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Risk Retirement

• What is “risk retirement”? 

▪ For certain interactions, potential risks need not be fully investigated for every project for small 
developments (1-2 devices).

▪ Rely on what is already known – already consented projects, research, or analogous industries.

▪ A “retired risk” is not dead, and can be revived in the future as more information becomes available 
for larger arrays.
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Pathway to Risk Retirement
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Pathway to Risk Retirement

Define Interaction

• Project description 
(stressors)

• Marine animals or habitats 
(receptors)
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Pathway to Risk Retirement

Stage Gate 1

• Define if likely / plausible 
risk exists

▪ If not, risk can be retired
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Pathway to Risk Retirement

Stage Gate 2

• Determine if sufficient data 
exists to demonstrate risk is 
acceptable

▪ If so, risk can be retired
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Pathway to Risk Retirement

Stage Gate 3

• Design studies and collect 
targeted project data

• Determine if risk is acceptable

▪ If so, risk can be retired
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Pathway to Risk Retirement

Stage Gate 4

• Determine if proven 
mitigation measures are 
applicable to mitigate risk 

▪ If so, risk can be retired
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Pathway to Risk Retirement

Stage Gate 5

• Develop and test novel 
mitigation measures

• Determine if the risk can be 
mitigated

▪ If so, risk can be retired
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Pathway to Risk Retirement

End of Pathway

• If risk is likely / plausible and 
cannot be mitigated

▪ Need to redesign or possibly 
abandon project
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Data Transferability Process

• Need to ensure datasets from permitted projects are readily 
available and able to be compared
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Data Transferability and Collection Consistency

• What do we mean by “data transferability” 

• What about “data collection consistency”?

• Our hypothesis is that: 

▪ Data/information collected through research studies and monitoring from other projects should inform 
new projects.

▪ Site specific data will be needed for all new projects.

▪ But – the data from established projects may reduce site specific data collection needs. 

▪ And, similarities to other industries may inform new MRE projects.

▪ These data that might be “transferred” need to be collected consistently for comparison.
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Data Transferability Process
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Framework for Data Transferability

1. Brings together datasets from 

already permitted/consented 

projects in an organized fashion

2. Compares the applicability of each 

dataset for use in 

permitting/consenting future projects

3. Assures data collection consistency 

through preferred measurement 

methods or processes

4. Guides the process for data transfer

Stressor Receptor
Site 

Condition
Technology 

Type

• Uses stressors to categorize framework: 

▪ Collision risk

▪ Underwater noise

▪ EMF

▪ Habitat changes

▪ Changes to physical systems

▪ Barrier effects

• Four variables to define an interaction
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Guidelines for Transferability

Necessary

• Interaction defined by same 4 variables and data collected 
consistently

• Same project size (single or array)

Important

• Same receptor species  (or closely related)

• Similar technology 

Desirable

• Similar wave/tidal resource
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Information on 

Underwater Noise 

from MRE Devices
Sound recordings and data courtesy of 

Brian Polagye (PMEC), Teresa Simas, (WavEc), 

Juan Bald (BIMEP) and partners
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Underwater Noise Effects

• Anthropogenic noise from a variety of sources can:

▪ Induce behavioral changes (i.e., avoidance/attraction) 

▪ Cause physical harm

• Shipping and other industries produce higher-amplitude noise (much louder) than MRE

• Offshore renewables: noise concerns from construction; operational noise likely to be much 

lower

• Unlikely for noise from MRE to cause harm to marine animals
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U.S. Regulatory Thresholds

Marine Mammals

• NOAA Technical Guidance (2018)

Fish

• NOAA Fisheries 
(salmon & bull trout)

• BOEM Underwater Acoustic
Modeling Report (2013)

https://www.fisheries.noaa.gov/resource/document/technical-guidance-assessing-effects-anthropogenic-sound-marine-mammal
https://www.boem.gov/Renewable-Energy-Program/State-Activities/VA/2013-12-06_Appendix-M-2_VOWTAP-Underwater-Noise-Modeling-Report_FINAL.aspx
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Noise Measurements from MRE Devices

State of the Science Report (Copping et al. 2016)

https://tethys.pnnl.gov/publications/state-of-the-science-2016
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OpenHydro Turbine at EMEC

• European Marine Energy Centre (EMEC), Fall of Warness

• Noise from rotor, power take off, and “seal scarer”

• Broadband (10 Hz – 45 kHz) SL = 150 dB

“Seal Scarer” AHD

Turbine and Support Structure

(Polagye et al. 2017, pers. com.)
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Fred. Olsen Lifesaver at WETS

• Hawai’i Wave Energy Test Site (WETS), O’ahu, HW, U.S.

