similarity	measures	developed	

by	the	UMaine	team,	researchers	from	BRI	assembled	a	corpus	of	approximately	100	images	of	

birds,	as	captured	by	the	stereo-optic	imaging	system.	Each	of	these	bird	images	was	preprocessed	

using	a	standard	vectorizing	module	that	takes	a	black	and	white	image,	traces	the	outline	of	the	

dark	object	(e.g.,	Latecki	discrete	curve	evolution;	Latecki	and	Lakamper	1998),	and	takes	this	

outline	polygon	and	reduces	the	number	of	vertices	to	the	12	most	relevant	vertices	for	describing	

the	original	shape.	Twelve	vertices	is	a	useful	number	for	describing	shapes	of	flying	birds,	as	

during	flight,	birds	have	four	points	projecting	out	from	the	center	of	the	body	(two	wings,	a	head	

and	tail).	Broadly,	this	shape	looks	something	similar	to	a	cross,	which	is	an	object	with	four	

subparts	that	is	easily	described	using	twelve	vertices.	These	primary	characteristic	edges	of	a	bird	

outline	are	mapped	on	an	abstract	qualitative	spatial	description,	which	has	a	straightforward	

similarity	measure	that	captures	the	relative	similarity	of	sets	of	shapes.	Such	a	shape	similarity	is	

then	used	in	a	pairwise	comparison	to	determine	the	following	for	each	example	shape:	(1)	which	

other	example	matches	most	closely	and	(2)	what	are	the	n	closest	other	matches?	

Results	

To	explain	this	process,	we	will	describe	some	examples	from	the	first	objective.	We	use	a	sample	of	

five	bird	pairs	and	each	shape	is	described	using:	(a)	the	simplified	shape	of	the	unknown	source	

image,	(b)	the	simplified	shape	of	the	best	match	from	the	known	shapes	archive,	(c)	the	unknown	

source	image	as	captured	by	the	camera	system,	and	(d)	the	best	match	of	the	known	shape	as	

captured	by	the	camera	system	(Figure	43-Figure	47).	Error	between	shapes	is	expressed	as	a	

percentage,	and	reflects	both	the	angular	error	between	equivalent	vertices,	as	well	as	the	distance	

error	between	equivalent	edges.	After	analyzing	100	sample	images,	the	average	‘best	match’	had	a	

percent	shape-distance	error	of	less	than	7%.	Even	with	shapes	that	have	an	error	greater	than	7%	

(e.g.,	Figure	47,	in	which	one	wing	is	mostly	missing	due	to	occlusion),	the	matching	system	does	a	

reasonable	job	of	matching	the	shapes.	
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Figure	43.	Simplified	shapes	with	error	of	3.01%,	along	with	camera	system	images	that	the	shapes	
were	based	upon.	

	

	

Figure	44.	Simplified	shapes	with	error	of	4.25%,	along	with	camera	system	images	that	the	shapes	
were	based	upon.	

	

Figure	45.	Simplified	shapes	with	error	of	5.3%,	along	with	camera	system	images	that	the	shapes	
were	based	upon.	
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Figure	46.	Simplified	shapes	with	error	of	6.9%,	along	with	camera	system	images	that	the	shapes	
were	based	upon.	

	

Figure	47.	Simplified	shapes	with	error	of	8.5%,	along	with	camera	system	images	that	the	shapes	
were	based	upon.	

Using	these	bird	pose	shape	clusters	to	get	a	wingspan	estimate	or	a	body	length	estimate	for	birds	

which	are	oriented	or	angled	towards	the	camera	enables	these	estimates	to	be	straightforward.	

Please	note	that	the	wingspan/body	length	could	only	be	reported	as	pixel	length	until	a	distance	

estimate	of	reasonable	quality	would	be	supported	by	stereo	triangulation	(e.g.,	the	problem	with	

the	calibration	prevents	a	wingspan/body	length	estimate	in	inches).	

In	summary,	we	have	used	imagery	from	the	camera	system	to	build	simplified	shape	profiles	that	

have	been	compared	to	reference	images	to	look	for	similarities	between	unknown	animals	and	

known	species.	These	techniques	are	extensions	of	prior	methods	and	provide	a	mechanism	for	

filtering	large	numbers	of	shapes	and	finding	objects	that	are	most	similar	to	a	reference	shape	(e.g.,	

a	Bald	or	Golden	Eagle).		
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ACCOMPLISHMENTS	

Summary	of	Technical	Accomplishments	

• The 29-megapixel camera system successfully captured 16,173 five minute video segments in the 
field. 

