Modelling Wave Energy in Archipelagos
Case of Northern Scotland

Philippe Gleizon\(^1\), Angus Murray\(^2\)

\(^1\)Environmental Research Institute, North Highland College UHI, University of the Highlands and Islands, Thurso, Caithness KW14 7EE – email: philippe.gleizon@uhi.ac.uk

\(^2\)Lewis Castle College, University of the Highlands and Islands, Stornoway, Isle of Lewis, HS2 0XR – email: angus.murray@uhi.ac.uk

Introduction
Scotland had one of the most abundant wave energy resources in Europe, estimated at 45.7 TWh [1]. However, the evaluation of the wave energy is subject to large uncertainties due to the inherent intermittency and the unpredictability of wind waves. Mathematical models are a useful resort for assessing wave energy but the complexity of the Scottish coastline introduces an additional challenge. Tuomi et al. [2] and Rusu et al. [3] showed that regular grid models can introduce an overestimate of the wave energy in archipelagos by misrepresenting the wave dissipation induced by a cluster of islands. The SWAN model was implemented on an unstructured grid over a large domain, both providing a high resolution in nearshore areas and allowing for long fetch wind waves and swells.

Model

Grid characteristics
- Vertices: 48144
- Max edge: 80 km
- Min edge: 45 m
- Max edge: 80 km

Bathymetry
Seazone, 1arc sec
Shetlands,
Orkneys,
North Scotland
Outer Hebrides
Seazone, 30 arc sec
Continental shelf
Geacho, 1 arc min
Offshore areas

Wind input
The wind data was obtained from the European Centre for Medium-range Weather Forecast (ECMWF) at 10 m above sea level on a 0.75° resolution and 3 hour time interval.

Boundary conditions
Previous studies [4] showed that swells and waves propagating from outside the modelling domain influence the wave characteristics, even far from the boundaries. Boundary conditions are specified at each time by the significant wave height, mean wave period and direction, derived from ECMWF one-dimensional spectral wave data.

Validation

The model replicates well the observations, as shown by the comparison of significant wave heights against data recorded at South Uist and Moray Firth in 2011 (Figure 3). A linear regression analysis applied to the entire year give R\(^2\)=0.84 at South Uist and R\(^2\)=0.72 at Moray Firth. This shows a significant improvement from previous simulations where no boundary conditions were applied and for which R\(^2\) were 0.67 and 0.53 respectively [4]. It also indicates, through a series of tests, that boundary conditions are one of the most critical input parameters in spectral wave models. As shown in Figure 3, some peak values are still under-predicted, which could be explained by the response of the wave pattern to rapidly changing wind direction and magnitude. Figure 4 illustrates the impact of rapid meteorological change on the directional wave spectrum. Within a day, the wind in the western part of the domain turned from a southerly to a northerly direction, inducing a double peak pattern of the wave directional spectrum at a location near the western boundary (red dot). Boundary conditions using two-dimensional wave spectrum are currently being implemented to study the impact of complex wave spectra on predictions.

Wave energy estimate
The performance of the model can also be evaluated from the wave energy comparison. As an example, the energy yield was calculated at South Uist and Moray Firth applying the Pelamis power matrix given by [5] and [6] to the data and model predictions with and without boundary conditions. The calculated wave power times show a closer agreement between model predictions and data when boundary conditions are implemented (Figure 5). This is further highlighted by the total wave energy yield estimated for 2011 (Table 2). The energy yield calculated from the data gives 2,520 MWh at South Uist and 201 MWh at Moray Firth. The same estimates from the model predictions show closer values with boundary conditions (2,327 MWh and 162 MWH) than with no boundary conditions (957 MWh and 40 MWh).

References


Acknowledgments
The model was initially developed under the MarREE project and current work was a joint effort with the Hteinlein Marine Energy Futures project. It is planned to undertake further work and application as part of the European project EnergyMare. Some wind and wave data were obtained from the European Centre for Medium-Range Weather Forecast and the Centre for Environment, Fisheries and Aquaculture Science. With special thanks to Dr Ruairi McIlver for his help in obtaining spectral wave data.