Black Oak Wind LLC

Permittee:	Black Oak Wind, LLC
Permit Type:	LWECS Site Permit
Project Location:	Stearns County
Docket No:	IP6853/WS-10-1240 and IP6866/WS-11-831
Permit Section:	Site Permit Section 6.7.1
Date of Submission:	March 15 th , 2019

PERMIT COMPLIANCE FILING

Black Oak Wind, LLC ("Black Oak") respectfully submits this filing in compliance with Section 6.7.1 of the Site Permits issued for the Black Oak Wind Farm and Getty Wind Project:

The Permittee shall, by March 15 following each complete or partial calendar year of operation, file with the Commission an annual report detailing findings of its annual audit of ABPP practices. The annual report shall include;

(1) Summarized and raw data of bird and bat fatalities and injuries and shall include bird and bat fatality estimates for the Project using multiple agreed upon estimators from the prior calendar year.

Attachment 1

(2) The annual report shall also identify any deficiencies or recommended changes in the operation of the Project or in the ABPP to reduce avian and bat fatalities

Discussion - Attachment 1

(3) And shall provide a schedule for implementing the corrective or modified actions.

Discussion - Attachment 1

The Permittee shall provide a copy of the report to DNR and to the U.S. Fish and Wildlife Service at the time of filing with the Commission.

For questions relating to this filing please contact Marie VanZandt via email at mvanzandt@sempraglobal.com or telephone at (619)-696-3003

Black Oak Wind uuc

Attachment 1

Docket No. IP-6853/WS-10-1240 IP-6866/WS-11-831 Page **2** of **2**

2018 Post-Construction Monitoring Study

Black Oak Getty Wind Project Stearns County, Minnesota

April 4 – November 1, 2018

Prepared for: Black Oak Wind, LLC

Prepared by:

Joyce Pickle, John Lombardi, Jennifer Stucker, and Guy DiDonato

Western EcoSystems Technology, Inc. 7575 Golden Valley Road, Suite 300 Golden Valley, Minnesota 55427

March 15, 2019

EXECUTIVE SUMMARY

Black Oak Wind, LLC is currently operating the 78-megawatt (MW) Black Oak Getty Wind Project (Project) in Stearns County, Minnesota (Figure 1). The Project became operational on December 23, 2016 and consists of 39 Vestas 2.0 megawatt (MW) V110 conical tubular steel tower wind turbine generators. Each turbine is a three-bladed, upwind, horizontal axis wind turbine with a rotor diameter of 361 feet and blades measuring 177 feet. Due to concerns regarding higher than anticipated bat fatalities in 2017, in 2018 turbines were split into two groups, a treatment group (20 turbines) and a control group (19 turbines), to assess the efficacy of a modified curtailment program. Treatment group turbines were feathered below manufacturer's cut-in speed (3.0 meters/second [m/s]) every night from half an hour before sunset until half an hour after sunrise starting at midnight from April 1 through June 30, and were feathered up to 3.5 m/s from July 1 through September 30; these curtailment treatments occurred as long as the temperature during 10 minute rolling averages remained above 10 degrees Celsius (C: 50 degrees Fahrenheit). No feathering occurred for control group turbines from April 1 through September 30. Due to a programming error, the treatment and control groups received the opposite treatments from October 1 through 31, with no feathering occurring for the treatment turbines while the control turbines were feathered up to 3.0 m/s.

The second year of post-construction bird and bat mortality monitoring studies began on April 4, 2018, and continued through November 1, 2018. The objectives of the monitoring studies were to provide a summary of documented bird and bat fatalities, present estimates of searcher efficiency and carcass persistence, calculate annual fatality rates at per turbine and per MW levels, and assess the effectiveness of extending the period of feathering below manufacturer's cut-in speed to the bat active period coupled with an increased cut-in speed between July 1 and September 30.

A total of four turbines had a search area of 120 meters x 120 meters cleared of vegetation and centered on the turbine; these cleared plots were searched twice per week. The gravel roads and pads at the remaining 35 turbines were searched within 60 meters of the turbine (the pads around turbines extended approximately 10 meters, and the access roads were searched out to 60 meters from the turbine); these road and pad searches occurred once a week during the study period. Searcher efficiency and carcass persistence trials were conducted throughout the study period using bat, small bird, large bird, and raptor carcasses.

A total of 43 bird carcasses comprising 24 unique species and seven unidentified carcasses were found during the study. The ruby crowned-kinglet and sedge wren were the two most commonly documented species (each with between three and four carcasses found). No obvious spatial or temporal patterns were detected in bird fatalities. One raptor carcass was found during the study: a Cooper's hawk. While no federal- or state-listed species of birds were found as carcasses, two American white pelican carcasses, a species of special concern in Minnesota, were found during surveys. Using the Huso estimator, cleared plot estimates for small birds was 4.96 birds/MW/study period (90% CI of 1.08 - 9.58, using the Huso estimator)

while the small bird road and pad estimate was 3.11 birds/MW/study period (90% CI of 1.59 - 4.91, using the Huso estimator). Estimates for large birds were roughly similar between the two search types, ranging between 0.25 birds/MW/study period (90% CI of 0.0 - 0.73) at cleared plots and 0.38 birds/MW/study period (90% CI of 0.11 - 0.79) at road and pads.

A total of 377 bat carcasses were found at the Project. Five species of bats were found: silverhaired bats (176 found), hoary bat (118 found), eastern red bat (48 found), big brown bat (31 found), and little brown bat (1 found). Additionally, three unidentified bats were found at the Project. Two special status bat species were documented; the big brown bat and the little brown bat are state species of special concern in Minnesota. No bat carcasses were found until late April. A noted increase in number of fatalities per turbine was observed from late July through September, and no bat carcasses were found after October 29. Across the Project, fewer bat carcasses were found per turbine in the northwestern portion of the Project compared to turbines in the southwestern, southeastern, and northeastern portions of the Project. The adjusted fatality rate estimate using the Huso estimator for cleared plots was 34.97 bats/MW/study period (90% CI of 1.82 - 83.02) for the control group and 26.67 bats/MW/study period (90% CI of 0.44 - 55.21) for the treatment group, and the road and pad estimate was 37.59 bats/MW/study period (90% CI of 12.90 – 26.64) for the treatment group.

The curtailment strategy did appear to be effective in reducing bat mortality; the road and pad confidence interval did not overlap with the normal operation confidence interval for road and pad. Cleared plot estimates were higher for 2018 for both the control and treatment groups when compared to 2017; the estimate for 2017 on cleared plots was 13.03 bats/MW/study period (90% CI of 10.46 – 16.15). The road and pad estimate for treatment groups was lower than in 2017; the 2017 estimate for road and pad was 29.88 bats/MW/study period (90% CI of 17.81 – 49.10).

STUDY PARTICIPANTS

Western EcoSystems Technology, Inc.

Todd Mattson Joyce Pickle Guy DiDonato Jennifer Stucker John Lombardi Aaron Suehring Jeff Fruhwith David Klein Katie Wynne Senior Manager Project Manager Project Statistician Field Supervisor Senior Statistician Bias Trial Proctor GIS Technician Technical Editing Manager Technical Editing Coordinator

REPORT REFERENCE

Pickle, J., J. Lombardi, J. Stucker, and G. DiDontao. 2019. 2018 Post-Construction Monitoring Study, Black Oak Getty Wind Project, Stearns County, Minnesota, April 4 – November 1, 2018. Prepared for Black Oak Wind, LLC. Prepared by Western EcoSystems Technology, Inc. (WEST), Golden Valley, Minnesota. March 15, 2019.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
INTRODUCTION	1
STUDY AREA	2
METHODS	5
Standardized Carcass Searches	5
Turbines Sampled, Turbine Groups, Search Frequency, and Search Area/Plot Size	5
Plotting of Search Plot Boundaries; Maintenance of Cleared Plots	6
Bias Trials	8
Searcher Efficiency Trials	8
Carcass Persistence Trials	9
Statistical Analysis	10
Quality Assurance and Quality Control	10
Data Compilation and Storage	10
Fatality Rate Estimation	10
Huso Method Estimator	11
Shoenfeld Method Estimator	12
Confidence Interval Calculation	14
Adjustment for Searched Area	14
RESULTS	15
Avian and Bat Carcass Surveys	15
Species Composition	16
Timing of Bird and Bat Carcasses	20
Distribution of Bird and Bat Carcasses within the Project	24
Distribution of Bird and Bat Carcasses—Distances from Turbines	27
Searcher Efficiency Trials	32
Carcass Persistence Trials	33
Adjustment for Searched Area Results	37
Adjusted Fatality Estimates	37
Comparison of Curtailment and Fatalities at Treatment and Control Turbines	40
DISCUSSION	44

FERENCES

LIST OF TABLES

Table 1. The land cover types, coverage, and composition within the Black Oak Getty Wind Project, Stearns County, Minnesota.	. 2
Table 2a. Turbines searched as 120 x 120 meter cleared plots at the Black Oak Getty Wind Project.	. 6
Table 2b. Road and Pad turbines searched within 60 meters at the Black Oak Getty Wind Project.	. 6
Table 3. Distribution of carcasses used in searcher efficiency trials by size class and plot type at the Black Oak Getty Wind Project.	. 9
Table 4. Distribution of carcasses used in carcass persistence trials by size class and plot type at the Black Oak Getty Wind Project.	. 9
Table 5. Total number of casualties and the composition of casualties discovered at the Black Oak Getty Wind Project, Stearns County, MN, from April 4 to November 1, 2018.	18
Table 6a. Distribution of distances from turbines of all bird and bat carcasses found at cleared plots during scheduled searches on cleared plot turbines searched at the Black Oak Getty Wind Project.	27
Table 6b. Distribution of distances from turbines of all bird and bat carcasses found at roadand pads during scheduled searches on road and pad plot turbines searched at theBlack Oak Getty Wind Project.	27
Table 7a. Searcher efficiency results at the Black Oak Getty Wind Project as a function of season and carcass size.	32
Table 7b. Searcher efficiency logistic regression models for bats from the Black Oak Getty Wind Project search efficiency trials. Selected models are denoted by an asterisk in the 'DeltaAICc' column	32
Table 7c. Searcher efficiency logistic regression models for small birds from the Black Oak Getty Wind Project search efficiency trials. Selected models are denoted by an asterisk in the 'DeltaAICc' column.	33
Table 7d. Searcher efficiency logistic regression models for large birds from the Black Oak Getty Wind Project search efficiency trials. Selected models are denoted by an asterisk in the 'DeltaAICc' column.	33
Table 7e. Searcher efficiency logistic regression models for raptors from the Black Oak Getty Wind Project search efficiency trials. Selected models are denoted by an asterisk in the 'DeltaAICc' column.	33
Table 8. Carcasses placed for persistence trials by size class and season at the Black Oak Wind Project.	34

LIST OF FIGURES

Figure 1. Location of the Black Oak Getty Wind Project.	. 3
Figure 2. Land cover map for the Black Oak Getty Wind Project	. 4
Figure 3. Layout, Search Type, and Turbine Type for the Black Oak Getty Wind Project	. 7
Figure 4a. Timing of bird carcass discoveries found during scheduled searches or incidentally at the Black Oak Getty Wind Project on turbine search plots from April 4 to November 1, 2018.	21
Figure 4b. Timing of bat carcass discoveries found during scheduled searches or incidentally at the Black Oak Getty Wind Project on turbine search plots from April 4 to November 1, 2018.	22
Figure 4c. Timing of bat carcass discoveries included in the Huso analysis, and were found from April 4 to on or before September 30 (prior to the programming error that switched the treatment and control groups) during scheduled searches	23

Figure	5a. Bird fatalities by turbine and search type for treatment and control group turbines at the Black Oak Getty Wind Project, April 4 to November 1, 2018	25
Figure	5b. Bat fatalities by turbine and search type for treatment and control group turbines at the Black Oak Getty Wind Project, April 4 to November 1, 2018	26
Figure	6a. Distance of bird fatalities from the turbine found during scheduled cleared plot searches or incidentally on turbine search plots at the Black Oak Getty Wind Project.	28
Figure	6b. Distance of bird fatalities from the turbine found during scheduled road and pad searches or incidentally on turbine search plots at the Black Oak Getty Wind Project.	29
Figure	6c. Distance of bat fatalities from the turbine found during scheduled cleared plot searches or incidentally on turbine search plots at the Black Oak Getty Wind Project.	30
Figure	6d. Distance of bat fatalities from the turbine found during scheduled road and pad searches or incidentally on turbine search plots at the Black Oak Getty Wind Project.	31
Figure	7. Persistence of bird and bat carcasses though 30-day carcass persistence trials at the Black Oak Getty Wind Project from April 4 to November 1, 2018	35

LIST OF APPENDICES

- Appendix A. Complete Fatality Listing for the Black Oak Getty Wind Project for Studies Conducted April 4 – November 1, 2018
- Appendix B. Huso Estimates for the 2018 Post-Construction Surveys at the Black Oak Getty Wind Project
- Appendix C. Shoenfeld Estimates for the 2018 Post-Construction Surveys at the Black Oak Getty Wind Project
- Appendix D. North American Fatality Summary Tables
- Appendix E. Distributions, Model Parameter and AIC Values for Small Bird and Bat Density Models

INTRODUCTION

Black Oak Wind, LLC is currently operating the 78-megawatt (MW) Black Oak Getty Wind Project (Project) in Stearns County, Minnesota (Figure 1). The Project became operational on December 23, 2016 and consists of 39 Vestas 2.0 MW V110 conical tubular steel tower wind turbine generators. Each turbine is a three-bladed, upwind, horizontal axis wind turbine with a rotor diameter of 110 meters (m; 361 feet [ft]) and blades measuring 54 m (177 ft). Black Oak Wind, LLC developed an Avian and Bat Protection Plan (ABPP) for the Project, which included a Tier 4 post-construction mortality (PCM) study designed to estimate potential impacts to bird and bat species. As committed to in the ABPP, direct impacts of the Project on bird and bat populations were quantified through PCM monitoring during the first year of operation. In 2017 all turbines were feathered (i.e., the blades were pitched parallel to the wind to slow the rotation) below the manufacturer's cut-in speed (3.0 meters/second [m/s]) starting at midnight on August 1 through October 31 to reduce bat mortality rates; however, PCM results from 2017 showed higher than anticipated bat fatalities. Black Oak Wind, LLC, coordinated with the US Fish and Wildlife Service (USFWS) and the Minnesota Department of Natural Resources (DNR) on the results of the first year of surveys, and on the approach, to conducting a second year of fatality monitoring in 2018. The 2018 PCM approach consisted of a modified curtailment program at approximately half of the turbines to provide a comparison to estimate the effect of extending the period when turbines were feathered below manufacturer's cut-in speed to start on April 1. as well as a higher cut-in speed in the late summer/fall period on bat mortality rates.

In 2018, turbines were split into two groups: a treatment group (20 turbines) and a control group (19 turbines), to assess the efficacy of the modified curtailment program. Treatment group turbines were operated under the modified curtailment program, which consisted of: feathered up to 3.0 m/s every night from April 1 through June 30, and were feathered up to 3.5 m/s from July 1 through September 30; these curtailment treatments occurred as long as the temperature during 10 minute rolling averages remained above 10 degrees Celsius (50 degrees Fahrenheit). Control group turbines were not feathered at all from April 1 through September 30. Due to a programming error, the treatment and control groups received the opposite treatments from October 1 through 31. During October the treatment group turbines were not feathered up to 3.0 m/s. As described further in the Results section, the fatality estimates presented for the two treatment groups use the October data associated with the turbines assigned to each group (i.e., the bats found in October were kept with the turbines they were found with and not "switched" to a different control or treatment group).

Year 2 bird and bat mortality monitoring studies began on April 4, 2018, and continued through November 1. The objectives of the monitoring studies were to provide a summary of documented bird and bat fatalities, present estimates of searcher efficiency and carcass persistence, calculate annual fatality rates per turbine and per MW, and assess the effectiveness of the modified curtailment program. This report summarizes the methods and results of the second year of PCM conducted by Western EcoSystems Technology, Inc. (WEST) at the Project, and provides information on how the estimated fatality rates qualitatively compare to the first year of PCM at the Project as well as other wind Projects in the state and region.

STUDY AREA

The Project is located in Stearns County, Minnesota. The Project boundaries encompass approximately 14,719 acres (approximately 22 square miles), with all facilities on private lands. According to the US Geological Survey National Land Cover Database (USGS NLCD 2011, Homer et al. 2015), cropland (12,141.3 acres, or 82%) is the dominant land cover within the Project, followed by grassland (2,347.8 acres, or 16%). The breakout of land use by cover type within the Project is shown in Table 1 and Figure 2. Based on field observations, substantially less grassland exists within the Project area than suggested by the NLCD land cover map. Most of the mapped grassland areas have been converted to cropland, and the few parcels of grassland that exist within the Project consist of pasture or wetlands.

Table 1. The land cover types,	coverage, and	composition	within	the E	Black	Oak Getty	Wind
Project, Stearns County,	Minnesota.						

Habitat	Acres	% Composition
Cropland	12,141.3	82.5%
Grassland	2,347.8	16.0%
Marsh	121.5	0.8%
Shrubland	76.1	0.5%
Aquatic	22.9	0.2%
Forested	9.3	<0.1%
Total*	14,719.0	100

Data from US Geological Survey National Land Cover Database 2011, Homer et al. 2015.

* Totals may not equal values shown due to rounding.

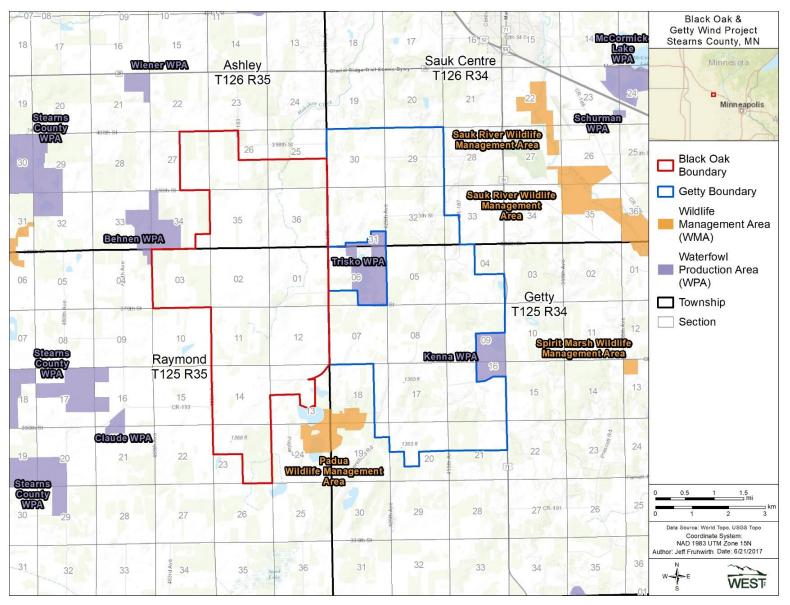


Figure 1. Location of the Black Oak Getty Wind Project.

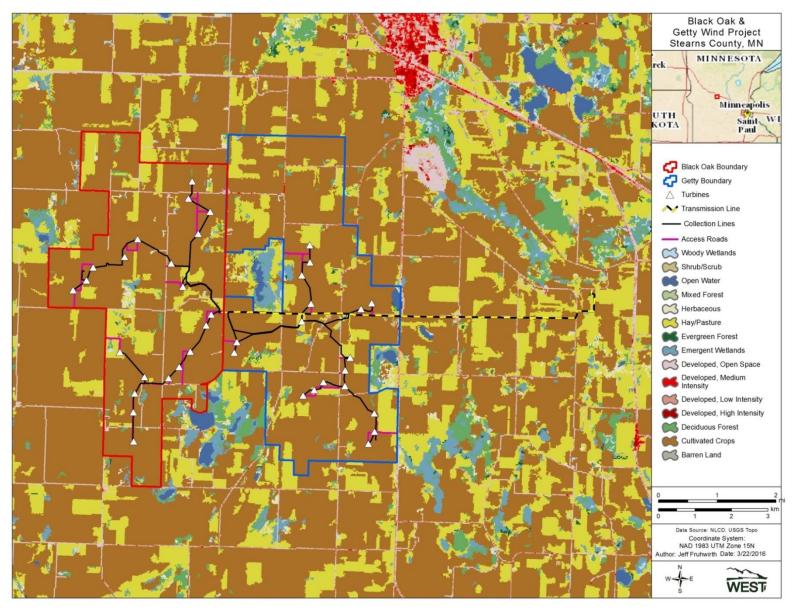


Figure 2. Land cover map for the Black Oak Getty Wind Project.

4

METHODS

Standardized Carcass Searches

Carcass searches were completed by WEST technicians trained in proper search techniques between April 4, 2018 and November 1, 2018. Data recorded during each carcass search included date, start and end time, observer, and weather data. When a dead bird or bat was found, the observer recorded the species, sex and age (when identifiable), observer name, measured distance from turbine, azimuth from turbine (including Universal Transverse Mercator coordinates), habitat surrounding carcass, condition of carcass (intact, scavenged, dismembered, injured, feather spot [for birds only]), and estimated time of death (e.g., less than one day, two days). Digital photographs were taken of the carcass, any visible injuries, and the surrounding habitat. All carcasses were collected, placed in a re-sealable plastic bag, labeled with a unique carcass identification number, and stored in an on-site freezer. WEST worked under the USFWS Migratory Bird Special Purpose Utility Permit held by Black Oak Wind LLC (Permit Number MB13133C-0) and the DNR Scientific Research – Salvage Special Permit (Number 19024, as amended) held by WEST.

The identification of all bird and bat carcasses was verified by biologists with experience identifying birds and bats to species. Due to the difficulty of identifying *Myotis* species, the identification of all bat carcasses was verified by WEST biologists permitted to identify and handle threatened and endangered bat species.

Casualties found in non-search areas (e.g., outside the designated search arear) were recorded as incidental discoveries and documented in a similar fashion as those found during standard searches. These casualties were not included in the estimation of fatality rates.

Turbines Sampled, Turbine Groups, Search Frequency, and Search Area/Plot Size

Vegetation was cleared within 120 x 120 m (394 x 394 ft) of four turbines (Table 2a, Figure 3). The gravel road and pad areas were searched within 60 m (197 ft) of the remaining 35 turbines (the searchable area around each turbine pad varied between 10–20 m [33-66 ft], with the roads searched out to a distance of 60 m; Table 2b, Figure 3). Turbines were split into two groups: a treatment group (20 turbines) and a control group (19 turbines), to assess the efficacy of the modified curtailment program. The treatment group consisted of two cleared plot turbines and 18 road and pad turbines and the control group consisted of two cleared plot turbines and 17 road and pad turbines (Table 2a, Table 2b, Figure 3).

Over the entire survey, the cleared plot turbines were searched twice a week. Road and pad turbines were searched once a week at the beginning of the survey period, but were increased to twice per week by early summer. Searchers walked at a casual walking rate of approximately 45-60 m (148-197 ft) per minute through the search area while scanning for carcasses. The searcher scanned the area on both sides of each search transect, spaced six m (20 ft) apart. For road and pad searches, searchers scanned the cleared area as delineated by the road and

pad; this was accomplished by parking on the access road, walking toward the turbine, walking around the pad surrounding the turbine and back to the vehicle, scanning for carcasses.

at the Black Oak Getty Wind Project.				
Cleared Plot Search Turbines				
Treatment Control				
B13	C28			

D38

Table 2a. Turbines searched as 120 x 120 meter cleared plotsat the Black Oak Getty Wind Project.

Table 2b. Road and Pad turbines	searched	within 6	0 meters	at the	Black
Oak Getty Wind Project.					

Road and Pad Search Turbines					
Treat	ment	Cor	ntrol		
A02	B18	A01	C24		
A04	C21	A03	C29		
A07	C23	A05	C30		
A08	C25	A06	D31		
A10	C26	A09	D32		
B12	C27	A11	D35		
B14	D33	B16	D36		
B15	D34	B19	D39		
B17	D37	C22			

Plotting of Search Plot Boundaries; Maintenance of Cleared Plots

B20

The boundaries of all cleared plots and roads and pads were recorded using Global Positioning System technology on handheld units in the field. All of the cleared plots were located within corn (*Zea mays*) or soybean (*Glycine max*) fields and were regularly mowed to maintain a height of 10 centimeters (four inches) or less, providing relatively uniform searching conditions across all cleared plots. Areas of roads and pads within cleared plots were also delineated.

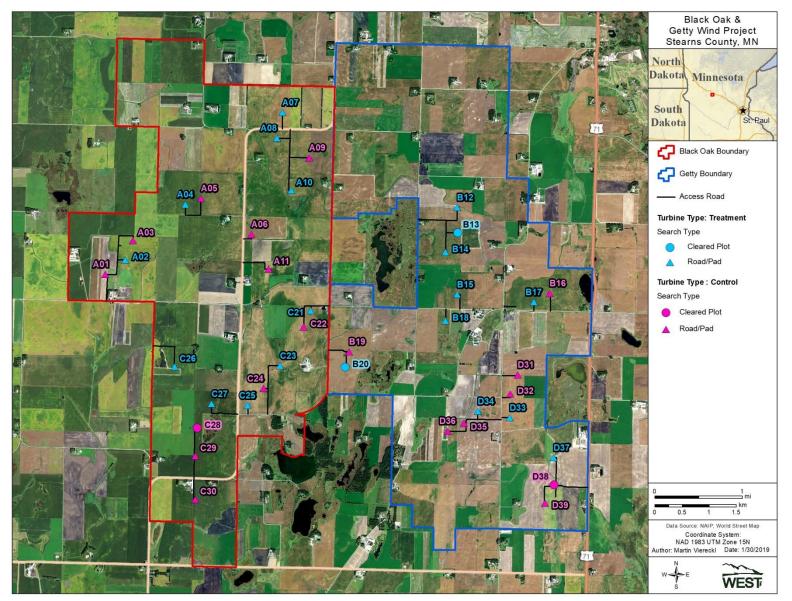


Figure 3. Layout, Search Type, and Turbine Type for the Black Oak Getty Wind Project.

Bias Trials

Searcher Efficiency Trials

The objective of the searcher efficiency trials was to estimate the percentage of casualties found by searchers. Searcher efficiency trials were conducted in the same areas where carcass searches occurred, and separate trials were held for cleared plot turbines and road and pad turbines. Searcher efficiency was estimated by size of carcass (small bird, large bird, and bat). Multiple trials were conducted in each season of the study period in order to estimate searcher efficiency rates by season. Seasons were defined as spring (April 4 – May 13), summer (May 14 – August 2) and fall (August 3 – November 1). Estimates of searcher efficiency were used to adjust the total number of bird and bat carcasses found for those missed by technicians, accounting for detection bias in the fatality estimates.

Trial carcasses were placed by WEST personnel to ensure carcass searchers did not know when trials were conducted or the location of the detection carcasses. Adult coturnix quail (*Coturnix coturnix*) were used to represent large birds, juvenile coturnix quail carcasses were used for small birds, and brown/black mice carcasses represented bat carcasses. Raptor carcasses were also used in searcher efficiency trials separate from the large bird trials; raptors obtained from the University of Minnesota's Raptor Center (or other properly permitted facilities) were used. Red-tailed hawk (*Buteo jamaicensis*), snowy owl, barred owl, Cooper's hawk, great horned owl, and little eared owl carcasses were used to represent raptor carcasses. Bat and bird carcasses found during carcass searches (or birds obtained from properly permitted facilities) were also incorporated into the searcher efficiency trials.

Overall, a total of 93 mice/bat carcasses, 84 small bird carcasses, 82 large bird carcasses, and 26 raptor carcasses were used in the searcher efficiency trials (Table 3). Because the supply of raptor carcasses was relatively limited, searcher efficiency trials for those carcass types were concentrated on cleared plots with only two carcasses used in road/pad plots; trials for the other size classes were conducted on both road/pad and cleared plot turbines.

Each trial carcass was discreetly marked with a dark blue zip-tie around the leg for birds or upper arm for bats or mice prior to dropping so that it could be identified as a study carcass after it was found. All carcasses were placed at random locations within search plots by someone not conducting the search, and were placed on the same day of the search. Carcasses were dropped from waist height or higher and allowed to land in a random posture. The number and location of carcasses found during the subsequent carcass search was recorded, and the number of carcasses available for detection during each trial was determined immediately after the search by the person responsible for distributing the carcasses.

Size Class	Cleared Plots	Road/Pad Plots	Total
Bats	48	45	93
Small Birds	42	42	84
Large Birds	43	39	82
Raptors	24	2	26
Total	157	128	285

Table 3. Distribution of carcasses used in searcher efficiency trials by size class and plot type
at the Black Oak Getty Wind Project.

Carcass Persistence Trials

The objective of carcass persistence trials was to estimate the average length of time (in days) a carcass persisted in the field (i.e., before a carcass was no longer available for detection). Carcasses could be removed by scavenging, or rendered undetectable by typical farming activities. Estimates of small bird, large bird, bat, and raptor carcass persistence were used to adjust the total number of carcasses found for those removed from the study area, accounting for persistence bias in the fatality estimates.

Trials were conducted during all seasons to incorporate the effects of varying weather, climatic conditions, and scavenger densities. Throughout the study period, 168 carcasses were monitored (Table 4). A subset of the same carcasses used for searcher efficiency trials were used for carcass persistence trials. Carcass persistence trials for raptors were only conducted on cleared plots due to a low overall sample size for raptors; trials for the other size classes were conducted on both road/pad and cleared plot turbines.

Technicians conducting carcass searches monitored the carcass persistence trial carcasses for bats, small birds and large birds over a 30-day period according to the following schedule as closely as possible: Carcasses were checked every day for the first four days, and then on days seven, 10, 14, 20, and 30, or until the carcass disappeared prior to 30 days, in which case no more checks occurred. For raptors, a 120-day monitoring period was used, with the same initial checked days through day 30 described above, then every 10 days after that. Carcasses were left at the location until the end of the carcass removal trial. At the end of the applicable monitoring period, any evidence of the remaining carcasses was removed from the search plot.

Table 4. Distribution of carcasses used in carcass persistence trials by size class and plottype at the Black Oak Getty Wind Project.

Search Protocol	Cleared Plots	Road/Pad Plots	Total
Bats	28	23	51
Small Birds	23	22	45
Large Birds	26	22	48
Raptors	24	0	24
Total	101	67	168

Statistical Analysis

Quality Assurance and Quality Control

Quality assurance and quality control measures were implemented at all stages of the study, including in the field, during data entry and analysis, and report writing. Following field surveys, technicians were responsible for making sure that all information entered into the tablet were successfully uploaded onto the cloud-based database. WEST database managers were responsible for downloading the data from the cloud-based database into WEST's Project-specific Microsoft[®] SQL database. Potentially erroneous data were identified using a series of database queries. Irregular codes or data suspected as questionable were discussed with the technician and/or Project manager. Errors, omissions, or problems identified in later stages of analysis were traced back to the original entries from the tablet, and appropriate changes were made in all affected steps.

Data Compilation and Storage

As stated above, a Microsoft[®] SQL database was developed to store, organize, and retrieve survey data. All electronic data files were retained for reference.

Fatality Rate Estimation

All carcasses located within surveyed areas were recorded. To determine the rate at which bird and bat fatalities occurred, the number of carcasses found in each search plot was tallied. However, carcasses persisted for variable amounts of time and could have been detected with varying levels of success based on carcass characteristics and ground cover (i.e., cleared plots versus roads and pads). To account for these variables, statistical analyses were used to adjust the observed count of bird and bat carcasses based on:

- Observed number of carcasses found during standardized searches during the monitoring period;
- Persistence rates, expressed as the estimated average probability a carcass remained in the search plot and was available for detection by the technician during carcass persistence trials;
- Searcher efficiency, expressed as the proportion of trial carcasses found by searchers during searcher efficiency trials; and
- Search area adjustment based on the plot size, shape and carcass density distribution.

Separate fatality estimates were calculated for each species type, and search type. For bats, fatality estimates were calculated separately for the treatment and control groups; for birds, due to the relatively low number of carcasses overall and the fact that the curtailment program is not expected to significantly affect avian fatality at the Project, fatality estimates were calculated for the overall Project (by search type) and not separated by treatment type. Both the Shoenfeld and Huso estimators were used to compare results.

