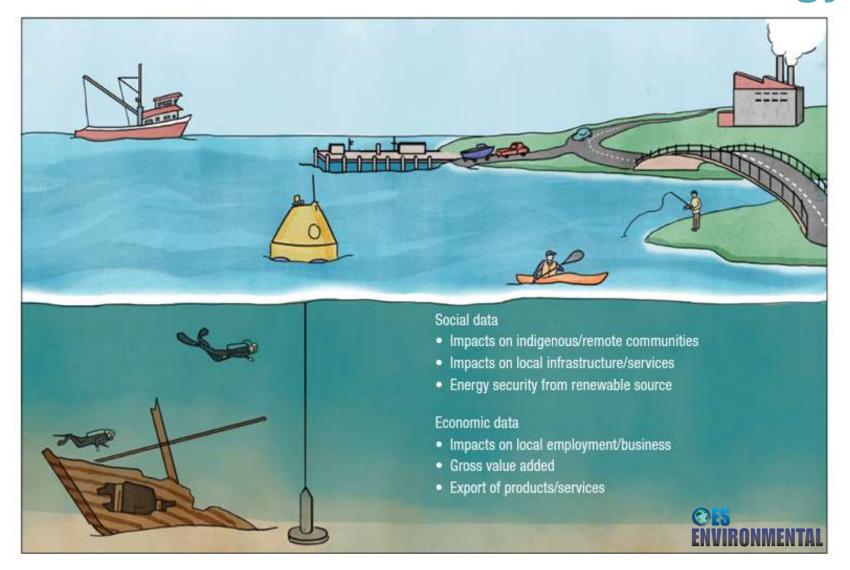


Assessing Social and Economic Effects of Marine Energy: Tools and Recommendations

January 22, 2024

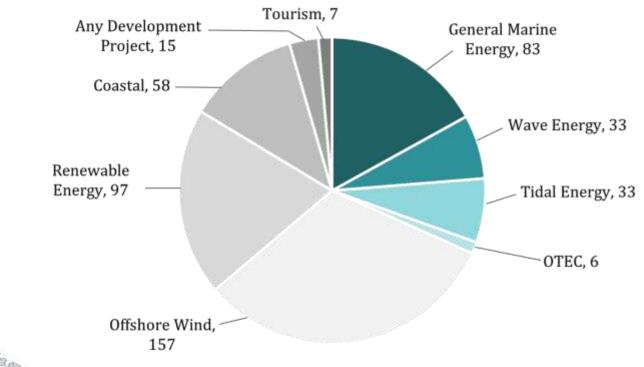

Mikaela Freeman, Debbie Rose, Marley Kaplan Pacific Northwest National Laboratory

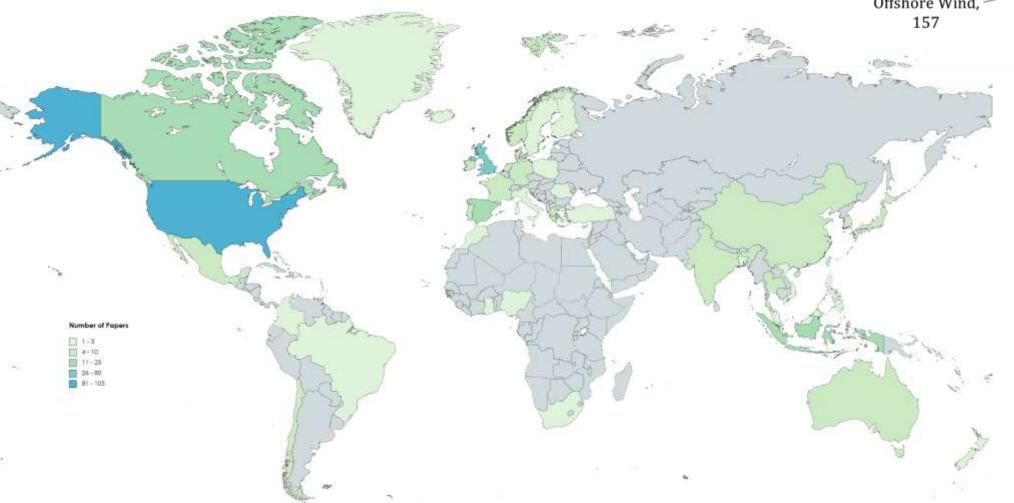
Social and Economic Data for Marine Energy


- Need for data collection in consenting, with emphasis on impacts
- Builds on OES-Environmental's efforts: data collection, good management practices
- Deployment Readiness Framework: develop toolkit

