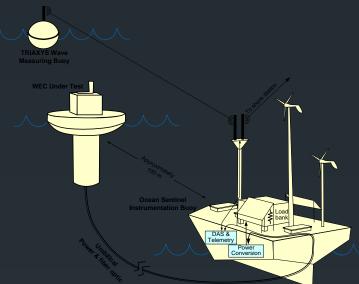
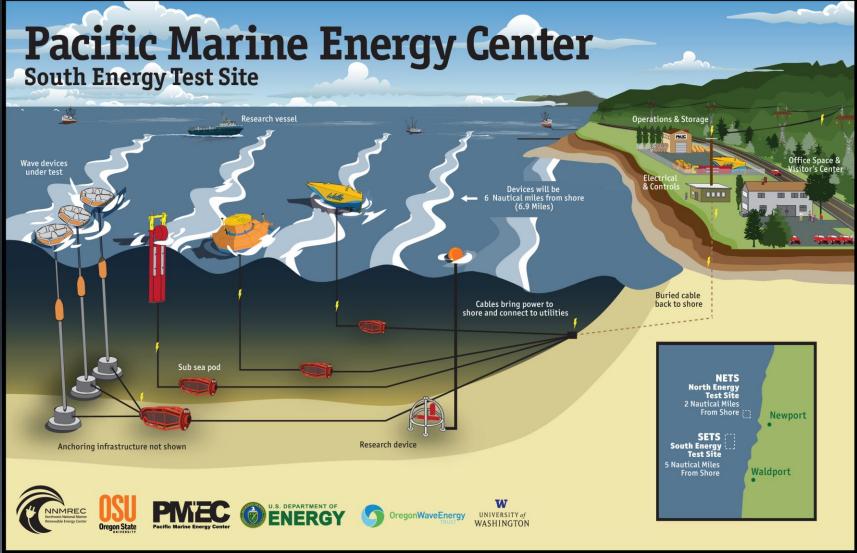
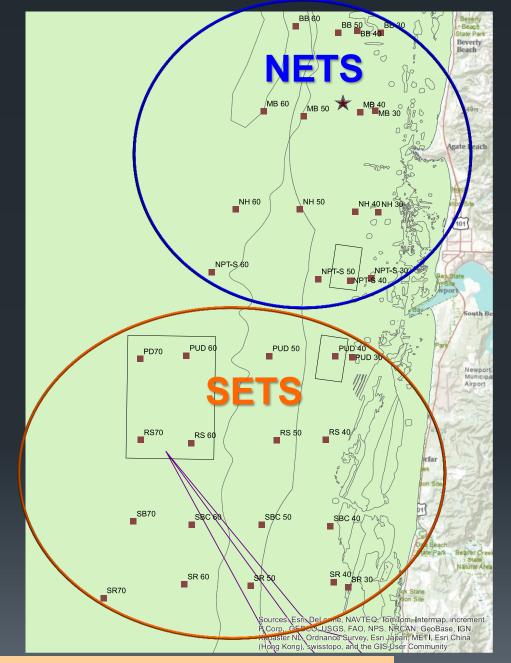

Environmental Studies at PMEC: **Addressing Information Needs** for Permitting/Testing 8 **Future Environmental Research Campaign**


National Marine Renewable Energy


Centers


Pacific Marine Energy Center North Energy Test Site Ocean Sentinel

- Provide stand-alone electrical loading and power conversion for test WEC
- Measure and record WEC power output
- Collect and store data transmitted from the WEC under test and nearby wave-measuring instrument
- Transmit collected data to shore via wireless telemetry system



PMEC - South Energy Test Site

REC e University

Part 1: Site Characterization/Baseline

PMEC Survey Areas

Talk Structure

1. Site Characterization / Baseline Studies

2. Monitoring Deployed Devices / Structure

3. Future Environmental Research

Campaign

Purpose of Site Characterization /Baseline

- Characterize spatial and temporal variability in habitat characteristics and species distributions in the project areas
- Identify species potentially unknown to the area
- Inform the design and implementation of future pre-installation and post-installation surveys
- Collect data to inform future monitoring results and adaptive management actions

Habitat Characteristics and Species Surveyed

- Sediment & Macrofaunal Invertebrates
- Fish & Epibenthic Crustaceans*
- Dungeness Crabs**
- SeaBirds & Marine Mammals
- Ambient Ocean Noise
- Wave/Current Conditions