Huso Method Estimator

Definition of Variables

The following variables were used in the equations below for the Huso estimator (Huso 2011; Huso et al. 2015):

- *c_i* total number of carcasses in category *i* (e.g., combinations of carcass size [small bird, large bird, raptor and bat], search type [cleared plot and road/pad plot], and season [spring, summer and fall])
- *n* number of turbines sampled at the Project
- k number of carcass categories
- \hat{a}_i area correction for category *i*
- I_i time interval between the previous search and discovery for category *i*
- \hat{I}_i effective search interval for carcasses in category *i*
- \hat{r}_i average probability of persistence for carcass in category *i*
- \hat{p}_i probability of detection for carcass in category *i*
- $\hat{\pi}$ the estimated probability that a carcass was both available to be found during a search and was found, as determined by the removal trials and the searcher efficiency trials
- \widehat{F}_i per turbine mortality for category *i*
- \hat{m} total per turbine mortality

Censored Carcasses

The Huso method (Huso 2011; Huso et al. 2015) requires that carcasses of birds or bats that are estimated to have been killed in a time period longer than the search interval be censored. The time since death was used to determine if a carcass perished within the search interval. Carcasses were excluded if the estimated time of death was greater than the time since previous search.

Estimation of Searcher Efficiency Rates

Searcher efficiency rates, \hat{p}_i , were estimated separately for each size class using a logistic regression where plot type and season were included as potential covariates for large bird, small bird, and bat groups. Plot type was not included for raptors, due to the few raptor carcasses placed on road/pad plots. The logistic regression modeled the natural logarithm of the odds of finding an available carcass as a function of the above covariate. The model assumed that searchers had a single opportunity to discover a carcass. The best model was selected using corrected Akaike Information Criteria (AICc; Burnham and Anderson 2002). All models within two AICc values of the top model with the lowest AICc value were considered.

Estimation of Carcass Persistence Rates

Estimates of carcass persistence rates were used to adjust carcass counts for removal bias. Carcass persistence rates were modeled by carcass type (small bird, large bird, raptor, bat) as a function of season (spring, summer, and fall). The average probability of persistence of a carcass (\hat{r}_i) was estimated from an interval-censored carcass persistence model. Exponential, log-logistic, lognormal, and Weibull distributions were fit, and the best model was selected using an information theoretic approach known as corrected AICc (Burnham and White 2002).

Adjusted Facility-Related Fatality Rates

The estimated probability that a carcass in category i was available and detected was calculated as:

$$\widehat{\pi_{l}} = \widehat{a_{l}} \cdot \widehat{p_{l}} \cdot \widehat{r_{l}} \cdot \widehat{v}_{l}$$

where $\hat{v}_i = \min(1, \hat{l}_i/l_i)$. The model assumed that searchers had a single opportunity to find each carcass, even though some carcasses persisted through multiple searches before being detected. If not statistically different across seasons or plot types, data for carcass persistence and searcher efficiency bias was pooled across the study. The total number of fatalities (\hat{f}_i) in category *i*, based on the number of carcasses found in category *l*, was calculated by:

$$\widehat{f}_{l} = \frac{c_{i}}{\widehat{\pi}_{l}}$$

The total per turbine fatality rate (\hat{m}) was estimated by:

$$\widehat{m} = \frac{\sum_{i=1}^{k} \widehat{m}_i}{n}$$

The per-MW rate was estimated by dividing the per turbine fatality rate (\hat{m}) by the MW rating of the turbine. If the observed number of carcasses within a size category and season was less than five, a confidence interval (CI) was not reported for the season.

Overall fatality estimates were calculated (\hat{f}_l) for cleared plots and roads and pads. Overall estimates within a season, as well as overall study period fatality rates, were calculated using this method.

Shoenfeld Method Estimator

Definition of Variables

The following variables were used in the equations below for the Shoenfeld estimator (Shoenfeld 2004):

- *c_i* the number of carcasses detected at plot *i* for the study period of interest (e.g., one monitoring year), for which the cause of death was either unknown or attributed to the facility
- *n* the number of search plots
- *k* the number of turbines searched (including the turbines centered within each search plot)
- \overline{c} the average number of carcasses observed per turbine per monitoring year
- s the number of carcasses used in persistence trials
- s_c the number of carcasses in persistence trials that remained in the study area after 30 days (120 for raptors)
- *t_j* the time (in days) the carcass *j* persisted in the study area before it was removed, as determined by the persistence trials
- \bar{t} the average time (in days) a carcass remained in the study area before it was removed, as determined by the persistence trials
- *p* the estimated proportion of detectable carcasses found by searchers, as determined by the searcher efficiency trials
- *I* the average interval between standardized carcass searches, in days
- A proportion of carcasses expected to land in searched area
- $\hat{\pi}$ the estimated probability that a carcass was both available to be found during a search and was found, as determined by the persistence trials and the searcher efficiency trials
- *m* the estimated annual average number of fatalities per turbine per year, adjusted for persistence and searcher efficiency bias

Observed Number of Carcasses

The estimated average number of carcasses (\overline{c}) observed per turbine per monitoring year was:

$$\bar{c} = \frac{\sum_{i=1}^{n} c_i}{k \cdot A}$$

Estimation of Mean Carcass Persistence Time

Estimates of carcass persistence were used to adjust carcass counts for persistence bias. Mean carcass persistence time (\bar{t}) was the average number of days a bat carcass remained in the study area before it was removed:

$$\bar{t} = \frac{\sum_{j=1}^{s} t_j}{s - s_c}$$

Estimation of Searcher Efficiency Rates

Searcher efficiency rates were expressed as p, the proportion of trial carcasses that were detected by searchers in the searcher efficiency trials. These rates were estimated using the same methods as described above for the Huso estimator.

Estimation of Facility-Related Casualty Rates

The estimated per turbine annual fatality rate (*m*) was calculated by:

$$m = \frac{\bar{c}}{\hat{\pi}}$$

where $\hat{\pi}$ included adjustments for both carcass persistence (from scavenging and other means) and searcher efficiency bias. If not statistically different across seasons or plot types, data for carcass persistence and searcher efficiency bias was pooled across the study to estimate $\hat{\pi}$

 $\hat{\pi}$ was calculated as follows:

$$\hat{\pi} = \frac{\bar{t} \cdot p}{I} \cdot \left[\frac{\exp\left(\frac{I}{\bar{t}}\right) - 1}{\exp\left(\frac{I}{\bar{t}}\right) - 1 + p} \right]$$

Confidence Interval Calculation

The standard errors and 90% CI were calculated using bootstrapping (Manly 1997). Bootstrapping is a computer simulation technique that is useful for calculating point estimates, variances, and CI for complicated test statistics. For each bootstrap sample, \bar{c} , t, p, t, and m were calculated. One thousand bootstrap samples were used. The standard deviation of the bootstrap estimates was the estimated standard error. The lower fifth and upper 95th percentiles of the 1,000 bootstrap estimates were estimates of the lower limit and upper limit of 90% CI.

Adjustment for Searched Area

The area searched underneath turbines represented a sample of the area in which carcasses could land, either as a result of searches restricted to roads and pads, or carcasses that could have fallen beyond the cleared plot boundaries. Models of carcass density (with respect to distance from the turbine base) can be used to calculate the density-weighted proportion (DWP) of area searched.

Bat and small bird carcass information found during this study were used to fit a density model. Models were fit separately for bats and small birds. For bats, WEST fit models for fatalities found at treatment and control turbines separately, in case their density distributions would vary across turbine curtailment regimens. For small birds, WEST incorporated fatality data from the 2017 survey to fit a more robust density distribution. Searched area was weighted as a function of distance from the turbine, because the areas near the turbine tend to have a higher density of bat and small bird carcasses than areas farther from the turbine (Huso and Dalthorp 2014). The result was an estimate of the proportion of bat and small bird casualties expected to land within searched and unsearched areas around turbines.

The area adjustment for the estimate was calculated by estimating the proportion of carcasses expected to fall within searched areas:

$$a = \sum_{i=1}^{r} F(i) \times p(i)$$

where a is the area adjustment factor, i indexes a series of 1-m-wide (3-ft-wide) annuli centered on the turbine, r is the maximum search radius, p(i) is the fraction of the i^{th} annulus that was searched (calculated in geographic information systems programs), and F(i) is the proportion of all carcasses expected within the i^{th} annulus. F(i) is calculated from f(i), the estimated density distribution of carcasses with respect to distance from turbines. The density distribution of carcasses was determined by fitting truncated Weibull, truncated normal, truncated Gompertz, truncated Rayleigh, and truncated gamma density distributions to carcass distances (from turbines) and choosing the best-supported distribution through AICc. Truncation bounds for the density distributions were set at zero m (carcasses cannot be negative distance from turbines) and at the maximum search radius from the turbine (100 m [328 ft], the distance at the corners of cleared plots). Fits were obtained using a weighted maximum likelihood approach (Khokan et al. 2013) where the weight for each observed carcass distance was the inverse of the fraction of area searched at the distance where the carcass was found, multiplied by the inverse of the probability of detection ($\hat{\pi}$) for that carcass, and the inverse of the proportion of plots searched as roads and pads versus cleared plots (e.g., the weight for a carcass found on a road and pad would include the inverse proportion of plots searched as roads and pads). This approach results in weighted maximum likelihood estimates of carcass detection probabilities that vary systematically with distance from turbines.

Due to low carcass counts for large birds, the Hull and Muir method was used to calculate area correction for road and pad as well as cleared plot searches for this size class (Hull and Muir 2010). Using this method, a physics-based model was developed to predict the maximum fall distance of animal carcasses around turbines. The model used turbine hub height, rotor diameter, and size of the carcass (bats, small and large birds) to determine the maximum theoretical fall distance relative to the turbine base. Carcass density was assumed to decrease linearly with increasing distance from the turbine. The density-weighted proportion of area searched was estimated based on the linear density and the proportion of area searched in each 1.0-m (3.28-ft) annulus from the turbine base out to the maximum predicted fall distance.

RESULTS

Avian and Bat Carcass Surveys

All 39 turbines were searched over 31 weeks throughout the spring, summer and fall for 2,068 turbine searches (each of the four cleared plot turbines were searched 61 times and each of the

34 road/pad turbines were searched 51 to 53 times). Three hundred and seventy-seven bat and 43 bird carcasses were found at the Project between April 4 and November 1, 2018, during surveys or incidentally (Table 5). The number, species, location, characteristics of the bird and bat carcasses, and the fatality estimates adjusted for searcher efficiency and carcass persistence biases are discussed below, and a full listing of carcasses is presented in Appendix A.

Species Composition

A total of 43 bird carcasses were found at the Project between April 4 and November 1, 2018; 21 were found on or near cleared plots during scheduled searches, 17 were found on or near road and pad plots during scheduled searches, and five were found incidentally (not during scheduled searches). Thirty-six bird carcasses were found on searched plots and included in the analysis, six were found off searched plots, and one was excluded from the Huso analysis (Table 5) because its estimated time of death was greater than the time since the previous search (this carcass was included in the Shoenfeld analysis). Twenty-four unique species of birds were found, with seven unidentified carcasses. Of the seven unidentified birds, one was an unidentified empidonax, one was an unidentified owl, one was an unidentified warbler, one was an unidentified grouse, one was an unidentified gull, and two were unidentified thrushes. Ruby-crowned kinglet (Regulus calendula) and sedge wren (Cistothorus platensis) were found most frequently, with four and three records, respectively, representing approximately 9.3% and 7.0%, respectively, of the overall composition. American white pelican (Pelecanus erythrorhynchos), brown creeper (Certhia americana), horned lark (Eremophila alpestris), house sparrow (Passer domesticus), house wren (Troglodytes aedon), least flycatcher (Empidonax minimus), and red-breasted nuthatch (Sitta canadensis) were each found two times (each approximately 4.7% of the overall composition). The remaining species were all documented only once. One raptor carcass, a Cooper's hawk (Accipiter cooperii), was found during a regular carcass search at a road/pad turbine site. No federally listed or state-threatened or endangered bird species were documented. One state-listed species of special concern, the American white pelican (Pelecanus erythrorhynchos; two found), was documented. Three avian species listed as Species of Greatest Conservation Need in Minnesota's Wildlife Action Plan 2015 - 2025 (DNR 2016) were documented: bobolink (Dolichonyx oryzivorus; one found), chimney swift (Chaetura pelagica; one found), and sedge wren (three found).

A total of 377 bat carcasses were found at the Project between April 4 and November 1, 2018; 140 were found on or near cleared plots during scheduled searches, 210 bats were found on or near road and pad plots during scheduled searches, and 27 were found incidentally (not during scheduled searches). Three hundred and fifty-one bat carcasses were found during scheduled searches and included in the analysis, 13 were found off searched plots, and 13 were excluded from the Huso analysis (Table 5) because their estimated time of death was greater than the time since the previous search (these 13 were included in the Shoenfeld analysis). Five species of bats were found: silver-haired bat (*Lasionycteris noctivagans*; 125 found, 54.3%), hoary bat (*Lasiurus cinereus*; 50 found, 21.7%), eastern red bat (*Lasiurus borealis*; 31 found, 13.5%), big brown bat (*Eptesicus fuscus*; 24 found, 10.4%), and little brown bat (*Myotis lucifugus*; one found, 0.3%). Two special status bat species were documented: the big brown bat and little

brown bat are state species of special concern in Minnesota. All five bat species found as carcasses at the Project are listed as Species of Greatest Conservation Need in the 2015 - 2025 Wildlife Action Plan (DNR 2016).

Table 5. Total number of casualties and the composition of casualties discovered at the Black Oak Getty Wind Project, Stearns County, MN, from April 4 to November 1, 2018.

		Casualties Included		Casualties Off Plot		Clearing Search Casualties		Casualties Censored		Other Casualties Excluded		Total	
Species	Total	% Comp	Total	% Comp	Total	% Comp	Total	% Comp	Total	% Comp	Total	% Comp	
Bat													
silver-haired bat	164	46.7	3	23.1	0	0	9	69.2	0	0	176	46.7	
hoary bat	110	31.3	6	46.2	0	0	2	15.4	0	0	118	31.3	
eastern red bat	46	13.1	2	15.4	0	0	0	0	0	0	48	12.7	
big brown bat	28	8.0	2	15.4	0	0	1	7.7	0	0	31	8.2	
unidentified bat	2	0.6	0	0	0	0	1	7.7	0	0	3	0.8	
little brown bat	1	0.3	0	0	0	0	0	0	0	0	1	0.3	
Overall Bats	351	100	13	100	0	0	13	100	0	0	377	100	
Bird	-	-	-	-	-	-	-	-	-	-	-		
ruby-crowned kinglet	4	11.1	0	0	0	0	0	0	0	0	4	9.3	
sedge wren	3	8.3	0	0	0	0	0	0	0	0	3	7.0	
brown creeper	2	5.6	0	0	0	0	0	0	0	0	2	4.7	
house sparrow	2	5.6	0	0	0	0	0	0	0	0	2	4.7	
house wren	2	5.6	0	0	0	0	0	0	0	0	2	4.7	
red-breasted nuthatch	2	5.6	0	0	0	0	0	0	0	0	2	4.7	
unidentified thrush	2	5.6	0	0	0	0	0	0	0	0	2	4.7	
American white pelican	1	2.8	1	16.7	0	0	0	0	0	0	2	4.7	
blackpoll warbler	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
chimney swift	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
Cooper's hawk	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
golden-crowned kinglet	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
horned lark	1	2.8	1	16.7	0	0	0	0	0	0	2	4.7	
killdeer	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
least flycatcher	1	2.8	1	16.7	0	0	0	0	0	0	2	4.7	
mallard	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
magnolia warbler	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
marsh wren	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
red-eyed vireo	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
sora	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
Tennessee warbler	1	2.8	0	0	0	0	0	0	0	0	1	2.3	

Table 5. Total number of casualties and the composition of casualties discovered at the Black Oak Getty Wind Project, Stearns County, MN,
from April 4 to November 1, 2018.

		Casualties Included		Casualties Off Plot		Clearing Search Casualties		Casualties Censored		Other Casualties Excluded		Total	
Species	Total	% Comp	Total	% Comp	Total	% Comp	Total	% Comp	Total	% Comp	Total	% Comp	
tree swallow	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
unidentified empidonax	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
unidentified gull	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
unidentified warbler	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
yellow-throated vireo	1	2.8	0	0	0	0	0	0	0	0	1	2.3	
bobolink	0	0	1	16.7	0	0	0	0	0	0	1	2.3	
unidentified grouse	0	0	1	16.7	0	0	0	0	0	0	1	2.3	
unidentified owl	0	0	0	0	0	0	1	100	0	0	1	2.3	
white-throated sparrow	0	0	1	16.7	0	0	0	0	0	0	1	2.3	
Overall Birds	36	100	6	100	0	0	1	100	0	0	43	100	

Timing of Bird and Bat Carcasses

Appendix A provides a complete list of fatalities found at the Project between April 4 and November 1, 2018, along with date and turbine/location information. There was no obvious temporal pattern for bird fatalities, with unadjusted rates (bird fatalities per turbine) remaining relatively low across most of the study period. The week of May 7 had the highest unadjusted rates of bird fatalities found, while no bird carcasses were found between June 8 and July 6 (Figure 4a).

For bats, there was a temporal pattern, with no carcasses found until late April; the number of unadjusted fatalities per turbine shows a moderate peak from April 30 to May 17, then fatalities stay relatively stable between mid-May and early July, followed by an increase in number of fatalities per turbine from July through late August, and a steady reduction in fatalities from early September through the end of October (Figure 4b). Overall, it appears that treatment group turbines (feathering below manufacturer's cut-in speed starting in April and feathering up to 3.5 m/s starting in July) did reduce bat fatalities compared to the treatment group turbines with no feathering, with the difference between treatment and control groups in unadjusted fatality rates most evident in the July through August timeframe (Figure 4c).

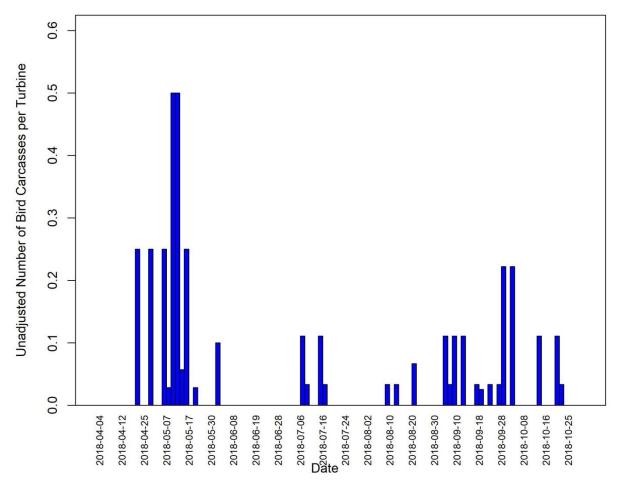


Figure 4a. Timing of bird carcass discoveries found during scheduled searches or incidentally at the Black Oak Getty Wind Project on turbine search plots from April 4 to November 1, 2018.

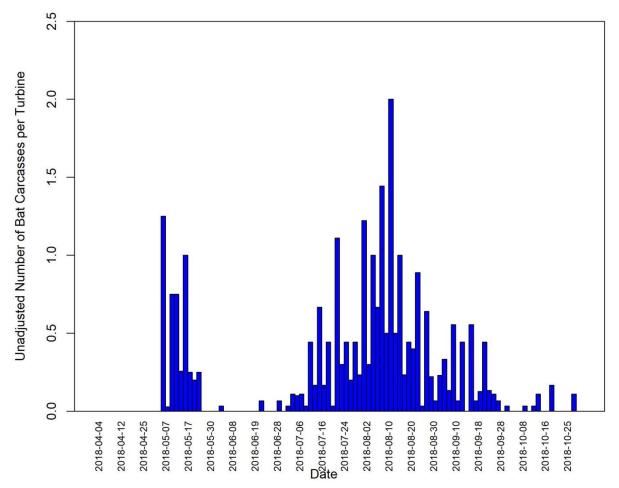


Figure 4b. Timing of bat carcass discoveries found during scheduled searches or incidentally at the Black Oak Getty Wind Project on turbine search plots from April 4 to November 1, 2018.

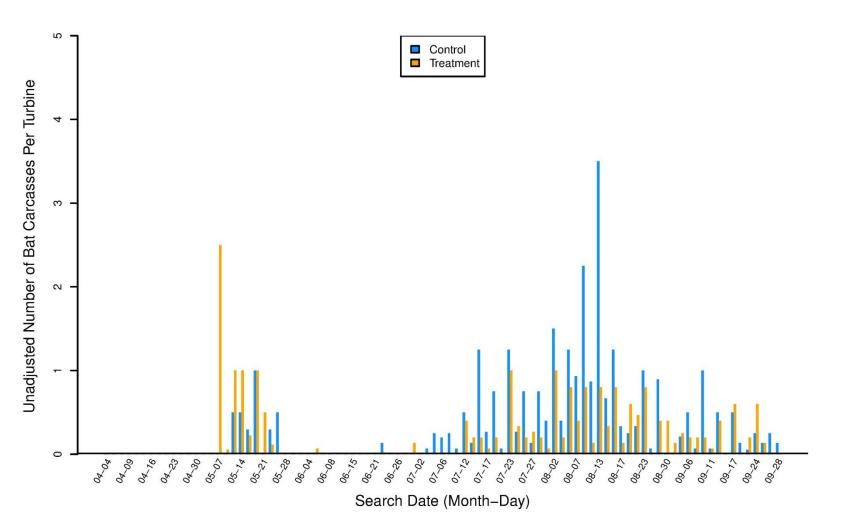


Figure 4c. Timing of bat carcass discoveries included in the Huso analysis, and were found from April 4 to on or before September 30 (prior to the programming error that switched the treatment and control groups) during scheduled searches.

Distribution of Bird and Bat Carcasses within the Project

Overall, fewer bird fatalities were documented in the northwest portion of the Project (Figure 5a). Turbines C28 and D38 both had the highest detections of bird carcasses (8 and 6 fatalities respectively) but are not located near one another and are different than the turbines that had relatively higher detections of bird carcasses in the 2017 study. Birds were found at all four of the cleared plots, and 12 of the 35 road and pad turbines.

Fewer bat carcasses were found per turbine in the northern portion of the Project compared to turbines in the other portions of the Project (Figure 5b). Bats were found at all four cleared plots, and all of the 35 road and pad turbines. Of the cleared plot turbines, turbine D38, which was in the control group, had the most detected bat fatalities overall (47); in 2018 this turbine had relatively lower detected bat fatalities than other cleared plot turbines. Turbine B16, also in the control group, had the highest recorded bat fatalities for road/pad searches with 14 fatalities. Overall, more bats were found per control group turbine than treatment group turbine, with ten out of 17 road and pad searched turbines having seven or more detected bat fatalities, compared to three out of 18 road and pad searched turbines having seven or more detected bat fatalities (Figure 5b).

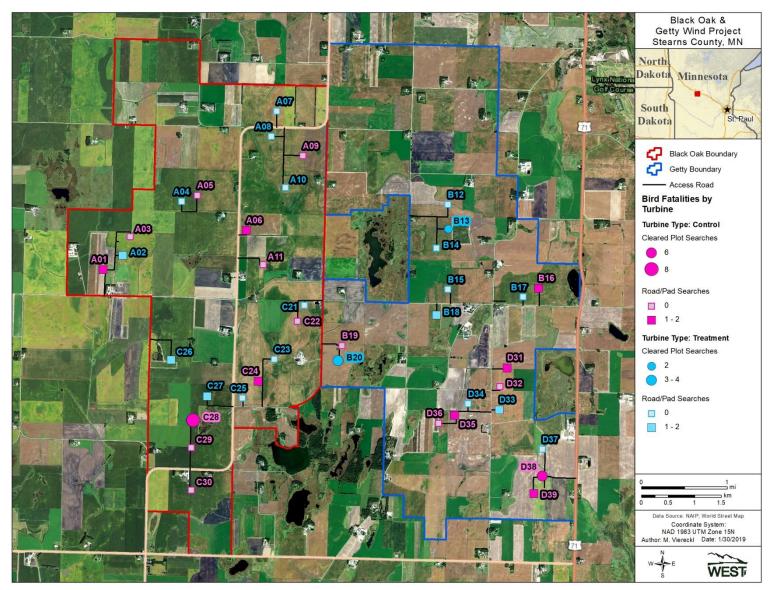


Figure 5a. Bird fatalities by turbine and search type for treatment and control group turbines at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

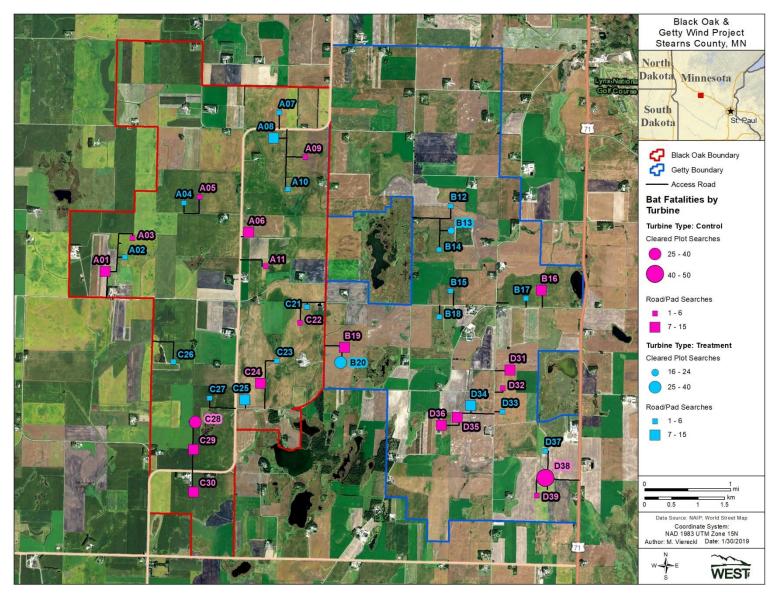


Figure 5b. Bat fatalities by turbine and search type for treatment and control group turbines at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

Distribution of Bird and Bat Carcasses—Distances from Turbines

Bird carcasses were found out to 70 m from the turbine on cleared plots, and out to 100 m on road and pad searches, with the majority (80%) found within 50 m (Tables 6a and 6b). On road and pad searches, over 62% of bird carcasses were found within 30 m of turbines (Table 6b, Figure 6b); six carcasses were found farther than 30 m from turbines. The differences in distribution of carcasses between cleared plot and road and pad are due to the fact that a small amount of the area beyond 20 m was searched for road and pad searched turbines (i.e., it is expected that the distribution would be similar to cleared plots, but because a smaller amount of the area beyond 20 m was searched in road and pads – only that associated with the access road at this distance – a smaller number of carcasses were found).

Most (76.2%) bat carcasses were found within 40 m of turbines at cleared plots, with over half (55.3%) found within 30 m (Table 6a, Figure 6c). On road and pad searches, most (75.5%) of the bat carcasses were found within 30 m (Table 6b and Figure 6d). Similar to birds, it is expected that the actual distribution of bat carcasses would be similar no matter the search type, and the difference in percentages of distances is due to the fact that smaller percentages of the area beyond 20 m was searched in the road and pad turbines.

Distance to Turbine (meters)	% Bird Casualties	% Bat Casualties
0 to 10	5.0	8.6
10 to 20	15.0	23.7
20 to 30	0	23.0
30 to 40	20.0	20.9
40 to 50	40.0	12.2
50 to 60	15.0	10.1
60 to 70	5.0	1.4
70 to 80	0	0
80 to 90	0	0
90 to 100	0	0

Table 6a. Distribution of distances from turbines of all bird and bat carcasses found at cleared plots during scheduled searches on cleared plot turbines searched at the Black Oak Getty Wind Project.

Table 6b. Distribution of distances from turbines of all bird and bat carcasses found at road and pads during scheduled searches on road and pad plot turbines searched at the Black Oak Getty Wind Project.

Distance to Turbine (meters)	% Bird Casualties	% Bat Casualties
0 to 10	31.3	52.4
10 to 20	12.5	23.1
20 to 30	18.8	9.4
30 to 40	6.3	7.6
40 to 50	6.3	3.8
50 to 60	12.5	2.4
60 to 70	0	0.5
70 to 80	6.3	0.9
80 to 90	0	0
90 to 100	6.3	0

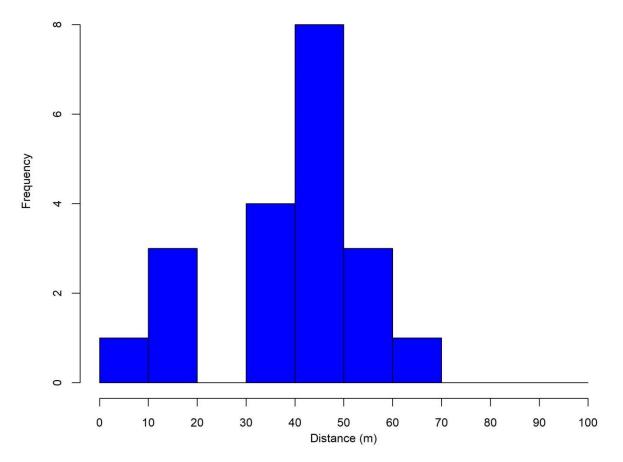


Figure 6a. Distance of bird fatalities from the turbine found during scheduled cleared plot searches or incidentally on turbine search plots at the Black Oak Getty Wind Project.

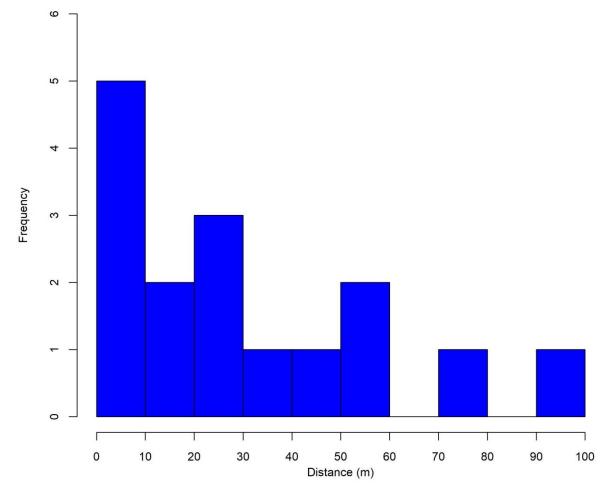


Figure 6b. Distance of bird fatalities from the turbine found during scheduled road and pad searches or incidentally on turbine search plots at the Black Oak Getty Wind Project.

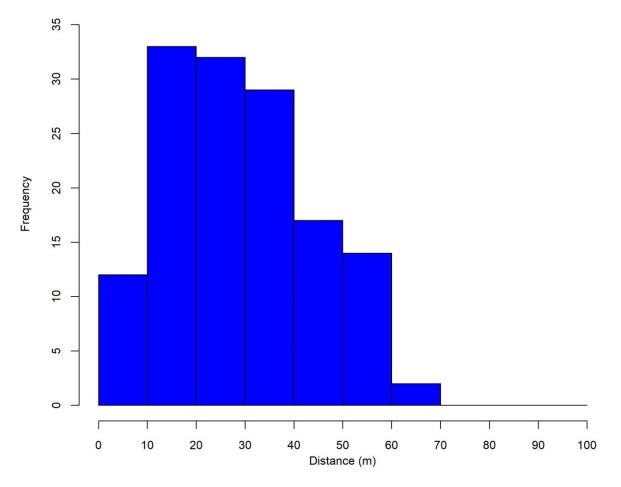


Figure 6c. Distance of bat fatalities from the turbine found during scheduled cleared plot searches or incidentally on turbine search plots at the Black Oak Getty Wind Project.