• We demonstrated a long deployment time of >90 days in the field under variable weather and 
temperatures.  

• Using nIR, the best detection distance for bat-sized object was 60 m. This led to a decision during 
Go/No-Go to focus research efforts exclusively on daytime monitoring and to redirect resources 
towards improving the video post-processing viewer. 

• Bird event post-processing viewer was redesigned. 
• The system detected eagles up to 500 m away using the fisheye wide-angle lenses when animals 

were independently identified by an observer, and up 350 m away when identified through the 
camera imagery alone. 

• Data was transferred from the field to the BRI Video Lab with no known data loss. 
• Standard operating procedure (SOP) was developed using a hierarchical system for a) detecting 

an object; b) categorizing the object as bird or other; c) categorizing the bird into species group 
(e.g., waterfowl, raptor, passerine); and d) identifying to genus or species.  

• Using distance-sampling methods, a probability curve for detecting and identifying birds based 
on size and distance from the camera was developed.  

• The 3-D algorithm for object isolation and tracking was tested. The image rectification 
(flattening) required to obtain accurate distance measurements with fish-eye lenses was 
determined to be insufficient. 

• MATLAB and OpenCV were used to improve fish-eye lens rectification towards the center of the 
image.	

• We developed new methodologies for describing shapes and their similarity to other shapes that 
can be useful in filtering the large amount of data this system could produce.	

Presentations	

• Dorr,	Christopher	H.,	Longin	Jan	Latecki,	and	Reinhard	Moratz.	Shape	Similarity	Based	on	

the	Qualitative	Spatial	Reasoning	Calculus	eOPRAm.	International	Conference	on	Spatial	

Information	Theory.	Springer	International	Publishing,	2015. 
• Conference on Spatial Information Theory XII, Presentation (UMaine) 
• AWEA Offshore, Poster (BRI) 
• Adams, Evan M., Steve Burns, Emily Connelly, Christopher Dorr, Melissa Duron, Andrew 

Gilbert, Wing Goodale, and Reinhard Moratz. Stereo-optic high definition imaging: a technology 
to understand bird avoidance of wind turbines. NWWC 2016, Presentation (BRI) 
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Project	Milestones	and	Technical	Accomplishments		

 
	 FY2014	 FY2015	 FY2016	

Quarter	

One	

NA	 Milestone	1:	Manufacture	and	lab	

testing	of	new	camera	and	near-infrared	

(nIR)	

Milestone	4:-6	Data	management	at	BRI	Lab,	video	lab	

analysis,	and	data	analysis.	

The	final	method	for	data	export	results	in	no	less	

than	95%	of	wildlife	video	images	being	transferred	

from	the	camera	to	a	video	catalog	and	associated	

database.		

Video	analysis	of	daytime	eagle-sized	objects	at	10-50	

m	result	in	90%	species-level	identification,	50-

100m=70%	species	level	identification,	100-

200m=50%	species	identification	and	200-

500m=30%	species	identification.		

Quantify	the	error	in	ID	rates	and	estimating	3-D	

position.		

Quarter	

Two	

NA	 Milestone	2:	Preliminary	data	collection	

and	system	refinements.		

Testing	has	an	outcome	where	total	

detection	rates	of	20	bird	and	bat-sized	

targets	are	at	least	95%	within	10	m	

during	the	day,	25%	within	250	m	

during	the	day,	and	at	least	a	25%	

detection	rate	within	100m	at	night.		

	

Milestone	5-6:	Video	lab	analysis,	data	analysis.	

	

Video	analysis	of	daytime	eagle-sized	objects	at	10-50	

m	result	in	90%	species-level	identification,	50-

100m=70%	species	level	identification,	100-

200m=50%	species	identification	and	200-

500m=30%	species	identification.	

		

Quantify	the	error	in	ID	rates	and	estimating	3-D	

position.		

Quarter	

Three	

NA	 Milestone	3:	Equipment	deployment,	

equipment	maintenance	and	evaluating	

methods	of	data	export,	and	a	limited	

trial	of	nIR		

	

Obtain	sample	size	of	20	eagle	images.		

Milestone	5-6:	Video	lab	analysis,	data	analysis,	refine	

3-D	model.	