*NETS Only, **SETS only

PMEC-NETS Surveys

	2010			2011				2012			2013			2014						2015						
	Jun	Aug	Oct	Feb	Apr/ May	Ju n	Aug	Oct	De c	Ju n	Aug/ Sept	Oct/ Nov	Apr	Jun	Aug/ Sept	Oct	De c	Feb	April /May	Jun	Aug/ Sept	Oct	Dec	Feb	Apr/ May	Jun
Cores	~	~	~		~	~	~	~	~	~	V	~		~	•	~			•	~	•	~	•	~	•	~
Beam Trawl	~	r	~	~	~	~	~	~	~	~	~	~	v	~	~	~	~	~	•	~	•	~	~	~	•	~
Bird Obs															•	~		~	•	~	•	~	~	~	•	~
Marine Mammal Obs											~	~	~	~	~	~	~	~	•	~	~	•	~	~	•	~
Acoustics (Lander)	M	arch 2	2010 2011		oril																					
Acoustics (Surface)											~				~											
TRIAXYS (surface wave)											1 we				10 wee											
AWAC (bottom wave)															8 wee											

Ocean Sentinel + WetNZ: 6 concrete anchors
 Ocean Sentinel: 3 concrete anchors
 3 concrete anchors only

CONTRACT OF CONTRACT.

PMEC-SETS Surveys

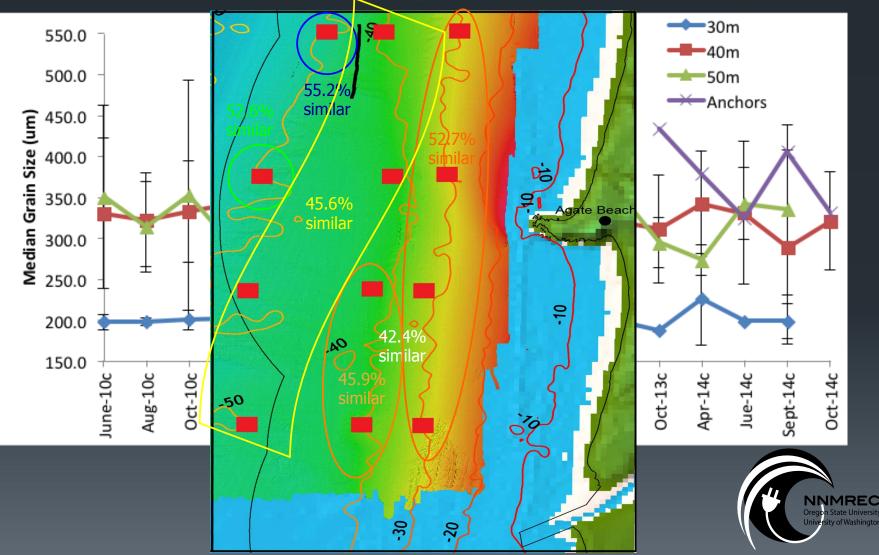
	2013						2014										2015			
	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Apr	June	July	Aug	Sept	Oct	Dec	Feb	Apr	Jun			
Sediment & Macrofauna	\checkmark		\checkmark					\checkmark	\checkmark		\checkmark		\checkmark	1	✓	\checkmark	\checkmark			
Crab Pots		✓			✓			~	1			✓		✓		✓	✓			
Bird Surveys	✓	✓	\checkmark	\checkmark		✓		✓	\checkmark		\checkmark	\checkmark	✓	✓	✓	\checkmark	1			
Marine Mammal Obs			✓	✓		✓		✓	1		✓	✓	✓	1	✓	✓	1			
DMON/CPO DS									e 1-week		/ments	May - C	Oct							
Acoustics (Lander)								/ rec	o deploye April. One covered w age, one	e vith							1			
Acoustics (Drifting)		✓					✓		\checkmark											
TRIAXYS (surface wave)														0 weel						
AWAC (bottom wave)														6 mont	h deplo	yp				
																[[]	NN			

NNMREC Oregon State University University of Washington

Sediment and Macrofaunal 0.1 m² Grey-O'Hare box core Sieve collection through 1.0 mm mesh