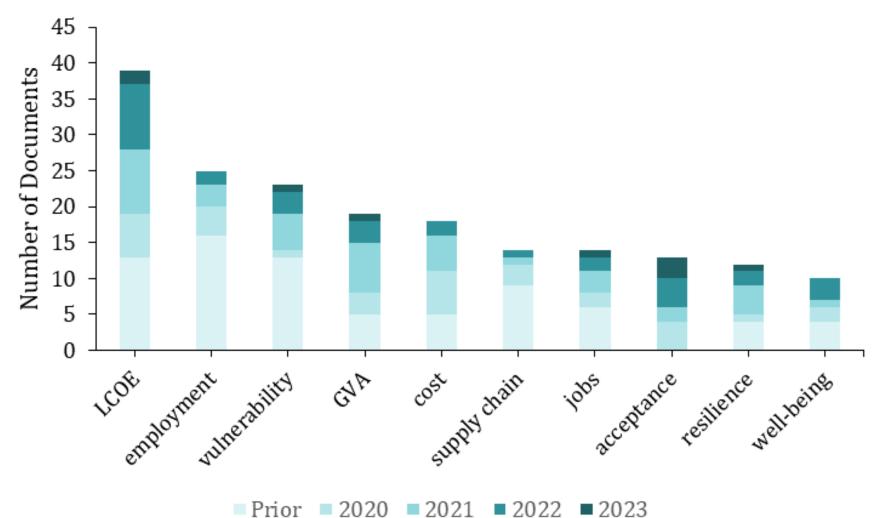
Objectives

- Allow for easy access to information on social and economic data, how to collect it (baseline and impacts), with examples
- Provide social science background (definitions) for a traditionally technical audience
- Guide data collection efforts with a template




Methods

Available Literature


- 489 journal articles and reports
- 44 countries, primarily United States and United Kingdom

Results: Metrics

- 558 unique metrics were identified
- Top Metrics

LCOE = levelized cost of energy GVA = gross value added

Results: Methods

Methods

value chain analysis TEA SWOTanalysis stakeholder analysis spatial model spatial analysis SOWFIA social life cycle assessment social impact assessment simulations semi-structured interviews self-assessment

scenarios

risk assessment questionnaire q methodology principle component analysis participatory methodologies participant observation media content analysis loop analysis likert scale LCA

interviews

input-output model hypothetical experiment simulation

> GIS focus group

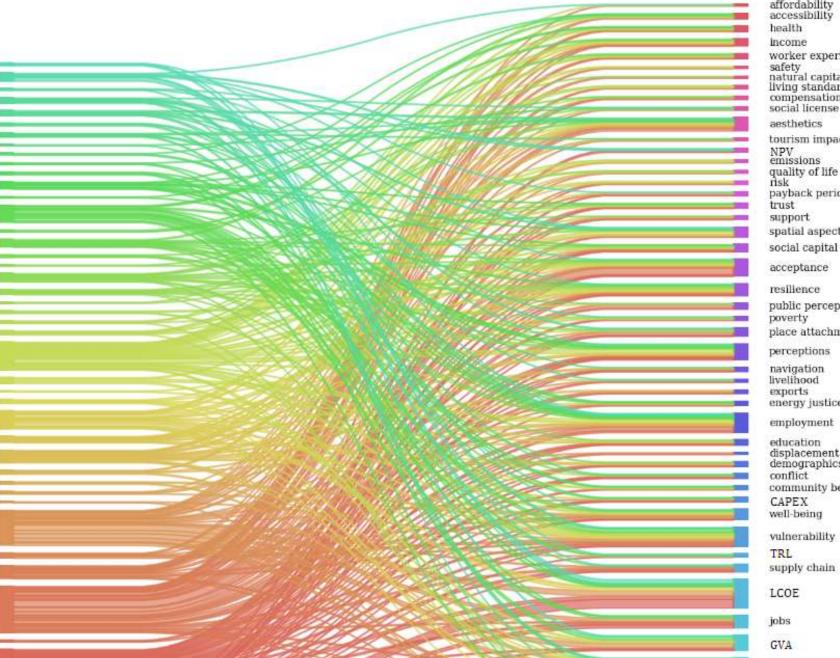
> > workshop

EIA

ecosystem service assessments community vibrancy dashboard database

model

index


framework

survey

census

case study

analysis

Metrics

affordability accessibility health Income worker experience safety natural capital living standards compensation social license aesthetics