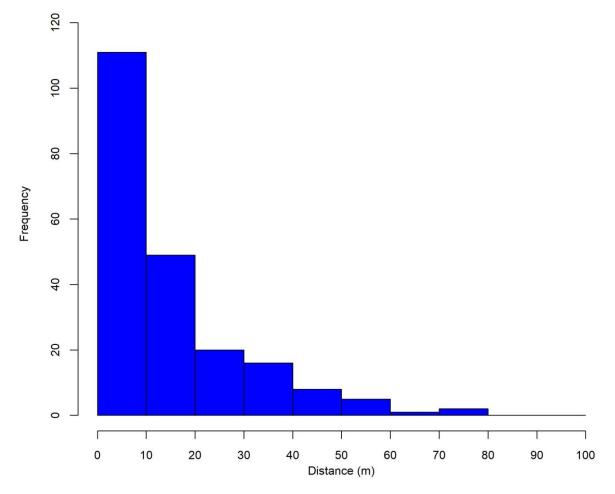


Figure 6d. Distance of bat fatalities from the turbine found during scheduled road and pad searches or incidentally on turbine search plots at the Black Oak Getty Wind Project.

Searcher Efficiency Trials

Searcher efficiency trials were conducted multiple times during the PCM study at the Project. At cleared plots, three trials were conducted in April, two in May, three in June, one in July, three in August, four in September, and two in October. At road and pad turbines, two trials were conducted in April, one in May, two in June, one in July, two in August, four in September, and two in October. Searchers found 69.4% of bats, 79.4% of small birds, 89.2% of large birds, and 96.2% of raptors that were available during trials. Searcher efficiency rates for bats, small birds, and large birds were statistically similar between cleared plot and road/pad search types (Tables 7b - 7d; Appendix B). Although there was some variation in searcher efficiency among seasons within a given size class (Table 7a), this difference was not statistically significant. Searcher efficiency regression models for the bat, small bird, large bird, and raptor trials are shown in Tables 7b - 7e.

Size Class	Season	# Placed	# Available	# Found	% Found
	Spring	30	25	17	68.0
Bat	Summer	24	22	13	59.1
Dal	Fall	39	38	29	76.3
	Overall	93	85	59	69.4
	Spring	23	16	11	68.8
Small Bird	Summer	22	17	13	76.5
Siliali biru	Fall	39	35	30	85.7
	Overall	84	68	54	79.4
	Spring	21	20	16	80.0
Lorgo Dird	Summer	21	20	19	95.0
Large Bird	Fall	40	34	31	91.2
	Overall	82	74	66	89.2
	Spring	10	10	9	90.0
Denter	Summer	8	8	8	100
Raptor	Fall	8	8	8	100
	Overall	26	26	25	96.2

 Table 7a. Searcher efficiency results at the Black Oak Getty Wind Project as a function of season and carcass size.

Table 7b. Searcher efficiency logistic regression models for bats from the Black Oak Getty Wind Project search efficiency trials. Selected models are denoted by an asterisk in the 'DeltaAlCc' column.

Covariate	AICc	DeltaAICc
Null	106.728	0.0*
-Null + PlotSearchType	108.134	1.406
-Null + Season	109.010	2.282
-Null + Season + PlotSearchType	110.606	3.878
-Null + Season + PlotSearchType + Season:PlotSearchType	114.054	7.325

Table 7c. Searcher efficiency logistic regression models for small birds from the Black Oak Getty Wind Project search efficiency trials. Selected models are denoted by an asterisk in the 'DeltaAICc' column.

Covariate	AICc	DeltaAICc
Null	71.210	0.0*
-Null + PlotSearchType	72.822	1.612
-Null + Season	73.508	2.298
-Null + Season + PlotSearchType	75.224	4.014
-Null + Season + PlotSearchType + Season:PlotSearchType	79.579	8.369

Table 7d. Searcher efficiency logistic regression models for large birds from the Black Oak Getty Wind Project search efficiency trials. Selected models are denoted by an asterisk in the 'DeltaAlCc' column.

Covariate	AICc	DeltaAICc
Null	52.752	0.0*
-Null + PlotSearchType	53.521	0.770
-Null + Season	54.593	1.841
-Null + Season + PlotSearchType	55.094	2.343
-Null + Season + PlotSearchType + Season:PlotSearchType	57.684	4.933

Table 7e. Searcher efficiency logistic regression models for raptors from the Black Oak Getty Wind Project search efficiency trials. Selected models are denoted by an asterisk in the 'DeltaAlCc' column.

Covariate	AICc	DeltaAICc
Null	10.644	0.0*
-Null + Season	13.593	2.949

Carcass Persistence Trials

One hundred sixty-eight carcasses were placed in the Project area for carcass persistence trials (Table 8). At cleared plots, two trials began in April, one in May, two in June, one in July, three in August, and two in September. At road and pad turbines, one trial was started in April, two in May, one each in June and July, and three in August and September. Models were fit for combinations of distribution (i.e., Weibull, exponential, loglogistic, and lognormal) and explanatory variable (i.e., season, or none) and AICc values were used to determine the best model for predicted carcass removal times. No covariate (intercept-only model) consistently had the lowest AICc value for small birds and large birds but for bats and raptors the seasonal covariate had the lowest AICc value; therefore, carcass removal rates were calculated based on size class and then based on season for bats and raptors (Table 9).

Mean removal time, (\bar{t}) , for the Shoenfeld estimator was calculated using a survival regression model with an exponential distribution (the Shoenfeld model assumes exponentially distributed persistence times; Shoenfeld 2004). Due to the exponential model being the top distribution for bats and raptors, the persistence time was the same for Shoenfeld and Huso. Large birds had

seasonality come out as the top model when the exponential distribution was used (Appendix C).

Forty-eight large birds, 45 small birds, 51 mice/bats, and 24 raptors were used as trial carcasses. By Day 10 of the removal trials, roughly 35% of bat and small bird carcasses remained where they were placed and roughly 23% of large bird carcasses remained where they were placed; 100% of raptor carcasses remained where they were placed by Day 10 (Figures 7a and 7b). By Day 20, roughly 25% of small bird and bat carcasses and roughly 18% of large bird carcasses remained where they were placed where they were placed of raptor carcasses remained were placed (Figure 7a); roughly 90% of raptor carcasses remained where they were placed out to Day 40 (Figure 7b.

Mean removal time was 3.9 days for large birds and 5.4 days for small birds (Table 9). As Appendix B shows, there was no significant seasonal difference in persistence time for large birds and small birds, but there was a significant seasonal difference for bats and raptors (Appendix B1, B2, B4, and B5). Mean removal time for bats was 18.0, 22.5, and 8.6 days in spring, summer, and fall respectively (Table 9). Mean removal time for raptors was 901.0, 91.5, and 475.0 days in spring, summer, and fall respectively (Table 9).

Size Class	Season	# Placed
	Spring	16
Pot	Summer	12
Bat	Fall	23
	Overall	51
	Spring	12
Small Dird	Summer	10
Small Bird	Fall	23
	Overall	45
	Spring	12
Lorgo Dind	Summer	12
Large Bird	Fall	24
	Overall	48
	Spring	8
Denter	Summer	8
Raptor	Fall	8
	Overall	24

Table 8. Carcasses placed for persistence trials by size class and
season at the Black Oak Wind Project.

Figure 7a. Persistence of non-raptor bird and bat carcasses though 30-day carcass persistence trials at the Black Oak Getty Wind Project from April 4 to November 1, 2018.

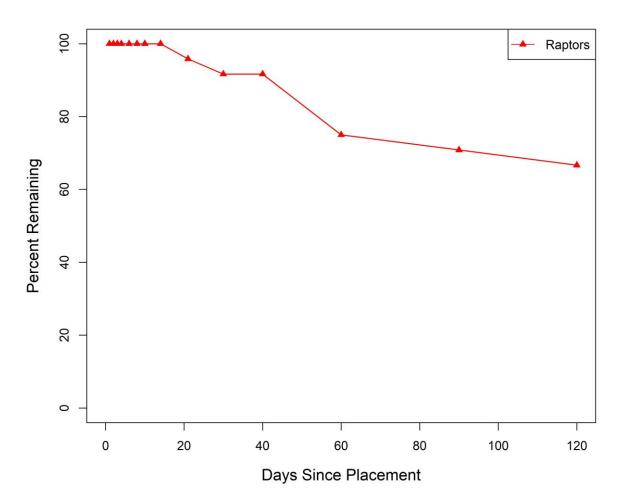


Figure 7b. Persistence of raptor carcasses though 120-day carcass persistence trials at the Black Oak Getty Wind Project from April 4 to November 1, 2018.

Table 9. Carcass persistence top models with covariates	, distributions, and model parameters for
the Black Oak Getty Wind Project.	

Size	Season	Distribution	predVals	Predicted Values	Scale
Bat	spring	Exponential	All	17.956	1.0
Bat	summer	Exponential	All	22.457	1.0
Bat	fall	Exponential	All	8.576	1.0
Small Bird	All	Lognormal	All	5.411	1.580
Large Bird	All	Lognormal	3.8511	3.851	1.609
Raptors	spring	Exponential	All	900.991	1.0
Raptors	summer	Exponential	All	91.468	1.0
Raptors	fall	Exponential	All	474.982	1.0

Adjustment for Searched Area Results

Fatality data for small birds and bats were used to fit the density model separately for each size class. Fatality data for bats from the control group and the treatment group was analyzed separately. The chosen model distribution and parameter estimates are presented in Appendix E1, E2, and E3. Full DWP results are available in Appendix B. The best-fit distribution for bats in the control group was the Weibull distribution and the best-fit distribution for bats in the treatment group was the Gompertz distribution. The estimated DWP for bats on roads and pads was 0.18 for the control group and the treatment group; that is, road and pad searches captured an average of 18.0% of potential bat fatalities at both the control and treatment group turbines. The DWP for cleared plots was 0.93 for the control group and 0.98 for the treatment group, or 93-98% of potential bat carcasses were expected to fall on cleared plots.

The best-fit distribution for small birds was the gamma distribution. The estimated DWP for small birds on roads and pads was 0.09; that is, road and pad searches captured an average of 9.0% of potential small bird fatalities. The DWP for cleared plots was 0.78, or 78% of potential small bird carcasses were expected to fall on cleared plots. Small birds were found quite often at distances greater than 20 m, and as a result the road and pad area correction is quite large when compared to bats.

Large birds were modeled using Hull and Muir. The estimated DWP for large birds on roads and pads was 0.25; that is, road and pad searches captured an average of 25% of potential large bird fatalities. The DWP for cleared plots was 0.81, or 81% of potential large bird carcasses were expected to fall on cleared plots.

Adjusted Fatality Estimates

Estimates of mortality, standard errors, and confidence intervals were calculated for bats, small birds, large birds, and raptors using both the Shoenfeld and Huso estimators. Fatality estimates were adjusted based on the adjustments for carcass persistence, searcher efficiency, and the area adjustment values. Fatality estimates were calculated separately for the treatment and control groups for bats to assess the efficacy of the modified curtailment program implemented in 2018. Tables 10a and 10b provide the estimated fatality rates (rates/turbine/study period and rates/MW/study period), along with the 90% CI using Huso estimators for cleared plot and road and pad searches for small birds, large birds, and raptors. Tables 10c and 10d provide the adjusted fatality rates and 90% CI using the Huso estimators for cleared plot and road and pad searches for both the treatment and control groups for bats. Tables 10e and 10f provide the estimated fatality rates for cleared plot and road and pad searches using Shoenfeld estimators for small birds, large birds, and raptors. Tables 10g and 10h show the fatality rates for both search types for the treatment and control groups for bats. As noted above, due to a programming error the treatment turbines received no treatment starting on October 1 while the control turbines were feathered below manufacturer's cut-in speed (3.0 m/s) in this period. However, because only 10 bats were found in the month of October, they were distributed relatively evenly between treatment and control groups, and very little curtailment treatment occurred in this period due to the temperatures being below 10 degrees C at night (see below), it was determined that the treatment was not a significant factor on fatality rates in October and

the bats found in October were kept with the turbines they were found with and not "switched" to a different control or treatment group. Appendices B (Huso estimator) and C (Shoenfeld estimator) contain more details concerning the analyses, including correction factors. Overall, fatality estimates for birds and bats were similar between the two estimators (comparing Table 10a to Table 10e, Table 10b to Table 10f, Table 10c to Table 10g, and Table 10d to Table 10h).

Estimates for small birds, large birds, and raptors were roughly similar between the two search types and estimators. Small bird mortality estimates ranged from 3.11 birds/MW/study period at road and pads (Table 10b) to 4.96 birds/MW/study period at cleared plots (Table 10a) using the Huso estimator. Large bird fatality estimates ranged between 0.25 birds/MW/study period at cleared plots (Table 10a) and 0.38 birds/MW/study period at road and pads (Table 10b) using the Huso estimator. No raptors were documented at cleared plot turbines in the 2018 PCM study, so the fatality rate per turbine and per MW was estimated at zero. One raptor carcass was found at a road/pad turbine resulting in an estimated fatality rate of 0.06 raptors/MW/study period for both estimators (Tables 10b and 10f).

Overall, estimates for bat fatalities were roughly similar between the two search types and estimators (Tables 10c, 10d, 10g, and 10h). Estimated bat fatalities were higher for the control group than the treatment group for both the Huso estimator and the Shoenfeld estimator. Fatality estimates at cleared plots using the Huso estimator were 34.97 bats/MW/study period (90% CI of 1.82 - 83.02) for the control group and 26.67 bats/MW/study period (90% CI of 0.44 - 55.21) for the treatment group (Table 10c). Fatality estimates at road/pads using the Huso estimator were 37.59 bats/MW/study period (90% CI of 28.06 - 53.72) for the control group and 21.00 bats/MW/study period (90% CI of 12.90 - 26.64) for the treatment group (Table 10d).

	Estimate #/turbine (90% CI)	Estimate #/MW (90% CI)	
Small Birds	9.93 (2.15 – 19.15)	4.96 (1.08 – 9.58)	
Large Birds	0.50 (0 - 1.47)	0.25(0-0.73)	
Raptors	0	0	
All Birds	10.43 (2.15 – 19.87)	5.22 (1.08 – 9.93)	

Table 10a. Overall adjusted bird mortality estimates using the Huso estimator for cleared plot surveys at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

Note: CI = Confidence Interval, MW = megawatt

Table 10b. Overall adjusted bird mortality estimates using the Huso estimator for road/pad surveys at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

	Estimate #/turbine (90% Cl)	Estimate #/MW (90% CI)
Small Birds	6.23 (3.19 – 9.83)	3.11 (1.59 – 4.91)
Large Birds	0.76 (0.22 - 1.58)	0.38 (0.11 – 0.79)
Raptors	0.12	0.06
All Birds	7.00 (3.89 – 10.93)	3.50 (1.95 – 5.46)

Note: CI = Confidence Interval, MW = megawatt

Table 10c. Overall adjusted bat mortality estimates using the Huso estimator for cleared plot surveys at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

	Turbine Treatment	Estimate #/turbine	Estimate #/MW
	Group	(90% CI)	(90% CI)
Bat	Control	69.93 (3.64 – 166.03)	34.97 (1.82 – 83.02)
	Treatment	53.34 (0.90 – 110.41)	26.67 (0.44 – 55.21)

Note: CI = Confidence Interval, MW = megawatt

Table 10d. Overall adjusted bat mortality estimates using the Huso estimator for road/pad plot surveys at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

	Turbine Treatment	Estimate #/turbine	Estimate #/MW
	Group	(90% CI)	(90% CI)
Bat	Control	75.19 (56.13 – 107.44)	37.59 (28.06 – 53.72)
	Treatment	42.00 (25.80 – 53.28)	21.00 (12.90 – 26.64)

Note: CI = Confidence Interval, MW = megawatt

		1, 2010.
	Estimate #/turbine (90% CI)	Estimate #/MW (90% CI)
Small Birds	7.43 (1.96 – 14.09)	3.71 (0.98 – 7.04)
Large Birds	0.70 (0 – 1.41)	0.35 (0 – 0.71)
Raptors	0	0
All Birds	8.14 (2.31 – 15.11)	4.07 (1.15 – 7.55)

Table	10e.	Overall	adjusted	bird	mortality	estimates	using	the
	Shoe	enfeld est	timator for	clear	ed plot su	rveys at the	Black	Oak
	Getty	y Wind Pi	roject, Apri	il 4 to	November	1, 2018.		

Note: CI = Confidence Interval, MW = megawatt

Table10f.OveralladjustedbirdmortalityestimatesusingtheShoenfeldestimatorforroad/padsurveysattheBlackOakGettyWindProject,April 4 toNovember 1, 2018.

	Estimate #/turbine (90% Cl)	Estimate #/MW (90% CI)
Small Birds	4.57 (2.62 – 6.88)	2.28 (1.31 – 3.44)
Large Birds	0.53 (0.14 – 0.97)	0.27 (0.07 - 0.48)
Raptors	0.12	0.06
All Birds	5.10 (3.03 – 7.54)	2.55 (1.51 – 3.77)

Note: CI = Confidence Interval, MW = megawatt

Table 10g. Overall adjusted bat mortality estimates using the Shoenfeld estimator for cleared plot surveys at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

	Turbine Treatment Group	Estimate #/turbine (90% Cl)	Estimate #/MW (90% CI)
Bat	Control	58.49 (0.75 – 127.51)	29.24 (0.38 – 63.76)
	Treatment	44.44 (0.71 – 101.88)	22.22 (0.36 – 50.94)

Note: CI = Confidence Interval, MW = megawatt

Table 10h. Overall adjusted bat mortality estimates using the Shoenfeld estimator for road/pad plot surveys at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

	Turbine Treatment Group	Estimate #/turbine (90% CI)	Estimate #/MW (90% CI)
Bat	Control	59.20 (41.09 - 78.97)	29.60 (20.54 – 39.49)
lu	Treatment	32.64 (22.39 – 43.42)	16.32 (11.20 – 21.71)

Note: CI = Confidence Interval, MW = megawatt

Comparison of Curtailment and Fatalities at Treatment and Control Turbines

The SCADA data at the treatment and control turbines was examined in order to assess how much curtailment occurred at the Project during the 2018 PCM study period. Because the curtailment program involved feathering the blades of the treatment turbines below certain wind speeds (3.0 m/s April 1 – June 30 and October, and 3.5 m/s from July 1 – September 30),

periods of low rotor speed (defined as less than two rotations per minute) were evaluated and compared between treatment and control groups. Treatment turbines are feathered below the proscribed cut-in wind speeds when the temperature thresholds are met, prohibiting the turbines from spinning faster than two rotations per minute, and both treatment and control turbines may have low rotor speed periods due to low wind speeds or other conditions unrelated to the curtailment program. Figure 8 shows the cumulative proportion of 10 minute time intervals that had rotor speed measurements lower than two rotations per minute, separated by control turbines and treatment turbines. Treatment turbines are expected to have a higher cumulative proportion of low rotor speed intervals compared to control turbines because of the curtailment program, and Figure 8 shows this in how the treatment line diverges from the control line starting in June, with larger divergences in late July, August and early September. Note that in October, when the turbines undergoing the curtailment program were switched due to a programming error, there is very little difference in the cumulative amount of time when rotor speed was low between the two groups, indicating that the curtailment program was enacted a negligible amount of time during this month.

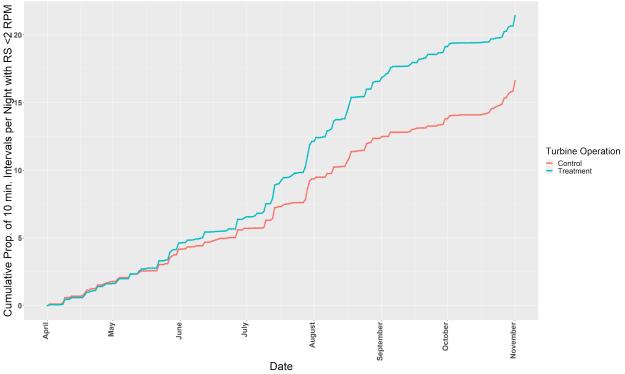


Figure 8. Cumulative Proportion of 10 Minute Intervals with Low Rotor Speed.

Figure 9 shows the proportion of 10 minute intervals per night for control and treatment turbines that had temperature measurements greater than 10 degrees C. As described above, the treatment turbines were not curtailed when temperatures were below 10 degrees C, even if the wind speed threshold was met. Each point on Figure 9 represents the proportion of 10 minute intervals that were above 10 degrees C across all turbines in each group (treatment points are orange, control points are blue) for each night. Lines were fitted with a Loess (short for "Local Regression") regression in R. Overall, Figure 9 shows that the temperature thresholds for the

curtailment program were not met (i.e., temperatures were below 10 degrees C at night) at the majority of turbines through April, but that starting in mid-May the majority of the nights met the temperature threshold through most of September. There was a period of time in mid-August when some nights had some 10 minute intervals when the temperature was below 10 degrees, but only four nights in August had less than 50 percent of the time not meeting the temperature threshold for curtailment, and the remaining nights in August had a majority of the 10 minute intervals meeting the temperature threshold. Starting in late September, the temperature thresholds were not met for the majority of nights through the end of the study period (Figure 9).

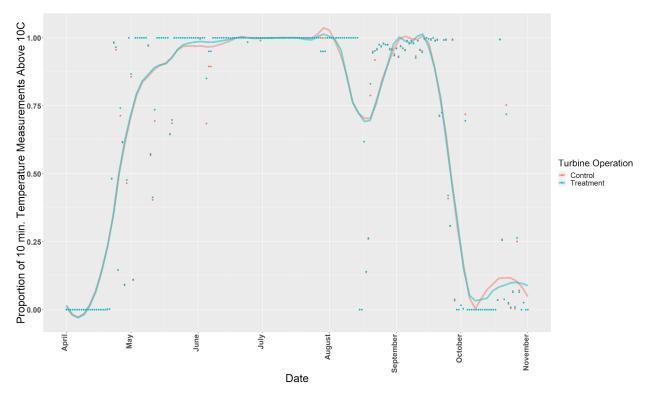


Figure 9. Proportion of 10 Minute Intervals with Temperatures Above 10 Degrees Celsius.

Figure 10 shows the 10 minute intervals with low rotor speed, along with documented bat fatalities, compared between treatment and control groups. The green lines in these panels are the proportion of 10 minute intervals per night where turbines demonstrated low rotor speeds, and the primary difference between the green lines on the left (control) versus the right (treatment) is active curtailment, particularly during the time when most of the bat fatalities occurred, because as discussed above and shown on Figure 9, the temperature threshold was met the majority of the study period from mid-May through late September. The black dots are the total fatalities found on those dates at each turbine group (control, treatment). All days where a carcass search did not occur have been assigned to 0 carcasses for plotting purposes. The purple line is a Loess regression line fitted to the fatality data. The comparison of treatment and control turbines in Figure 10 shows the overall effect of the curtailment program: namely that the increased amount of time with low rotor speed that occurred under the curtailment program, particularly in late July, August and early September, corresponded to a lower amount of bat fatality.

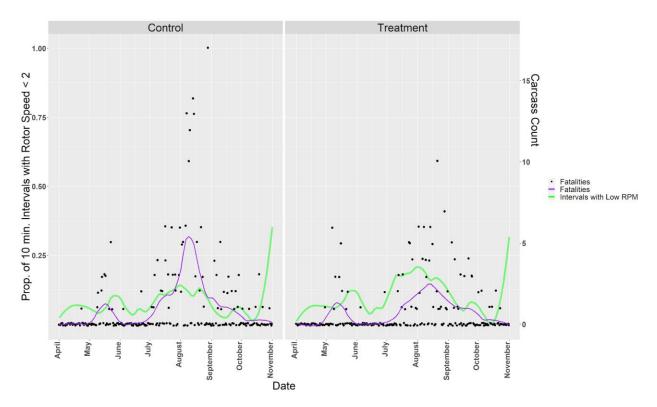


Figure 10. Proportion of 10 Minute Intervals with Low Rotor Speed in Both Treatment and Control Turbines, with Bat Fatalities

DISCUSSION

The primary objective of the 2018 PCM survey was to estimate the overall bird and bat fatality rates at the Project, and to assess the efficacy of the modified curtailment program in reducing bat fatalities.

One raptor was found at a road and pad searched turbine during the 2018 study (no raptors were found at cleared plot surveys). The relatively low raptor fatality rate in 2018 (0 to 0.06 raptors/MW/study period, using the Huso estimator) is similar to the low raptor fatality rate (0 raptors/MW/study period) documented in the 2017 survey (Pickle et al. 2018). The 2018 adjusted all bird fatality rate estimate at the cleared plot turbines of 5.22 birds/MW/study period (90% CI of 1.08 - 9.93, using the Huso estimator) is within the range of other facilities in the Midwest and Minnesota (Appendix D), and is similar to the all bird fatality rate estimate documented at cleared plots in 2017 (4.37 birds/MW/study period; Pickle et al. 2018). Similarly, the all bird fatality rate estimate at the road and pad searches (3.50 birds/MW/study period with 90% CI of 1.95 - 5.46 using the Huso estimator) is also within the range of other facilities in Minnesota and the Midwest (Appendix D) and is lower than the rate documented at road and pad searched turbines in 2017 (8.15 birds/MW/study period). It should be noted that similar to 2017, the majority of the all bird fatality estimates for both search types was driven by the small bird estimates (4.96 birds/MW/study period with 90% CI of 1.08 - 9.58 for cleared plot searches and 3.11 birds/MW/study period with 90% CI of 1.59 - 4.91 for the road and pad searches using the Huso estimator). The large bird fatality estimate is relatively low and similar among search types (ranging between 0.25 and 0.38 birds/MW/study period using the Huso estimator), and the small birds documented as fatalities were spread among multiple species that are common in the region. American white pelican (a state species of Special Concern) were found as fatalities at the Project in both 2017 and 2018. In 2017, one American white pelican was found at turbine D39 on June 15; in 2018, an American white pelican was found at Turbine D36 on June 27 and a second pelican was found at Turbine B16 on July 9. Although June and July appear to potentially be higher risk time periods, there does not appear to be a specific turbine that is higher risk to pelicans based on these two years of data, and relatively low numbers of fatalities have been found each year compared to the numbers of pelicans that have been observed incidentally and during pre-construction use surveys to move through the Project. Therefore, significant impacts to particular avian species populations from the Project are not expected.

The main objective for the second year of monitoring was to assess the efficacy of the modified curtailment program to reduce bat fatalities at the Project. Estimated bat fatalities were higher for the control group than the treatment group for both search types, indicating that the additional feathering regime does reduce bat fatalities over no treatment. Fatality estimates at cleared plots using the Huso estimator were 34.97 bats/MW/study period (90% CI of 1.82 – 83.02) for the control group and 26.67 bats/MW/study period (90% CI of 0.44-55.21) for the treatment group (Table 10c). Fatality estimates at road/pads using the Huso estimator were 37.59 bats/MW/study period (90% CI of 28.06 – 53.72) for the control group and 21.00 bats/MW/study period (90% CI of 12.90 – 26.64) for the treatment group (Table 10d). The 90%

Cls for the treatment and control groups overlapped for cleared plot searches, indicating some uncertainty as to the level of effectiveness of the additional feathering. The cleared plot searches had confidence intervals that overlapped, likely due to the low sample size of cleared plot turbines (two turbines) searched in each group. However, no overlap of 90% Cls occurred for the road and pad searches, supporting the conclusion that the additional feathering is reducing the fatality rate for bats. These results are generally consistent with the results of other studies, which show that raising the cut-in speed (and feathering below the cut-in speed) reduces bat fatality rates at other projects (Arnett et al. 2013). An Indiana study showed that feathering turbines below 3.5 m/s reduced bat mortality by approximately 35% compared to no feathering (Good et al. 2012).

Bat fatality estimates in 2018 were generally similar to or higher than those reported in 2017, even for the treatment turbines. Using the Huso estimator, the cleared plot estimate in 2017 was 13.03 bats/MW/study period (90% CI of 10.46 - 16.15) (Pickle et al. 2018), compared to 26.67 bats/MW/study period for the 2018 treatment turbines searched as cleared plots and 34.97 bats/MW/study period for the 2018 control turbines searched as cleared plots. Using the Huso estimator, the road and pad estimate in 2017 was 29.88 bats/MW/study period (90% CI of 17.81 - 49.10) (Pickle et al. 2018), compared to 21.00 (90% CI of 0.44 - 55.21) bats/MW/study period for the 2018 control turbines searched as road and 37.59 (90% CI of 28.06 - 53.72) bats/MW/study period for the 2018 control turbines searched as road and pad. Therefore, although the 2018 treatment does appear to reduce bat fatality rates compared to no treatment (no feathering at any point), it appears possible that the overall bat fatality rate at the Project was higher in 2018 than in 2017.

As noted above, comparisons between fatality rates documented at other projects should be done gualitatively as different survey designs were likely used. All bird and raptor fatality rates documented at the Project in 2018 are within the range of others documented in both Minnesota and the Midwest Region (Appendix D1 and D2). Bat fatality estimates for both search types and treatment groups in 2018 are relatively high compared to other publicly available wind facilities in Minnesota (Appendix D3). When looking at publicly available data from projects in the Midwest, the Project's bat fatality estimates are still relatively high, although the bat fatality levels documented in 2017 and 2018 at the Project are more within the range of what has been found at other wind projects, particularly more recent studies. As Appendix D3 shows, the majority of the projects with fatality estimates of less than 5.0 bats/MW/study period occurred prior to 2005, while the majority of the publicly available studies that occurred after 2012 had estimated bat fatalities of greater than 10.0 bats/MW/study period; there are seven projects (four in Iowa, two in Wisconsin and one in Indiana) with bat fatality estimates of more than 20 bats/MW/study period. The reasons for this apparent trend of increasing bat fatality/MW associated with more recent studies are not known, but are likely related to one or more of the following: changing turbine technology (such as lowering the manufacturer's cut-in wind speed) potentially affecting bat fatality, updates to the statistical methodology used to estimate fatality rates, and changes to survey methodology (length of survey period, approach to bias trials, etc.) affecting how many bats are found.

Through coordination with Black Oak Wind, LLC, the DNR and the Department of Commerce, WEST is planning to conduct a third year of fatality monitoring at the Project in 2019. The third year of surveys is proposed to generally follow the same methodology as the second year, with the following changes in study design for the third year of PCM:

- All turbines will be searched as road and pad searches (no cleared plots)
 - As applicable the area correction/distribution data from road and pad analysis from Year 2 (treatment turbines) will be used to help inform the area correction for the third year
- All turbines will be feathered up to the manufacturer's cut-in speed of 3.0 m/s between April 1 and June 30
- All turbines will be feathered up to an adjusted cut-in speed of 3.5 m/s between July 1 and October 31

The main objective of the third year of survey is to estimate the fatality rate of bats at the Project, particularly to see if the modified curtailment program studied in Year 2 that will be in place at all turbines in Year 3 continues to reduce the number of bat fatalities at the Project.