Analyze sediment for grain size, total organic carbon

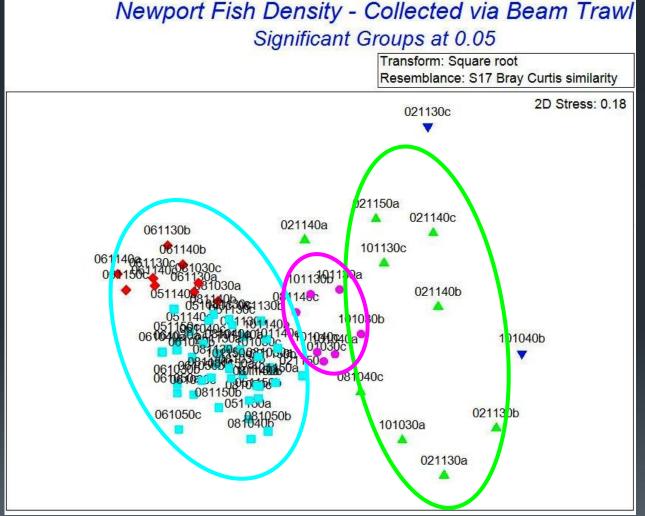
Part 1: Site Characterization/Baseline



Identify macrofauna in the lab

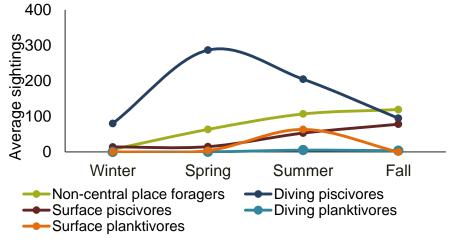
Macrofauna and Sediment Vary Spatially but not Temporally

Macrofaunal invertebrates: strong (but stable) spatial heterogeneity

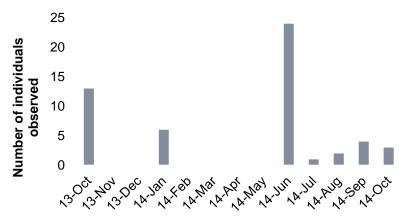

Epifauna/Fish Sampling

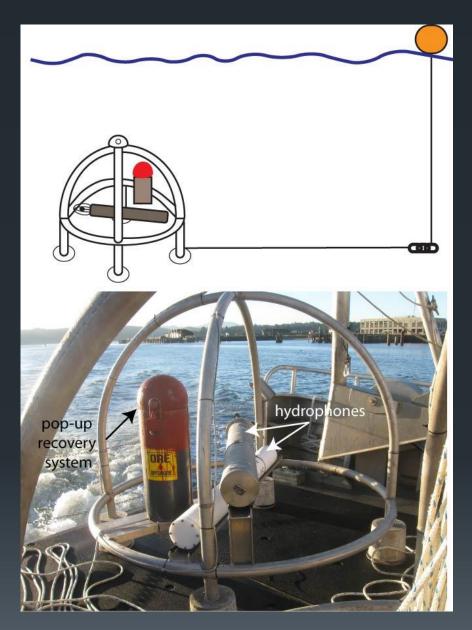
2 m Wide Beam Trawl (3 mm mesh liner)

Fish Species Vary across Seasons but not Depth


Summer Fall Winter

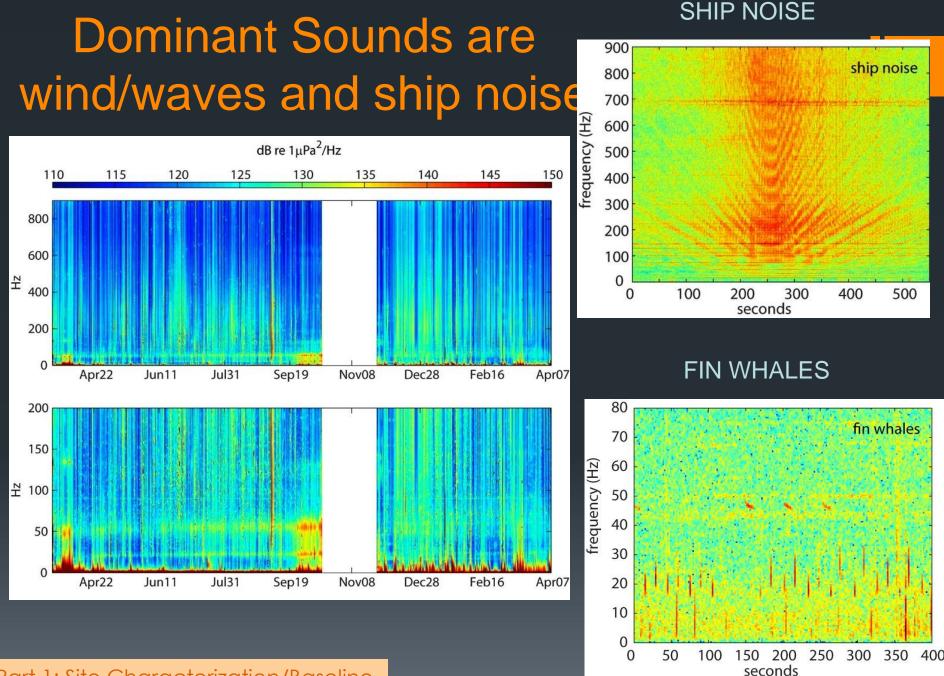
Dungeness Crab Distributions CPUE varies by depth by not transect