tourism impacts

quality of life payback period support spatial aspects

public perception

place attachment

perceptions

navigation livelihood exports energy justice

employment

displacement demographics conflict community benefits CAPEX

well-being

vulnerability

supply chain

fisheries

ecosystem services

economic feasibility cost

capacity

Findings

- For marine energy, current focus on methods or metrics around feasibility, planning, siting, or technology performance, not social or economic effects
- Ample literature to learn from other industries (fisheries, offshore wind) for anticipating and assessing social and economic effects
- Stakeholder engagement early and often in the planning phase is needed to:
 - Identify potential effects of concern,
 - Site appropriately around co-users of a space,
 - Develop mitigation, and
 - Plan for equitable distribution of benefits

Toolkit Development

Template for Data Collection

In development

ABOUT . CONTENT . TOOLS . CONNECTIONS . BROADCASTS . HELP .

Marine Energy Social and Economic Data Collection Toolkit

Jump to Template Jump to Tool

Marine energy projects have the potential to create significant benefits by stimulating economic growth, generating revenue, creating jobs, improving local infrastructure and services, and providing energy security and resilience. However, if projects are not carefully planned and do not include communities in the development process, there could be adverse effects or changes that do not align with local cultures and community values or that provide inequitable distribution of costs and benefits. Collecting social and economic data is necessary to anticipate these effects, and to develop and appropriately site marine energy projects that suitably address community needs, incorporate and address community values, and satisfy consenting requirements. Despite the importance of this information, consistent methodology for social and economic data collection to inform marine energy development is lackling. There is little documentation from past projects, and if documentation exists, it is not often clear how the social and economic data have been collected or analyzed. This toolkit aims to close some of these gaps by facilitating easy access to information on social and economic data, how to collect it (baseline and impacts), with examples; provide social science background for traditionally more technical audiences; and quide data collection efforts with a template.

This toolkit was initiated out of two workshops held at the European Wave and Tidal Energy Conference (Cork, Ireland, 2017) and Environmental Interactions of Marine Renewables (EIMR, Kirkwall, UK, 2017) & by Offshore Renewables Joint Industry Programme (ORJIP) & and Ocean Energy Systems-Environmental. Additional work on these topics is discussed in the 2020 State of the Science Report chapter on Social and Economic Data Collection, and has since been elevated through continuing work with the United States Department of Energy's (U.S. DOE) Water Power Technologies Office under the Deployment Readiness Framework.

Template for Data Collection

The template for data collection builds on the Good Management Practices for the collection of social and economic data for marine energy developed by OES-Environmental and the findings of the OES-Environmental 2020 State of the Science Report chapter on Social and Economic Data Collection. The intended audiences for these templates include marine energy developers and their consultants that need to conduct a socioeconomic assessment as part of their regulatory requirements; strategic planners at the government level that are interested in programmatic socioeconomic assessments (e.g., U.S. DOE); and researchers interested in assessing socioeconomic cumulative effects of marine energy.

The template organizes the social or economic data that can be collected for baseline and impact assessments by themes with 54 key metrics, provides resources and methods for how to collect that data and the typical units that are used in reporting that data. The last two columns are left blank for a user to fill in notes or data collected on the metrics selected.

Download the fillable template here. For more information on the metrics described, refer to the Social and Economic Data Tool below or the Definitions document.

Tool

The table below provides a list of metrics identified as common in the literature for social and economic data collection for marine energy and other relevant development projects. It is sortable by category and searchable by text to connect metrics with approaches for quantification. Full references for the definitions provided for each metric are available in the **Definitions** document.

View the Instructions document for detailed information on using the tool.

Category:	Search:	
- Any -	•	Apply

Category	Metrics	Synonyms or related metrics	Methods	Examples from marine energy	Examples from other relevant industries	Tools
Social	acceptance the positive or neutral reaction of citizens when a project is proposed in their local area	social license	choice experiment, contingent valuation, eye-tracking technology, indicator system, interviews, multi-criteria decision making matrix, participatory methodologies, perception studies, pestel analysis, principle component analysis, shared socioeconomic pathway narratives, social media analysis, survey	Posterari and Waseda 2022, Jenkins et al. 2018, DeSanti 2020	Zaunbrecker et al. 2016 ^{gr} , Bidwell 2023, Dion 2019, Devine-Wright & Wiersma 2020, Kim et al. 2019 ^{gr} , Westerberg et al. 2015, Walker et al. 2014, Rand & Hoen 2017, Rodriguez-Segura et al. 2023 ^{gr} , Agyekum et al. 2021 ^{gr} , Booth et al. 2022 ^{gr} , Petrova et al. 2016 ^{gr}	

