TY - JOUR TI - Interactions between tidal stream turbine arrays and their hydrodynamic impact around Zhoushan Island, China AU - Zhang, J AU - Zhang, C AU - Angeloudis, A AU - Kramer, S AU - He, R AU - Piggott, M T2 - Ocean Engineering AB - Tidal currents represent an attractive renewable energy source particularly because of their predictability. Prospective tidal stream development sites are often co-located in close proximity. Under such circumstances, in order to maximise the exploitation of the resource, multiple tidal stream turbine arrays working in tandem would be needed. In this paper, a continuous array optimisation approach based on the open source coastal ocean modelling framework Thetis is applied to derive optimal configurations for four turbine arrays around Zhoushan Islands, Zhejiang Province, China. Alternative optimisation scenarios are tested to investigate interactions between the turbine arrays and their hydrodynamic footprint. Results show that there are no obvious competition effects between these four arrays around Hulu and Taohua Island. However, significant interactions could arise among the three turbine arrays situated around Hulu Island, with a maximum decrease in average power of 42.2%. By optimising all turbine arrays simultaneously, the competition effects can be minimised and the cost of energy reduced as less turbines are required to deliver an equivalent energy output. As for the potential environmental impact, it is found that the turbine array around Taohua Island would affect a larger area than turbine arrays around Hulu Island. DA - 2022/02// PY - 2022 VL - 246 SP - 110431 UR - https://www.sciencedirect.com/science/article/pii/S0029801821017170 DO - 10.1016/j.oceaneng.2021.110431 LA - English KW - Marine Energy KW - Tidal KW - Changes in Flow KW - Physical Environment ER -