Seabird and Marine Mammal Observations



Foraging groupSpeciesDiving piscivores (dpis)Common murres (Uria aalge), cormorant spp.,
pigeon guillemot (C. columba), murrelet spp.,
rhinoceros auklet (C. monocerata)Diving planktivores (dplank)Cassin's auklet (Ptychoramphus aleuticus)Surface piscivores (spis)Tern spp., gull spp., kittiwake spp.Surface planktivores (splank)Phalarope spp., storm petrel spp.Non-central place foragers (ncpf)Northern Fulmar (F. glacialis), albatross spp.,
jaeger spp., shearwater spp., phalarope spp.

Species	Individuals observed
Harbor porpoise	53
Gray whale	20
Humpback whale	20
Steller sea lion	15
California sea lion	9
Unidentified whale	7
Dalls porpoise	6
Pacific white sided dolphin	n 6
Unidentified porpoise	3
Unidentified sea lion	3
Orca	2
Harbor seal	1
Total:	145


Passive Acoustic Lander Mooring

PIs: Haxel, Matsumoto, Dziak Oregon State University: Cooperative Institute for Marine Resources Studies <u>NOAA: Pacific Marine Environmental Laboratory</u>

- Lowered to the seafloor
 Hydrophones record
 continuously or on duty cycle
 (1 Hz 20 kHz)
- Collect continuous passive acoustic data
- Characterize the amplitude and frequency distribution through time of the ambient noise field

ID sound sources

Acoustic Effects?

2012: WetNZ & Ocean Sentinel

- Acoustic recordings indicated sound energy transmitted by the devices appeared to oscillate with wave period, primarily in frequencies below 1 kHz, but the cabled hydrophone was approach severely limited in the lower frequency range (< 300 Hz) by system noise contamination.
- SPL_{ms} recorded at 10 m and 85 m from the WET-NZ and Ocean Sentinel remained below NMFS threshold criteria (120 dB).

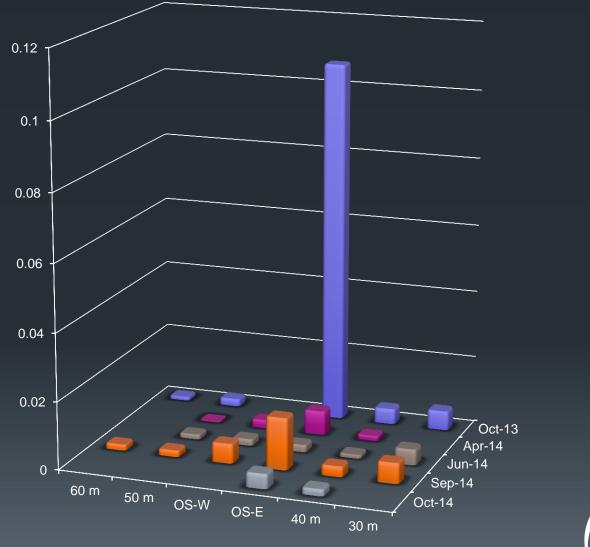
2013: Ocean Sentinel only

- The spectral signature of sounds generated by the motion of mooring hardware (chain noise) was detected and identified as a set of five localized spectral peaks (4.6 - 5.0 kHz, 5.2 - 5.5 kHz, 9.0 - 9.4 kHz, 10.0 - 10.6 kHz, and 12.1 - 13 kHz).
- Despite the contribution of these sound sources to ambient levels, SPL_{rms} integrated across the 60Hz – 13 kHz frequency range remained below NMFS threshold criteria (120 dB).