REFERENCES

- ARCADIS U.S., Inc. 2013. Fall 2012 and Spring 2013 Avian and Bat Post-Construction Mortality Monitoring Report: Pioneer Trail Wind Farm. Prepared for E.On Climate & Renewables, North America. Prepared by ARCADIS U.S., Inc., Milwaukee, Wisconsin. August 2013.
- Arnett, E. B., G. D. Johnson, W. P. Erickson, and C. D. Hein. 2013. A Synthesis of Operational Mitigation Studies to Reduce Bat Fatalities at Wind Energy Facilities in North America. A report submitted to the National Renewable Energy Laboratory (NREL), Golden Colorado. Bat Conservation International (BCI), Austin, Texas. March 2013.
- Bay, K., E. Baumgartner, J. Studyvin, and R. McDonald. 2017a. 2015-2016 Post-Construction Fatality Monitoring: Bat Focused Surveys: MidAmerican Energy Company, Iowa Wind Energy Portfolio: Adams, Century, Charles City, Highland, Intrepid, Laurel, Lundgren, Macksburg, Pomeroy, Rolling Hills, Vienna I, Vienna II, and Wellsburg, November 2015 – November 2016. Prepared for MidAmerican Energy Company, Urbandale, Iowa. Prepared by WEST, Cheyenne, Wyoming.
- Bay, K., E. Baumgartner, J. Studyvin, and A. Hoeing. 2017b. 2015-2017 Post-construction Fatality Monitoring: Eagle-focused Carcass Searches. MidAmerican Energy Company Iowa Wind Energy Portfolio: Adams, Century, Charles City, Highland, Intrepid, Laurel, Pomeroy, Vienna I, Vienna II, and Wellsburg. Final Report. November 2015-March 2017. Prepared for MidAmerican Energy Company, Prepared by WEST, Cheyenne, Wyoming.
- BHE Environmental, Inc. (BHE). 2008. Investigations of Bat Activity and Bat Species Richness at the Proposed Cedar Ridge Wind Farm in Fond Du Lac County, Wisconsin. Interim Report prepared for Wisconsin Power and Light.
- BHE Environmental, Inc. (BHE). 2010. Post-Construction Bird and Bat Mortality Study: Cedar Ridge Wind Farm, Fond Du Lac County, Wisconsin. Interim Report prepared for Wisconsin Power and Light, Madison, Wisconsin. Prepared by BHE Environmental, Inc. Cincinnati, Ohio. February 2010.
- BHE Environmental, Inc. (BHE). 2011. Post-Construction Bird and Bat Mortality Study: Cedar Ridge Wind Farm, Fond Du Lac County, Wisconsin. Final Report. Prepared for Wisconsin Power and Light, Madison, Wisconsin. Prepared by BHE Environmental, Inc. Cincinnati, Ohio. February 2011.
- Burnham, K. P. and G. C. White. 2002. Evaluation of Some Random Effects Methodology Applicable to Bird Ringing Data. Journal of Applied Statistics 29(1-4): 245-264.
- Burnham, K. P. and D. R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd Edition. Springer, New York, New York.
- Chodachek, K., C. Derby, M. Sonnenberg, and T. Thorn. 2012. Post-Construction Fatality Surveys for the Pioneer Prairie Wind Farm I LLC Phase II, Mitchell County, Iowa: April 4, 2011 – March 31, 2012.
 Prepared for EDP Renewables, North America LLC, Houston, Texas. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. August 27, 2012.
- Chodachek, K., C. Derby, K. Adachi, and T. Thorn. 2014. Post-Construction Fatality Surveys for the Pioneer Prairie II Wind Energy Facility, Mitchell County, Iowa. Final Report: July 1 - October 18, 2013. Prepared for EDP Renewables, North America LLC, Houston, Texas. Prepared by Western EcoSystems Technology Inc. (WEST), Bismarck, North Dakota. April 2014.

- Chodachek, K., K. Adachi, and G. DiDonato. 2015. Post Construction Fatality Surveys for the Prairie Rose Wind Energy Facility, Rock County, Minnesota. Final Report: April 15 to June 13, 2014, and August 15 to October 29, 2014. Prepared for Enel Green Power, North America, San Diego, California. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. January 23, 2015.
- Derby, C., A. Dahl, W. Erickson, K. Bay, and J. Hoban. 2007. Post-Construction Monitoring Report for Avian and Bat Mortality at the NPPD Ainsworth Wind Farm. Unpublished report prepared by Western EcoSystems Technology, Inc. (WEST), Cheyenne, Wyoming, for the Nebraska Public Power District.
- Derby, C., A. Dahl, K. Taylor, K. Bay, and K. Seginak. 2008. Wildlife Baseline Studies for the Wessington Springs Wind Resource Area, Jerauld County, South Dakota, March 2007-November 2007. Technical report prepared for Power Engineers, Inc. and Babcock and Brown Renewable Holdings, Inc. by Western EcoSystems Technology, Inc. (WEST).
- Derby, C., K. Bay, and J. Ritzert. 2009. Bird Use Monitoring, Grand Ridge Wind Resource Area, La Salle County, Illinois. Year One Final Report, March 2008 - February 2009. Prepared for Grand Ridge Energy LLC, Chicago, Illinois. Prepared by Western EcoSystems Technology, Inc. (WEST), Cheyenne, Wyoming. July 29, 2009.
- Derby, C., J. Ritzert, and K. Bay. 2010a. Bird and Bat Fatality Study, Grand Ridge Wind Resource Area, Lasalle County, Illinois. January 2009 - January 2010. Prepared for Grand Ridge Energy LLC, Chicago, Illinois. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. July 13, 2010. Revised January 2011.
- Derby, C., K. Chodachek, and K. Bay. 2010b. Post-Construction Bat and Bird Fatality Study Crystal Lake II Wind Energy Center, Hancock and Winnebago Counties, Iowa. Final Report: April 2009-October 2009. Prepared for NextEra Energy Resources, Juno Beach, Florida. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. June 2, 2010.
- Derby, C., A. Dahl, A. Merrill, and K. Bay. 2010d. 2009 Post-Construction Monitoring Results for the Wessington Springs Wind-Energy Facility, South Dakota. Final Report. Prepared for Wessington Wind Energy Center, LLC, Juno Beach, Florida. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. August 19, 2010.
- Derby, C., K. Chodachek, K. Bay, and A. Merrill. 2010e. Post-Construction Fatality Survey for the Buffalo Ridge I Wind Project. May 2009 - May 2010. Prepared for Iberdrola Renewables, Inc., Portland, Oregon. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota.
- Derby, C., K. Chodachek, K. Bay, and A. Merrill. 2010f. Post-Construction Fatality Surveys for the Elm Creek Wind Project: March 2009- February 2010. Prepared for Iberdrola Renewables, Inc. (IRI), Portland, Oregon. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota.
- Derby, C., K. Chodachek, K. Bay, and A. Merrill. 2010g. Post-Construction Fatality Surveys for the Moraine II Wind Project: March - December 2009. Prepared for Iberdrola Renewables, Inc. (IRI), Portland, Oregon. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota.
- Derby, C., K. Chodachek, K. Bay, and A. Merrill. 2010h. Post-Construction Fatality Surveys for the Winnebago Wind Project: March 2009- February 2010. Prepared for Iberdrola Renewables, Inc. (IRI), Portland, Oregon. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota.

- Derby, C., A. Dahl, K. Bay, and L. McManus. 2011a. 2010 Post-Construction Monitoring Results for the Wessington Springs Wind Energy Facility, South Dakota. Final Report: March 9 – November 16, 2010. Prepared for Wessington Wind Energy Center, LLC, Juno Beach, Florida. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. November 22, 2011.
- Derby, C., K. Chodachek, K. Bay, and S. Nomani. 2011b. Post-Construction Fatality Surveys for the Barton I and II Wind Project: Iri. March 2010 - February 2011. Prepared for Iberdrola Renewables, Inc. (IRI), Portland, Oregon. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. Version: September 28, 2011.
- Derby, C., K. Chodachek, K. Bay, and S. Nomani. 2011c. Post-Construction Fatality Surveys for the Rugby Wind Project: Iberdrola Renewables, Inc. March 2010 - March 2011. Prepared for Iberdrola Renewables, Inc. (IRI), Portland, Oregon. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. Version: October 14, 2011.
- Derby, C., K. Chodachek, T. Thorn, K. Bay, and S. Nomani. 2011d. Post-Construction Fatality Surveys for the PrairieWinds ND1 Wind Facility, Basin Electric Power Cooperative, March - November 2010.
 Prepared for Basin Electric Power Cooperative, Bismarck, North Dakota. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. August 2, 2011.
- Derby, C., K. Chodachek, and M. Sonnenberg. 2012a. Post-Construction Casualty Surveys for the Buffalo Ridge II Wind Project. Iberdrola Renewables: March 2011- February 2012. Prepared for Iberdrola Renewables, LLC, Portland, Oregon. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. August 31, 2012.
- Derby, C., K. Chodachek, and M. Sonnenberg. 2012b. Post-Construction Fatality Surveys for the Elm Creek II Wind Project. Iberdrola Renewables: March 2011-February 2012. Prepared for Iberdrola Renewables, LLC, Portland, Oregon. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. October 8, 2012.
- Derby, C., A. Dahl, and A. Merrill. 2012c. Post-Construction Monitoring Results for the PrairieWinds SD1 Wind Energy Facility, South Dakota. Final Report: March 2011 - February 2012. Prepared for Basin Electric Power Cooperative, Bismarck, North Dakota. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. September 27, 2012.
- Derby, C., K. Chodachek, T. Thorn, and A. Merrill. 2012d. Post-Construction Surveys for the PrairieWinds ND1 (2011) Wind Facility Basin Electric Power Cooperative: March - October 2011. Prepared for Basin Electric Power Cooperative, Bismarck, North Dakota. Prepared by Western Ecosystems Technology, Inc. (WEST), Bismarck, North Dakota. August 31, 2012.
- Derby, C., A. Dahl, and D. Fox. 2013a. Post-Construction Fatality Monitoring Studies for the PrairieWinds SD1 Wind Energy Facility, South Dakota. Final Report: March 2012 - February 2013. Prepared for Basin Electric Power Cooperative, Bismarck, North Dakota. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota. November 13, 2013.
- Derby, C., A. Dahl, and G. DiDonato. 2014. Post-Construction Fatality Monitoring Studies for the PrairieWinds SD1 Wind Energy Facility, South Dakota. Final Report: March 2013 - February 2014. Prepared for Basin Electric Power Cooperative, Bismarck, North Dakota. Prepared by Western EcoSystems Technology, Inc. (WEST), Bismarck, North Dakota.
- ESRI. 2013. World Topographic Map. ArcGIS Resource Center. ESRI, producers of ArcGIS software. ESRI, Redlands, California. Last modified June 6, 2013. Accessed November 2016.

- ESRI. 2017. World Street Map. ArcGIS Resource Center. ESRI, producers of ArcGIS software, Redlands, California. Data accessed January 2017. Information online: https://www.arcgis.com/home/item.html?id=3b93337983e9436f8db950e38a8629af
- Fagen Engineering, LLC. 2014. 2013 Avian and Bat Monitoring Annual Report: Big Blue Wind Farm, Blue Earth, Minnesota. Prepared for Big Blue Wind Farm. Prepared by Fagen Engineering, LLC. May 2014.
- Fagen Engineering, LLC. 2015. 2014 Avian and Bat Monitoring Annual Report: Big Blue Wind Farm, Blue Earth, Minnesota. Prepared for Big Blue Wind Farm. Prepared by Fagen Engineering, LLC.
- Golder Associates. 2010. Report on Fall Post-Construction Monitoring, Ripley Wind Power Project, Acciona Wind. Report Number 09-1126-0029. Submitted to Suncor Energy Products Inc., Calgary, Alberta, and Acciona Wind Energy Canada, Toronto, Ontario. February 2010.
- Good, R. E., W. P. Erickson, A. Merrill, S. Simon, K. Murray, K. Bay, and C. Fritchman. 2011. Bat Monitoring Studies at the Fowler Ridge Wind Energy Facility, Benton County, Indiana: April 13 -October 15, 2010. Prepared for Fowler Ridge Wind Farm. Prepared by Western EcoSystems Technology, Inc. (WEST), Cheyenne, Wyoming. January 28, 2011.
- Good, R. E., A. Merrill, S. Simon, K. Murray, and K. Bay. 2012. Bat Monitoring Studies at the Fowler Ridge Wind Farm, Benton County, Indiana: April 1 - October 31, 2011. Prepared for the Fowler Ridge Wind Farm. Prepared by Western EcoSystems Technology, Inc. (WEST), Bloomington, Indiana. January 31, 2012.
- Good, R. E., M. Sonnenburg, and S. Simon. 2013a. Bat Evaluation Monitoring Studies at the Fowler Ridge Wind Farm, Benton County, Indiana: August 1 - October 15, 2012. Prepared for the Fowler Ridge Wind Farm. Prepared by Western EcoSystems Technology, Inc. (WEST), Bloomington, Indiana. January 31, 2013.
- Good, R. E., M. L. Ritzert, and K. Adachi. 2013b. Post-Construction Monitoring at the Rail Splitter Wind Farm, Tazwell and Logan Counties, Illinois. Final Report: May 2012 - May 2013. Prepared for EDP Renewables, Houston, Texas. Prepared by Western EcoSystems Technology, Inc. (WEST), Bloomington, Indiana. October 22, 2013.
- Good, R. E., J. P. Ritzert, and K. Adachi. 2013c. Post-Construction Monitoring at the Top Crop Wind Farm, Gundy and Lasalle Counties, Illinois. Final Report: May 2012 - May 2013. Prepared for EDP Renewables, Houston, Texas. Prepared by Western EcoSystems Technology, Inc. (WEST), Bloomington, Indiana. October 22, 2013.
- Grodsky, S. M. and D. Drake. 2011. Assessing Bird and Bat Mortality at the Forward Energy Center. Final Report. Public Service Commission (PSC) of Wisconsin. PSC REF#:152052. Prepared for Forward Energy LLC. Prepared by Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin. August 2011.
- Gruver, J. 2008. Bat Acoustic Studies for the Blue Sky Green Field Wind Project, Fond Du Lac County, Wisconsin. Final Report: July 24 - October 29, 2007. Prepared for We Energies, Milwaukee, Wisconsin. Prepared by Western EcoSystems Technology, Inc. (WEST), Cheyenne, Wyoming. February 26, 2008.
- Gruver, J., M. Sonnenberg, K. Bay, and W. Erickson. 2009. Post-Construction Bat and Bird Fatality Study at the Blue Sky Green Field Wind Energy Center, Fond Du Lac County, Wisconsin July 21 October 31, 2008 and March 15 June 4, 2009. Unpublished report prepared by Western EcoSystems Technology, Inc. (WEST), Cheyenne, Wyoming. December 17, 2009.

- Hamer Environmental, L.P 2012. Acoustic Bat Studies for the Black Oak and Getty Wind Resource Area
 Final Report. Prepared for Geronimo Wind Energy, LLC. Prepared by Matt Reed, Joshua Stumpf, and Thomas Hamer. December 17, 2012.
- Homer, C. G., J. A. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. D. Herold, J. D. Wickham, and K. Megown. 2015. Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information. Photogrammetric Engineering and Remote Sensing 81(5): 345-354. Available online: http://www.mrlc.gov/nlcd2011.php
- Howe, R. W., W. Evans, and A. T. Wolf. 2002. Effects of Wind Turbines on Birds and Bats in Northeastern Wisconsin. Prepared by University of Wisconsin-Green Bay, for Wisconsin Public Service Corporation and Madison Gas and Electric Company, Madison, Wisconsin. November 21, 2002. 104 pp.
- Hull, C. L. and S. Muir. 2010. Search Areas for Monitoring Bird and Bat Carcasses at Wind Farms Using a Monte-Carlo Model. Australian Journal of Environmental Management 17(2): 77-87.
- Huso, M. 2011. An Estimator of Wildlife Fatality from Observed Carcasses. Environmetrics 22(3): 318-329. doi: 10.1002/env.1052.
- Huso, M., N. Som, and L. Ladd. 2015. Fatality Estimator User's Guide. US Geological Survey (USGS) Data Series 729. Version 1.1. December 2015. Available online at: http://pubs.usgs.gov/ds/729/pdf/ds729.pdf
- Huso, M. M. P. and D. Dalthorp. 2014. Accounting for Unsearched Areas in Estimating Wind Turbine-Caused Fatality. Journal of Wildlife Management 78(2): 347-358. doi: 10.1002/jwmg.663.
- Jacques Whitford Stantec Limited (Jacques Whitford). 2009. Ripley Wind Power Project Postconstruction Monitoring Report. Project No. 1037529.01. Report to Suncor Energy Products Inc., Calgary, Alberta, and Acciona Energy Products Inc., Calgary, Alberta. Prepared for the Ripley Wind Power Project Post-Construction Monitoring Program. Prepared by Jacques Whitford, Markham, Ontario. April 30, 2009.
- James, R. D. 2008. Erie Shores Wind Farm, Port Burwell, Ontario: Fieldwork Report for 2006 and 2007 During the First Two Years of Operation. Report to Environment Canada, Ontario Ministry of Natural Resources, Erie Shores Wind Farm LP - McQuarrie North American and AIM PowerGen Corporation. January 2008.
- Johnson, G. D., W. P. Erickson, M. D. Strickland, M. F. Shepherd, and D. A. Shepherd. 2000a. Final Report: Avian Monitoring Studies at the Buffalo Ridge Wind Resource Area, Minnesota: Results of a 4-Year Study. Final report prepared for Northern States Power Company, Minneapolis, Minnesota, by Western EcoSystems Technology, Inc. (WEST), Cheyenne, Wyoming. September 22, 2000. 212 pp.
- Johnson, G. D., M. K. Perlik, W. P. Erickson, and M. D. Strickland. 2004. Bat Activity, Composition and Collision Mortality at a Large Wind Plant in Minnesota. Wildlife Society Bulletin 32(4): 1278-1288.
- Johnson, G. D., M. Ritzert, S. Nomani, and K. Bay. 2010a. Bird and Bat Fatality Studies, Fowler Ridge I Wind-Energy Facility Benton County, Indiana. Unpublished report prepared for British Petroleum Wind Energy North America Inc. (BPWENA) by Western EcoSystems Technology, Inc. (WEST).

- Johnson, G. D., M. Ritzert, S. Nomani, and K. Bay. 2010b. Bird and Bat Fatality Studies, Fowler Ridge III Wind-Energy Facility, Benton County, Indiana. April 2 - June 10, 2009. Prepared for BP Wind Energy North America. Prepared by Western EcoSystems Technology, Inc. (WEST), Cheyenne, Wyoming.
- Kerlinger, P., J. Guarnaccia, R. Curry, and C. J. Vogel. 2014. Bird and Bat Fatality Study, Heritage Garden I Wind Farm, Delta County, Michigan: 2012-2014. Prepared for Heritage Sustainable Energy, LLC. Prepared by Curry and Kerlinger, LLC, McLean, Virginia. November 2014.
- Khokan, M. R., W. Bari, and J. A. Khan. 2013. Weighted Maximum Likelihood Approach for Robust Estimation: Weibull Model. Dhaka University Journal of Science 61(2): 153-156.
- Minnesota Department of Natural Resources (MN DNR). 2016. Minnesota's Wildlife Action Plan 2015-2025. Division of Ecological and Water Resources, Minnesota Department of Natural Resources. Available online at: http://www.dnr.state.mn.us/mnwap/index.html
- Minnesota Public Utilities Commission (MPUC). 2012. Lakefield Wind Project Avian and Bat Fatality Monitoring. MPUC Site Permit Quarterly Report and USFWS Special Purpose – Utility (Avian Take Monitoring) 30-Day Report: April 1 – September 30, 2012. USFWS Permit No: MB70161A-0; MDNR Permit No: 17930; MPUC Permit No: IP-6829/WS-09-1239, Permit Special Condition VII.B. October 15, 2012.
- Natural Resource Solutions Inc. (NRSI). 2011. Harrow Wind Farm 2010 Post-Construction Monitoring Report. Project No. 0953. Prepared for International Power Canada, Inc., Markham, Ontario. Prepared by NRSI. August 2011.
- North American Datum (NAD). 1983. Nad83 Geodetic Datum.
- Osborn, R. G., K. F. Higgins, C. D. Dieter, and R. E. Usgaard. 1996. Bat Collisions with Wind Turbines in Southwestern Minnesota. Bat Research News 37: 105-108.
- Osborn, R. G., K. F. Higgins, R. E. Usgaard, C. D. Dieter, and R. G. Neiger. 2000. Bird Mortality Associated with Wind Turbines at the Buffalo Ridge Wind Resource Area, Minnesota. American Midland Naturalist 143: 41-52.
- Pickle, J., J. Lombardi, J. Stucker, and M. Kauffman. 2018. 2017 Post-Construction Monitoring Study, Black Oak Getty Wind Project, Stearns County, Minnesota, March 15 – November 16, 2017. Prepared for Black Oak Wind, LLC. Prepared by Western EcoSystems Technology, Inc. (WEST), Golden Valley, Minnesota. March 13, 2018.
- Piorkowski, M. D. and T. J. O'Connell. 2010. Spatial Pattern of Summer Bat Mortality from Collisions with Wind Turbines in Mixed-Grass Prairie. American Midland Naturalist 164: 260-269.
- Shoenfeld, P. 2004. Suggestions Regarding Avian Mortality Extrapolation. Technical memo provided to FPL Energy. West Virginia Highlands Conservancy, HC70, Box 553, Davis, West Virginia, 26260. Available online at: https://www.nationalwind.org/wp-content/uploads/2013/05/Shoenfeld-2004-Suggestions-Regarding-Avian-Mortality-Extrapolation.pdf
- URS Corporation. 2010c. Final Marengo II Wind Project Year One Avian Mortality Monitoring Report. Prepared for PacifiCorp, Salt Lake City, Utah. Prepared by URS Corporation, Seattle, Washington. March 22, 2010.
- US Department of Agriculture (USDA). 2017. Imagery Programs National Agriculture Imagery Program (NAIP). USDA, Farm Service Agency (FSA), Aerial Photography Field Office (APFO), Salt Lake City, Utah. Accessed November 2017. Information online: https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/index

- US Geological Survey (USGS). 2017. USGS Topographic Maps. Last updated January 17, 2017. Homepage available at: https://nationalmap.gov/ustopo/index.html
- US Geological Survey (USGS) National Land Cover Database (NLCD). 2011. National Land Cover Database 2011 (NLCD 2011). Multi-Resolution Land Characteristics Consortium (MRLC), National Land Cover Database (NLCD). USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. Available online: http://www.mrlc.gov/nlcd2011.php; Legend: http://www.mrlc.gov/nlcd11_leg.php
- Watt, M. A. and D. Drake. 2011. Assessing Bat Use at the Forward Energy Center. Final Report. PSC REF#:152051. Public Service Commission of Wisconsin. Prepared for Forward Energy LLC. Prepared by Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin. August 2011.

Appendix A. Complete Fatality Listing for the Black Oak Getty Wind Project for Studies Conducted April 4 – November 1, 2018

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
4/11/2018	Horned lark	B16	53	Carcass search	Single search	Intact
4/19/2018	Unidentified owl	B13	20	Carcass search	Single search	Feather spot
4/23/2018	Brown creeper	C28	37	Carcass search	Single search	Intact
4/30/2018	Unidentified bat	B13	34	Carcass search	Single search	Intact
4/30/2018	Brown creeper	B20	47	Carcass search	Single search	Intact
5/7/2018	Silver-haired bat	B20	19	Carcass search	Single search	Intact
5/7/2018	Silver-haired bat	B20	47	Carcass search	Single search	Dismembered
5/7/2018	Silver-haired bat	B20	32	Carcass search	Single search	Intact
5/7/2018	Silver-haired bat	B20	19	Carcass search	Single search	Dismembered
5/7/2018	Sedge wren	B20	34	Carcass search	Single search	Intact
5/7/2018	Silver-haired bat	B20	27	Carcass search	Single search	Scavenged
5/9/2018	Silver-haired bat	C23	11	Carcass search	Single search	Intact
5/9/2018	Unidentified gull	D35	57	Carcass search	Single search	Dismembered
5/10/2018	House wren	B13	43	Carcass search	Single search	Intact
5/10/2018	Unidentified bat	B20	24	Carcass search	Single search	Dismembered
5/10/2018	Silver-haired bat	B20	24	Carcass search	Single search	Intact
5/10/2018	Silver-haired bat	C28	36	Carcass search	Single search	Intact
5/10/2018	Blackpoll warbler	C28	8	Carcass search	Single search	Dismembered
5/13/2018	Silver-haired bat	C22	7	Incidental	Single search	Intact
5/13/2018	Big brown bat	D39	1	Incidental	Single search	Intact
5/14/2018	Silver-haired bat	B13	7	Carcass search	Single search	Intact
5/14/2018	Silver-haired bat	B13	40	Carcass search	Single search	Intact
5/14/2018	Silver-haired bat	C25	19	Incidental	Single search	Intact
5/14/2018	Unidentified thrush	C28	52	Carcass search	Single search	Dismembered
5/14/2018	Sedge wren	C28	15	Carcass search	Single search	Dismembered
5/14/2018	Silver-haired bat	D38	44	Carcass search	Single search	Intact
5/15/2018	Least flycatcher	B16	27	Incidental	Single search	Intact
5/16/2018	Big brown bat	A03	8	Carcass search	Single search	Intact
5/16/2018	Silver-haired bat	B18	8	Carcass search	Single search	Intact
5/16/2018	Silver-haired bat	B19	70	Carcass search	Single search	Intact
5/16/2018	Silver-haired bat	C21	8	Carcass search	Single search	Dismembered

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
5/16/2018	Silver-haired bat	C25	12	Carcass search	Single search	Intact
5/16/2018	Unidentified thrush	C27	87	Carcass search	Single search	Dismembered
5/16/2018	Least flycatcher	C27	5	Carcass search	Single search	Intact
5/16/2018	Silver-haired bat	C29	11	Carcass search	Single search	Intact
5/17/2018	Silver-haired bat	B13	20	Carcass search	Single search	Intact
5/17/2018	Silver-haired bat	B20	20	Carcass search	Single search	Intact
5/17/2018	Yellow-throated vireo	C28	54	Carcass search	Single search	Intact
5/17/2018	Silver-haired bat	C28	30	Carcass search	Single search	Intact
5/17/2018	Silver-haired bat	D38	39	Carcass search	Single search	Intact
5/21/2018	Silver-haired bat	B20	48	Carcass search	Single search	Intact
5/21/2018	Mallard	D39	11	Incidental	Single search	Intact
5/23/2018	Silver-haired bat	A09	41	Carcass search	Single search	Intact
5/23/2018	Silver-haired bat	B14	10	Carcass search	Single search	Intact
5/23/2018	Silver-haired bat	C27	9	Carcass search	Single search	Intact
5/23/2018	Silver-haired bat	C30	44	Carcass search	Single search	Intact
5/23/2018	Hoary bat	D32	7	Carcass search	Single search	Intact
5/23/2018	Silver-haired bat	D35	5	Carcass search	Single search	Intact
5/23/2018	Silver-haired bat	D39	25	Carcass search	Single search	Intact
5/24/2018	Silver-haired bat	D38	41	Carcass search	Single search	Intact
6/4/2018	Magnolia warbler	C28	23	Carcass search	Single search	Intact
6/5/2018	Hoary bat	C26	8	Carcass search	Single search	Intact
6/22/2018	Silver-haired bat	B16	11	Carcass search	Single search	Intact
6/22/2018	Silver-haired bat	D35	7	Carcass search	Single search	Intact
6/22/2018	Hoary bat	D39	7	Incidental	Single search	Intact
6/27/2018	American white pelican	D36	94	Incidental	Single search	Intact
6/29/2018	Hoary bat	B15	40	Carcass search	Single search	Intact
6/29/2018	Big brown bat	C23	50	Carcass search	Single search	Intact
7/3/2018	Silver-haired bat	C24	21	Carcass search	Single search	Intact
7/5/2018	Eastern red bat	D39	40	Carcass search	Single search	Intact
7/6/2018	Unidentified bat	A03	7	Carcass search	Single search	Intact
7/6/2018	Silver-haired bat	C24	1	Carcass search	Single search	Injured
7/6/2018	Big brown bat	D31	4	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
7/9/2018	American white pelican	B16	6	Incidental	Single search	Intact
7/9/2018	Big brown bat	B16	9	Incidental	Single search	Intact
7/9/2018	Hoary bat	D38	13	Carcass search	Single search	Intact
7/9/2018	Killdeer	D38	36	Carcass search	Single search	Intact
7/12/2018	Eastern red bat	B14	10	Carcass search	Single search	Intact
7/12/2018	Eastern red bat	B20	53	Carcass search	Single search	Intact
7/12/2018	Eastern red bat	C28	14	Carcass search	Single search	Intact
7/12/2018	Silver-haired bat	D38	58	Carcass search	Single search	Intact
7/13/2018	Bobolink	A05	17	Carcass search	Single search	Intact
7/13/2018	Eastern red bat	A08	7	Carcass search	Single search	Intact
7/13/2018	Hoary bat	B16	1	Carcass search	Single search	Intact
7/13/2018	Silver-haired bat	C29	30	Carcass search	Single search	Intact
7/13/2018	Hoary bat	D34	23	Carcass search	Single search	Intact
7/13/2018	Silver-haired bat	D34	8	Carcass search	Single search	Intact
7/16/2018	Eastern red bat	B13	39	Carcass search	Single search	Intact
7/16/2018	Silver-haired bat	B19	13	Carcass search	Single search	Intact
7/16/2018	Silver-haired bat	C28	10	Carcass search	Single search	Intact
7/16/2018	Hoary bat	D38	65	Carcass search	Single search	Intact
7/16/2018	Hoary bat	D38	30	Carcass search	Single search	Intact
7/16/2018	Hoary bat	D38	2	Carcass search	Single search	Injured
7/16/2018	Unidentified grouse	D39	116	Incidental	Single search	Dismembered
7/16/2018	Chimney swift	D39	212	Carcass search	Single search	Intact
7/17/2018	Hoary bat	A01	5	Carcass search	Single search	Intact
7/17/2018	Cooper's hawk	A02	56	Carcass search	Single search	Intact
7/17/2018	Hoary bat	A02	18	Carcass search	Single search	Intact
7/17/2018	Eastern red bat	A05	11	Carcass search	Single search	Intact
7/17/2018	Silver-haired bat	A06	4	Carcass search	Single search	Intact
7/17/2018	Silver-haired bat	D32	7	Carcass search	Single search	Intact
7/17/2018	Hoary bat	D33	8	Carcass search	Single search	Intact
7/19/2018	Silver-haired bat	B20	28	Carcass search	Single search	Intact
7/19/2018	Silver-haired bat	C28	26	Carcass search	Single search	Intact
7/19/2018	Silver-haired bat	D38	42	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
7/19/2018	Hoary bat	D38	33	Carcass search	Single search	Intact
7/20/2018	Hoary bat	C29	4	Carcass search	Single search	Intact
7/23/2018	Silver-haired bat	B12	2	Carcass search	Single search	Intact
7/23/2018	Hoary bat	B13	34	Carcass search	Single search	Intact
7/23/2018	Silver-haired bat	B13	19	Carcass search	Single search	Intact
7/23/2018	Silver-haired bat	B13	35	Carcass search	Single search	Intact
7/23/2018	Silver-haired bat	B20	12	Carcass search	Single search	Intact
7/23/2018	Hoary bat	C28	67	Carcass search	Single search	Intact
7/23/2018	Eastern red bat	C28	57	Carcass search	Single search	Intact
7/23/2018	Hoary bat	C28	32	Carcass search	Single search	Intact
7/23/2018	Silver-haired bat	C29	20	Incidental	Single search	Intact
7/23/2018	Silver-haired bat	D38	32	Carcass search	Single search	Intact
7/23/2018	Hoary bat	D38	20	Carcass search	Single search	Intact
7/24/2018	Silver-haired bat	A02	6	Carcass search	Single search	Intact
7/24/2018	Hoary bat	A09	10	Carcass search	Single search	Intact
7/24/2018	Eastern red bat	B13	216	Incidental	Single search	Injured
7/24/2018	Silver-haired bat	B16	10	Carcass search	Single search	Intact
7/24/2018	Silver-haired bat	C25	18	Carcass search	Single search	Intact
7/24/2018	Silver-haired bat	C25	17	Carcass search	Single search	Intact
7/24/2018	Silver-haired bat	D33	11	Carcass search	Single search	Intact
7/24/2018	Eastern red bat	D34	27	Carcass search	Single search	Intact
7/24/2018	Eastern red bat	D36	6	Carcass search	Single search	Intact
7/26/2018	Silver-haired bat	B20	12	Carcass search	Single search	Intact
7/26/2018	Silver-haired bat	C28	7	Carcass search	Single search	Intact
7/26/2018	Silver-haired bat	C28	17	Carcass search	Single search	Injured
7/26/2018	Silver-haired bat	D38	23	Carcass search	Single search	Intact
7/27/2018	Eastern red bat	A02	16	Carcass search	Single search	Intact
7/27/2018	Silver-haired bat	A10	5	Carcass search	Single search	Intact
7/27/2018	Silver-haired bat	C21	16	Carcass search	Single search	Intact
7/27/2018	Silver-haired bat	C24	12	Carcass search	Single search	Intact
7/27/2018	Eastern red bat	C25	23	Carcass search	Single search	Intact
7/27/2018	Hoary bat	C30	10	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
7/27/2018	Hoary bat	D34	15	Carcass search	Single search	Intact
7/30/2018	Hoary bat	B20	50	Carcass search	Single search	Intact
7/30/2018	Silver-haired bat	D38	13	Carcass search	Single search	Intact
7/30/2018	Hoary bat	D38	20	Carcass search	Single search	Intact
7/30/2018	Silver-haired bat	D39	12	Carcass search	Single search	Intact
7/31/2018	Silver-haired bat	A05	5	Carcass search	Single search	Intact
7/31/2018	Silver-haired bat	A11	2	Carcass search	Single search	Intact
7/31/2018	Eastern red bat	B16	12	Carcass search	Single search	Intact
7/31/2018	Silver-haired bat	C22	9	Carcass search	Single search	Intact
7/31/2018	Big brown bat	C25	15	Carcass search	Single search	Intact
7/31/2018	Silver-haired bat	D31	9	Carcass search	Single search	Intact
7/31/2018	Hoary bat	D36	6	Carcass search	Single search	Intact
8/1/2018	Silver-haired bat	C28	51	Incidental	Single search	Intact
8/1/2018	Silver-haired bat	D38	9	Incidental	Single search	Intact
8/2/2018	Hoary bat	B13	16	Carcass search	Single search	Intact
8/2/2018	Hoary bat	B13	14	Carcass search	Single search	Intact
8/2/2018	Silver-haired bat	B13	14	Carcass search	Single search	Intact
8/2/2018	Big brown bat	B16	4	Incidental	Single search	Intact
8/2/2018	Big brown bat	B17	4	Incidental	Single search	Intact
8/2/2018	Hoary bat	B19	6	Carcass search	Single search	Intact
8/2/2018	Little brown bat	B20	55	Carcass search	Single search	Intact
8/2/2018	Eastern red bat	B20	42	Carcass search	Single search	Intact
8/2/2018	Big brown bat	C28	28	Carcass search	Single search	Intact
8/2/2018	Hoary bat	D38	30	Carcass search	Single search	Intact
8/2/2018	Silver-haired bat	D38	26	Carcass search	Single search	Intact
8/3/2018	Silver-haired bat	A01	15	Carcass search	Single search	Intact
3/3/2018	Eastern red bat	A01	14	Carcass search	Single search	Intact
8/3/2018	Hoary bat	A05	14	Carcass search	Single search	Intact
8/3/2018	Silver-haired bat	A08	29	Carcass search	Single search	Intact
8/3/2018	Silver-haired bat	C25	14	Carcass search	Single search	Dismembere
8/3/2018	Big brown bat	C30	10	Carcass search	Single search	Intact
8/3/2018	Hoary bat	C30	12	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
8/3/2018	Big brown bat	D31	2	Carcass search	Single search	Intact
8/3/2018	Hoary bat	D33	20	Carcass search	Single search	Intact
8/6/2018	Silver-haired bat	B12	1	Carcass search	Single search	Intact
8/6/2018	Hoary bat	B19	3	Carcass search	Single search	Dismembered
8/6/2018	Eastern red bat	B19	12	Carcass search	Single search	Intact
8/6/2018	Hoary bat	B20	38	Carcass search	Single search	Intact
8/6/2018	Eastern red bat	B20	32	Carcass search	Single search	Intact
8/6/2018	Hoary bat	B20	20	Carcass search	Single search	Intact
8/6/2018	Silver-haired bat	C29	13	Incidental	Single search	Intact
8/6/2018	Silver-haired bat	D38	26	Carcass search	Single search	Intact
8/6/2018	Eastern red bat	D38	14	Carcass search	Single search	Intact
8/6/2018	Big brown bat	D38	8	Carcass search	Single search	Intact
8/7/2018	Hoary bat	A03	80	Carcass search	Single search	Injured
8/7/2018	Silver-haired bat	A03	50	Carcass search	Single search	Intact
8/7/2018	Big brown bat	A06	14	Carcass search	Single search	Intact
8/7/2018	Silver-haired bat	A08	13	Carcass search	Single search	Intact
8/7/2018	Silver-haired bat	A09	11	Carcass search	Single search	Intact
8/7/2018	Silver-haired bat	B15	53	Carcass search	Single search	Intact
8/7/2018	Silver-haired bat	B16	13	Carcass search	Single search	Injured
8/7/2018	Silver-haired bat	B16	27	Carcass search	Single search	Intact
8/7/2018	Big brown bat	B18	7	Carcass search	Single search	Intact
8/7/2018	Silver-haired bat	C24	20	Carcass search	Single search	Intact
8/7/2018	Big brown bat	C26	15	Carcass search	Single search	Dismembered
8/7/2018	Hoary bat	C27	16	Carcass search	Single search	Intact
8/7/2018	Hoary bat	D31	11	Carcass search	Single search	Intact
8/7/2018	Big brown bat	D31	11	Carcass search	Single search	Intact
8/7/2018	Big brown bat	D31	11	Carcass search	Single search	Intact
8/7/2018	Eastern red bat	D32	6	Carcass search	Single search	Intact
8/7/2018	Eastern red bat	D34	40	Carcass search	Single search	Intact
8/7/2018	Big brown bat	D35	7	Carcass search	Single search	Intact
8/7/2018	Silver-haired bat	D36	37	Carcass search	Single search	Intact
8/7/2018	Hoary bat	D36	16	Carcass search	Single search	Dismembered