	

Video	analysis	of	daytime	eagle-sized	objects	at	10-50	

m	result	in	90%	species-level	identification,	50-

100m=70%	species	level	identification,	100-

200m=50%	species	identification	and	200-

500m=30%	species	identification.		

Quantify	the	error	in	ID	rates	and	estimating	3-D	

position.		

	

The	3-D	module	reduces	the	information	stream	down	

to	1%	of	the	original	data	and	distinguishes	bigger	

birds	(>1m	wingspan)	from	smaller	birds	with	90%	

reliability.	Build	an	interactive	bird	event	viewer	that	

reduces	the	manual	inspection	and	analysis	time	by	

70%	compared	to	the	current	software	configuration.		

Quarter	

Four	

Contract	

signed	

Milestone	3:	Equipment	deployment,	

equipment	maintenance	and	evaluating	

methods	of	data	export,	and	a	limited	

trial	of	nIR		

Obtain	sample	size	of	20	eagle	images.		

Milestone	6-7:	Data	analysis,	refine	3-D	model,	

reporting.	

	

Quantify	the	error	in	ID	rates	and	estimating	3-D	

position.		

	

Report	to	DOE.		
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CONCLUSIONS	

TESTING	THE	PERFORMANCE	OF	THE	CAMERA	

Receipt	and	initial	testing	

While	the	camera	system	proved	to	be	quite	robust,	initial	testing	in	the	U.S.	demonstrated	some	

unanticipated	difficulties	associated	with	changing	hardware	components	without	full	system	

testing.	Upgrades	to	the	camera	system,	while	ultimately	very	positive	for	improving	image	quality	

and	therefore	detection	rates,	resulted	in	trigger	issues	that	slowed	down	initial	testing.	

Fortunately,	the	cameras	are	very	sophisticated	and	rather	simple	changes	to	firmware	settings	on	

the	camera	allowed	us	to	overcome	the	trigger	problems	completely.	Otherwise,	receipt	of	the	

system	was	relatively	smooth	and	allowed	us	to	transition	to	full	testing	of	the	capabilities	of	the	

upgraded	system.		

Testing	for	detection	of	bats	

Detection	range	for	bats	was	low	with	the	nIR	system,	between	25-30	m,	which	limits	the	

usefulness	of	this	system	for	monitoring	their	avoidance	behavior,	as	the	system	would	be	placed	

>30	m	below	the	rotor	swept	zone	of	a	typical	turbine.	This	poor	detection	range	was	likely	due	to	a	

combination	of	low	frame	rate,	which	limited	the	number	of	opportunities	to	view	fast-moving	bats,	

and	the	fact	that	nIR	illuminators	only	exposed	a	limited	portion	of	the	area	viewable	to	the	camera.	

Testing	for	detection	of	eagles	

Eagles	in	many	ways	represent	one	of	the	easiest	animals	to	detect	with	such	a	camera	system.	Bald	

Eagles,	the	only	eagle	species	documented	in	our	study,	are	large,	often	soaring	animals	that	can	be	

detected	from	far	away	and	generally	move	slowly	enough	that	they	appear	in	many	frames.	The	

system	detected	Bald	Eagles	up	to	500	m	away	from	the	camera,	but	a	positive	identification	of	an	

eagle	is	much	more	likely	at	100	m	or	less	from	the	camera	system.	

Testing	for	overall	bird	detection	probability	

The	probabilities	of	detection	and	identification	were	confounded	in	our	assessment	of	the	system	

due	to	the	methods	of	position	estimation	used.	Generally,	the	camera	system	could	detect	and	

identify	eagles	better	within	100	m	of	the	camera,	but	the	ability	to	do	both	decreased	rapidly	

further	out.	Part	of	the	reason	for	this	result	is	the	nature	of	the	camera	system:	the	wide-angle	

lenses	are	designed	to	monitor	a	large	volume	of	space	around	each	turbine.	The	orientation	of	

turbine	blades	change	with	prevailing	winds,	so	the	system	has	to	be	robust	to	withstand	these	

changes.	Sampling	a	large	volume	of	space	reduces	image	fidelity	for	objects	further	away	from	the	

system,	however.	We	also	expect	detections	and	identifications	to	be	less	common	in	foggy	and	

rainy	conditions.	
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IMPROVING	THE	SYSTEM		