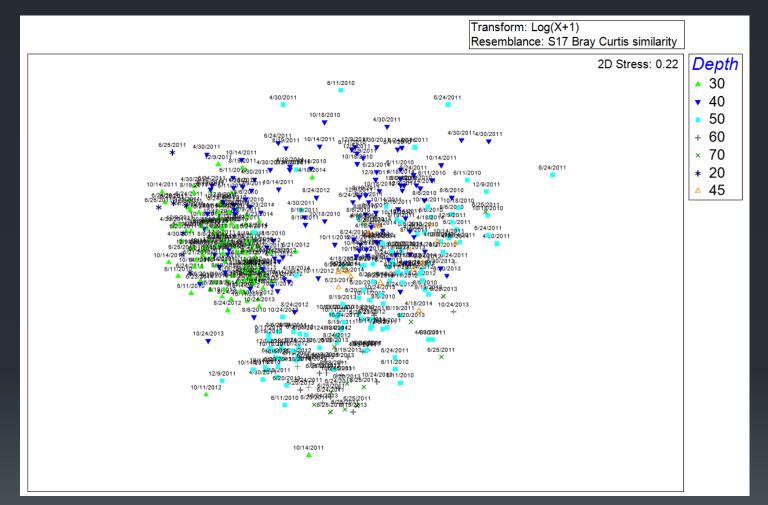
Seafloor Effects?

144 DEPTH

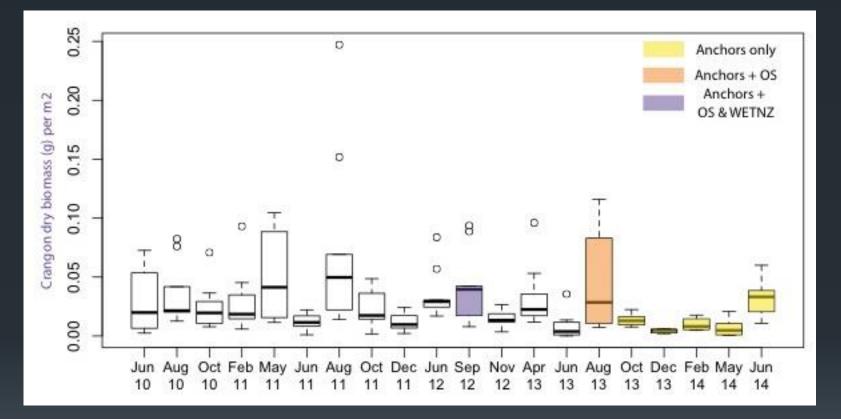
2012 ROV Survey of Wet-NZ test



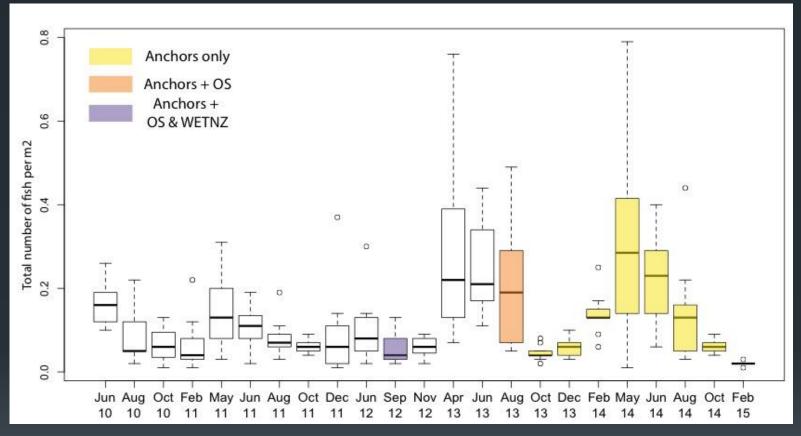
Starting in 2013: Anchor Grabs



Shell Hash Proportion


Effects on Organisms?

Macrofaunal assemblages at anchor stations indistinguishable from 40 m and 50 m


Effects on Organisms?

No difference in biomass of Crangon shrimp over time

Effects on Organisms?

No changes in benthic fish density during WetNZ deployment. Recent increases started before OS installation (El Niño)

Future Environmental Research Campaign

- Work with resource agencies to determine the most interesting and important environmental research questions that can be addressed at PMEC in order to develop a prioritized research agenda for NNMREC
- Coordinate with outside scientists interested in conducting research at PMEC to ensure their activities align with NNMREC priority issues
- Communicate with DOE and/or other funding streams priority research questions for future funding calls
- Evaluate periodically to see what goals are being met / what is not longer a priority due to other studies / what new topics should be added to the research agenda