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
8/9/2018	Hoary bat	B19	12	Carcass search	Single search	Intact
8/9/2018	Silver-haired bat	B19	19	Carcass search	Single search	Injured
8/9/2018	Silver-haired bat	B19	18	Carcass search	Single search	Intact
8/9/2018	Eastern red bat	B20	2	Carcass search	Single search	Intact
8/9/2018	Eastern red bat	B20	30	Carcass search	Single search	Intact
8/9/2018	Hoary bat	C28	36	Carcass search	Single search	Intact
8/9/2018	Hoary bat	C28	51	Carcass search	Single search	Intact
8/9/2018	Hoary bat	C28	12	Carcass search	Single search	Intact
8/9/2018	Hoary bat	C28	24	Carcass search	Single search	Intact
8/9/2018	Hoary bat	C29	7	Incidental	Single search	Intact
8/9/2018	Hoary bat	D37	13	Carcass search	Single search	Intact
8/9/2018	Hoary bat	D37	5	Carcass search	Single search	Injured
8/9/2018	Hoary bat	D38	26	Carcass search	Single search	Intact
8/9/2018	Hoary bat	D38	30	Carcass search	Single search	Intact
8/9/2018	Silver-haired bat	D38	30	Carcass search	Single search	Intact
8/9/2018	Hoary bat	D39	10	Carcass search	Single search	Intact
8/10/2018	Hoary bat	A01	4	Carcass search	Single search	Intact
8/10/2018	Hoary bat	A02	22	Carcass search	Single search	Intact
8/10/2018	Big brown bat	A03	24	Carcass search	Single search	Intact
8/10/2018	Silver-haired bat	A05	9	Carcass search	Single search	Intact
8/10/2018	Silver-haired bat	A06	4	Carcass search	Single search	Intact
8/10/2018	Hoary bat	A06	16	Carcass search	Single search	Intact
8/10/2018	Silver-haired bat	A06	35	Carcass search	Single search	Intact
8/10/2018	Hoary bat	A08	14	Carcass search	Single search	Intact
8/10/2018	Hoary bat	A11	12	Carcass search	Single search	Intact
8/10/2018	Marsh wren	B18	7	Carcass search	Single search	Intact
8/10/2018	Big brown bat	C25	14	Carcass search	Single search	Intact
8/10/2018	Big brown bat	C30	13	Carcass search	Single search	Intact
8/10/2018	Big brown bat	C30	11	Carcass search	Single search	Dismembere
8/10/2018	Hoary bat	D35	34	Carcass search	Single search	Intact
8/10/2018	Silver-haired bat	D35	10	Carcass search	Single search	Intact
8/10/2018	Hoary bat	D36	0	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
8/10/2018	Hoary bat	D36	32	Carcass search	Single search	Intact
8/13/2018	Eastern red bat	B13	49	Carcass search	Single search	Intact
8/13/2018	Hoary bat	B20	47	Carcass search	Single search	Intact
8/13/2018	Hoary bat	B20	36	Carcass search	Single search	Intact
8/13/2018	Hoary bat	C28	18	Carcass search	Single search	Dismembered
8/13/2018	Eastern red bat	D37	40	Carcass search	Single search	Intact
8/13/2018	Big brown bat	D38	8	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	27	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	16	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	20	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	14	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	12	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	27	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	37	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	25	Carcass search	Single search	Intact
8/13/2018	Silver-haired bat	D38	12	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	42	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D38	32	Carcass search	Single search	Intact
8/13/2018	Hoary bat	D39	1	Carcass search	Single search	Intact
8/14/2018	Hoary bat	B15	3	Carcass search	Single search	Intact
8/14/2018	Hoary bat	B16	15	Carcass search	Single search	Intact
8/14/2018	Hoary bat	B19	3	Incidental	Single search	Injured
8/14/2018	Eastern red bat	B20	45	Incidental	Single search	Intact
8/14/2018	Hoary bat	C21	22	Carcass search	Single search	Intact
8/14/2018	Hoary bat	C22	19	Carcass search	Single search	Intact
8/14/2018	Hoary bat	C22	9	Carcass search	Single search	Dismembered
8/14/2018	Tree swallow	C24	33	Carcass search	Single search	Intact
8/14/2018	Hoary bat	C26	8	Carcass search	Single search	Intact
8/14/2018	Hoary bat	C28	18	Incidental	Single search	Dismembered
8/14/2018	Hoary bat	C29	14	Carcass search	Single search	Intact
8/14/2018	Hoary bat	C29	40	Carcass search	Single search	Intact
8/14/2018	Hoary bat	C30	9	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
8/14/2018	Silver-haired bat	C30	9	Carcass search	Single search	Intact
8/14/2018	Hoary bat	C30	54	Carcass search	Single search	Intact
8/14/2018	Big brown bat	D31	7	Carcass search	Single search	Dismembered
8/14/2018	Hoary bat	D33	9	Carcass search	Single search	Intact
8/14/2018	Big brown bat	D33	10	Carcass search	Single search	Intact
8/14/2018	Hoary bat	D33	15	Carcass search	Single search	Intact
8/14/2018	Hoary bat	D35	3	Carcass search	Single search	Intact
8/16/2018	Hoary bat	A10	9	Incidental	Single search	Intact
8/16/2018	Hoary bat	B19	4	Carcass search	Single search	Intact
8/16/2018	Big brown bat	B20	31	Carcass search	Single search	Intact
8/16/2018	Hoary bat	B20	34	Carcass search	Single search	Intact
8/16/2018	Hoary bat	B20	13	Carcass search	Single search	Intact
8/16/2018	Silver-haired bat	C25	5	Incidental	Single search	Intact
8/16/2018	Hoary bat	D38	56	Carcass search	Single search	Intact
8/16/2018	Silver-haired bat	D38	56	Carcass search	Single search	Intact
8/16/2018	Hoary bat	D38	33	Carcass search	Single search	Dismembered
8/17/2018	Hoary bat	B13	12	Incidental	Single search	Intact
8/17/2018	Hoary bat	B16	12	Carcass search	Single search	Intact
8/17/2018	Hoary bat	B16	24	Carcass search	Single search	Intact
8/17/2018	Eastern red bat	C24	24	Carcass search	Single search	Intact
8/17/2018	Hoary bat	C24	21	Carcass search	Single search	Intact
8/17/2018	Hoary bat	D31	10	Carcass search	Single search	Intact
8/17/2018	Hoary bat	D36	9	Carcass search	Single search	Intact
8/20/2018	Silver-haired bat	B12	4	Carcass search	Single search	Dismembered
8/20/2018	Hoary bat	B16	7	Incidental	Single search	Intact
8/20/2018	Hoary bat	B20	18	Carcass search	Single search	Intact
8/20/2018	Hoary bat	D38	37	Carcass search	Single search	Intact
8/21/2018	18 Hoary bat		8	Carcass search	Single search	Intact
8/21/2018	2018 Hoary bat Al		21	Carcass search	Single search	Intact
8/21/2018	Silver-haired bat	B12	8	Incidental	Single search	Intact
8/21/2018	Silver-haired bat	B15	2	Carcass search	Single search	Dismembered
8/21/2018			11	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

8/21/2018Hoary batB1745Carcass searchSingle searchIntact8/21/2018Hoary batB2030IncidentalSingle searchInjured8/21/2018Eastern red batC246Carcass searchSingle searchIntact8/21/2018Silver-haired batD321Carcass searchSingle searchIntact8/21/2018Red-eyed vireoD335Carcass searchSingle searchIntact8/21/2018Hoary batD3410Carcass searchSingle searchIntact8/21/2018Silver-haired batD358Carcass searchSingle searchIntact8/21/2018Eastern red batD366Carcass searchSingle searchIntact8/21/2018Big brown batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/21/2018Silver-haired batB2035IncidentalSingle searchIntact8/23/2018Silver-haired batD3821Carcass searchSingle searchIntact8/23/2018Big brown batC30C33Carcass searchSingle searchIntact8/24/2018Big brown batC30C33Carcass searchSingle searchIntact8/24/2018Big brown batC30C33Carcass searchSingle searchIntact8/24/2018Big brown batC30 <td< th=""><th>Date Found</th><th>Common Name</th><th>Search Location</th><th>Distance from Turbine</th><th>Type of Find</th><th>Search Type</th><th>Condition</th></td<>	Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
8/21/2018Hoary batB2030IncidentalSingle searchInjured8/21/2018Eastern red batC246Carcass searchSingle searchDismembered8/21/2018Silver-haired batD321Carcass searchSingle searchIntact8/21/2018Red-eyed vireoD335Carcass searchSingle searchIntact8/21/2018Hoary batD3410Carcass searchSingle searchIntact8/21/2018Silver-haired batD348Carcass searchSingle searchIntact8/21/2018Eastern red batD358Carcass searchSingle searchIntact8/21/2018Big brown batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/22/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Eastern red batD3821Carcass searchSingle searchIntact8/23/2018Hoary batC3821Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/24/2018Silver-haired batA01 <td< td=""><td>8/21/2018</td><td>Unidentified empidonax</td><td>B16</td><td>77</td><td>Carcass search</td><td>Single search</td><td>Intact</td></td<>	8/21/2018	Unidentified empidonax	B16	77	Carcass search	Single search	Intact
8/21/2018Eastern red batC246Carcass searchSingle searchDismembered8/21/2018Silver-haired batD321Carcass searchSingle searchIntact8/21/2018Red-eyed vireoD335Carcass searchSingle searchIntact8/21/2018Hoary batD3410Carcass searchSingle searchIntact8/21/2018Silver-haired batD348Carcass searchSingle searchIntact8/21/2018Eastern red batD358Carcass searchSingle searchIntact8/21/2018Bitg brown batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/221/2018Silver-haired batD3821Carcass searchSingle searchIntact8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/24/2018Silver-haired batA0110Carcass searchSingle searchIntact8/28/2018 <tdsilver-haired bat<="" td="">A</tdsilver-haired>	8/21/2018	Hoary bat	B17	45	Carcass search	Single search	Intact
8/21/2018Silver-haired batD321Carcass searchSingle searchIntact8/21/2018Red-eyed vireoD335Carcass searchSingle searchIntact8/21/2018Hoary batD3410Carcass searchSingle searchIntact8/21/2018Silver-haired batD348Carcass searchSingle searchIntact8/21/2018Eastern red batD366Carcass searchSingle searchIntact8/21/2018Big brown batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/221/2018Silver-haired batB2035IncidentalSingle searchIntact8/221/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Bib brown batC3033Carcass searchSingle searchIntact8/24/2018Hoary batD3828IncidentalSingle searchIntact8/24/2018Bib brown batC3033Carcass searchSingle searchIntact8/24/2018Silver-haired batA0110Carcass searchSingle searchIntact8/28/2018Silver-haired batA06 <t< td=""><td>8/21/2018</td><td>Hoary bat</td><td>B20</td><td>30</td><td>Incidental</td><td>Single search</td><td>Injured</td></t<>	8/21/2018	Hoary bat	B20	30	Incidental	Single search	Injured
8/21/2018Red-eyed vireoD335Carcass searchSingle searchIntact8/21/2018Hoary batD3410Carcass searchSingle searchIntact8/21/2018Silver-haired batD348Carcass searchSingle searchIntact8/21/2018Eastern red batD358Carcass searchSingle searchIntact8/21/2018Big brown batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD3635IncidentalSingle searchIntact8/22/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/24/2018Silver-haired batA0110Carcass searchSingle searchIntact8/28/2018Silver-haired batA041Carcass searchSingle searchIntact8/28/2018Silver-haired batA06 </td <td>8/21/2018</td> <td>Eastern red bat</td> <td>C24</td> <td>6</td> <td>Carcass search</td> <td>Single search</td> <td>Dismembered</td>	8/21/2018	Eastern red bat	C24	6	Carcass search	Single search	Dismembered
8/21/2018Hoary batD3410Carcass searchSingle searchIntact8/21/2018Silver-haired batD348Carcass searchSingle searchIntact8/21/2018Eastern red batD358Carcass searchSingle searchIntact8/21/2018Big brown batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/21/2018Silver-haired batB2035IncidentalSingle searchIntact8/23/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Eastern red batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Hoary batD3828IncidentalSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/24/2018Silver-haired batA0110Carcass searchSingle searchIntact8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA063	8/21/2018	Silver-haired bat	D32	1	Carcass search	Single search	Intact
8/21/2018Silver-haired batD348Carcass searchSingle searchIntact8/21/2018Eastern red batD358Carcass searchSingle searchIntact8/21/2018Big brown batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/22/2018Silver-haired batB2035IncidentalSingle searchIntact8/23/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Hoary batD3828IncidentalSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/24/2018Silver-haired batA0110Carcass searchSingle searchIntact8/28/2018Silver-haired batA041Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA11<	8/21/2018	Red-eyed vireo	D33	5	Carcass search	Single search	Intact
8/21/2018Eastern red batD358Carcass searchSingle searchIntact8/21/2018Big brown batD366Carcass searchSingle searchIntact8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/22/2018Silver-haired batB2035IncidentalSingle searchIntact8/23/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Eastern red batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3841Carcass searchSingle searchIntact8/24/2018Hoary batD3841Carcass searchSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/24/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA041Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1127Carcass searchSingle searchIntact8/28/2018Silver-haired	8/21/2018	Hoary bat	D34	10	Carcass search	Single search	Intact
B/21/2018Big brown batD366Carcass searchSingle searchIntactB/21/2018Silver-haired batD3832IncidentalSingle searchIntactB/22/2018Silver-haired batB2035IncidentalSingle searchIntactB/22/2018Silver-haired batB1454Carcass searchSingle searchIntactB/23/2018Hoary batC2812Carcass searchSingle searchIntactB/23/2018Eastern red batD3821Carcass searchSingle searchIntactB/23/2018Hoary batD3821Carcass searchSingle searchIntactB/23/2018Hoary batD3841Carcass searchSingle searchIntactB/24/2018Hoary batB1328IncidentalSingle searchIntactB/24/2018Silver-haired batA0110Carcass searchSingle searchDismemberedB/28/2018Silver-haired batA016Carcass searchSingle searchIntactB/28/2018Silver-haired batA0667Carcass searchSingle searchIntactB/28/2018Silver-haired batA0638Carcass searchSingle searchIntactB/28/2018Silver-haired batA0638Carcass searchSingle searchIntactB/28/2018Silver-haired batA1123Carcass searchSingle searchIntactB/28/2018Silver-haired bat </td <td>8/21/2018</td> <td>Silver-haired bat</td> <td>D34</td> <td>8</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	8/21/2018	Silver-haired bat	D34	8	Carcass search	Single search	Intact
8/21/2018Silver-haired batD3832IncidentalSingle searchIntact8/22/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Eastern red batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Hoary batD3828IncidentalSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA041Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver	8/21/2018	Eastern red bat	D35	8	Carcass search	Single search	Intact
8/22/2018Silver-haired batB2035IncidentalSingle searchIntact8/23/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Eastern red batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/24/2018Hoary batD3828IncidentalSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA041Carcass searchSingle searchInjured8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silve	8/21/2018	Big brown bat	D36	6	Carcass search	Single search	Intact
8/23/2018Silver-haired batB1454Carcass searchSingle searchIntact8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Eastern red batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3841Carcass searchSingle searchIntact8/24/2018Hoary batB1328IncidentalSingle searchIntact8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA016Carcass searchSingle searchDismembered8/28/2018Silver-haired batA041Carcass searchSingle searchInjured8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018S	8/21/2018	Silver-haired bat	D38	32	Incidental	Single search	Intact
8/23/2018Hoary batC2812Carcass searchSingle searchIntact8/23/2018Eastern red batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3841Carcass searchSingle searchIntact8/24/2018Hoary batB1328IncidentalSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA016Carcass searchSingle searchInjured8/28/2018Silver-haired batA041Carcass searchSingle searchInjured8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018S	8/22/2018	Silver-haired bat	B20	35	Incidental	Single search	Intact
8/23/2018Eastern red batD3821Carcass searchSingle searchIntact8/23/2018Hoary batD3841Carcass searchSingle searchIntact8/24/2018Hoary batB1328IncidentalSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA016Carcass searchSingle searchIntact8/28/2018Silver-haired batA041Carcass searchSingle searchIntact8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018 <td>8/23/2018</td> <td>Silver-haired bat</td> <td>B14</td> <td>54</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	8/23/2018	Silver-haired bat	B14	54	Carcass search	Single search	Intact
8/23/2018Hoary batD3841Carcass searchSingle searchIntact8/24/2018Hoary batB1328IncidentalSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA016Carcass searchSingle searchIntact8/28/2018Silver-haired batA041Carcass searchSingle searchIntact8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018 </td <td>8/23/2018</td> <td>Hoary bat</td> <td>C28</td> <td>12</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	8/23/2018	Hoary bat	C28	12	Carcass search	Single search	Intact
8/24/2018Hoary batB1328IncidentalSingle searchIntact8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA016Carcass searchSingle searchDismembered8/28/2018Silver-haired batA041Carcass searchSingle searchIntact8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact <td>8/23/2018</td> <td>Eastern red bat</td> <td>D38</td> <td>21</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	8/23/2018	Eastern red bat	D38	21	Carcass search	Single search	Intact
8/24/2018Big brown batC3033Carcass searchSingle searchIntact8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA016Carcass searchSingle searchDismembered8/28/2018Silver-haired batA041Carcass searchSingle searchInjured8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact <td>8/23/2018</td> <td>Hoary bat</td> <td>D38</td> <td>41</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	8/23/2018	Hoary bat	D38	41	Carcass search	Single search	Intact
8/28/2018Silver-haired batA0110Carcass searchSingle searchDismembered8/28/2018Silver-haired batA016Carcass searchSingle searchDismembered8/28/2018Silver-haired batA041Carcass searchSingle searchInjured8/28/2018Silver-haired batA0667Carcass searchSingle searchInjured8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Silver-haired batA0638Carcass searchSingle searchIntact8/28/2018Eastern red batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/24/2018	Hoary bat	B13	28	Incidental	Single search	Intact
8/28/2018Silver-haired batA016Carcass searchSingle searchDismembered8/28/2018Silver-haired batA041Carcass searchSingle searchInjured8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Eastern red batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/24/2018	Big brown bat	C30	33	Carcass search	Single search	Intact
8/28/2018Silver-haired batA041Carcass searchSingle searchInjured8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Eastern red batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	A01	10	Carcass search	Single search	Dismembered
8/28/2018Silver-haired batA0667Carcass searchSingle searchIntact8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Eastern red batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	A01	6	Carcass search	Single search	Dismembered
8/28/2018Silver-haired batA0630Carcass searchSingle searchIntact8/28/2018Eastern red batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	A04	1	Carcass search	Single search	Injured
8/28/2018Eastern red batA0638Carcass searchSingle searchIntact8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	A06	67	Carcass search	Single search	Intact
8/28/2018Silver-haired batA1123Carcass searchSingle searchIntact8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	A06	30	Carcass search	Single search	Intact
8/28/2018Silver-haired batA1117Carcass searchSingle searchIntact8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Eastern red bat	A06	38	Carcass search	Single search	Intact
8/28/2018Silver-haired batB1317Carcass searchSingle searchIntact8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	A11	23	Carcass search	Single search	Intact
8/28/2018Silver-haired batB1625Carcass searchSingle searchIntact8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	A11	17	Carcass search	Single search	Intact
8/28/2018Silver-haired batB1722Carcass searchSingle searchIntact8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	B13	17	Carcass search	Single search	Intact
8/28/2018Silver-haired batB1920Carcass searchSingle searchIntact8/28/2018Silver-haired batB2027Carcass searchSingle searchIntact	8/28/2018	Silver-haired bat	B16	25	Carcass search	Single search	Intact
8/28/2018 Silver-haired bat B20 27 Carcass search Single search Intact	8/28/2018	Silver-haired bat	B17	22	Carcass search	Single search	Intact
5	8/28/2018	Silver-haired bat	B19	20	Carcass search	Single search	Intact
8/28/2018 Hoary bat B20 18 Carcass search Single search Intact	8/28/2018	Silver-haired bat	B20	27	Carcass search	Single search	Intact
	8/28/2018	Hoary bat	B20	18	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
8/28/2018	Silver-haired bat	B20	2	Carcass search	Single search	Intact
8/28/2018	Silver-haired bat	C21	14	Carcass search	Single search	Intact
8/28/2018	Silver-haired bat	C24	10	Carcass search	Single search	Intact
8/28/2018	Silver-haired bat	C28	16	Carcass search	Single search	Intact
8/28/2018	Silver-haired bat	C28	26	Carcass search	Single search	Intact
8/28/2018	Silver-haired bat	C28	40	Carcass search	Single search	Intact
8/28/2018	Silver-haired bat	C29	1	Carcass search	Single search	Intact
8/28/2018	Eastern red bat	C30	14	Carcass search	Single search	Intact
8/28/2018	Silver-haired bat	D31	47	Carcass search	Single search	Intact
8/28/2018	Silver-haired bat	D31	40	Carcass search	Single search	Intact
8/29/2018	Hoary bat	B13	31	Incidental	Single search	Intact
8/30/2018	Silver-haired bat	B13	36	Carcass search	Single search	Intact
8/30/2018	Silver-haired bat	C28	62	Carcass search	Single search	Intact
8/30/2018	Silver-haired bat	D38	27	Carcass search	Single search	Intact
8/31/2018	Hoary bat	A08	8	Carcass search	Single search	Intact
8/31/2018	Hoary bat	C26	17	Carcass search	Single search	Intact
9/4/2018	Silver-haired bat	A01	0	Carcass search	Single search	Injured
9/4/2018	Silver-haired bat	A06	11	Carcass search	Single search	Intact
9/4/2018	Eastern red bat	A08	4	Carcass search	Single search	Intact
9/4/2018	Silver-haired bat	B13	22	Carcass search	Single search	Intact
9/4/2018	Eastern red bat	B13	9	Carcass search	Single search	Intact
9/4/2018	Big brown bat	B18	26	Carcass search	Single search	Intact
9/4/2018	Silver-haired bat	C24	6	Carcass search	Single search	Intact
9/4/2018	Big brown bat	C25	0	Carcass search	Single search	Injured
9/4/2018	Silver-haired bat	C28	40	Carcass search	Single search	Intact
9/4/2018	Silver-haired bat	D32	3	Carcass search	Single search	Intact
9/6/2018	2018 Silver-haired bat		12	Carcass search	Single search	Intact
9/6/2018	D18 Silver-haired bat B20		19	Carcass search	Single search	Intact
9/6/2018			10	Carcass search	Single search	Intact
9/6/2018	18 Silver-haired bat B20		12	Carcass search	Single search	Intact
9/6/2018	Silver-haired bat	C28	37	Carcass search	Single search	Intact
9/6/2018	Silver-haired bat	C28	35	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
9/6/2018	Silver-haired bat	C28	26	Carcass search	Single search	Intact
9/6/2018	Silver-haired bat	C28	5	Carcass search	Single search	Intact
9/6/2018	House sparrow	D38	36	Carcass search	Single search	Dismembered
9/6/2018	Silver-haired bat	D38	25	Carcass search	Single search	Intact
9/7/2018	Silver-haired bat	A08	5	Carcass search	Single search	Intact
9/7/2018	Silver-haired bat	C26	3	Carcass search	Single search	Intact
9/7/2018	Silver-haired bat	C27	38	Carcass search	Single search	Intact
9/7/2018	Hoary bat	C29	8	Carcass search	Single search	Intact
9/7/2018	Sedge wren	D33	39	Carcass search	Single search	Intact
9/10/2018	Eastern red bat	B13	58	Carcass search	Single search	Intact
9/10/2018	Silver-haired bat	C28	39	Carcass search	Single search	Intact
9/10/2018	Red-breasted nuthatch	C28	43	Carcass search	Single search	Intact
9/10/2018	Silver-haired bat	D38	18	Carcass search	Single search	Intact
9/10/2018	Silver-haired bat	D38	48	Carcass search	Single search	Intact
9/10/2018	Silver-haired bat	Silver-haired bat D38		Carcass search	Single search	Intact
9/11/2018	Hoary bat	B16	8	Carcass search	Single search	Injured
9/11/2018	Silver-haired bat	C27	17	Carcass search	Single search	Intact
9/13/2018	Eastern red bat	B13	23	Carcass search	Single search	Dismembered
9/13/2018	Big brown bat	B13	41	Carcass search	Single search	Dismembered
9/13/2018	Silver-haired bat	B13	37	Carcass search	Single search	Intact
9/13/2018	House wren	B20	44	Carcass search	Single search	Intact
9/13/2018	Eastern red bat	C28	45	Carcass search	Single search	Intact
9/13/2018	Eastern red bat	C28	51	Carcass search	Single search	Intact
9/17/2018	Eastern red bat	B13	28	Carcass search	Single search	Intact
9/17/2018	Silver-haired bat	B14	13	Carcass search	Single search	Intact
9/17/2018	Eastern red bat	B19	6	Carcass search	Single search	Dismembered
9/17/2018	Silver-haired bat	B20	32	Carcass search	Single search	Intact
9/17/2018	Silver-haired bat	C28	28	Carcass search	Single search	Intact
9/18/2018	Silver-haired bat	A01	7	Carcass search	Single search	Intact
9/18/2018	Ruby-crowned kinglet	A06	5	Carcass search	Single search	Intact
9/18/2018	Silver-haired bat	A09	11	Carcass search	Single search	Intact
9/21/2018	Eastern red bat	A07	43	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