Hardware	

Communications	and	data	transfer		

Communications	with	the	system	is	limited	by	the	ability	to	communicate	over	a	standard	local	area	

network	LAN	Ethernet	connection.	If	fast	intranet/internet	speeds	are	available,	then	in	addition	to	

being	able	to	remotely	access	the	system	computer	via	the	network,	data	transfer	could	also	be	

achieved.	However,	over	standard	internet	connection	speeds	(5-25	Mb/s),	data	transfer	may	be	

very	limited,	especially	over	the	lower	end	of	the	bandwidth.	Fast	fiber	connections	to	turbines	and	

allowances	for	data	transfer	over	these	connections	would	allow	data	to	be	transferred	remotely	

without	physically	swapping	hard	drives.	While	swapping	drives	was	easily	accomplished	in	the	

field	settings	utilized	for	this	project,	offshore	or	remote	deployments	onshore	would	mean	

reduced	access	to	units,	increased	difficulty	retrieving	data,	and	long	periods	between	data	

retrieval.	Moreover,	while	swapping	drives	was	an	effective	means	of	transferring	data	with	zero	

loss,	accessing	the	interior	of	the	system	cabinet	may	risk	exposure	to	the	elements	during	poor	

weather	conditions	and	elevate	risk	to	electrical	components.		

While	wired	connections	will	likely	always	be	the	preferred	communication	method	for	this	system,	

due	to	the	large	amounts	of	data	to	be	transferred,	wireless	connectivity	can	also	transfer	data	at	

high	bandwidth,	and	this	could	be	a	valid	alternative	method	for	remote	system	checks	and	data	

transfers.	We	were	not	able	to	fully	test	the	long-range	wireless	connection	to	determine	if	this	

approach	was	sufficient	to	perform	data	transfer,	and	this	is	an	important	area	for	future	testing.	In	

particular,	weather	can	negatively	affect	wireless	transmission	(Sim,	2002),	and	it	may	be	

important	to	check	the	system	or	look	at	recent	data	during	periods	of	adverse	weather,	as	these	

may	be	the	times	when	communications	are	poorest.			

Applicability	and	limitations	of	the	camera	system	

The	camera	system	hardware	and	its	low-level	software	is	able	to	drastically	reduce	the	video	

stream	by	only	storing	parts	of	the	image	that	differ	from	the	full	frames	that	are	stored	every	five	

minutes.	The	algorithm	and	processing	speed	of	the	computer	attached	to	the	cameras	suffices	to	

detect	moving	objects	that	contain	at	least	20	pixels.	A	bald	eagle	at	400	m	distance	would	typically	

correspond	to	30	to	50	pixels.	

Using	a	suitable	mask,	as	provided	with	the	new	viewer,	one	can	mask	out	the	movement	of	non-

target	objects	like	waves,	tree	branches,	and	leaves.	In	such	a	setting,	only	cloud	pieces	and	birds	

would	be	moving.	Using	the	mask	in	addition	to	the	base	compression	algorithm,	the	system	should	

be	able	to	reduce	the	data	flow	by	99%	or	more.	

Currently,	there	are	deficits	in	the	hardware	design	of	the	current	system	that	result	in	less	than	

optimal	distance	estimates	by	stereovision.	Stereo-based	distance	estimates	would	be	more	

accurate	if	we	could	mechanically	align	the	secondary	camera’s	optical	axis	to	be	highly	parallel	to	

the	master	camera’s	optical	axis.	In	such	a	configuration	both	cameras	of	the	stereo	pair	point	

exactly	in	the	same	direction.	Then	the	formula	for	the	equisolid	angle	mapping	function	(Figure	

48)	of	our	fisheye	lens	(r	=	2	f	sin(	θ	/	2)	with	f	=	16	mm	as	the	focal	length	and	θ	being	the	angular	

distance	to	the	optical	axis)	would	deliver	adequate	estimates	because	both	angles	have	the	same	

deviation.	Only	the	differences	between	the	angles	for	master	and	secondary	cameras	count,	so	the	
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joint	systematic	errors	cancel	each	other	out,	resulting	in	greater	accuracy	in	distance	estimates.	

Finally,	calculations	of	the	distance	error	showed	that	the	size	of	the	stereo	basis	is	sub-optimal	at	

only	1.4	m.	

