

FLOWBEC Integrated Monitoring Platform and Integrated Surveys

Benjamin Williamson, Beth Scott, Philippe Blondel, Paul Bell Ana Couto, James Chapman, James Slingsby

FLOWBEC Integrated Monitoring Platform

Detection, tracking, classification and kinematic metrics:

- Fish (prey), bird and marine mammal distribution
- Animal behaviour, predator-prey interactions
- MRED interactions, encounters, collision risk
- Entire water column (vertical/horizontal evasion)
- 24/7 irrespective of visibility / illumination, continuous across spring-neap cycle
- Concurrent physical explanatory variable (bio-physical forcing)
- Predictability and <u>transferability</u> of results between sites

turbidimeter

benjamin.williamson@uhi.ac.uk b.e.scott@abdn.ac.uk

FLOWBEC Instrument Suite

Target Co-registration

Target Co-registration

benjamin.williamson@uhi.ac.uk b.e.scott@abdn.ac.uk

Autonomous or Cabled Configuration

66+ kWh batteries for 2 week – 3 month deployment, depending on sensors

Before/after or control/impact studies, floating or seabed turbines...

Rechargeable in 24-h neap window Recovery using small ROV to attach lift line Or cabled to a structure (e.g., tidal turbines, wind turbine pilings)...

Realtime data, longer endurance

Predictable Changes in Fish School Behaviour around Structures

- 1.74 times more fish (prey) around turbine structure
- Vertical distribution changes
- 5.66 times more in low-speed wake (blue bars)

Why it's important...

http://tinyurl.com/FLOWBECfish

Benjamin Williamson $^{\rm a,\,b,\,*},$ Shaun Fraser $^{\rm c,\,d},$ Laura Williamson $^{\rm a},$ Vladimir Nikora $^{\rm c},$ Beth Scott $^{\rm a}$

School of Biological Sciences, University of Aberdeen, Aberdeen, UK

^b Environmental Research Institute, University of the Highlands and Islands (U(D), Thurso, UK

⁹ School of Engineering, University of Aberdeen, Aberdeen, UK ¹ MAC: Maxim Course, Bert Arthur, Scallowen, Undered, UK

⁴ NAFC Morine Centre, Port Arthur, Scallowoy, Shetland, UK

Why are we measuring the physics and the prey together – when consenting risks are mainly about top predator populations?

If we can predict high/low times of risk of collisions from presence of prey or even just from hydrodynamics – cost of monitoring and mitigation techniques will decrease substantially

Current PhDs

- JC Linking changes in habitat to populations
- AC Linking physics to prey to predators
- JS Using drones to understand predator/habitat links

Email EIMR2020@uhi.ac.uk to view

- By measuring the physics, prey and predators simultaneously we are gaining insights into predictable predator foraging use high energy environments.
- Useful for predictive power in population level changes of predators at all sites.
- In the long run, this approach will evolve to very cost-effective monitoring.

FLOWBEC Integrated Monitoring Platform and Integrated Surveys

Benjamin Williamson, Beth Scott, Philippe Blondel, Paul Bell Ana Couto, James Chapman, James Slingsby