9/21/2018Hoary batB2020Carcass searchSingle searchIntact9/21/2018Silver-haired batB2018Carcass searchSingle searchIntact9/21/2018Silver-haired batC266Carcass searchSingle searchIntact9/21/2018Silver-haired batB1447Carcass searchSingle searchIntact9/24/2018Silver-haired batB2030Carcass searchSingle searchIntact9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Silver-haired batC2814Carcass searchSingle searchIntact9/25/2018Eastern red batA0142Carcass searchSingle searchIntact9/25/2018Silver-haired batA028Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact9/	Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
9/21/2018Silver-haired batB2018Carcass searchSingle searchIntact9/21/2018Silver-haired batC266Carcass searchSingle searchIntact9/21/2018Silver-haired batB1447Carcass searchSingle searchIntact9/24/2018Silver-haired batB2030Carcass searchSingle searchIntact9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Silver-haired batC2814Carcass searchSingle searchIntact9/24/2018Silver-haired batA0142Carcass searchSingle searchIntact9/25/2018Eastern red batA028Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batD383Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact9/28/2018Silver-haired batD3650Carcass searchSingle searchIntact9/28/2018Silver-haired batD3835Carcass searchSingle searchIntact <td>9/21/2018</td> <td>Silver-haired bat</td> <td>B19</td> <td>13</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	9/21/2018	Silver-haired bat	B19	13	Carcass search	Single search	Intact
9/21/2018Silver-haired batC266Carcass searchSingle searchIntact9/21/2018SoraC2863Carcass searchSingle searchIntact9/24/2018Silver-haired batB1447Carcass searchSingle searchIntact9/24/2018Silver-haired batB2030Carcass searchSingle searchIntact9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Eastern red batC2814Carcass searchSingle searchIntact9/25/2018Eastern red batA0142Carcass searchSingle searchIntact9/25/2018Eastern red batA028Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact9/28/2018Silver-haired batD36Carcass searchSingle searchIntact9/28/2018Silver-haired batD36Carcass searchSingle searchIntact10/1/2018Honred lark </td <td>9/21/2018</td> <td>Hoary bat</td> <td>B20</td> <td>20</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	9/21/2018	Hoary bat	B20	20	Carcass search	Single search	Intact
9/21/2018SoraC2863Carcass searchSingle searchIntact9/24/2018Silver-haired batB1447Carcass searchSingle searchIntact9/24/2018Silver-haired batB2030Carcass searchSingle searchIntact9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Silver-haired batC2814Carcass searchSingle searchIntact9/25/2018Eastern red batA0142Carcass searchSingle searchIntact9/25/2018Eastern red batA028Carcass searchSingle searchIntact9/25/2018Eastern red batC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Horned larkD3122Carcass searchSingle searchIntact10/1/2018Hoary batA0510IncidentalSingle searchIntact10/1/2018Hoary bat <td>9/21/2018</td> <td>Silver-haired bat</td> <td>B20</td> <td>18</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	9/21/2018	Silver-haired bat	B20	18	Carcass search	Single search	Intact
9/24/2018Silver-haired batB1447Carcass searchSingle searchIntact9/24/2018Silver-haired batB2030Carcass searchSingle searchIntact9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Silver-haired batC2814Carcass searchSingle searchIntact9/25/2018Eastern red batA0142Carcass searchSingle searchIntact9/25/2018Silver-haired batA028Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018Hoary batA0510IncidentalSingle searchIntact10/4/2	9/21/2018	Silver-haired bat	C26	6	Carcass search	Single search	Intact
9/24/2018Silver-haired batB2030Carcass searchSingle searchIntact9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Silver-haired batC2814Carcass searchSingle searchIntact9/25/2018Eastern red batA0142Carcass searchSingle searchIntact9/25/2018Eastern red batA028Carcass searchSingle searchIntact9/25/2018Eastern red batB188Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/2/2018Rub	9/21/2018	Sora	C28	63	Carcass search	Single search	Intact
9/24/2018Eastern red batB2043Carcass searchSingle searchIntact9/24/2018Silver-haired batC2814Carcass searchSingle searchIntact9/25/2018Eastern red batA0142Carcass searchSingle searchIntact9/25/2018Eastern red batA028Carcass searchSingle searchIntact9/25/2018Eastern red batB188Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Horned larkD3122Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3850Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Kastern red batB178Carcass searchSingle searchIntact10/2/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018	9/24/2018	Silver-haired bat	B14	47	Carcass search	Single search	Intact
9/24/2018Silver-haired batC2814Carcass searchSingle searchIntact9/25/2018Eastern red batA0142Carcass searchSingle searchIntact9/25/2018Silver-haired batA028Carcass searchSingle searchIntact9/25/2018Eastern red batB188Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD34205Carcass searchSingle searchIntact<	9/24/2018	Silver-haired bat	B20	30	Carcass search	Single search	Intact
9/25/2018Eastern red batA0142Carcass searchSingle searchIntact9/25/2018Silver-haired batA028Carcass searchSingle searchIntact9/25/2018Eastern red batB188Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/25/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Horned larkD3122Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3850Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Silver-haired batD366Carcass searchSingle searchIntact <td< td=""><td>9/24/2018</td><td>Eastern red bat</td><td>B20</td><td>43</td><td>Carcass search</td><td>Single search</td><td>Intact</td></td<>	9/24/2018	Eastern red bat	B20	43	Carcass search	Single search	Intact
9/25/2018Silver-haired batA028Carcass searchSingle searchIntact9/25/2018Eastern red batB188Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/27/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3835Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Silver-haired batD366Carcass searchSingle searchIntact10/4/2018Silver-haired batD366Carcass searchSingle searchIntact <tr< td=""><td>9/24/2018</td><td>Silver-haired bat</td><td>C28</td><td>14</td><td>Carcass search</td><td>Single search</td><td>Intact</td></tr<>	9/24/2018	Silver-haired bat	C28	14	Carcass search	Single search	Intact
9/25/2018Eastern red batB188Carcass searchSingle searchIntact9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/27/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Horned larkD3122Carcass searchSingle searchIntact9/28/2018Horned larkD3528Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3835Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/4/2018White-throated sparrowB178Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Silver-haired batD366Carcass searchSingle searchIntact10/4/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Silver-haired batD366Carcass searchSingle searchIntact10/15	9/25/2018	Eastern red bat	A01	42	Carcass search	Single search	Intact
9/25/2018Red-breasted nuthatchC2640Carcass searchSingle searchIntact9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/27/2018Silver-haired batD383Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Horned larkD3122Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3850Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Silver-haired batD366Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/4/2018Silver-haired batD366Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact <tr< td=""><td>9/25/2018</td><td>Silver-haired bat</td><td>A02</td><td>8</td><td>Carcass search</td><td>Single search</td><td>Intact</td></tr<>	9/25/2018	Silver-haired bat	A02	8	Carcass search	Single search	Intact
9/25/2018Silver-haired batC2916Carcass searchSingle searchIntact9/27/2018Silver-haired batD383Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Horned larkD3122Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3835Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Silver-haired batD34205Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact <td< td=""><td>9/25/2018</td><td>Eastern red bat</td><td>B18</td><td>8</td><td>Carcass search</td><td>Single search</td><td>Intact</td></td<>	9/25/2018	Eastern red bat	B18	8	Carcass search	Single search	Intact
9/27/2018Silver-haired batD383Carcass searchSingle searchIntact9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Horned larkD3122Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact9/28/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/9/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Silver-haired batC2836Carcass searchSingle searchIntact <tr< td=""><td>9/25/2018</td><td>Red-breasted nuthatch</td><td>C26</td><td>40</td><td>Carcass search</td><td>Single search</td><td>Intact</td></tr<>	9/25/2018	Red-breasted nuthatch	C26	40	Carcass search	Single search	Intact
9/28/2018Silver-haired batC2424Carcass searchSingle searchIntact9/28/2018Horned larkD3122Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3850Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/9/2018Silver-haired batD34205Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletD366Carcass searchSingle searchIntact10/15/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/19/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Silver-haired batC2836Carcass searchSingle searchIntac	9/25/2018	Silver-haired bat	C29	16	Carcass search	Single search	Intact
9/28/2018Horned larkD3122Carcass searchSingle searchIntact9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3850Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3850Carcass searchSingle searchIntact10/2/2018Hoary batA0510IncidentalSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/9/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact <td>9/27/2018</td> <td>Silver-haired bat</td> <td>D38</td> <td>3</td> <td>Carcass search</td> <td>Single search</td> <td>Intact</td>	9/27/2018	Silver-haired bat	D38	3	Carcass search	Single search	Intact
9/28/2018Silver-haired batD3528Carcass searchSingle searchIntact10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3850Carcass searchSingle searchDismembered10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD34205Carcass searchSingle searchIntact10/9/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	9/28/2018	Silver-haired bat	C24	24	Carcass search	Single search	Intact
10/1/2018Tennessee warblerD3835Carcass searchSingle searchIntact10/1/2018Unidentified warblerD3850Carcass searchSingle searchDismembered10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/9/2018Silver-haired batD34205Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	9/28/2018	Horned lark	D31	22	Carcass search	Single search	Intact
10/1/2018Unidentified warblerD3850Carcass searchSingle searchDismembered10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Silver-haired batD34205Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	9/28/2018	Silver-haired bat	D35	28	Carcass search	Single search	Intact
10/2/2018Hoary batA0510IncidentalSingle searchIntact10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/9/2018Silver-haired batD34205Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	10/1/2018	Tennessee warbler	D38	35	Carcass search	Single search	Intact
10/2/2018Eastern red batB178Carcass searchSingle searchIntact10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchDismembered10/9/2018Silver-haired batD34205Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	10/1/2018	Unidentified warbler	D38	50	Carcass search	Single search	Dismembered
10/4/2018White-throated sparrowB12117Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchDismembered10/4/2018Silver-haired batD34205Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	10/2/2018	Hoary bat	A05	10	Incidental	Single search	Intact
10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchIntact10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchDismembered10/9/2018Silver-haired batD34205Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	10/2/2018	Eastern red bat	B17	8	Carcass search	Single search	Intact
10/4/2018Ruby-crowned kingletD3849Carcass searchSingle searchDismembered10/9/2018Silver-haired batD34205Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	10/4/2018	White-throated sparrow	B12	117	Carcass search	Single search	Intact
10/9/2018Silver-haired batD34205Carcass searchSingle searchIntact10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchInjured	10/4/2018	Ruby-crowned kinglet	D38	49	Carcass search	Single search	Intact
10/12/2018Silver-haired batD366Carcass searchSingle searchIntact10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchInjured	10/4/2018	Ruby-crowned kinglet	D38	49	Carcass search	Single search	Dismembered
10/15/2018Golden-crowned kingletB2012Carcass searchSingle searchIntact10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchIntact	10/9/2018	Silver-haired bat	D34	205	Carcass search	Single search	Intact
10/15/2018Silver-haired batC2836Carcass searchSingle searchIntact10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchInjured	10/12/2018	Silver-haired bat	D36	6	Carcass search	Single search	Intact
10/19/2018Eastern red batA0810Carcass searchSingle searchIntact10/19/2018Silver-haired batC217Carcass searchSingle searchInjured	10/15/2018	Golden-crowned kinglet	B20	12	Carcass search	Single search	Intact
10/19/2018Silver-haired batC217Carcass searchSingle searchInjured	10/15/2018	Silver-haired bat	C28	36	Carcass search	Single search	Intact
5 ,	10/19/2018	Eastern red bat	A08	10	Carcass search	Single search	Intact
10/19/2018 Eastern red bat D32 13 Carcass search Single search Intact	10/19/2018	Silver-haired bat	C21	7	Carcass search	Single search	Injured
	10/19/2018	Eastern red bat	D32	13	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Date Found	Common Name	Search Location	Distance from Turbine	Type of Find	Search Type	Condition
10/19/2018	Silver-haired bat	D34	37	Carcass search	Single search	Intact
10/19/2018	Silver-haired bat	D35	40	Carcass search	Single search	Intact
10/22/2018	Ruby-crowned kinglet	B13	40	Carcass search	Single search	Intact
10/23/2018	House sparrow	A01	60	Carcass search	Single search	Intact
10/29/2018	Silver-haired bat	B13	33	Carcass search	Single search	Intact

Appendix A. Complete listing of carcasses found at the Black Oak Getty Wind Energy Project.

Appendix B. Huso Estimates for the 2018 Post-Construction Surveys at the Black Oak Getty Wind Project

	SI	PRING	SU	MMER1	SU	MMER2	F	ALL1	F	ALL2
Parameter	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI
Search Area Adjustr	nent									
A (Bats)	0.927	0.870 - 0.979	0.927	0.870 - 0.979	0.927	0.870 - 0.979	0.927	0.870 - 0.979	0.927	0.870 - 0.979
A (Large Birds)	0.811	0.811 - 0.811	0.811	0.811 - 0.811	0.811	0.811 - 0.811	0.811	0.811 - 0.811	0.811	0.811 - 0.811
A (Raptors)	0.811	0.811 - 0.811	0.811	0.811 - 0.811	0.811	0.811 - 0.811	0.811	0.811 - 0.811	0.811	0.811 - 0.811
A (Small Birds)	0.776	0.588 - 0.943	0.776	0.588 - 0.943	0.776	0.588 - 0.943	0.776	0.588 - 0.943	0.776	0.588 - 0.943
Observer Detection	Rate								•	
P (Bats)	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773
P (Large Birds)	0.892	0.833 - 0.946	0.892	0.833 - 0.946	0.892	0.833 - 0.946	0.892	0.833 - 0.946	0.892	0.833 - 0.946
P (Raptors)	0.962	0.885 - 1.0	0.962	0.885 - 1.0	0.962	0.885 - 1.0	0.962	0.885 - 1.0	0.962	0.885 - 1.0
P (Small Birds)	0.794	0.716 - 0.873	0.794	0.716 - 0.873	0.794	0.716 - 0.873	0.794	0.716 - 0.873	0.794	0.716 - 0.873
Probability of a Carc	ass Persis	sting Through	the Searcl	h Interval						
Bats	0.909	0.862 - 0.934	0.926	0.869 - 0.960	0.926	0.869 - 0.960	0.822	0.727 - 0.879	0.822	0.727 - 0.879
Large Birds	0.716	0.636 - 0.793	0.716	0.636 - 0.793	0.716	0.636 - 0.793	0.716	0.636 - 0.793	0.716	0.636 - 0.793
Raptors	0.998	0.993 - 1.0	0.981	0.964 - 0.991	0.981	0.964 - 0.991	0.996	0.988 - 1.0	0.996	0.988 - 1.0
Small Birds	0.780	0.705 - 0.853	0.780	0.705 - 0.853	0.780	0.705 - 0.853	0.780	0.705 - 0.853	0.780	0.705 - 0.853
Probability of Availa	ble and De	etected								
Bats	0.631	0.548 - 0.701	0.643	0.555 - 0.722	0.643	0.555 - 0.722	0.570	0.472 - 0.654	0.570	0.472 - 0.654
Large Birds	0.638	0.559 - 0.725	0.638	0.559 - 0.725	0.638	0.559 - 0.725	0.638	0.559 - 0.725	0.638	0.559 - 0.725
Raptors	0.960	0.883 - 1.0	0.943	0.872 - 0.989	0.943	0.872 - 0.989	0.958	0.885 - 1.0	0.958	0.885 - 1.0
Small Birds	0.620	0.535 - 0.705	0.620	0.535 - 0.705	0.620	0.535 - 0.705	0.620	0.535 - 0.705	0.620	0.535 - 0.705
Unadjusted Number	of Fataliti	es								
Bats	1.0	0.0 - 4.0	4.0	0.0 - 10.0	25.0	1.0 - 58.0	46.0	2.0 - 109.0	1.0	0.0 - 3.0
Large Birds	0.0	0.0 - 0.0	0.0	0.0 - 0.0	1.0	0.0 - 3.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0
All Birds	5.0	1.0 - 10.0	4.0	0.0 - 12.0	1.0	0.0 - 3.0	4.0	1.0 - 8.0	6.0	1.0 - 14.0
Raptors	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0
Small Birds	5.0	1.0 - 10.0	4.0	0.0 - 12.0	0.0	0.0 - 0.0	4.0	1.0 - 8.0	6.0	1.0 - 14.0
Observed Fatality Ra	ates (Fatal	ities/Turbine/	Season(s))							
Bats	0.500	0.0 - 2.0	2.0	0.0 - 5.0	12.500	0.500 - 29.0	23.0	1.0 - 54.500	0.500	0.0 - 1.500
Large Birds	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.250	0.0 - 0.750	0.0	0.0 - 0.0	0.0	0.0 - 0.0
All Birds	1.250	0.250 - 2.500	1.0	0.0 - 3.0	0.250	0.0 - 0.750	1.0	0.250 - 2.0	1.500	0.250 - 3.500
Raptors	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0

Appendix B1. Estimated fatality rates and correction factors, with 90% confidence intervals, for control group cleared plot studies conducted at the Black Oak Getty Wind Energy Project, Stearns County, MN, from April 4, 2018, to November 1, 2018.

	S	PRING	SUN	/MER1	SL	IMMER2		FALL1	F	ALL2
Parameter	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI
Small Birds	1.250	0.250 - 2.500	1.0	0.0 - 3.0	0.0	0.0 - 0.0	1.0	0.250 - 2.0	1.500	0.250 - 3.500
Adjusted Fatality I	Rates (Fatali	ties/Turbine/S	easons(s))							
Bats	0.844	0.0 - 3.776	3.338	0.0 - 9.040	20.970	0.768 - 50.085	43.808	2.407 - 106.439	0.972	0.0 - 3.086
Large Birds	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.502	0.0 - 1.507	0.0	0.0 - 0.0	0.0	0.0 - 0.0
All Birds	2.617	0.496 - 5.519	2.113	0.0 - 6.298	0.502	0.0 - 1.507	2.046	0.451 - 4.308	3.153	0.478 - 7.132
Raptors	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0
Small Birds	2.617	0.496 - 5.519	2.113	0.0 - 6.298	0.0	0.0 - 0.0	2.046	0.451 - 4.308	3.153	0.478 - 7.132
Adjusted Fatality I	Rates (Fatali	ties/MW/Sease	ons(s))							
Bats	0.422	0.0 - 1.888	1.669	0.0 - 4.520	10.485	0.384 - 25.043	21.904	1.204 - 53.219	0.486	0.0 - 1.543
Large Birds	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.251	0.0 - 0.754	0.0	0.0 - 0.0	0.0	0.0 - 0.0
All Birds	1.308	0.248 - 2.760	1.057	0.0 - 3.149	0.251	0.0 - 0.754	1.023	0.225 - 2.154	1.577	0.239 - 3.566
Raptors	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0
Small Birds	1.308	0.248 - 2.760	1.057	0.0 - 3.149	0.0	0.0 - 0.0	1.023	0.225 - 2.154	1.577	0.239 - 3.566

Appendix B1. Estimated fatality rates and correction factors, with 90% confidence intervals, for control group cleared plot studies conducted at the Black Oak Getty Wind Energy Project, Stearns County, MN, from April 4, 2018, to November 1, 2018.

Appendix B2. Estimated fatality rates and correction factors, with 90% confidence intervals, for treatment group cleared plot studies conducted at the Black Oak Getty Wind Energy Project, Stearns County, MN, from April 4, 2018, to November 1, 2018.

	S	PRING	SU	MMER1	SU	MMER2	F	ALL1	F	ALL2
Parameter	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI
Search Area Ac	ljustment									
A (Bats)	0.980	0.962 - 0.995	0.980	0.962 - 0.995	0.980	0.962 - 0.995	0.980	0.962 - 0.995	0.980	0.962 - 0.995
Observer Detec	tion Rate									
P (Bats)	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773
Probability of a	Carcass P	ersisting Throu	igh the Sea	rch Interval						
Bats	0.909	0.862 - 0.934	0.926	0.869 - 0.960	0.926	0.869 - 0.960	0.822	0.727 - 0.879	0.822	0.727 - 0.879
Probability of A	vailable an	d Detected								
Bats	0.631	0.548 - 0.701	0.643	0.555 - 0.722	0.643	0.555 - 0.722	0.570	0.472 - 0.654	0.570	0.472 - 0.654
Unadjusted Nu	mber of Fat	alities								
Bats	7.0	0.0 - 19.0	5.0	0.0 - 10.050	14.0	0.0 - 28.0	35.0	0.0 - 74.0	1.0	0.0 - 3.0
Observed Fatal	ity Rates (F	atalities/Turbir	ne/Season(s	5))						
Bats	3.500	0.0 - 9.500	2.500	0.0 - 5.025	7.0	0.0 - 14.0	17.500	0.0 - 37.0	0.500	0.0 - 1.500
Adjusted Fatali	ty Rates (Fa	atalities/Turbin	e/Seasons(s))						

Appendix B2. Estimated fatality rates and correction factors, with 90% confidence intervals, for treatment group cleared plot studies conducted at the Black Oak Getty Wind Energy Project, Stearns County, MN, from April 4, 2018, to November 1, 2018.

	SF	PRING	SUMMER1		SUMMER2		FALL1		FALL2	
Parameter	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI
Bats	5.694	0.0 - 15.396	3.976	0.0 - 8.500	11.093	0.0 - 23.492	31.660	0.0 - 71.306	0.919	0.0 - 2.614
Adjusted Fatal	ity Rates (Fa	talities/MW/Se	easons(s))							
Bats	2.847	0.0 - 7.698	1.988	0.0 - 4.250	5.546	0.0 - 11.746	15.830	0.0 - 35.653	0.460	0.0 - 1.307

Appendix B3. Overall adjusted mortality estimates using the Huso estimator for surveys at the Black Oak Getty Wind Project, April 4 to November 1, 2018.

	Estimate #/turbine (90% CI)	Estimate #/MW (90% CI)
Small Birds	6.61 (4.11 – 10.37)	3.31 (2.05 – 5.19)
Large Birds	0.74 (0.26 – 1.44)	0.37 (0.13 – 0.72)
Raptors	0.11	0.06
All Birds	7.35 (4.75 – 11.32)	3.68 (2.38 – 5.66)

Note: CI = Confidence Interval, MW = megawatt

	SI	PRING	SU	MMER1	SU	MMER2		ALL1	FALL2	
Parameter	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% Cl
Search Area Adjust	ment									
A (Bats)	0.178	0.143 - 0.214	0.178	0.143 - 0.214	0.178	0.143 - 0.214	0.178	0.143 - 0.214	0.178	0.143 - 0.214
A (Large Birds)	0.247	0.247 - 0.247	0.247	0.247 - 0.247	0.247	0.247 - 0.247	0.247	0.247 - 0.247	0.247	0.247 - 0.247
A (Raptors)	0.247	0.247 - 0.247	0.247	0.247 - 0.247	0.247	0.247 - 0.247	0.247	0.247 - 0.247	0.247	0.247 - 0.247
A (Small Birds)	0.093	0.064 - 0.139	0.093	0.064 - 0.139	0.093	0.064 - 0.139	0.093	0.064 - 0.139	0.093	0.064 - 0.139
Observer Detection	Rate									
P (Bats)	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773
P (Large Birds)	0.892	0.833 - 0.946	0.892	0.833 - 0.946	0.892	0.833 - 0.946	0.892	0.833 - 0.946	0.892	0.833 - 0.946
P (Raptors)	0.962	0.885 - 1.0	0.962	0.885 - 1.0	0.962	0.885 - 1.0	0.962	0.885 - 1.0	0.962	0.885 - 1.0
P (Small Birds)	0.794	0.716 - 0.873	0.794	0.716 - 0.873	0.794	0.716 - 0.873	0.794	0.716 - 0.873	0.794	0.716 - 0.873
Probability of a Car	cass Persi	sting Through	the Searc	h Interval						
Bats	0.865	0.799 - 0.902	0.890	0.808 - 0.939	0.926	0.868 - 0.960	0.821	0.726 - 0.879	0.821	0.726 - 0.879
Large Birds	0.630	0.549 - 0.707	0.630	0.549 - 0.707	0.715	0.635 - 0.792	0.715	0.635 - 0.792	0.715	0.635 - 0.792
Raptors	0.997	0.989 - 1.0	0.971	0.945 - 0.986	0.981	0.964 - 0.991	0.996	0.988 - 1.0	0.996	0.988 - 1.0
Small Birds	0.702	0.620 - 0.782	0.702	0.620 - 0.782	0.780	0.704 - 0.852	0.780	0.704 - 0.852	0.780	0.704 - 0.852
Probability of Availa	able and D	etected								
Bats	0.601	0.516 - 0.671	0.618	0.525 - 0.701	0.643	0.555 - 0.722	0.570	0.472 - 0.653	0.570	0.472 - 0.653
Large Birds	0.562	0.484 - 0.649	0.562	0.484 - 0.649	0.638	0.558 - 0.724	0.638	0.558 - 0.724	0.638	0.558 - 0.724
Raptors	0.959	0.882 - 1.0	0.934	0.863 - 0.984	0.943	0.872 - 0.989	0.958	0.885 - 1.0	0.958	0.885 - 1.0
Small Birds	0.557	0.478 - 0.644	0.557	0.478 - 0.644	0.619	0.534 - 0.705	0.619	0.534 - 0.705	0.619	0.534 - 0.705
Unadjusted Number	r of Fataliti	es								
Bats	0.0	0.0 - 1.0	12.0	7.0 - 19.0	28.0	19.0 - 40.0	88.0	62.0 - 125.100	5.0	1.0 - 10.0
Large Birds	1.0	0.0 - 3.0	1.0	0.0 - 3.0	2.0	0.0 - 4.050	0.0	0.0 - 0.0	0.0	0.0 - 0.0
All Birds	1.0	0.0 - 3.0	3.0	0.0 - 7.0	3.0	1.0 - 6.0	8.0	4.0 - 13.0	1.0	0.0 - 3.0
Raptors	0.0	0.0 - 0.0	0.0	0.0 - 0.0	1.0	0.0 - 3.0	0.0	0.0 - 0.0	0.0	0.0 - 0.0
Small Birds	0.0	0.0 - 0.0	2.0	0.0 - 6.0	1.0	0.0 - 3.0	8.0	4.0 - 13.0	1.0	0.0 - 3.0
Observed Fatality R	ates (Fata	lities/Turbine/	Season(s))							
Bats	0.0	0.0 - 0.059	0.706	0.412 - 1.118	1.647	1.118 - 2.353	5.176	3.647 - 7.359	0.278	0.056 - 0.556
Large Birds	0.029	0.0 - 0.086	0.029	0.0 - 0.086	0.057	0.0 - 0.116	0.0	0.0 - 0.0	0.0	0.0 - 0.0
All Birds	0.029	0.0 - 0.086	0.086	0.0 - 0.200	0.086	0.029 - 0.171	0.229	0.114 - 0.371	0.029	0.0 - 0.086
Raptors	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.029	0.0 - 0.086	0.0	0.0 - 0.0	0.0	0.0 - 0.0

Appendix B4. Estimated fatality rates and correction factors, with 90% confidence intervals, for control group road and pad studies conducted at the Black Oak Getty Wind Energy Project, Stearns County, MN, from April 4, 2018, to November 1, 2018.

	SF	PRING	SL	JMMER1	SU	IMMER2		FALL1	FALL2	
Parameter	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	e 90% Cl
Small Birds	0.0	0.0 - 0.0	0.057	0.0 - 0.171	0.029	0.0 - 0.086	0.229	0.114 - 0.371	0.029	0.0 - 0.086
Adjusted Fatality I	Rates (Fatali	ties/Turbine/	Seasons(s)							
Bats	0.0	0.0 - 0.568	6.560	3.779 - 10.803	14.445	9.830 - 21.309	51.458	35.619 - 78.168	2.724	0.647 - 5.731
Large Birds	0.226	0.0 - 0.680	0.226	0.0 - 0.611	0.311	0.0 - 0.848	0.0	0.0 - 0.0	0.0	0.0 - 0.0
All Birds	0.226	0.0 - 0.680	1.427	0.0 - 3.850	0.823	0.161 - 1.833	4.009	1.801 - 6.738	0.513	0.0 - 1.534
Raptors	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.123	0.0 - 0.368	0.0	0.0 - 0.0	0.0	0.0 - 0.0
Small Birds	0.0	0.0 - 0.0	1.200	0.0 - 3.625	0.513	0.0 - 1.412	4.009	1.801 - 6.738	0.513	0.0 - 1.534
Adjusted Fatality I	Rates (Fatali	ties/MW/Seas	sons(s))							
Bats	0.0	0.0 - 0.284	3.280	1.889 - 5.401	7.222	4.915 - 10.654	25.729	17.810 - 39.084	1.362	0.323 - 2.865
Large Birds	0.113	0.0 - 0.340	0.113	0.0 - 0.306	0.155	0.0 - 0.424	0.0	0.0 - 0.0	0.0	0.0 - 0.0
All Birds	0.113	0.0 - 0.340	0.713	0.0 - 1.925	0.412	0.080 - 0.917	2.004	0.900 - 3.369	0.256	0.0 - 0.767
Raptors	0.0	0.0 - 0.0	0.0	0.0 - 0.0	0.061	0.0 - 0.184	0.0	0.0 - 0.0	0.0	0.0 - 0.0
Small Birds	0.0	0.0 - 0.0	0.600	0.0 - 1.812	0.256	0.0 - 0.706	2.004	0.900 - 3.369	0.256	0.0 - 0.767

Appendix B4. Estimated fatality rates and correction factors, with 90% confidence intervals, for control group road and pad studies conducted at the Black Oak Getty Wind Energy Project, Stearns County, MN, from April 4, 2018, to November 1, 2018.

Appendix B5. Estimated fatality rates and correction factors, with 90% confidence intervals, for treatment group road and pad for studies conducted at the Black Oak Getty Wind Energy Project, Stearns County, MN, from April 4, 2018, to November 1, 2018.

	S	PRING	SU	MMER1	SU	MMER2		FALL1	FALL2	
Parameter	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI
Search Area A	djustment	-		-	_				_	-
A (Bats)	0.179	0.133 - 0.238	0.179	0.133 - 0.238	0.179	0.133 - 0.238	0.179	0.133 - 0.238	0.179	0.133 - 0.238
Observer Dete	ction Rate									
P (Bats)	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773	0.694	0.607 - 0.773
Probability of a Carcass Persisting Through the Search Interval										
Bats	0.865	0.799 - 0.902	0.890	0.808 - 0.939	0.926	0.868 - 0.960	0.821	0.726 - 0.879	0.821	0.726 - 0.879
Probability of	Available ar	nd Detected								
Bats	0.601	0.516 - 0.671	0.618	0.525 - 0.701	0.643	0.555 - 0.722	0.570	0.472 - 0.653	0.570	0.472 - 0.653
Unadjusted Nu	Imber of Fa	talities								
Bats	1.0	0.0 - 3.0	9.0	4.0 - 13.0	16.0	7.0 - 24.0	50.0	29.0 - 63.0	3.0	0.0 - 5.0
Observed Fata	lity Rates (I	Fatalities/Turb	ine/Season	(s))	, , ,					
Bats	0.056	0.0 - 0.167	0.500	0.222 - 0.722	0.889	0.389 - 1.333	2.778	1.611 - 3.500	0.176	0.0 - 0.294
Adjusted Fatal	Adjusted Fatality Rates (Fatalities/Turbine/Seasons(s))									

Appendix B5. Estimated fatality rates and correction factors, with 90% confidence intervals, for treatment group road and pad for studies conducted at the Black Oak Getty Wind Energy Project, Stearns County, MN, from April 4, 2018, to November 1, 2018.