	

Figure	48.	Formula	for	equisolid	angle	mapping.9		

The	volume	that	the	system	can	effectively	monitor	is	determined	by	the	maximum	distance	for	

object	detection	and	angle	of	view.	For	the	fisheye	lens,	the	compromise	between	wider	angle	and	

smaller	pixel	size	of	the	same	object	resulted	in	a	reduced	distance	for	possible	object	detection	as	

compared	to	a	rectilinear	wide-angle	lens.	Additionally,	object	optical	angles	towards	the	lateral	

sides	of	the	stereo	basis	reduced	the	effective	distance	between	the	cameras	(e.g.,	an	object	90	

degrees	from	the	optical	axis	at	one	of	the	sides	would	have	the	cameras	behind	each	other	with	

zero	functional	stereo	basis).	A	rectilinear	wide-angle	lens	configuration	would	address	many	of	

these	considerations,	and	if	properly	designed	could	have	nearly	as	large	a	monitoring	volume	as	

the	fisheye	lens	configuration.	

Software		

Improving	the	Viewer	

We	made	substantial	improvements	to	the	viewer	that	increased	the	speed	of	detection	and	

identification	of	targets.	The	new	viewer	allows	the	biologist	to	use	a	black	and	white	mode	to	assist	

in	finding	targets,	a	customized	filter	to	exclude	areas	such	as	tree-lines	from	analysis,	and	a	target	

marking	system	that	allows	targets	to	be	followed	through	multiple	frames.		

Improving	camera	calibration	

Using	software	tools	available	to	us	from	OpenCV	and	Matlab,	we	were	only	partially	successful	in	

performing	a	better	stereo-calibration,	due	to	the	non-rectilinear	characteristics	of	the	fish-eye	lens.	

Ultimately,	it	may	not	be	possible	to	fully	calibrate	this	system	with	the	software	solutions	available	

currently.	Likely	hardware	solutions	(i.e.,	increasing	the	focal	length	of	the	lenses)	will	be	the	most	

viable	path	to	improving	calibration	and	the	accuracy	of	distance	estimates.	

																																								 																					

9	http://imagebank.osa.org/getImage.xqy?img=QC5sYXJnZSxvZS0yMC0yMC0yMjI1Mi1nMDAx	
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Improving	the	3-D	modeling		

We	originally	planned	to	create	a	3-D	space	filter,	which	would	have	allowed	us	to	remove	distant	

moving	objects	like	pieces	of	clouds	and	aircraft	from	analysis.	Due	to	the	low	accuracy	of	the	

distance	component,	only	two-dimensional	filtering	(in	the	form	of	a	user-defined	mask)	was	

possible.	The	wingspan	estimates	based	on	automatic	stereo-matching	were	also	not	reliable.	The	

integration	of	distance-based	filtering	into	the	masking	module	of	the	new	viewer	software	would	

require	fairly	basic	code	modification,	if	accurate	distance	calculations	were	available.	

Shape	recognition	algorithm	

The	shape	recognition	algorithm	successfully	matched	sample	poses	of	bald	eagles.	The	algorithm	

itself	was	described	in	Dorr	et	al.	2017.	A	framework	for	defining	shapes	of	animals	of	interest	was	

created	and	a	mechanism	for	comparing	these	shapes	was	implemented.	This	technique	shows	

promise	for	filtering	the	large	amounts	of	data	that	is	acquired	when	the	camera	is	operating.	

Improving	the	video	review	processing	time	

If	video	review	processing	time	encompassed	search,	mark,	and	identification,	and	it	is	assumed	

that	1/2	the	time	goes	to	searching/marking	and	half	the	time	goes	to	identifying	(sometimes	less)	

then	introducing	a	shape	recognition	module	could	cut	time	searching	for	targets	in	half.		In	

addition,	if	the	3-D	modeling	could	also	be	implemented	and	measurements	were	known	at	the	

time	of	video	review,	then	the	amount	of	time	spent	identifying	targets	could	also	be	significantly	

reduced.	These	improvements	could	at	minimum	improve	review	time	to	8-10	video	segments	an	

hour	for	segments	with	birds	and	almost	completely	eliminate	the	need	to	review	segments	without	

birds.		 	
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RECOMMENDATIONS	

Testing	the	performance	of	the	camera	

Receipt	and	initial	testing	

The	initial	receipt	and	testing	process	were	challenging,	but	all	issues	were	resolved.	Broadly,	we	

would	recommend	allotting	a	fair	amount	of	time	for	coordinating	with	customs	for	importing	large	

camera	systems	across	international	borders,	and	time	for	testing	all	components	of	the	system	

upon	arrival.	

