

### EIMR 2018 Kirkwall 24.04.2018

Optimisation of an imagery analysis method to characterise the epibenthic communities of submarine power cables

**Bastien Taormina** 

Morgane Lejart - Emmanuelle Thiesse - Nicolas Desroy - Antoine Carlier







### Artificial reef

"An artificial reef is a manmade structure that may mimic some of the characteristics of a natural reef" → The reef effect



Colonised by hard-substrate benthic species (epibenthic community ~ biofouling) and also attract mobile megafauna with important economic value (decapods, fishes...)

## Artificial reef

"An artificial reef is a manmade structure that may mimic some of the characteristics of a natural reef" → The reef effect

Accidental reef (ex:shipwreck)



"Primary" reef
(ex: fisheries enhancement,
surfing reef...)



"Secondary" reef
(ex: petroleum rigs, marine
renewable energy...)



## Reef effect and MRE

All submerged parts of the different MRE installations are concerned



### Reef effect and MRE

All submerged parts of the different MRE installations are concerned

→ It's important to describe and characterise this reef effect
How is this done in this particular context?

# Underwater imagery

#### Particularly adequate to study the reef effect

- + Non-destructive
- + Relevant to study hard substrates
- + Rapid collection of data over large areas
- + Adequate for sites difficult to access

#### But

- Lots of images to analyse *a posteriori* = Time consuming **∑** 

An adequate and optimised image analysis protocol is unavoidable to efficiently assess biodiversity data





# Study site

Paimpol-Bréhat tidal test site cable



Tidal test-site coordinated by **EDF-EN** with an export cable (10 kVDC) installed in 2012, for 2 Openhydro turbines





# Image survey

#### 3 different sites and 3 different substrates:

- Cable  $\rightarrow \sim 40 \text{ photos/site}$
- Mattress → ~16 photos/site
- Natural → ~30 photos/site







### Goals

- 1 Optimisation of an image analysis protocol
- 2 Study the epibenthic communities on the three substrates
  - 1. Protective cast iron shell
  - **2.** Stabilising concrete mattress
  - **3.** Surrounding natural substrate
- 3 Study the epibenthic communities before and after connection (Electromagnetic field effect)?



#### Random Point Count

Randomly assign points on the picture, and then manually assign each of them to a **category** (taxa or substrata)



+ Rapid to process + Quantitative data (coverage)

But how many points?

## Random Point Count

Low number of points

How many points?

High number of points



Resolution

Time





Necessary resolution → good description of categories > 5% coverage = Which sampling effort?

## Methods

#### Number of points for a good description of a 5% coverage category

#### 1st step:

Exhaustively describe a small number of pictures
(3 pictures/substrate = 9)

**Yields reference pictures (100% described)** 



#### 2nd step:

Simulate results obtained with random point count
-100 point density (5,10, 15... to 500/picture)
-2 point distribution methods (full & stratified random)
\$\\ \ 1000 \text{ simulations for each combination}\$

**Example: Simulation with number of points = 200** 

Full Random X 1000



Stratified Random X 1000



### Methods

Number of points for a good description of a 5% coverage category





Gives the reference coverage of each category





Gives for each combination, 1000 coverage estimations of each category



### Results



At which number of points, a 5% coverage category will have a coefficient of variation =0.25?

250 pt & Stratified





### Results

Robustness of random point count with 250pt & Stratified distribution

**Autosimilarity** 

Bray-Curtis mean similarity between the 1000 simulations = 0.89 = Good repeatability



Similarity with reference

Bray-Curtis mean similarity between the 1000 simulations and the reference = 0.91 = Almost the same results as the reference photos



**Diversity** 

62 % of total specific richness 93 % of total Shannon-Wiener richness

Poor sampling of rare species (<5% coverage)

99 % of total Simpson richness

Time

Approximately 40 minutes/picture = Reasonable, given the resolution



# Perspectives

250 points & Stratified → Good method for the description of a given picture

Other points for the optimisation:

How many pictures/substrate do we need to analyse?

Which minimum taxonomical level do we need?



And then, look at the scientific questions.



Also, survey of megafauna populations with video imagery