	SP	RING	SU	MMER1	SU	IMMER2		FALL1	FALL2	
Parameter	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI	Estimate	90% CI
Bats	0.541	0.0 - 1.541	4.593	1.920 - 6.963	7.736	3.259 - 11.944	27.445	16.123 - 36.396	1.685	0.0 - 3.196
Adjusted Fatal	lity Rates (Fa	atalities/MW/S	Seasons(s))							
Bats	0.270	0.0 - 0.770	2.297	0.960 - 3.482	3.868	1.630 - 5.972	13.723	8.062 - 18.198	0.843	0.0 - 1.598

Appendix C. Shoenfeld Estimates for the 2018 Post-Construction Surveys at the Black Oak Getty Wind Project

	SPRING -	Cleared plot	SUMMER	- Cleared plot		Cleared plot
Parameter	Estimate	90% CI	Estimate	90% CI	Estimat e	90% CI
Search Area Adjustmen	t					
A (Bat)	1.00	1.00 - 1.00	1.00	1.00 - 1.00	1.00	1.00 - 1.00
A (Large Birds)	0.88	0.88 - 0.88	0.88	0.88 - 0.88	0.88	0.88 - 0.88
A (Small Birds)	0.99	0.99 - 1.00	0.99	0.99 - 1.00	0.99	0.99 - 1.00
Observer Detection Rate		0.000	0.00	0.00	0.00	0.00 1.00
P (Bat)	0.81	0.73 - 0.88	0.81	0.73 - 0.88	0.81	0.73 - 0.88
P (Large Birds)	0.94	0.89 - 0.98	0.94	0.89 - 0.98	0.94	0.89 - 0.98
P (Small Birds)	0.74	0.61 - 0.85	0.74	0.61 - 0.85	0.74	0.61 - 0.85
Average Removal Time					••••	
Bat	7.85	5.75 - 10.14	7.85	5.75 - 10.14	7.85	5.75 - 10.14
Large Birds	18.34	9.69 - 35.31	8.41	4.88 - 12.55	6.68	3.84 - 9.50
Small Birds	7.46	5.67 - 9.54	7.46	5.67 - 9.54	7.46	5.67 - 9.54
Probability of Available a						
Bat	0.58	0.51 - 0.78	0.74	0.51 - 0.78	0.58	0.51 - 0.78
Large Birds	0.81	0.73 - 0.94	0.80	0.54 - 0.85	0.59	0.47 - 0.81
Small Birds	0.53	0.46 - 0.76	0.70	0.46 - 0.76	0.53	0.46 - 0.76
Unadjusted Number of F						
All Birds	6.00	3.00 - 10.00	11.0	8.00 - 15.00	11.0	6.00 - 17.00
Bat	3.00	-	70.0	47.00 - 91.00	21.0	18.00 - 25.00
Large Birds	0	-	4.00	-	0	-
Small Birds	6.00	3.00 - 10.00	7.00	5.00 - 9.00	11.0	6.00 - 17.00
Observed Fatality Rates	(Fatalities/T	urbine/Season(s))			
All Birds	1.20	0.60 - 2.00	2.20	1.60 - 3.00	2.20	1.20 - 3.40
Bat	0.60	-	14.00	9.40 - 18.20	4.20	3.60 - 5.0
Large Birds	0	-	0.80	-	0	-
Small Birds	1.20	0.60 - 2.00	1.40	1.00 - 1.80	2.20	1.20 - 3.40
Adjusted Fatality Rates	(Fatalities/Tu	rbine/Seasons((s))			
All Birds	1.73	0.82 - 2.90	3.16	2.21 - 4.37	3.16	1.61 - 5.11
Bat	0.81	-	18.93	12.38 - 25.32	5.68	4.73 - 6.92
Large Birds	0	-	1.14	-	0	-
Small Birds	1.73	0.82 - 2.90	2.01	1.47 - 2.67	3.16	1.61 - 5.11
Adjusted Fatality Rates	(Fatalities/Me	gawatt/Seasor	ns(s))			
All Birds	0.86	0.41 - 1.45	1.58	1.11 - 2.18	1.58	0.80 - 2.56
Bat	0.41	-	9.47	6.19 - 12.66	2.84	2.36 - 3.46
Large Birds	0	-	0.57	-	0	-
Small Birds	0.86	0.41 - 1.45	1.01	0.74 - 1.34	1.58	0.80 - 2.56

Appendix C1. Estimated fatality rates and correction factors, with 90% confidence intervals (CI), for cleared plot studies conducted at the Black Oak Getty Wind Project from March 15 to November 16, 2017.

Appendix C2. Overall fatality rates per turbine for cleared plot studies conducted at the Black Oak Getty Wind Project from March 15 - November 16, 2017.

	OVERALL – C	leared plot/Turb	OVERALL – Cleared plot/Megawatt		
	Estimate	Estimate 90% CI		90% CI	
All Birds	8.04	6.14 - 10.21	4.02	3.07 - 5.11	
Bat	25.42	20.01 - 31.17	12.71	10.01 - 15.58	
Large Birds	1.14	-	0.57	-	
Small Birds	6.90	4.46 - 9.70	3.45	2.23 - 4.85	

Appendix C3. Estimated fatality rates and correction factors, with 90% confidence intervals (CI), for road & pad studies conducted at the Black Oak Getty Wind Project from March 15 to November 16, 2017.

		<u> </u>		<u> </u>		
Bananatan		- Road & Pad		- Road & Pad		load & Pad
Parameter	Estimate	90% Cl	Estimate	90% CI	Estimate	90% CI
Search Area Adjust						
A (Bat)	0.13	0.09 - 0.21	0.13	0.09 - 0.21	0.13	0.09 - 0.21
A (Large Birds)	0.18	0.18 - 0.18	0.18	0.18 - 0.18	0.18	0.18 - 0.18
A (Small Birds)	0.03	0.02 - 0.14	0.03	0.02 - 0.14	0.03	0.02 - 0.14
Observer Detection						
P (Bat)	0.81	0.73 - 0.88	0.81	0.73 - 0.88	0.81	0.73 - 0.88
P (Large Birds)	0.94	0.89 - 0.98	0.94	0.89 - 0.98	0.94	0.89 - 0.98
P (Small Birds)	0.92	0.83 - 0.97	0.92	0.83 - 0.97	0.92	0.83 - 0.97
Average Removal 1	Time (days)					
Bat	7.85	5.75 - 10.14	7.85	5.75 - 10.14	7.85	5.75 - 10.14
Large Birds	18.34	9.69 - 35.31	8.41	4.88 - 12.55	6.68	3.84 - 9.50
Small Birds	7.46	5.67 - 9.54	7.46	5.67 - 9.54	7.46	5.67 - 9.54
Probability of Availa	able and Deteo	cted				
Bat	0.58	0.51 - 0.78	0.74	0.51 - 0.78	0.74	0.51 - 0.78
Large Birds	0.81	0.73 - 0.94	0.80	0.54 - 0.85	0.59	0.47 - 0.81
Small Birds	0.61	0.55 - 0.81	0.77	0.55 - 0.81	0.77	0.55 - 0.81
Unadjusted Numbe	r of Fatalities					
All Birds	2.00	-	6.00	3.00 - 10.00	7.00	3.00 - 12.00
Bat	6.00	3.00 - 10.00	117.00	94.0 - 141.0	12.00	8.00 - 16.05
Large Birds	2.00	-	1.00	-	1.00	-
Small Birds	0	-	5.00	-	6.00	2.00 - 11.00
Observed Fatality R	Rates (Fatalitie	s/Turbine/Seaso	n(s))			
All Birds	0.06	-	0.18	0.09 - 0.29	0.21	0.09 - 0.35
Bat	0.18	0.09 - 0.29	3.44	2.76 - 4.15	0.35	0.24 - 0.47
Large Birds	0.06	-	0.03	-	0.03	-
Small Birds	0	-	0.15	-	0.18	0.06 - 0.32
Adjusted Fatality Ra	ates (Fatalities	/Turbine/Season	is(s))			
All Birds	0.41	-	8.14	1.99 - 17.10	9.74	2.30 - 20.97
Bat	2.31	0.84 - 4.40	44.99	27.42 - 71.62	4.61	2.43 - 7.98
Large Birds	0.41	-	0.25	-	0.28	-
Small Birds	0	-	7.89	-	9.46	2.04 - 20.55
Adjusted Fatality Ra	ates (Fatalities	/Megawatt/Seas	ons(s))			
All Birds	0.20	-	4.07	1.00 - 8.55	4.87	1.15 - 10.49
Bat	1.15	0.42 - 2.20	22.49	13.71 - 35.81	2.31	1.22 - 3.99
Large Birds	0.20	-	0.13	-	0.14	-
Small Birds	0	-	3.94	-	4.73	1.02 - 10.27

Appendix C4. Overall fatality rates per turbine for road and pad studies conducted at the Black Oak Getty Wind Project from March 15 to November 16, 2017.

	OVERALL – Roa	ad & Pad/Turbine	OVERALL – Road & Pad/Megawatt		
	Estimate 90% CI		Estimate	90% CI	
All Birds	18.29	5.70 - 35.65	9.14	2.85 - 17.83	
Bat	51.91	31.60 - 82.18	25.95	15.80 - 41.09	
Large Birds	0.94	-	0.47	-	
Small Birds	17.35	4.61 - 34.70	8.68	2.30 - 17.35	

Appendix D. North American Fatality Summary Tables

3003. apine i 03.011	Fatality		
Project Name	Estimate ^A	No. of Turbines	Total MW
Black Oak Getty 2018	3.50 – 5.22	39	78
Wellsburg, IA (2016)	8.44	60	140.80
Wessington Springs, SD (2009)	8.25	34	51.00
Blue Sky Green Field, WI (2008; 2009)	7.17	88	145.00
Cedar Ridge, WI (2009)	6.55	41	67.60
Buffalo Ridge, MN (Phase III; 1999)	5.93	138	103.50
Vienna I, IA (2016)	5.7	45	105.60
Moraine II, MN (2009)	5.59	33	49.50
Barton I & II, IA (2010-2011)	5.5	80	160.00
Buffalo Ridge I, SD (2009-2010)	5.06	24	50.40
Macksburg, IA (2014 - 2016)	3.38 – 4.94	48	119.60
Adair, IA (2015)	4.64	76	174.80
Black Oak Getty, MN (2017)	4.37	39	78.00
Buffalo Ridge, MN (Phase I; 1996)	4.14	73	25.00
Charles City, IA (2016)	4.13	50	75.00
Winnebago, IA (2009-2010)	3.88	10	20.00
Rugby, ND (2010-2011)	3.82	71	149.00
Cedar Ridge, WI (2010)	3.72	41	68.00
Elm Creek II, MN (2011-2012)	3.64	62	148.80
Vienna II, IA (2016)	3.57	19	44.60
Buffalo Ridge, MN (Phase II; 1999)	3.57	143	107.25
Carroll, IA (2015)	3.55	100	150.00
Century, IA (2016)	3.54	145	200.00
Lundgren, IA (2014 - 2016)	2.91 – 3.37	107	251.00
Rolling Hills, IA (2014 - 2016)	1.79 – 3.48	193	443.90
Buffalo Ridge, MN (Phase I; 1998)	3.14	73	25.00
Ripley, Ont (2008)	3.09	38	76.00
Laurel, IA (2016)	2.96	52	119.60
Intrepid, IA (2016)	2.93	122	175.50
Walnut, IA (2015)	2.88	102	153.00
Fowler I, IN (2009)	2.83	162	301.00
Pomeroy, IA (2016)	2.76	184	286.40
Buffalo Ridge, MN (Phase I; 1997)	2.51	73	25.00
Buffalo Ridge, MN (Phase II; 1998)	2.47	143	107.25
Morning Light, IA (2015)	2.36	44	101.20
Highland, IA (2016)	2.30	217	502.00
,			
PrairieWinds SD1, SD (2012-2013)	2.01	108	162.00
Buffalo Ridge II, SD (2011-2012)	1.99	105	210.00
Kewaunee County, WI (1999-2001)	1.95	31	20.46
PrairieWinds SD1, SD (2013-2014)	1.66	108	162.00
NPPD Ainsworth, NE (2006)	1.63	36	20.50
Adams, IA (2016)	1.56	64	154.30
PrairieWinds ND1 (Minot), ND (2011)	1.56	80	115.50
Elm Creek, MN (2009-2010)	1.55	67	100.00
Victory, IA (2015)	1.52	55	99.00

Appendix D1. Wind energy facilities in the Midwest with fatality data for all bird species, by geographic region.

	Fatality		
Project Name	Estimate ^A	No. of Turbines	Total MW
PrairieWinds ND1 (Minot), ND (2010)	1.48	80	115.50
Buffalo Ridge, MN (Phase I; 1999)	1.43	73	25.00
PrairieWinds SD1, SD (2011-2012)	1.41	108	162.00
T_{00} Crop 8 (2012, 2012)	1.35	68 phase I, 132	300 (102 phase I,
Top Crop I & II (2012-2013)	1.55	phase II	198 phase II)
Heritage Garden I, MI (2012-2014)	1.3	14	28.00
Wessington Springs, SD (2010)	0.89	34	51.00
Rail Splitter, IL (2012-2013)	0.84	67	100.50
Top of Iowa, IA (2004)	0.81	89	80.00
Big Blue, MN (2013)	0.6	18	36.00
Grand Ridge I, IL (2009-2010)	0.48	66	99.00
Top of Iowa, IA (2003)	0.42	89	80.00
Big Blue, MN (2014)	0.37	18	36.00
Pioneer Prairie I, IA (Phase II; 2011-2012)	0.27	62	102.30

Appendix D1. Wind energy facilities in the Midwest with fatality data for all bird species, by geographic region.

A=number of bird fatalities/MW/year

Wind Energy Facility/Study	Fatality Estimate Citation	Wind Energy Facility/Study	Fatality Estimate Citation
Barton I & II, IA (2010-2011)	Derby et al. 2011b	Heritage Garden I, MI (2012-2014)	Kerlinger et al. 2014
Big Blue, MN (2013)	Fagen Engineering 2014	Kewaunee County, WI (1999-2001)	Howe et al. 2002
Big Blue, MN (2014)	Fagen Engineering 2015	Moraine II, MN (2009)	Derby et al. 2010f
Black Oak Getty, MN (2017)	Pickle et al. 2018	NPPD Ainsworth, NE (2006)	Derby et al. 2007
Blue Sky Green Field, WI (2008; 2009)	Gruver et al. 2009	Pioneer Prairie I, IA (Phase II; 2011-2012)	Chodachek et al. 2012
Buffalo Ridge I, SD (2009- 2010)	Derby et al. 2010d	PrairieWinds ND1 (Minot), ND (2010)	Derby et al. 2011d
Buffalo Ridge II, SD (2011- 2012)	Derby et al. 2012a	PrairieWinds ND1 (Minot), ND (2011)	Derby et al. 2012d
Buffalo Ridge, MN (Phase I; 1996)	Johnson et al. 2000	PrairieWinds SD1, SD (2011-2012)	Derby et al. 2012c
Buffalo Ridge, MN (Phase I; 1997)	Johnson et al. 2000	PrairieWinds SD1, SD (2012-2013)	Derby et al. 2013
Buffalo Ridge, MN (Phase I; 1998)	Johnson et al. 2000	PrairieWinds SD1, SD (2013-2014)	Derby et al. 2014
Buffalo Ridge, MN (Phase I; 1999)	Johnson et al. 2000	Rail Splitter, IL (2012-2013)	Good et al. 2013b
Buffalo Ridge, MN (Phase II; 1998)	, Johnson et al. 2000	Ripley, Ont (2008)	Jacques Whitford 2009
Buffalo Ridge, MN (Phase II; 1999)	Johnson et al. 2000	Rugby, ND (2010-2011)	Derby et al. 2011c
Buffalo Ridge, MN (Phase III; 1999)	Johnson et al. 2000	Top Crop I & II (2012-2013)	Good et al. 2013c
Cedar Ridge, WI (2009)		Top of Iowa, IA (2003)	Jain 2005
Cedar Ridge, WI (2010)	BHE Environmental 2010	Top of Iowa, IA (2004)	Jain 2005
Elm Creek II, MN (2011- 2012)	BHE Environmental 2011	Wessington Springs, SD (2009)	Derby et al. 2010c
Elm Creek, MN (2009-2010)	Derby et al. 2010e	Wessington Springs, SD (2010)	Derby et al. 2011a
Fowler I, IN (2009)	Johnson et al. 2010a	Winnebago, IA (2009-2010)	Derby et al. 2010g
Grand Ridge I, IL (2009- 2010)	Derby et al. 2010a		

Appendix D1 (*continued*). Wind energy facilities in the Midwestern region of North America with fatality data for all bird species. Data from the following sources.

J <u>se Estimate^A NA</u> NA NA NA NA	Raptor Fatality Estimate ^B 0 – 0.6 0.47 0.37 0.27	No. of Turbines 39 73 33	Total MW 78 25.00
NA NA NA NA NA	0.47 0.37 0.27	73 33	25.00
NA NA NA	0.37 0.27	33	
NA NA	0.27		10
NA			49.50
		10	20.00
ΝΔ	0.20	24	50.40
11/1	0.18	41	67.60
NA	0.17	108	162.00
NA	0.17	89	80.00
NA	0.13	41	68.00
NA	0.10	38	76.00
0.232	0.07	34	51.00
NA	0.06	71	149.00
NA	0.06	36	20.50
0.232	0.06	34	51.00
NA	0.05	80	115.50
NA	0.05	80	115.50
NA	0.03	108	162.00
?	0	39	78.00
NA	0	67	100
NA	0	67	100.50
NA	0	62	102.30
NA	0	138	103.50
			107.25
			107.25
			145.00
			148.80
			160.00
			162.00
			20.46
			210.00
			25.00
			25.00
			25.00
			301.00
			36.00
			36.00
			80.00
			99.00
	NA NA NA NA 0.232 NA 0.232 NA NA NA NA NA NA NA NA	NA 0.18 NA 0.17 NA 0.13 NA 0.10 0.232 0.07 NA 0.06 NA 0.06 NA 0.06 NA 0.05 NA 0.05 NA 0.05 NA 0.03 ? 0 NA 0 <td>NA 0.18 41 NA 0.17 108 NA 0.13 41 NA 0.13 41 NA 0.10 38 0.232 0.07 34 NA 0.06 71 NA 0.06 36 0.232 0.06 34 NA 0.05 80 NA 0.05 80 NA 0.03 108 ? 0 39 NA 0 67 NA 0 67 NA 0 67 NA 0 62 NA 0 143 NA 0 143 NA 0 143 NA 0 108 NA 0 108 NA 0 105 NA 0 105 NA 0 73 NA 0<!--</td--></td>	NA 0.18 41 NA 0.17 108 NA 0.13 41 NA 0.13 41 NA 0.10 38 0.232 0.07 34 NA 0.06 71 NA 0.06 36 0.232 0.06 34 NA 0.05 80 NA 0.05 80 NA 0.03 108 ? 0 39 NA 0 67 NA 0 67 NA 0 67 NA 0 62 NA 0 143 NA 0 143 NA 0 143 NA 0 108 NA 0 108 NA 0 105 NA 0 105 NA 0 73 NA 0 </td

Appendix D2. Wind energy facilities in the Midwestern region of North America with fatality data for raptors.

A=number of raptors/plot/20-minute survey

B=number of fatalities/megawatt(MW)/year

					Facility
Wind Energy Facility/Study	Use Estimate Report Citation	Facility Estimate Report Citation	Wind Energy Facility/Study	Use Estimate Report Citation	Facility Estimate Report Citation
Barton I & II, IA (2010-2011)	-	Derby et al. 2011b	Grand Ridge I, IL (2009-2010)	Derby et al. 2009	Derby et al. 2010a
Big Blue, MN (2013)	-	Fagen Engineering 2014	Kewaunee County, WI (1999- 2001)	-	Howe et al. 2002
Big Blue, MN (2014)	-	Fagen Engineering 2015	Moraine II, MN (2009)	-	Derby et al. 2010f
Black Oak Getty, MN (2017)	-	Pickle et al. 2018	NPPD Ainsworth, NE (2006)	-	Derby et al. 2007
Blue Sky Green Field, WI (2008; 2009)	-	Gruver et al. 2009	Pioneer Prairie I, IA (Phase II; 2011- 2012)	-	Chodachek et al. 2012
Buffalo Ridge I, SD (2009-2010)	-	Derby et al. 2010d	PrairieWinds ND1 (Minot), ND (2010)	-	Derby et al. 2011d
Buffalo Ridge II, SD (2011-2012)	-	Derby et al. 2012a	PrairieWinds ND1 (Minot), ND (2011)	-	Derby et al. 2012d
Buffalo Ridge, MN (Phase I; 1996)	-	Johnson et al. 2000	PrairieWinds SD1, SD (2011-2012)	-	Derby et al. 2012c
Buffalo Ridge, MN (Phase I; 1997)	-	Johnson et al. 2000	PrairieWinds SD1, SD (2012-2013)	-	Derby et al. 2013
Buffalo Ridge, MN (Phase I; 1998)	-	Johnson et al. 2000	PrairieWinds SD1, SD (2013-2014)	-	Derby et al. 2014
Buffalo Ridge, MN (Phase I; 1999)	-	Johnson et al. 2000	Rail Splitter, IL (2012-2013)	-	Good et al. 2013b
Buffalo Ridge, MN (Phase II; 1998) Buffalo Ridge, MN	-	Johnson et al. 2000	Ripley, Ont (2008) Rugby, ND (2010-	-	Jacques Whitford 2009
(Phase II; 1999) Buffalo Ridge, MN	-	Johnson et al. 2000	2011) Top of Iowa, IA	-	Derby et al. 2011c
(Phase III; 1999)	-	Johnson et al. 2000 BHE	(2003)	-	Jain 2005
Cedar Ridge, WI (2009)	-	Environmental 2010	Top of Iowa, IA (2004)	-	Jain 2005
Cedar Ridge, WI (2010)	-	BHE Environmental 2011	Wessington Springs, SD (2009)	Derby et al. 2008	Derby et al. 2010c
Elm Creek II, MN (2011-2012)	-	Derby et al. 2010e	(2010)	-	Derby et al. 2011a
Elm Creek, MN (2009-2010)	-	Derby et al. 2012b	Winnebago, IA (2009-2010)	-	Derby et al. 2010g
Fowler I, IN (2009)	-	Johnson et al. 2010a			

Appendix D2 (*continued*). Wind energy facilities in the Midwestern region of North America with fatality data for raptors. Data from the following sources:

bats.					
Wind Energy Facility	Bat Activity Estimate ^A	Bat Activity Dates	Fatality Estimate ^E	No. of Turbines	Total MW
Black Oak Getty, MN 2018	8.3	04/16/12 – 10/31/12	21.00 – 37.59	39	78
	Midwest				
Macksburg, IA (2015)			73.08	48	119.6
Cedar Ridge, WI (2009)	10.0 ^{С,Е,F}	7/16/07-9/30/07	30.61	41	67.6
Black Oak Getty, MN road/pads (2017)	8.3	4/16/12-10/31/12	29.88	39	78
Lundgren, IA (2015)			28.74	107	251.0
Blue Sky Green Field, WI	7.7 ^F	7/24/07-10/29/07	24.57	88	145
Cedar Ridge, WI (2010)	10.0 ^{C,E,F}	7/16/07-09/30/07	24.12	41	68
Walnut, IA (2015)			21.69	102	153.0
Morning Light, IA (2015)			20.19	44	101.2
Fowler I, II, III, IN (2011)			20.19	355	600
Fowler I, II, III, IN (2010)			18.96	355	600
Intrepid, IA (2016)			18.37	122	175.5
Forward Energy Center, WI	6.97	8/5/08-11/08/08	18.17	86	129
Laurel, IA (2016)			14.22	52	119.6
Adair, IA (2015)			14.05	76	174.8
Black Oak Getty, MN cleared plots (2018)	8.3	4/16/12-10/31/12	13.03	39	78
					300
				69 phage	(102
T_{00} (rop 1.8 II (2012, 2012)			12.55	68 phase I, 132	phase
Top Crop I & II (2012-2013)			12.55		l, 198
				phase II	phase
					II)
Wellsburg, IA (2016)			12.3	60	140.8
Carroll, IA (2015)			11.71	100	150.0
Rail Splitter, IL (2012-2013)			11.21	67	100.5
				24 (four	
Harrow, Ont (2010)			11.13	6-turbine facilities)	39.6
Macksburg, IA (2016)			10.79	48	119.6
Charles City, IA (2016)			10.41	50	75.0
Vienna II, IÁ (2016)			10.28	19	44.6
Top of Iowa, IA (2004)	35.7	5/26/04-9/24/04	10.27	89	80
Adams, IA (2016)			10.08	64	154.3
Pioneer Prairie I, IA (Phase II; 2011-2012)			10.06	62	102.3
Eclipse, IA (2015)			10.01	87	200.1
Vienna I, IA (2016)			9.09	45	105.6
Century, IA (2016)			9.07	145	200.0
Lundgren, IA (2016)			8.8	107	251.0
Highland, IA (2016)			8.63	217	502
Fowler I, IN (2009)			8.09	162	301
Crystal Lake II, IA			7.42	80	200
Top of Iowa, IA (2003)			7.16	89	80
Victory, IA (2015)			6.48	66	99.0
Kewaunee County, WI			6.45	31	20.46
Rolling Hills, IA (2016)			6.3	193	443.9
Pomeroy, IA (2016)			6.25	184	286.4
Rolling Hills, IA (2015)			6.13	193	443.9
Ripley, Ont. (2008)			4.67	38	76
Winnebago, IA			4.54	10	20

Appendix D3. Wind energy facilities in the Midwest with comparable activity and fatality data for bats.

Wind Energy Facility	Bat Activity Estimate ^A	Bat Activity Dates	Fatality Estimate ^B	No. of Turbines	Total MW
Buffalo Ridge, MN (Phase II; 2001/Lake	2.2 ^D	6/15/01-9/15/01	4.35	143	107.25
Benton I)	2.2	0/10/01 0/10/01	4.00	140	107.20
Buffalo Ridge, MN (Phase III; 2001/Lake	2.2 ^D	6/15/01-9/15/01	3.71	138	103.5
Benton II)		0,10,01 0,10,01	0.7 1	100	100.0
Crescent Ridge, IL			3.27	33	54.45
Buffalo Ridge, MN (Phase III; 1999)			2.72	138	103.5
Buffalo Ridge, MN (Phase II; 1999)			2.59	143	107.25
Moraine II, MN			2.42	33	49.5
Buffalo Ridge, MN (Phase II; 1998)			2.16	143	107.25
Prairie Winds (Minot), ND			2.13	80	115.5
Grand Ridge, IL			2.10	66	99
Buffalo Ridge, MN (Phase III; 2002/Lake Benton II)	1.9 ^D	6/15/02-9/15/02	1.81	138	103.5
Buffalo Ridge, MN (Phase II; 2002/Lake Benton I)	1.9 ^D	6/15/02-9/15/02	1.64	143	107.25
Elm Creek, MN			1.49	67	100
Wessington Springs, SD			1.48	34	51
NPPD Ainsworth, NE			1.16	36	20.5
Buffalo Ridge, MN (Phase I; 1999)			0.74	73	25
Buffalo Ridge I, SD (2010)			0.16	24	50.4

Appendix D3. Wind energy facilities in the Midwest with comparable activity and fatality data for bats.

A = Bat passes per detector-night, from pre-construction surveys

B = Number of fatalities per megawatt per year, from post-construction fatality surveys

C = Activity rate based on data collected at various heights all other activity rates are from ground-based units only

D = Activity rate was averaged across phases and/or years

E = Activity rate calculated by WEST from data presented in referenced report

F= Activity rate based on pre-construction monitoring; data for all other activity and fatality rates were collected concurrently

G = The overall activity rate of 28.5 is from reference stations located along forest edges which may be attractive to bats; the activity rate of 0.3 is from one unit placed on a nacelle

comparable activity and fatality data for bats. Data from the following sources:										
Wind Energy Facility/Study	Activity Estimate Report Citation	Fatality Estimate Report Citation	Wind Energy Facility/Study	Activity Estimate Report Citation	Fatality Estimate Report Citation					
Adair, IA (2015)	NA	Bay et al. 2017a	Highland, IA (2016)	NA	Bay et al. 2017b					
Adams, IA (2016)	NA	Bay et al. 2017b	Intrepid, IA (2016)	NA	Bay et al. 2017b					
Barton I & II, IA (2010-2011)	NA	WEST 2011	Kewaunee County, WI (1999- 2001)	NA	Howe et al. 2002					
Big Blue, MN (2013)	NA	Fagen Engineering 2014	Laurel, IA (2016)	NA	Bay et al. 2017b					
Big Blue, MN (2014)	NA	Fagen Engineering 2015	Lundgren, IA (2015)	NA	Bay et al. 2017a					
Black Oak Getty, MN (2012, 2017)	Hamer Environmental 2012	Pickle et al. 2018	Lundgren, IA (2016)	NA	Bay et al. 2017b					
Blue Sky Green Field, WI (2008; 2009)	Gruver 2008	Gruver et al. 2009	Macksburg, IA (2015)	NA	Bay et al. 2017a					
Buffalo Ridge I, SD (2009-2010)	NA	Derby et al. 2010d	Macksburg, IA (2016)	NA	Bay et al. 2017b					
Buffalo Ridge II, SD (2011-2012)	NA	Derby et al. 2012a	Moraine II, MN (2009)	NA	Derby et al. 2010f					
Buffalo Ridge, MN (Phase I; 1999)	NA	Johnson et al. 2000	Morning Light, IA (2015)	NA	Bay et al. 2017a					
Buffalo Ridge, MN (Phase II; 1998)	NA	Johnson et al. 2000	NPPD Ainsworth, NE (2006)	NA	Derby et al. 2007					
Buffalo Ridge, MN (Phase II; 1999)	NA	Johnson et al. 2000	Pioneer Prairie I, IA (Phase II; 2011- 2012)	NA	Chodachek et al. 2012					
Buffalo Ridge, MN (Phase II; 2001/Lake Benton I)	Johnson et al.	Johnson et al. 2004	Pioneer Prairie II, IA (2013)	NA	Chodachek et al. 2014					
Buffalo Ridge, MN (Phase II; 2002/Lake Benton	Johnson et al.	Johnson et al. 2004	Pomeroy, IA (2016)	NA	Bay et al. 2017b					
I) Buffalo Ridge, MN (Phase III; 1999) Buffala Bidga, MN	NA	Johnson et al. 2000	PrairieWinds ND1 (Minot), ND (2010)	NA	Derby et al. 2011d					
Buffalo Ridge, MN (Phase III; 2001/Lake Benton II)	Johnson et al. 2004	Johnson et al. 2004	PrairieWinds ND1 (Minot), ND (2011)	NA	Derby et al. 2012d					
Buffalo Ridge, MN (Phase III; 2002/Lake Benton II)	Johnson et al. 2004	Johnson et al. 2004	PrairieWinds SD1, SD (2011-2012)	NA	Derby et al. 2012c					
Carroll, IA (2015)	NA	Bay et al. 2017a	PrairieWinds SD1, SD (2012-2013)	NA	Derby et al. 2013					
Cedar Ridge, WI (2009)	BHE Environmental 2008	BHE Environmental 2010	PrairieWinds SD1, SD (2013-2014)	NA	Derby et al. 2014					
Cedar Ridge, WI (2010)	BHE Environmental 2008	BHE Environmental 2011	Rail Splitter, IL (2012-2013)	NA	Good et al. 2013b					
Century, IA (2016)		Bay et al. 2017b	Ripley, Ont (2008)	NA	Jacques Whitford					

Appendix D3 (*continued*). Wind energy facilities in the Midwestern region of North America with comparable activity and fatality data for bats. Data from the following sources:

compara	able activity and	fatality data for b	bats. Data from th	ne following sour	rces:
	Activity	Fatality		Activity	Fatality
Wind Energy	Estimate	Estimate	Wind Energy	Estimate	Estimate
Facility/Study	Report Citation	Report Citation	Facility/Study	Report Citation	Report Citation
					2009
Charles City, IA (2016)	NA	Bay et al. 2017b	Rolling Hills, IA (2015)	NA	Bay et al. 2017a
Crescent Ridge, IL (2005-2006)	NA	Kerlinger et al. 2007	Rolling Hills, IA (2016)	NA	Bay et al. 2017b
Crystal Lake II, IA (2009)	NA	Derby et al. 2010b	Rugby, ND (2010- 2011)	NA	Derby et al. 2011c
Eclipse, IA (2015)	NA	Bay et al. 2017a	Top Crop I & II (2012-2013)	NA	Good et al. 2013c
Elm Creek II, MN (2011-2012)	NA	Derby et al. 2010e	Top of Iowa, IA (2003)	NA	Jain 2005
Elm Creek, MN (2009-2010)	NA	Derby et al. 2012b	Top of Iowa, IA (2004)	Jain 2005	Jain 2005
Forward Energy Center, WI (2008- 2010)	Watt and Drake 2011	Grodsky and Drake 2011	Victory, IA (2015)	NA	Bay et al. 2017a
Fowler I, II, III, IN (2010)	NA	Good et al. 2011	Vienna I, IA (2016)	NA	Bay et al. 2017b
Fowler I, II, III, IN (2011)	NA	Good et al. 2012	Vienna II, IA (2016)	NA	Bay et al. 2017b
Fowler I, II, III, IN (2012)	NA	Good et al. 2013a	Walnut, IA (2015)	NA	Bay et al. 2017a
Fowler I, IN (2009)	NA	Johnson et al. 2010a	Wellsburg, IA (2016)	NA	Bay et al. 2017b
Fowler III, IN (2009)	NA	Johnson et al. 2010b	Wessington Springs, SD (2009)	NA	Derby et al. 2010c
Grand Ridge I, IL (2009-2010)	NA	Derby et al. 2010a	Wessington Springs, SD (2010)	NA	Derby et al. 2011a
Harrow, Ont (2010)	NA	NRSI 2011	Winnebago, IA (2009-2010)	NA	Derby et al. 2010g
Heritage Garden I, MI (2012-2014)	NA	Kerlinger et al. 2014			

Appendix D3 (*continued*). Wind energy facilities in the Midwestern region of North America with comparable activity and fatality data for bats. Data from the following sources:

Wind Energy Facility	Bird Fatalities (bird/MW/year)	Raptor Fatalities (raptors/MW/year)	Bat Fatalities (bats/MW/year)	Predominant Habitat Type	Fatality Report Citation
Adair, IA (2015)	4.64	0.07	14.05	agriculture	Bay et al. 2017a
Adams, IA (2016)	1.56	NA	10.08	agriculture	Bay et al. 2017b
Barton I & II, IA (2010-2011)	5.5	0	1.85	agriculture	Derby et al. 2011b
Big Blue, MN (2013)	0.6	0	2.04	agriculture	Fagen Engineering 2014
Big Blue, MN (2014)	0.37	0	1.43	agriculture	Fagen Engineering 2015
Black Oak Getty, MN (2017)	4.37	0	13.03	agriculture, grassland	Pickle et al. 2018
Blue Sky Green Field, WI (2008; 2009)	7.17	0	24.57	agriculture	Gruver et al. 2009
Buffalo Ridge I, SD (2009-2010)	5.06	0.2	0.16	agriculture/grassland	Derby et al. 2010d
Buffalo Ridge II, SD (2011-2012)	1.99	0	2.81	agriculture, grassland	Derby et al. 2012a
Buffalo Ridge, MN (Phase I; 1996)	4.14	0	NA	agriculture	Johnson et al. 2000
Buffalo Ridge, MN (Phase I; 1997)	2.51	0	NA	agriculture	Johnson et al. 2000
Buffalo Ridge, MN (Phase I; 1998)	3.14	0	NA	agriculture	Johnson et al. 2000
Buffalo Ridge, MN (Phase I; 1999)	1.43	0.47	0.74	agriculture	Johnson et al. 2000
Buffalo Ridge, MN (Phase II; 1998)	2.47	0	2.16	agriculture	Johnson et al. 2000
Buffalo Ridge, MN (Phase II; 1999)	3.57	0	2.59	agriculture	Johnson et al. 2000
Buffalo Ridge, MN (Phase II; 2001/Lake Benton I)	NA	NA	4.35	agriculture	Johnson et al. 2004
Buffalo Ridge, MN (Phase II; 2002/Lake Benton I)	NA	NA	1.64	agriculture	Johnson et al. 2004
Buffalo Ridge, MN (Phase III; 1999)	5.93	0	2.72	agriculture	Johnson et al. 2000
Buffalo Ridge, MN (Phase III; 2001/Lake Benton II)	NA	NA	3.71	agriculture	Johnson et al. 2004
Buffalo Ridge, MN (Phase III; 2002/Lake Benton II)	NA	NA	1.81	agriculture	Johnson et al. 2004
Carroll, IA (2015)	3.55	NA	11.71	agriculture	Bay et al. 2017a
Cedar Ridge, WI (2009)	6.55	0.18	30.61	agriculture	BHE Environmental 2010
Cedar Ridge, WI (2010)	3.72	0.13	24.12	agriculture	BHE Environmental 2011
Century, IA (2016)	3.54	0.01	9.07	agriculture	Bay et al. 2017b
Charles City, IA (2016)	4.13	NA	10.41	agriculture	Bay et al. 2017b

Appendix D4. Fatality estimates for wind-energy facilities in the Midwestern region of North America.