Nighttime	operations	

The	nIR	lighting	we	used	was	too	bright	for	near	objects	and	too	dim	for	far	objects,	suggesting	that	

we	place	nIR	lighting	closer	(but	not	too	close)	to	the	area	of	primary	interest.	Since	interaction	

with	the	turbine	itself	is	of	greatest	interest,	we	recommend	testing	the	placement	of	nIR	lighting	on	

the	nacelle	or	just	below	it	on	the	support	structure	(or	both).	If	the	lighting	was	placed	on	both	the	

top	and	bottom	of	the	nacelle,	the	RSZ	could	be	illuminated	regardless	of	the	rotation	of	the	turbine.	

Alternatively,	nIR	lighting	could	be	placed	around	the	support	structure,	shining	upwards	to	

illuminate	from	below.	However,	this	type	of	lighting	could	result	in	over-saturation	of	the	subject	

at	the	bottom	of	the	RSZ	and	under-exposure	at	the	top	of	the	RSZ.		

Potentially	more	effective	steps	to	better	detect	bats	could	include	both	boosting	the	frame	rate	of	

the	camera	and	increasing	the	portion	of	the	survey	area	that	is	illuminated.	We	suggest	

considering	thermal	cameras	instead	of	nIR	illumination	to	achieve	both	these	objectives.	High	

frame	rates	are	easily	achievable	with	such	systems,	and	nIR	illumination	is	not	needed	to	detect	

animals,	so	the	effective	range	would	only	be	limited	by	the	optics	of	the	thermal	camera	lens	and	

sensor	density.	The	downside	of	switching	to	a	thermal	camera	system	would	be	increased	cost	for	

high-resolution	cameras	and	the	difficulty	of	using	a	wide-angle	lens	for	lower	sensor	resolution	

cameras.	Additionally,	species	identification	is	probably	not	possible	with	thermal	cameras,	so	

species-specific	avoidance	rates	would	need	to	be	achieved	with	additional	identification	methods	

like	acoustics.	

Future	work	using	stereo-optic	thermal	imaging	should	be	considered	as	the	next	step	for	nighttime	

monitoring	as	the	increased	detection	range	of	those	cameras	should	be	more	similar	to	the	range	

seen	for	the	camera	system	during	the	daytime,	and	we	believe	thermal	imaging	will	likely	be	a	

better	tool	for	achieving	the	monitoring	objectives	of	the	system.	

Detecting	and	identifying	eagles	by	the	camera	system	

We	suspect	that	our	ability	to	identify	eagles	is	what	limits	the	detection/identification	curve	that	

we	estimated	using	distance	sampling.	Thus,	further	improvements	in	our	ability	to	estimate	

position	and	filter	for	eagle-like	shapes	will	be	important	for	development	in	this	area,	as	those	

should	improve	our	ability	to	identify	eagles	significantly.	Improvements	would	include	changes	to	

allow	for	better	stereo-optic	position	estimates,	to	more	accurately	measure	both	distance	and	the	

size	of	the	animals	observed.	Many	distant,	soaring	birds	were	marked	as	“Unidentified	Birds”,	but	

may	have	been	Bald	Eagles.	Accurate	distance	and	size	measurements	of	these	animals	may	have	

allowed	reviewers	to	identify	them	as	Bald	Eagles.		
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Improvements	to	achieve	this	would	include	an	added	mechanical	adjustment	for	the	secondary	

camera’s	alignment	and	the	use	of	rectilinear	lenses	like	the	Nikon	28	mm	to	improve	3-D	tracking	

estimates.	Also,	adding	a	pan-tilt	camera	to	track	and	focus	on	the	object	of	interest	based	on	

measured	trajectory	by	the	stereo	camera	system	would	greatly	enhance	the	resolution	of	the	

object,	thus	improving	ID	rates	and	size	measurements.	This	camera	should	have	a	lens	with	at	least	

a	200	mm	focal	length.	