Background

Definitions of Common Metrics

Methods and
Tools to Collect
Data for
Common
Metrics

Methods and Tools to Collect Data for Common Metrics

 Searchable table connecting common social and economic metrics from the literature with approaches for quantification

Category	Metrics	Synonyms or related metrics	Methods	Examples from marine energy	Examples from other relevant industries	Tools
Social	acceptance the positive or neutral reaction of citizens when a project is proposed in their local area	social license	choice experiment, contingent valuation, eye- tracking technology, indicator system, interviews, multi- criteria decision making matrix, participatory methodologies, perception studies, pestel analysis, principle component analysis, shared socioeconomic pathway narratives, social media analysis, survey	Posterari and Waseda 2022, Jenkins et al. 2018, DeSanti 2020	Zaunbrecker et al. 2016 , Bidwell 2023, Dion 2019, Devine-Wright & Wiersma 2020, Kim et al. 2019 , Westerberg et al. 2015, Walker et al. 2014, Rand & Hoen 2017, Rodriguez- Segura et al. 2023 , Agyekum et al. 2021 , Booth et al. 2022 , Petrova et al. 2016	
Economic	capacity a non-static aspect describing the human, technical, economic, or social resources available in a community to participate	adaptation resilience	case study, comprehensive vulnerability framework, economic analysis, focus group, fuzzy logic model, geospatial analysis, industry research, interviews, observations, participatory methodologies, scenarios, social capital analysis, structural equation modeling, survey	Marine Energy Wales 2020, Kazimierczuk et al. 2023	Tull et al. 2016 &	AEDG Community Metric Explorer

Template for Data Collection

- Includes good management practices
- Template with metrics, resources, typical units, and blank columns for users to complete

	Type of Data/Information	Methods + Resources	Typical Units and Scale of	Findings for Project	
			Collection	Baseline Data	Monitoring Data
		Social/Cu	ltural Context and Communities		
	 Adaptation 	Adaptation is an aspect of a	Unitless, described based on		
		community's capacity and can be	the ability of a person or		
		assessed using community based	people to change; how easy		
		scenario planning (<u>Bennett et al., 2016</u>)	or difficult different paths		
		and participatory action research	are.		
		(<u>Sumardio et al. 2019</u>). It is often			
		assessed in the context of climate	Adaptation attributes could		
		change resilience.	be available at a strategic		
_			level, though additional		
Social			information and		
So			conversations with		
			communities will need to be		
			had to determine adaptation		
			at a project level.		
	 Behaviors 	Community behaviors can be assessed	Behaviors can be measured		
		using surveys (Community Toolbox	through the decisions that a		
		Section 7) at regular intervals to collect	person makes.		
		data relevant to project acceptance,			
		renewable energy technology	Individual or community		
		adoption, or participation (Klein and	behavior data is typically		
		<u>Coffey 2016</u>).	collected at the project level.		

	Employment and Wages					
	Employment	Existing employment information is	Total job years per project			
		often available in public census data.	phase.			
		Employment effects can be measured				
		using a coupled Techno-economic	Employment data is often			
		Input-Output Model that considers	collected at a strategic level,			
		project design, operation, and costs,	though planning and			
		location of the project, and device	monitoring may be done at			
٥		information to project the total gross	the project level.			
Economic		added value and number of created				
		jobs (<u>Draycott et al. 2018</u>).				
Ш	Income	Information on income can be found	Annual pre- or post-tax			
		through public census data or within	household income, annual			
		interviews and surveys to a	salary ranges.			
		community. A stated preference				
		approach can be used to understand	Income data for specific jobs			
		how income level may impact	or communities is often			
		perceptions of the effects of	collected at a strategic level,			
		renewable energy projects (<u>Dalton et</u>	though planning and			
		<u>al. 2020</u>).	monitoring may be done at			
			the project level.			

Next Steps


- Receive expert review for Toolkit, and specifically Template
 - https://tethys.pnnl.gov/marine-energy-social-economic-data-collection-toolkit

- Release the tool publicly in mid-2024
 - Webinar via Tethys/OES-Environmental
 - Featured in OES-Environmental 2024 State of the Science report Social and Economic Effects of MRE chapter



Thank you!

Mikaela Freeman mikaela.freeman@pnnl.gov

Debbie Rose deborah.rose@pnnl.gov

Marley Kaplan marley.Kaplan@pnnl.gov