• Floating point absorber

• Shallow draft (0.5 m)

• Noise measurements (2016): 

• 3 seabed-mounted hydrophones (3 months)

• 2 drifting hydrophones (3 drifts)

(Polagye et al. 2017, EWTEC)
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Fred. Olsen Lifesaver at WETS

PTO

(Standard Operation)

RL = 116 dB re 1μPa

(Polagye et al. 2017, EWTEC)
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Fred. Olsen Lifesaver at WETS

Mooring

(Mechanical Contact)

RL = 124 dB re 1μPa

(Polagye et al. 2017, EWTEC)
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IDOM’s MARMOK-A-5 at BiMEP

• Biscay Marine Energy Platform, Armintza Test Site, Spain

• Oscillating water column

• Noise measurements (WESE Project, 2019): 

• 1 seabed-mounted hydrophone at ≈ 100 m from device

• Continuous recording for 44 days

(Bald 2019, pers. com.)
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IDOM’s MARMOK-A-5 at BiMEP

• Mooring line is dominant noise in 5 m wave height
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WaveRoller at WavEc
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• WavEc Offshore Energy Test Site, Peniche, Portugal

• Oscillating wave surge converter, bottom-mounted

• Noise measurements (2014): 

• 2 seabed-mounted hydrophones (24 h)

• Sound characterization & propagation measurements
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Hearing Thresholds vs. Underwater Noise Levels

(Scholik-Schlomer 2015)
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Information on EMF 

Impacts on Marine 

Animals from Exports 

Power Cables

Credit to Ann Bull, BOEM for many of the slides

And many many researchers
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Electromagnetic Fields (EMF) Effects

• Anthropogenic EMF come from a variety of marine 

infrastructure (e.g., subsea cables, bridges, tunnels)

• MRE emits EMF from power cables, devices’ moving 

parts, and substations/transformers

• EMF may affect organisms that use natural magnetic 

fields for orientation, navigation, and/or hunting (e.g., 

elasmobranchs, marine mammals, crustaceans, sea 

turtles, and some fish species)

• EMF-sensitive species can be attracted to or avoid 

sources of EMF

• No demonstratable impact of EMF related to MRE 

devices on any sensitive species
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EMF from AC and DC Power Cables

• Similar to cables used in the offshore wind industry

• Export cable is typically 132kV AC cable (up to 250MW)

• Inter-array cables are typically 33kV AC cables

• Where possible, cables are buried to 1-3m depth

• Industry starting to use large DC cables for distances 

greater than 80km (less transmission loss)

• Cables used by MRE projects

• Size varies by project, but all smaller than typical wind

• Most common cable is 11kV AC, buried to 1m depth

• All cables are electrically shielded, but the magnetic field is 

not blocked and generates an induced electric field

DC Cable

AC Cable
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EMF Fields Studies

EMF-sensitive fish response to EM emissions from subsea 

electricity cables (Gill et al. 2009)

• West Scotland, 2007, 125 kV AC cable buried 0.5-1m

• Mesocosms with energized and control cables (3 trials)

• No evidence of positive or negative effect on catsharks (dogfish)

• Benthic elasmobranchs (skates) responded to EMF from cable

Sub-sea power cables and the migration behaviour of the European 

eel (Westerberg and Lagenfelt 2008) 

• East Sweden, 2006, unburied 130 kV AC cable

• Used acoustic tags to track movements of 60 eels

• Eels swam more slowly over energized cable

• Effect was small, no evidence of barrier effect
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EMF Fields Studies

Assessment of potential impact of electromagnetic fields (EMF) from undersea cable 

on migratory fish behavior (Kavet et al. 2016)

• West U.S., 2014, buried 200 kV DC cable

• HVDC cable in San Francisco Bay, parallel or perpendicular to green & white sturgeon, 

salmon, and steelhead smolt migrations

• Tagged fish, magnetometer surveys

• Outcome – such large magnetic signatures from bridges, other infrastructure, could not 

distinguish cable!

• Fish did not appear to be affected



33

EMF Fields Studies

Behavioral responses by migrating juvenile salmonids to a subsea high-voltage DC 

power cable (Wyman et al. 2018)

• West U.S., 2014, buried 200 kV DC cable

• Before and after energization of Trans Bay Cable (HVDC cable in San Francisco Bay)

• Tagged Chinook salmon smolts successfully migrated through the bay before and 

after cable energization without significant differences

• Cable activity was not associated with the probability of successfully exiting the 

system, or crossing the cable location
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EMF Fields Studies

Effects of EMF emissions from undersea electric cables  on coral reef fish (Kilfoyle et 

al. 2018)

• SE U.S., 2014, 5-15m deep, unburied cables

• Blind randomized sequence of ambient and energized AC and DC cable power states

• In situ observations of fish abundance and behavior (“unusual” or unexpected 

movements or reaction)

• No behavioral changes were noted in immediate responses to alterations in EMF

• No statistical differences in fish abundance among the power states
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EMF Fields Studies

Potential impacts of submarine power 

cables on crab harvest (Love et al. 2017)

• NW U.S. and SW U.S., 2015, 10-13m 

deep, unburied power cables

• Will rock crab (Santa Barbara channel) 

and Dungeness crab (Puget Sound) 

cross a power cable?

• Rock crabs cross an unburied 35 kV AC 

power cable

• Dungeness crabs cross an unburied 69 

kV AC power cable to enter baited 

commercial traps
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EMF Fields Studies

Electromagnetic field impacts on elasmobranch and 

American lobster movement and migration from direct 

current cables (Hutchison et al. 2018)

• NE U.S., 2016, 10m deep, buried 300 kV DC cable

• Determine if EMF-sensitive animals react to HVDC cable:

• Enclosures with animals using acoustic telemetry tags

• AC components measured from DC cable

• Lobster – statistically significant, but subtle change in 

behavior

• Skate – strong behavioral response, results suggested an 

increase in exploratory activity and/or area restricted 

foraging behavior with EMF

• EMF from cable didn’t act as a barrier to movement for 

either species
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