				-			
Wind Energy Facility	Bird Fatalities (bird/MW/year)	Raptor Fatalities (raptors/MW/year)	Bat Fatalities (bats/MW/year)	Predominant Habitat Type	Fatality Report Citation		
Crescent Ridge, IL (2005-2006)	NA	NA	3.27	agriculture	Kerlinger et al. 2007		
Crystal Lake II, IA (2009)	NA	NA	7.42	agriculture	Derby et al. 2010b		
Eclipse, IA (2015)	3.62	0.12	10.01	agriculture	Bay et al. 2017a		
Elm Creek II, MN (2011-2012)	3.64	0	2.81	agriculture, grassland	Derby et al. 2010e		
Elm Creek, MN (2009-2010)	1.55	0	1.49	agriculture	Derby et al. 2012b		
Forward Energy Center, WI (2008- 2010)	NA	NA	18.17	agriculture	Grodsky and Drake 2011		
Fowler I, II, III, IN (2010)	NA	NA	18.96	agriculture	Good et al. 2011		
Fowler I, II, III, IN (2011)	NA	NA	20.19	agriculture	Good et al. 2012		
Fowler I, II, III, IN (2012)	NA	NA	2.96	agriculture	Good et al. 2013a		
Fowler I, IN (2009)	2.83	0	8.09	agriculture	Johnson et al. 2010a		
Fowler III, IN (2009)	NA	NA	1.84	agriculture	Johnson et al. 2010b		
Grand Ridge I, IL (2009-2010)	0.48	0	2.1	agriculture	Derby et al. 2010a		
Harrow, Ont (2010)	NA	NA	11.13	agriculture	Natural Resource Solutions Inc. (NRSI) 2011		
Heritage Garden I, MI (2012-2014)	1.3	NA	5.9	agriculture	Kerlinger et al. 2014		
Highland, IA (2016)	2.25	NA	8.63	agriculture	Bay et al. 2017b		
Intrepid, IA (2016)	2.93	0.02	18.37	agriculture	Bay et al. 2017b		
Kewaunee County, WI (1999-2001)	1.95	0	6.45	agriculture	Howe et al. 2002		
Laurel, IA (2016)	2.96	NA	14.22	agriculture	Bay et al. 2017b		
Lundgren, IA (2015)	2.91	NA	28.74	agriculture	Bay et al. 2017a		
Lundgren, IA (2016)	3.37	NA	8.08	agriculture	Bay et al. 2017b		
Macksburg, IA (2015)	3.38	NA	73.08	agriculture	Bay et al. 2017a		
Macksburg, IA (2016)	4.94	0.02	10.79	agriculture	Bay et al. 2017b		
Moraine II, MN (2009)	5.59	0.37	2.42	agriculture/grassland	Derby et al. 2010f		
Morning Light, IA (2015)	2.36	NA	20.19	agriculture	Bay et al. 2017a		
NPPD Ainsworth, NE (2006)	1.63	0.06	1.16	agriculture/grassland	Derby et al. 2007		
Pioneer Prairie I, IA (Phase II; 2011- 2012)	0.27	0	10.06	agriculture, grassland	Chodachek et al. 2012		
Pioneer Prairie II, IA (2013)	NA	NA	3.83	agriculture	Chodachek et al. 2014		

Appendix D4. Fatality estimates for wind-energy facilities in the Midwestern region of North America.

Wind Energy Facility	Bird Fatalities (bird/MW/year)	Raptor Fatalities (raptors/MW/year)	Bat Fatalities (bats/MW/year)	Predominant Habitat Type	Fatality Report Citation
Pomeroy, IA (2016)	2.76	0.19	6.25	agriculture	Bay et al. 2017b
PrairieWinds ND1 (Minot), ND (2010)	1.48	0.05	2.13	agriculture	Derby et al. 2011d
PrairieWinds ND1 (Minot), ND (2011)	1.56	0.05	1.39	agriculture, grassland	Derby et al. 2012d
PrairieWinds SD1, SD (2011-2012)	1.41	0	1.23	grassland	Derby et al. 2012c
PrairieWinds SD1, SD (2012-2013)	2.01	0.03	1.05	grassland	Derby et al. 2013
PrairieWinds SD1, SD (2013-2014)	1.66	0.17	0.52	grassland	Derby et al. 2014
Rail Splitter, IL (2012-2013)	0.84	0	11.21	agriculture	Good et al. 2013b
Ripley, Ont (2008)	3.09	0.1	4.67	agriculture	Jacques Whitford 2009
Rolling Hills, IA (2015)	1.79	0.04	6.13	agriculture	Bay et al. 2017a
Rolling Hills, IA (2016)	3.48	0.08	6.30	agriculture	Bay et al. 2017b
Rugby, ND (2010-2011)	3.82	0.06	1.6	agriculture	Derby et al. 2011c
Top Crop I & II (2012-2013)	1.35	NA	12.55	agriculture	Good et al. 2013c
Top of Iowa, IA (2003)	0.42	0	7.16	agriculture	Jain 2005
Top of Iowa, IA (2004)	0.81	0.17	10.27	agriculture	Jain 2005
Victory, IA (2015)	1.52	NA	6.48	agriculture	Bay et al. 2017a
Vienna I, IA (2016)	5.70	0.03	9.09	agriculture	Bay et al. 2017b
Vienna II, IA (2016)	3.57	0.07	10.28	agriculture	Bay et al. 2017b
Walnut, IA (2015)	2.88	NA	21.69	agriculture	Bay et al. 2017a
Wellsburg, IA (2016)	8.44	NA	12.30	agriculture	Bay et al. 2017b
Wessington Springs, SD (2009)	8.25	0.06	1.48	grassland	Derby et al. 2010c
Wessington Springs, SD (2010)	0.89	0.07	0.41	grassland	Derby et al. 2011a
Winnebago, IA (2009-2010)	3.88	0.27	4.54	agriculture/grassland	Derby et al. 2010g

Appendix D4. Fatality estimates for wind-energy facilities in the Midwestern region of North America.

MW = megawatt

Wind Energy Facility/Study	Total # of Turbines	Total MW	Tower Size (m)	Number Turbines Searched	Plot Size	Length of Study	Survey frequency
Adair, IA (2015)	76	174.8	2.3	76	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)
Adams, IA (2016)	64	154.3	2.3/2.4	50 road/pad, 14 cleared plots (7 60x60m and 7 100x1100m)	60x60m and 100x100m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
Barton I & II, IA (2010- 2011)	80(35 (9 turbines were dropped in June 2010 due to landowner issues) 26 turbines were searched for the remainder of the study)	160	100	30	200 m x 200 m	1 year	weekly (spring, fall; migratory turbines), monthly (summer, winter; non-migratory turbines)
Big Blue, MN (2013)	18(18)	36	78 or 90 (according to Gamesa website)	18	200m diameter	NA	weekly, monthly (Nov and Dec)
Big Blue, MN (2014)	18(18)	36	78 or 90 (according to Gamesa website)	18	200m diameter	NA	weekly, monthly (Nov and Dec)
Black Oak Getty, MN (2017)	39	78	80	5 cleared plots, 34 road/pad	120 m x 120 m (cleared plot), 60 m radius (road/pad)	9 months (March 15, 2017 – November 16, 2017)	Cleared plots twice weekly, road/pads once weekly.
Blue Sky Green Field, WI (2008; 2009)	88(30)	145	80	30	160 m x 160 m	fall, spring	daily(10 turbines), weekly (20 turbines)
Buffalo Ridge, MN (1994-1995)	73(1994:10 plots (3 turbines/plot), 20 addition plots in Sept	25	37	1994:10 plots (3 turbines/plot), 20 addition plots in Sept	100 x 100m	20 months	varies. See number turbines searched or page 44 of report

Wind Energy Facility/Study	Total # of Turbines	Total MW	Tower Size (m)	Number Turbines Searched	Plot Size	Length of Study	Survey frequency
Pacinity/Study	& Oct 1994, 1995: 30 turbines search every other week (Jan-Mar), 60 searched weekly (Apr, July, Aug) 73 searched weekly (May-June and Sept- Oct), 30 searched weekly (Nov-Dec))		<u>(iii)</u>	& Oct 1994, 1995: 30 turbines search every other week (Jan- Mar), 60 searched weekly (Apr, July, Aug) 73 searched weekly (May-June and Sept-Oct), 30 searched weekly (Nov-Dec)		Study	Survey rrequency
Buffalo Ridge, MN (Phase I; 1996)	73(21)	25	36	21	126 m x 126 m	1 year	bi-monthly (spring, summer, and fall)
Buffalo Ridge, MN (Phase I; 1997)	73(21)	25	36	21	126 m x 126 m	1 year	bi-monthly (spring, summer, and fall)
Buffalo Ridge, MN (Phase I; 1998)	73(21)	25	36	21	126 m x 126 m	1 year	bi-monthly (spring, summer, and fall)
Buffalo Ridge, MN (Phase I; 1999)	73(21)	25	36	21	126 m x 126 m	1 year	bi-monthly (spring, summer, and fall)
Buffalo Ridge, MN (Phase II; 1998)	143(40)	107.25	50	40	126 m x 126 m	1 year	bi-monthly (spring, summer, and fall)
Buffalo Ridge, MN (Phase II; 1999)	143(40)	107.25	50	40	126 m x 126 m	1 year	bi-monthly (spring, summer, and fall)
Buffalo Ridge, MN (Phase II; 2001/Lake Benton I)	143(83)	107.25	50	83	60 m x 60 m	summer, fal	l bi-monthly
Buffalo Ridge, MN (Phase II; 2002/Lake Benton I)	143(103)	107.25	50	103	60 m x 60 m	summer, fal	l bi-monthly
Buffalo Ridge, MN (Phase III; 1999)	138(30)	103.5	50	30	126 m x 126 m	1 year	bi-monthly (spring, summer, and fall)
Buffalo Ridge, MN (Phase III; 2001/Lake Benton II)	138(83)	103.5	50	83	60 m x 60 m	summer, fal	l bi-monthly

Wind Energy		Total Tower Size Number Turbines				Length of		
Facility/Study	Total # of Turbines	MW	(m)	Searched	Plot Size	Study	Survey frequency	
Buffalo Ridge, MN (Phase III; 2002/Lake Benton II)	138(103)	103.5	50	103	60 m x 60 m	summer, fall	bi-monthly	
Buffalo Ridge I, SD (2009-2010)	24(24)	50.4	79	24	200 m x 200 m	1 year	weekly (migratory), monthly (non-migratory)	
Buffalo Ridge II, SD (2011-2012)	105(65 (60 road and pad, 5 turbine plots))	210	78	65 (60 road and pad, 5 turbine plots)	100 x 100 m	1 year	weekly (spring, summer, fall), monthly (winter)	
Carroll, IA (2015)	100	150.0	1.5	100	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)	
Cedar Ridge, WI (2009)	41(20)	67.6	80	20	160 m x 160 m	spring, summer, fall	daily, every 4 days; late fall searched every 3 days	
Cedar Ridge, WI (2010)	41(20)	68	80	20	160 m x 160 m	1 year	Five turbines were surveyed daily, 15 turbines surveyed every 4 days in rotating groups each day. All 20 surveyed every three days during late fall	
Century, IA (2016)	145	200.0	1.5/1.0	115 road/pad, 30 cleared plots (14 60x60m and 14 100x1100m)	60x60m and 100x100m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)	
Charles City, IA (2016)	50	75.0	1.5	40 road/pad, 10 cleared 200x200m plot	200x200m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)	
Crescent Ridge, IL (2005-2006)	33(33)	49.5	80	33	70-m radius	1 year	weekly (fall, spring)	

Wind Energy Facility/Study	Total # of Turbines	Total MW	Tower Size (m)	Number Turbines Searched	Plot Size	Length of Study	Survey frequency
Crystal Lake II, IA (2009)	80(16 turbines through week 6, and then 15 for duration of study)	200	80	16 turbines through week 6, and then 15 for duration of study	100 m x 100 m	spring, summer, fall	3 times per week for 26 weeks
Eclipse, IA (2015)	87	200.1	2.3	87	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)
Elm Creek, MN (2009- 2010)	67(29)	100	80	29	200 m x 200 m	1 year	weekly, monthly
Elm Creek II, MN (2011-2012)	62(30)	148.8	80	30	200 x 200m (2 random migration search areas 100 x 100m)	1 year	20 searched every 28 days, 10 turbines every 7 days during migration)
Erie Shores, Ont (2006)	66(66)	99	80	66	40-m radius	2 years	weekly, bi-monthly, 2-3 times weekly (migration)
Forward Energy Center, WI (2008-2010)	86(29)	129	80	29	160 m x 160 m	2 years	11 turbines daily, 9 every 3 days, 9 every 5 days
Fowler I, IN (2009)	162(25)	301	78 (Vestas), 80 (Clipper)	25	160 m x 160 m	spring, summer, fall	weekly, bi-weekly
Fowler I, II, III, IN (2010)	355(36 turbines, 100 road and pads)	600	Vestas = 80, Clipper = 80, GE = 80	36 turbines, 100 road and pads	80 m x 80 m for turbines ; 40-m radius for roads and pads	spring, fall	daily, weekly
Fowler I, II, III, IN (2011)	355(177 road and pads (spring), 9 turbines & 168 roads and pads (fall))	600	Vestas = 80, Clipper = 80, GE = 80	177 road and pads (spring), 9 turbines & 168 roads and pads (fall)	turbines (80 m circular plot), roads and pads (out to 80 m)	spring, fall	daily, weekly
Fowler I, II, III, IN (2012)	355(118 roads and pads)	600	Vestas = 80, Clipper = 80, GE =	118 roads and pads	roads and pads (out to 80 m)	2.5 months	weekly

Wind Energy Facility/Study	Total # of Turbines	Total MW	Tower Size (m)	Number Turbines Searched	Plot Size	Length of Study	Survey frequency
			80				
Fowler III, IN (2009)	60(12)	99	78	12	160 m x 160 m	10 weeks	weekly, bi-weekly
Grand Ridge I, IL (2009-2010)	66(30)	99	80	30	160 m x 160 m	1 year	weekly, monthly
Harrow, Ont (2010)	24 (four 6-turb facilities)(12 in July, 24 Aug-Oct)	39.6	NA	12 in July, 24 Aug- Oct	50-m radius from turbine base	4 months	twice-weekly
Heritage Garden I, MI (2012-2014)	14(14)	28	90	14	120x120 m except one plot that was 280x280 m	1 years	weekly (spring, summer, and fall) and bi-weekly (winter)
Highland, IA (2016)	214	502	2.3	170 road/pad, 44 cleared plots (22 60x60m and 22 100x1100m)	60x60m and 100x100m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
Intrepid, IA (2016)	122	175.5	1.5/1.0	96 road/pad, 26 cleared plots (13 60x60m and 13 100x1100m)	60x60m and 100x100m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
Kewaunee County, WI (1999-2001)	31(31)	20.46	65	31	60 m x 60 m	2 years	bi-weekly (spring, summer), daily (spring, fall migration), weekly (fall, winter)
Lakefield Wind, MN (2012)	137(26)	205.5	80	26	100 m x 100 m	7.5 months	3 times per week
Laurel, IA (2016)	52	119.6	2.3	40 road/pad, 12 cleared plots (6 60x60m and 6 100x1100m)	60x60m and 100x100m (cleared plot), 100m	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)

Wind Energy		Total	Tower Size	Number Turbines		Length of	• ·
Facility/Study	Total # of Turbines	MW	(m)	Searched	Plot Size	Study	Survey frequency
					radius (road/pad)		
Lundgren, IA (2015)	107	251	2.3	107	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)
Lundgren, IA (2016)	107	251	2.3	86 road/pad, 10 cleared 200x200m plots	200x200m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
Macksburg, IA (2015)	51	119.6	2.3	51	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)
Macksburg, IA (2016)	51	119.6	2.3	41 road/pad, 10 cleared 200x200m plots	200x200m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
Melancthon, Ont (Phase I; 2007)	45(45)	NA	NA	45	35m radius	5 months	weekly, twice weekly
Moraine II, MN (2009)	33(30)	49.5	82.5	30	200 m x 200 m	1 year	weekly (migratory), monthly (non-migratory)
Morning Light, IA (2015)	44	101.2	2.3	44	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)
NPPD Ainsworth, NE (2006)	36(36)	20.5	70	36	220 m x 220 m	spring, summer, fall	bi-monthly
Pioneer Prairie II, IA (2013)	62(62)	102.3	80	62	80x80 m (5 turbines), road and pad within 100 m of turbine (57 turbines)	NA	weekly
Pioneer Prairie I, IA	62(62 (57 road/pad) 5	102.3	80	62 (57 road/pad) 5	, 80 x 80m	1 year	weekly (spring and fall),

Wind Energy Facility/Study	Total # of Turbines	Total MW	Tower Size (m)	Number Turbines Searched	Plot Size	Length of Study	Survey frequency
(Phase II; 2011-2012)	cleared search plots)			cleared search plots	;		every two weeks (summer), monthly (winter)
Pioneer Trail, IL (2012-2013)	94(50)	150.5	NA	50	80x80m	fall, spring	weekly
Pomeroy, IA (2016)	184	286.4	1.5/2.3	146 road/pad, 38 cleared plots (19 60x60m and 19 100x1100m)	60x60m and 100x100m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
Prairie Rose, MN (2014)	119(10)	200	80	10	100x100m	6 months	weekly
PrairieWinds SD1, SD (2012-2013)	108(50)	162	80	50	200 x 200m	1 year	bi-weekly
PrairieWinds SD1, SD (2013-2014)	108(45)	162	80	45	200 x 200m	1 year	twice monthly (spring, summer, fall), monthly (winter)
PrairieWinds ND1 (Minot), ND (2010)	80(35)	115.5	89	35	minimum of 100 m x 100 m	3 seasons	bi-monthly
PrairieWinds ND1 (Minot), ND (2011)	80(35)	115.5	80	35	minimum 100 x 100m	3 season	twice monthly
PrairieWinds SD1, SD (2011-2012)	108(50)	162	80	50	200 x 200m	1 year	twice monthly (spring, summer, fall), monthly (winter)
Rail Splitter, IL (2012- 2013)	67(34)	100.5	80	34	60 m radius	1 year	weekly (spring, summer, and fall) and bi-weekly (winter)
Ripley, Ont (2008)	38(38)	76	64	38	80 m x 80 m	spring, fall	twice weekly for odd turbines; weekly for even turbines.

Wind Energy		Total	Tower Size	Number Turbines		Length of	
Facility/Study	Total # of Turbines	MW	(m)	Searched	Plot Size	Study	Survey frequency
Ripley, Ont (2008- 2009)	38(38)	76	64	38	80 m x 80 m	6 weeks	twice weekly for odd turbines; weekly for even turbines.
Rolling Hills, IA (2015)	193	443.9	2.3	193	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)
Rolling Hills, IA (2016)	193	443.9	2.3	153 road/pad, 40 cleared plots (20 60x60m and 20 100x1100m)	60x60m and 100x100m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
Rugby, ND (2010- 2011)	71(32)	149	78	32	200 m x 200 m	1 year	weekly (spring, fall; migratory turbines), monthly (non-migratory turbines)
Top Crop I & II (2012- 2013)	68 (phase I) 132 (phase (II)(100)	300 (102 phase I, 198 phase II)	65 (phase I) 80 (phase II)	100	61 m radius	1 year	weekly (spring, summer, and fall) and bi-weekly (winter)
Top of Iowa, IA (2003)	89(26)	80	71.6	26	76 m x 76 m	spring, summer, fall	once every 2 to 3 days
Top of Iowa, IA (2004)	89(26)	80	71.6	26	76 m x 76 m	spring, summer, fall	once every 2 to 3 days
Victory, IA (2015)	66	99.0	1.5	66	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)
Vienna, IA (2016)	45	105.6	2.3	35 road/pad, 10 cleared plots (5 60x60m and 5 100x1100m)	60x60m and 100x100m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
	19	44.6	2.3	15 road/pad, 4	60x60m and	1 year	bimonthly (winter) and
√ienna, IA (2016)				cleared plots (5 60x60m and 5 100x1100m)	(cleared plot), 100m radius (road/pad)		biweekly (spring, summer, and fall)

Min d En e neu e		Tatal	Tauran Olara	Normala an Trunkin a a		I am with af	
Wind Energy Facility/Study	Total # of Turbines	Total MW	Tower Size (m)	Number Turbines Searched	Plot Size	Length of Study	Survey frequency
Taomy,otady			(11)	cleared plots (2 60x60m and 2 100x1100m)	100x100m (cleared plot), 100m radius (road/pad)	Olddy	biweekly (spring, summer, and fall)
Walnut, IA (2015)	102	153.0	1.5	102	Road/pad with 100m radius	1 year	Bimonthly (winter) and weekly (spring, summer, and fall)
Wellsburg, IA (2016)	60	140.8	2.3	48 road/pad, 12 cleared plots (6 60x60m and 6 100x1100m)	60x60m and 100x100m (cleared plot), 100m radius (road/pad)	1 year	bimonthly (winter) and biweekly (spring, summer, and fall)
Wessington Springs, SD (2009)	34(20)	51	80	20	200 m x 200 m	spring, summer, fall	bi-monthly
Wessington Springs, SD (2010)	34(20)	51	80	20	200 m x 200 m	8 months	bi-weekly (spring, summer, fall)
Winnebago, IA (2009- 2010)	10(10)	20	78	10	200 m x 200 m	1 year	weekly (migratory), monthly (non-migratory)

America. Data from	America. Data from the following sources:							
Project Name	Reference	Project Name	Reference					
Adair, IA (2015)	Bay et al. 2017a	Crystal Lake II, IA (2009)	Derby et al. 2010b					
Adams, IA (2016)	Bay et al. 2017b	Eclipse, IA (2015)	Bay et al. 2017a					
Barton I & II, IA (2010-2011)	Derby et al. 2011b	Elm Creek, MN (2009- 2010)	Derby et al. 2010e					
Big Blue, MN (2013)	Fagen Engineering 2014	Elm Creek II, MN (2011- 2012)	Derby et al. 2012b					
Big Blue, MN (2014)	Fagen Engineering 2015	Erie Shores, Ont (2006)	James 2008					
Black Oak Getty, MN (2017)	Pickle et al. 2018	Forward Energy Center, WI (2008-2010)	Grodsky and Drake 2011					
Blue Sky Green Field, WI (2008; 2009)	Gruver et al. 2009	Fowler I, IN (2009)	Johnson et al. 2010a					
Buffalo Ridge, MN (1994-1995)	Osborn et al. 1996, 2000	Fowler I, II, III, IN (2010)	Good et al. 2011					
Buffalo Ridge, MN (Phase I; 1996)	Johnson et al. 2000	Fowler I, II, III, IN (2011)	Good et al. 2012					
Buffalo Ridge, MN (Phase I; 1997)	Johnson et al. 2000	Fowler I, II, III, IN (2012)	Good et al. 2013a					
Buffalo Ridge, MN (Phase I; 1998)	Johnson et al. 2000	Fowler III, IN (2009)	Johnson et al. 2010b					
Buffalo Ridge, MN (Phase I; 1999)	Johnson et al. 2000	Grand Ridge I, IL (2009- 2010)	Derby et al. 2010a					
Buffalo Ridge, MN (Phase II; 1998)	Johnson et al. 2000	Harrow, Ont (2010)	Natural Resource Solutions 2011					
Buffalo Ridge, MN (Phase II; 1999)	Johnson et al. 2000	Heritage Garden I, MI (2012-2014)	Kerlinger et al. 2014					
Buffalo Ridge, MN (Phase II; 2001/Lake Benton I)	Johnson et al. 2004	Highland, IA (2016)	Bay et al. 2017b					
Buffalo Ridge, MN (Phase II; 2002/Lake Benton I)	Johnson et al. 2004	Intrepid, IA (2016)	Bay et al. 2017b					
Buffalo Ridge, MN (Phase III; 1999)	Johnson et al. 2000	Kewaunee County, WI (1999-2001)	Howe et al. 2002					
Buffalo Ridge, MN (Phase III; 2001/Lake Benton II)	Johnson et al. 2004	Lakefield Wind, MN (2012)	MPUC 2012					
Buffalo Ridge, MN (Phase III; 2002/Lake Benton II)	Johnson et al. 2004	Laurel, IA (2016)	Bay et al. 2017b					
Buffalo Ridge I, SD (2009- 2010)	Derby et al. 2010d	Lundgren, IA (2015)	Bay et al. 2017a					
Buffalo Ridge II, SD (2011- 2012)	Derby et al. 2012a	Lundgren, IA (2016)	Bay et al. 2017b					
Carroll, IA (2015)	Bay et al. 2017a	Macksburg, IA (2015)	Bay et al. 2017a					
Cedar Ridge, WI (2009)	BHE Environmental 2010	Macksburg, IA (2016)	Bay et al. 2017b					
Cedar Ridge, WI (2010)	BHE Environmental 2011	Melancthon, Ont (Phase I; 2007)	Stantec Ltd. 2008					
Crescent Ridge, IL (2005-2006) Century, IA (2016)	Kerlinger et al. 2007 Bay et al. 2017b	Moraine II, MN (2009) Morning Light, IA (2015)	Derby et al. 2010f Bay et al. 2017a					
Charles City, IA (2016)	Bay et al. 2017b	NPPD Ainsworth, NE	Derby et al. 2007					
	-	(2006) Bolling Hills, IA (2016)	-					
Pioneer Prairie II, IA (2013)	Chodachek et al. 2014	Rolling Hills, IA (2016)	Bay et al. 2017b					

Appendix D5 (*continued*). All post-construction monitoring studies, project characteristics, and select study methodology for wind-energy facilities in the Midwestern region of North America. Data from the following sources:

America. Data nom the following sources.							
Project Name	Reference	Project Name	Reference				
Pioneer Prairie I, IA (Phase II; 2011-2012)	Chodachek et al. 2012	Rugby, ND (2010-2011)	Derby et al. 2011c				
Pioneer Trail, IL (2012-2013)	ARCADIS 2013						
Pomeroy, IA (2016)	Bay et al. 2017b	Top Crop I & II (2012- 2013)	Good et al. 2013c				
Prairie Rose, MN (2014)	Chodachek et al. 2015	Top of Iowa, IA (2003)	Jain 2005				
PrairieWinds SD1, SD (2012- 2013)	Derby et al. 2013	Top of Iowa, IA (2004)	Jain 2005				
PrairieWinds SD1, SD (2013- 2014)	Derby et al. 2014	Victory, IA (2015)	Bay et al. 2017a				
PrairieWinds ND1 (Minot), ND (2010)	Derby et al. 2011d	Vienna I, IA (2016)	Bay et al. 2017b				
PrairieWinds ND1 (Minot), ND (2011)	Derby et al. 2012d	Vienna II, IA (2016)	Bay et al. 2017b				
PrairieWinds SD1, SD (2011- 2012)	Derby et al. 2012c	Walnut, IA (2015)	Bay et al. 2017a				
Rail Splitter, IL (2012-2013)	Good et al. 2013b	Wellsburg, IA (2016)	Bay et al. 2017b				
Ripley, Ont (2008)	Jacques Whitford 2009	Wessington Springs, SD (2009)	Derby et al. 2010c				
Ripley, Ont (2008-2009)	Golder Associates 2010	Wessington Springs, SD (2010)	Derby et al. 2011a				
Rolling Hills, IA (2015)	Bay et al. 2017a	Winnebago, IA (2009- 2010)	Derby et al. 2010g				

Appendix D5 (*continued*). All post-construction monitoring studies, project characteristics, and select study methodology for wind-energy facilities in the Midwestern region of North America. Data from the following sources:

Appendix E. Distributions, Model Parameter and AIC Values for Small Bird and Bat Density Models

Appendix E1. Area correction models for bats–Control from the Black Oak Getty Wind Energy Project.
Selected models are denoted by an asterisk in the 'Delta AICc' column.

Distribution	AICc	Delta AICc
weibull	11754.470	0*
rayleigh	11764.600	10.1298889765749
norm	11772.027	17.5567752636744
gamma	11797.307	42.8371684912181
gompertz	11826.219	71.7491798020983

Appendix E2. Area correction models for bats–Treatment from the Black Oak Getty Wind Energy Project. Selected models are denoted by an asterisk in the 'Delta AICc' column.

Distribution	AICc	Delta AICc
gompertz	6872.204	0*
norm	6915.697	43.4925326503653
weibull	6939.183	66.9787906683823
rayleigh	6942.204	69.9999474020469
gamma	7016.116	143.912335056836

Appendix E3. Area correction models for small birds from the Black Oak Getty Wind Energy Project. Selected models are denoted by an asterisk in the 'Delta AICc' column.

Distribution	AICc	Delta AICc
gamma	5218.193	0*
rayleigh	5222.943	4.74977351555754
weibull	5225.068	6.87512149798658
norm	5251.759	33.5658238239394
gompertz	5304.134	85.9411981639651