With	such	a	system,	one	could	add	software	that	uses	advanced	object	recognition	algorithms,	such	

as	methods	involving	deep	learning	and	convolution	neural	networks,	an	area	of	active	research	for	

automated	image	classification	(Jia	et	al.,	2014;	Rodner	et	al.,	2016).	Using	a	training	set	of	images,	

it	may	be	possible	for	onboard	computers	to	provide	predictive	capabilities	of	images	supplied	

from	initial	chunk	file	processing.	These	algorithms	have	proven	to	be	very	fast	(~2.5	ms	per	image	

on	a	fast	graphics	processing	unit)	and	development	is	being	extended	to	mainstream	computers	

(Jia	et	al.,	2014).	Adding	such	a	processing	step	to	this	monitoring	system	would	allow	for	real-time	

detection	of	eagles	or	other	birds.	

Integrating	deterrent	systems	
In	a	configuration	with	an	added	focus	camera	on	a	pan-tilt	unit,	the	pan-tilt	unit	points	to	the	

object	of	interest.	In	the	case	of	deterrence	measures	that	are	directional,	it	would	be	recommended	

to	link	the	deterrent	system	to	the	pan-tilt	unit,	which	would	be	mounted	parallel	to	the	camera.	

Then	in	case	of	verification	of	an	eagle,	this	deterrent	system	(i.e.	flashing	light	or	acoustic	signals)	

would	be	automatically	directed	towards	the	bird,	reducing	the	potential	for	collateral	damage	to	

unintended	animals	and/or	excessive	environmental	pollution	in	cases	where	light	or	sound	are	

used.	Since	the	continuation	of	the	bird’s	flight	trajectory	can	be	estimated	by	the	stereo	system,	a	

very	flexible/dynamic	deterrent	system	could	be	integrated	that	reacts	with	the	behavior	of	the	

bird.	With	a	reactive	system,	you	could	design	the	deterrent	system	such	that	the	deterrence	output	

is	proportional	to	the	needs	of	deterrence.	This	may	be	effective	at	minimizing	habituation	to	the	

deterrence	system.	Such	a	system	could	be	tested	with	other	large	and	more	common	birds	with	

similar	response	profiles	or	captive	animals.	

Testing	for	overall	bird	detection	probability	

Detection,	identification,	and	position	estimation	were	all	most	effective	from	0-150	m	away	from	

the	camera	system.	These	results	suggest	that	the	system	could	be	useful	in	describing	avoidance	

behavior	at	the	micro-avoidance	scale	(within	immediate	proximity	of	the	turbine),	but	would	not	

be	effective	at	other	scales	without	system	modifications.	With	the	system’s	current	capabilities,	

even	micro-avoidance	could	be	difficult	to	describe	for	turbines	with	long	turbine	blades.	Thus	we	

recommend	that	the	system	be	used	to	sample	the	air	space	around	the	turbine	and	not	be	used,	as	

currently	configured,	for	monitoring	turbine	interactions	entirely.	

	

Improving	the	system		

Hardware	Recommendations	

The	following	modifications	would	lead	to	high-precision	stereo	matching	and	better	distance	

estimates:	
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• Add	a	high-precision	mechanical	adjustment	to	the	secondary	camera	mount	for	precise	3-D	

alignment.	

• Use	a	rectilinear	wide-angle	lens	like	the	Nikon	28mm	f/2.8	AI-s).	

• Use	a	wider	stereo	basis	of	3	m,	which	would	double	the	distance	for	which	good	quality	

distance	estimates	would	be	available.		

	

As	mentioned	above,	we	also	recommend	the	addition	of	a	third	camera,	mounted	on	a	pan-tilt	unit	

that	focuses	on	the	object	of	interest	based	on	measured	trajectory	by	the	current	stereo	camera	

system.	This	camera	might	have	a	lens	with	200	mm	focal	length	and	would	deliver	the	object	of	

interest	(e.g.,	potential	eagle)	at	a	much	greater	resolution,	leading	to	better	object	identification.		

SCADA	system	interfacing	

In	order	for	the	system	to	provide	deterrence	or	turbine	shutdown	capability,	the	system	must	

either	issue	its	own	deterrence	mechanism	or	communicate	with	the	wind	farm	supervisory	control	

and	data	acquisition	(SCADA)	system	to	send	a	signal	for	shutdown	or	activation	of	the	external	

deterrence	device.	The	system	could	act	as	a	remote	terminal	unit,	providing	a	call	to	the	

supervisory	computer	system	for	issuance	of	the	command	for	turbine	shutdown	or	deterrence.	

Currently,	we	know	of	no	approved	deterrence	methods	for	eagles,	so	a	call	for	turbine	shutdown	

would	be	the	most	likely	method	of	mitigation.	We	would	need	to	test	a	method	of	interfacing	with	

this	system	to	allow	proper	routing	of	commands	to	the	supervisory	computers.	This	would	require	

a	hardware	interface,	most	likely	a	networked	(LAN-type)	architecture.	Additionally,	software	

changes	will	need	to	be	implemented	to	support	the	networking	protocol	of	the	SCADA	system	and	

proper	issuance	of	commands	to	the	supervisory	computers.	Once	in	place,	these	systems	would	

need	to	be	rigorously	tested.	

The	National	Renewable	Energy	Lab	(NREL)	has	an	onsite	SCADA	system	and	engineering	support	

to	allow	development	and	testing	of	an	interface.	Working	with	NREL	would	allow	us	to	create	an	

efficient	system	for	wind	farms	without	affecting	operation.	NREL	could	provide	guidance	on	

hardware	architecture	as	well	as	appropriate	calls	to	the	system	which	could	be	confirmed	with	

working	wind	farm	operators.	We	could	then	test	this	system	at	the	NREL	test	facility	on	working	

test	turbines,	first	using	just	the	software	system	and	hardcoded	calls	to	the	system,	followed	by	full	

testing	with	the	operational	stereo-optic	camera	system.	

Remote	wireless	network	connectivity		

We	were	unable	to	properly	set	up	and	test	long-distance	wireless	connectivity	between	the	camera	

system	and	remote	network	due	to	a	lack	of	appropriate	test	venue.	We	have	a	line-of-sight	

microwave	transmitter	that	should	allow	long	distance	(>10km)	communication	with	a	remote	

network,	but	this	system	will	need	to	be	tested	at	an	appropriate	test	facility.	We	recommend	

testing	at	NREL	during	testing	of	any	SCADA	system.	Alternatively,	testing	could	be	performed	if	

trials	of	the	system	are	conducted	from	an	offshore	meteorological	tower.	This	would	allow	

appropriate	line-of-sight	testing	and	engineering	support	in	an	environment	that	has	a	realistic	

level	of	electromagnetic	noise.		
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Remote	data	connectivity	needs	

Connection	to	the	camera	system	will	require,	at	a	minimum,	bandwidth	to	support	remote	access	

to	the	control	computer,	and	maximally,	bandwidth	to	support	data	transfers	from	the	camera	

system	to	onshore	file	servers	for	further	processing	and	backup.	Ideally,	a	network	interface	would	

be	made	through	the	wind	farm	SCADA	system	or	auxiliary	network,	but	may	have	to	be	made	

through	the	wireless	point-to-point	system.	We	have	determined	that	the	mean	file	size	for	a	5-

minute	chunk	is	301MB,	which	requires	a	minimum	bandwidth	for	data	transfer	of	8	Mbps.	The	

remote	desktop	connection	should	be	at	least	at	the	high	speed	broadband	level	(>2	Mbps)	to	show	

contents	of	the	screen	sufficiently.	Therefore,	we	recommend	a	minimum	bandwidth	of	10	Mbps	

but	optimally	50-100%	above	that,	to	allow	for	constant	transfer	of	data	and	the	remote	desktop	

connection	without	large	lags	in	data	transfer.	Connection	and	transfer	of	data	will	need	to	be	

evaluated	under	real-world	operating	conditions,	particularly	using	the	point-to-point	system,	as	

environmental	conditions	could	affect	transfer	rates.	

Software	Recommendations	

Given	a	reliable	stereo	calibration,	the	integration	of	distance-based	filtering	into	the	masking	

module	of	the	new	viewer	software	would	be	a	straightforward	modification	(see	sections	on	

“Improving	the	camera	calibration”	and	“Improving	the	3-D	modeling”	about	the	related	3-D	model	

discussion).	Future	improvements	to	the	viewer	could	also	be	made	to	integrate	the	shape	

recognition	software,	introducing	further	data	filtering	options.	For	example,	the	viewer	could	

potentially	automatically	filter	out	portions	of	an	image	that	do	not	appear	to	contain	a	bird.	

Combining	improved	3-D	information	with	the	shape	recognition	software	would	also	present	new	

options,	such	as	querying	a	scene	for	birds	by	size	and	distance.	
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